1
|
Wei X, Fan J, Hao Y, Dong H, Zhang Y, Zhou Y, Xu M. Electrochemiluminescence and electrochemical dual-mode detection of BACE1 activity based on the assembly of peptide and luminol co-functionalized silver nanoparticles induced by cucurbit[8]uril. Talanta 2024; 266:124904. [PMID: 37473471 DOI: 10.1016/j.talanta.2023.124904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/27/2023] [Accepted: 07/01/2023] [Indexed: 07/22/2023]
Abstract
A novel electrochemiluminescence (ECL) and electrochemical dual-mode sensor was developed for detecting the activity of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) and screening its inhibitor. Specifically, the adamantane (ADA)-functionalized peptide (P1), a designed substrate peptide for BACE1, was immobilized on the electrode surface via host-guest interaction between β-cyclodextrin (β-CD) and ADA. The aggregation of the peptide (P2) and luminol co-functionalized silver nanoparticles could be induced by cucurbit [8]uril (CB[8] due to the ability of CB[8] to accommodate two aromatic residues simultaneously. The obtained (CB[8]-P2-AgNPs-luminol)n aggregates with both ECL and electrochemical activity, used as the dual-mode signal probe, could be captured to the N-terminal of P1 through CB[8]. Once the substrate P1 was cleaved by BACE1, the probe-binding polypeptide fragment detached from the electrode surface, resulting in a remarkable decrease in the ECL and electrochemical signals. Taking advantage of the signal amplification function of the signal probe, the sensitive dual-mode assay for BACE1 activity can be achieved with the low detection limits of 33.11 pM for ECL and 53.19 pM for electrochemical mode. The superior analytical performance of this novel dual-mode sensor toward BACE1 activity suggested the promising application in early diagnosis of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Xiuhua Wei
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China
| | - Jie Fan
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China
| | - Yuanqiang Hao
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Hui Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China.
| |
Collapse
|
2
|
Diez-Escudero A, Espanol M, Ginebra MP. High-aspect-ratio nanostructured hydroxyapatite: towards new functionalities for a classical material. Chem Sci 2023; 15:55-76. [PMID: 38131070 PMCID: PMC10732134 DOI: 10.1039/d3sc05344j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Hydroxyapatite-based materials have been widely used in countless applications, such as bone regeneration, catalysis, air and water purification or protein separation. Recently, much interest has been given to controlling the aspect ratio of hydroxyapatite crystals from bulk samples. The ability to exert control over the aspect ratio may revolutionize the applications of these materials towards new functional materials. Controlling the shape, size and orientation of HA crystals allows obtaining high aspect ratio structures, improving several key properties of HA materials such as molecule adsorption, ion exchange, catalytic reactions, and even overcoming the well-known brittleness of ceramic materials. Regulating the morphogenesis of HA crystals to form elongated oriented fibres has led to flexible inorganic synthetic sponges, aerogels, membranes, papers, among others, with applications in sustainability, energy and catalysis, and especially in the biomedical field.
Collapse
Affiliation(s)
- Anna Diez-Escudero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC) Av. Eduard Maristany 16 08019 Barcelona Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC) Av. Eduard Maristany 16 08019 Barcelona Spain
| | - Montserrat Espanol
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC) Av. Eduard Maristany 16 08019 Barcelona Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC) Av. Eduard Maristany 16 08019 Barcelona Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC) Av. Eduard Maristany 16 08019 Barcelona Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC) Av. Eduard Maristany 16 08019 Barcelona Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology Baldiri Reixac 10-12 08028 Barcelona Spain
| |
Collapse
|
3
|
Nangare S, Patil P. Platinum-alginate-chitosan nanobioconjugate decorated carbon backbone layered biosensor for highly sensitive and selective detection of BACE-1. Int J Biol Macromol 2023; 250:126224. [PMID: 37558026 DOI: 10.1016/j.ijbiomac.2023.126224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/03/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Chitosan (CS) and sodium alginates (SA) have been revealed for the design of layer-by-layer (LbL) assembly to develop pharmaceutical dosage forms owing to their versatile characteristics. Recently, the preference for unique LbL assemblies in biosensor development has offered the modified performance for detection interest analyte. Beta (β)-site amyloid precursor protein-cleaving enzyme 1 (BACE-1) is a pivotal biomarker of Alzheimer's disease (AD) and demands high sensitivity and selective identification for the early-stage diagnosis. In this work, CS-SA‑platinum nanoparticles (Pt-NPs) LbL-based nanobioconjugate decorated carbon backbone-layered affinity surface plasmon resonance (Anti-BACE-1-LbL@Pt-NPs-GO-SPR) biosensor was designed for extremely sensitive and selective sensing of BACE-1. Primarily, LbL nanobioconjugate was synthesized by integrating cationic 'CS' and anionic 'SA' on the face of green-made Pt-NPs. Here, the amines of 'CS' offers a softer surface for anti-BACE-1 immobilization that leads to maintaining the bio-functionality of bioreceptors, provides the specific orientation for bioreceptors, etc. As well, the synthesized graphene oxide (GO, 2D carbon backbone) was preferred as non-plasmonic nanomaterials due to their plenty of merits in biosensors. Here, the designed biosensor provides a low detection limit (LOD) of 5.63 fg/mL and a wide linear range from 5 fg/mL to 150 ng/mL. Moreover, selectivity and real-time analyses in spiked samples exhibited their practical usefulness in complex specimens for BACE-1 detection. Hence, the decorating of antibody-immobilized CS-SA coated Pt-NPs nanobioconjugate on the face of GO has various benefits mainly extremely sensitive and superb specificity. Overall, CS and SA coated Pt-NPs bioconjugate decorated GO layered SPR biosensors can provide highly sensitive, selectivity, rapid, label-free, etc. detection of BACE-1 in clinical samples.
Collapse
Affiliation(s)
- Sopan Nangare
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Dist: Dhule (MS), India
| | - Pravin Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Dist: Dhule (MS), India.
| |
Collapse
|
4
|
Botchway BOA, Liu X, Zhou Y, Fang M. Biometals in Alzheimer disease: emerging therapeutic and diagnostic potential of molybdenum and iodine. J Transl Med 2023; 21:351. [PMID: 37244993 PMCID: PMC10224607 DOI: 10.1186/s12967-023-04220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023] Open
Abstract
The current ageing trend of the world population has, in part, accounted for Alzheimer disease (AD) being a public health issue in recent times. Although some progress has been made in clarifying AD-related pathophysiological mechanisms, effective intervention is still elusive. Biometals are indispensable to normal physiological functions of the human body-for example, neurogenesis and metabolism. However, their association with AD remains highly controversial. Copper (Cu) and zinc (Zn) are biometals that have been investigated at great length in relation to neurodegeneration, whereas less attention has been afforded to other trace biometals, such as molybdenum (Mo), and iodine. Given the above context, we reviewed the limited number of studies that have evidenced various effects following the usage of these two biometals in different investigative models of AD. Revisiting these biometals via thorough investigations, along with their biological mechanisms may present a solid foundation for not only the development of effective interventions, but also as diagnostic agents for AD.
Collapse
Affiliation(s)
- Benson O. A. Botchway
- Department of Neurology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou, 310052 China
- Pharmacy Department, Bupa Cromwell Hospital, Kensington, London, SW5 0TU UK
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, Zhejiang China
| | - Yu Zhou
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, Zhejiang China
| | - Marong Fang
- Department of Neurology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou, 310052 China
| |
Collapse
|
5
|
A simple and sensitive electrochemical sensor for the detection of peptidase activity. Anal Bioanal Chem 2023; 415:2209-2215. [PMID: 36856821 DOI: 10.1007/s00216-023-04628-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
In this work, a simple and sensitive electrochemical sensor was proposed for the detection of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) activity. Firstly, the BACE1 specific peptide was modified onto the Au electrode to graft a single-strand DNA with polycytosine DNA sequence (dC12) via amide bonding between peptide and dC12. Because the dC12 is abundant in phosphate groups, thus it can react with molybdate to form redox molybdophosphate, which can generate electrochemical current. Using BACE1 as a model peptidase, the proposed sensor shows a linear response range from 1 to 15 U/mL and limit of detection down to 0.05 U/mL. The sensor displays good performance for the BACE1 activity detection in human serum samples, which may have potential applications in the clinical diagnostics of Alzheimer's disease.
Collapse
|
6
|
Hartati YW, Irkham I, Zulqaidah S, Syafira RS, Kurnia I, Noviyanti AR, Topkaya SN. Recent advances in hydroxyapatite-based electrochemical biosensors: Applications and future perspectives. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
Xiao Y, Wu N, Wang L, Chen L. A Novel Paper-Based Electrochemical Biosensor Based on N,O-Rich Covalent Organic Frameworks for Carbaryl Detection. BIOSENSORS 2022; 12:899. [PMID: 36291036 PMCID: PMC9599374 DOI: 10.3390/bios12100899] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 05/28/2023]
Abstract
A new N,O-rich covalent organic framework (COFDHNDA-BTH) was synthesized by an amine-aldehyde condensation reaction between 2,6-dialdehyde-1,5-dihydroxynaphthalene (DHNDA) and 1,3,5-phenyltriformylhydrazine (BTH) for carbaryl detection. The free NH, OH, and C=O groups of COFDHNDA-BTH not only covalently couples with acetylcholinesterase (AChE) into the pores of COFDHNDA-BTH, but also greatly improves the catalytic activity of AChE in the constrained environment of COFDHNDA-BTH's pore. Under the catalysis of AChE, the acetylthiocholine (ATCl) was decomposed into positively charged thiocholine (TCl), which was captured on the COFDHNDA-BTH modified electrode. The positive charges of TCl can attract anionic probe [Fe(CN)6]3-/4- on the COFDHNDA-BTH-modified electrode to show a good oxidation peak at 0.25 V (versus a saturated calomel electrode). The carbaryl detection can inhibit the activity of AChE, resulting in the decrease in the oxidation peak. Therefore, a turn-off electrochemical carbaryl biosensor based on a flexible carbon paper electrode loaded with COFDHNDA-BTH and AChE was constructed using the oxidation peak of an anionic probe [Fe(CN)6]3-/4- as the detection signal. The detection limit was 0.16 μM (S/N = 3), and the linear range was 0.48~35.0 μM. The sensor has good selectivity, repeatability, and stability, and has a good application prospect in pesticide detection.
Collapse
Affiliation(s)
| | | | | | - Lili Chen
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
8
|
Fan J, Wei X, Dong H, Zhang Y, Zhou Y, Xu M, Xiao G. Advancement in Analytical Techniques for Determining the Activity of β-Site Amyloid Precursor Protein Cleaving Enzyme 1. Crit Rev Anal Chem 2022; 54:1797-1809. [PMID: 36227582 DOI: 10.1080/10408347.2022.2132812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is a degenerative disease of the central nervous system. The pathogenesis is still not fully clear. One of the main histopathological manifestations is senile plaques formed by β-amyloid (Aβ) accumulation. Aβ is generated from the sequential proteolysis of amyloid precursor protein (APP) by β-secretase [i.e. β-site APP cleaving enzyme 1 (BACE1)] and γ-secretase, with a rate-limiting step controlled by BACE1 activity. Therefore, inhibiting BACE1 activity has become a potential therapeutic strategy for AD. The development of reliable detection methods for BACE1 activity plays an important role in early diagnosis of AD and evaluation of the therapeutic effect of new drugs for AD. This article has reviewed the recent advances in BACE1 activity detection techniques. The challenges of applying these analysis techniques to early clinical diagnosis of AD and development trends of the detection techniques have been prospected.
Collapse
Affiliation(s)
- Jie Fan
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Xiuhua Wei
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, China
| | - Hui Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, China
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, China
| | - Guoqing Xiao
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| |
Collapse
|
9
|
Dey J, Roberts A, Mahari S, Gandhi S, Tripathi PP. Electrochemical Detection of Alzheimer’s Disease Biomarker, β-Secretase Enzyme (BACE1), With One-Step Synthesized Reduced Graphene Oxide. Front Bioeng Biotechnol 2022; 10:873811. [PMID: 35402415 PMCID: PMC8987718 DOI: 10.3389/fbioe.2022.873811] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 01/14/2023] Open
Abstract
β-Secretase1 (BACE1) catalyzes the rate-limiting step in the generation of amyloid-β peptides, that is, the principal component involved in the pathology of Alzheimer’s disease (AD). Recent research studies show correlation between blood and cerebrospinal fluid (CSF) levels of BACE1 with the pathophysiology of AD. In this study, we report one-step synthesized reduced graphene oxide (rGO), activated via carbodiimide chemistry, conjugated with BACE1 antibody (Ab), and immobilized on fluorine-doped tin oxide (FTO) electrodes for rapid detection of BACE1 antigen (Ag) for AD diagnosis. The synthesis and fabrication steps were characterized using different types of spectroscopic, X-ray analytic, microscopic, and voltametric techniques. Various parameters including nanomaterial/Ab concentration, response time, pH, temperature, and rate of scan were standardized for maximum current output using the modified electrode. Final validation was performed via detection of BACE1 Ag ranging from 1 fM to 1 µM, with a detection limit of 0.64 fM in buffer samples and 1 fM in spiked serum samples, as well as negligible cross-reactivity with neurofilament Ag in buffer, spiked serum, and spiked artificial CSF. The proposed immunosensor gave a quick result in 30 s, and good repeatability and storage stability for a month, making it a promising candidate for sensitive, specific, and early diagnosis of AD. Thus, the fabricated electrochemical biosensor for BACE-1 detection improves detection performance compared to existing sensors as well as reduces detection time and cost, signifying its potential in early diagnosis of AD in clinical samples.
Collapse
Affiliation(s)
- Jhilik Dey
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Cell Biology and Physiology Division, IICB-Translational Research Unit of Excellence, Kolkata, India
| | - Akanksha Roberts
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | - Subhasis Mahari
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, India
- *Correspondence: Sonu Gandhi, , ; Prem Prakash Tripathi,
| | - Prem Prakash Tripathi
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Cell Biology and Physiology Division, IICB-Translational Research Unit of Excellence, Kolkata, India
- *Correspondence: Sonu Gandhi, , ; Prem Prakash Tripathi,
| |
Collapse
|
10
|
Ma F, Wang Q, Xu Q, Zhang CY. Self-Assembly of Superquenched Gold Nanoparticle Nanosensors for Lighting up BACE-1 in Live Cells. Anal Chem 2021; 93:15124-15132. [PMID: 34739230 DOI: 10.1021/acs.analchem.1c03430] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The β-site amyloid precursor protein-cleaving enzyme 1 (BACE-1) plays a key role in Alzheimer's disease (AD) pathogenesis and is regarded as a valuable biomarker for AD diagnosis and treatment. The reported BACE-1 assay often suffers from laborious procedures, large sample consumption, and unsatisfactory sensitivity with high background signals. Herein, we report the self-assembly of superquenched gold nanoparticle (AuNP) nanosensors for lighting up the BACE-1 in live cells. Through the self-assembly of both fluorophore-labeled peptide probes and quencher-labeled assistant DNAs on the surface of a single AuNP, a superquenched AuNP nanoprobe is obtained with a high quenching efficiency of 98.37% and a near-zero background fluorescence. The presence of target BACE-1 induces a distinct fluorescence signal as a result of the BACE-1-catalyzed cleavage of peptide probe and the subsequent release of abundant fluorophore moieties from the AuNP nanoprobe. The fluorescence signal can be directly visualized by single-molecule imaging and easily quantified by single-molecule counting. This nanosensor involves only a single nanoprobe for the one-step homogeneous detection of the BACE-1 activity without the requirements of any antibodies and separation steps, and it possesses good selectivity and high sensitivity with a low detection limit of 26.48 pM. Moreover, it can be employed to screen BACE-1 inhibitors and analyze kinetic parameters. Especially, this nanoprobe possesses good stability and can be easily transferred into live cells for the real-time imaging of cellular BACE-1 activity, providing a new platform for BACE-1-associated research and early diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Fei Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China.,School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Qi Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Qinfeng Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
11
|
Karki HP, Jang Y, Jung J, Oh J. Advances in the development paradigm of biosample-based biosensors for early ultrasensitive detection of alzheimer's disease. J Nanobiotechnology 2021; 19:72. [PMID: 33750392 PMCID: PMC7945670 DOI: 10.1186/s12951-021-00814-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
This review highlights current developments, challenges, and future directions for the use of invasive and noninvasive biosample-based small biosensors for early diagnosis of Alzheimer's disease (AD) with biomarkers to incite a conceptual idea from a broad number of readers in this field. We provide the most promising concept about biosensors on the basis of detection scale (from femto to micro) using invasive and noninvasive biosamples such as cerebrospinal fluid (CSF), blood, urine, sweat, and tear. It also summarizes sensor types and detailed analyzing techniques for ultrasensitive detection of multiple target biomarkers (i.e., amyloid beta (Aβ) peptide, tau protein, Acetylcholine (Ach), microRNA137, etc.) of AD in terms of detection ranges and limit of detections (LODs). As the most significant disadvantage of CSF and blood-based detection of AD is associated with the invasiveness of sample collection which limits future strategy with home-based early screening of AD, we extensively reviewed the future trend of new noninvasive detection techniques (such as optical screening and bio-imaging process). To overcome the limitation of non-invasive biosamples with low concentrations of AD biomarkers, current efforts to enhance the sensitivity of biosensors and discover new types of biomarkers using non-invasive body fluids are presented. We also introduced future trends facing an infection point in early diagnosis of AD with simultaneous emergence of addressable innovative technologies.
Collapse
Affiliation(s)
- Hem Prakash Karki
- Department of Mechanical Design Engineering, College of Engineering, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Yeongseok Jang
- Department of Mechanical Design Engineering, College of Engineering, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Jinmu Jung
- Department of Mechanical Design Engineering, College of Engineering, Jeonbuk National University, Jeonju, 54896, South Korea.
- Department of Nano-bio Mechanical System Engineering, College of Engineering, Jeonbuk National University, Jeonju, 54896, South Korea.
| | - Jonghyun Oh
- Department of Mechanical Design Engineering, College of Engineering, Jeonbuk National University, Jeonju, 54896, South Korea.
- Department of Nano-bio Mechanical System Engineering, College of Engineering, Jeonbuk National University, Jeonju, 54896, South Korea.
| |
Collapse
|
12
|
Hrabinova M, Pejchal J, Kucera T, Jun D, Schmidt M, Soukup O. Is It the Twilight of BACE1 Inhibitors? Curr Neuropharmacol 2021; 19:61-77. [PMID: 32359337 PMCID: PMC7903497 DOI: 10.2174/1570159x18666200503023323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
β-secretase (BACE1) has been regarded as a prime target for the development of amyloid beta (Aβ) lowering drugs in the therapy of Alzheimer´s disease (AD). Although the enzyme was discovered in 1991 and helped to formulate the Aβ hypothesis as one of the very important features of AD etiopathogenesis, progress in AD treatment utilizing BACE1 inhibitors has remained limited. Moreover, in the last years, major pharmaceutical companies have discontinued clinical trials of five BACE1 inhibitors that had been strongly perceived as prospective. In our review, the Aβ hypothesis, the enzyme, its functions, and selected substrates are described. BACE1 inhibitors are classified into four generations. Those that underwent clinical trials displayed adverse effects, including weight loss, skin rashes, worsening of neuropsychiatric symptoms, etc. Some inhibitors could not establish a statistically significant risk-benefit ratio, or even scored worse than placebo. We still believe that drugs targeting BACE1 may still hide some potential, but a different approach to BACE1 inhibition or a shift of focus to modulation of its trafficking and/or post-translational modification should now be followed.
Collapse
Affiliation(s)
| | - Jaroslav Pejchal
- Address correspondence to this author at the Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence in Brno, Hradec Kralove, Czech Republic;E-mail:
| | | | | | | | | |
Collapse
|
13
|
Phan LMT, Hoang TX, Vo TAT, Kim JY, Lee SM, Cho WW, Kim YH, Choi SH, Cho S. Nanobiosensors for Non-Amyloidbeta-Tau Biomarkers as Advanced Reporters of Alzheimer's Disease. Diagnostics (Basel) 2020; 10:913. [PMID: 33171630 PMCID: PMC7695150 DOI: 10.3390/diagnostics10110913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 11/17/2022] Open
Abstract
Emerging nanomaterials providing benefits in sensitivity, specificity and cost-effectiveness are being widely investigated for biosensors in the application of Alzheimer's disease (AD) diagnosis. Core biomarkers amyloid-beta (Aβ) and Tau have been considered as key neuropathological hallmarks of AD. However, they did not sufficiently reflect clinical severity and therapeutic response, proving the difficulty of the Aβ- and Tau-targeting therapies in clinical trials. In recent years, there has still been a shortage of sensors for non-Aβ-Tau pathophysiological biomarkers that serve as advanced reporters for the early diagnosis of AD, predict AD progression, and monitor the treatment response. Nanomaterial-based sensors measuring multiple non-Aβ-Tau biomarkers could improve the capacity of AD progression characterization and supervised treatment, facilitating the comprehensive management of AD. This is the first review to principally represent current nanobiosensors for non-Aβ-Tau biomarker and that strategically deliberates future perspectives on the merit of non-Aβ-Tau biomarkers, in combination with Aβ and Tau, for the accurate diagnosis and prognosis of AD.
Collapse
Affiliation(s)
- Le Minh Tu Phan
- Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Gyeonggi-do, Korea
- School of Medicine and Pharmacy, The University of Danang, Danang 550000, Vietnam
| | - Thi Xoan Hoang
- Department of Life Science, Gachon University, Seongnam 461-701, Gyeonggi-do, Korea; (T.X.H.); (T.A.T.V.); (J.Y.K.)
| | - Thuy Anh Thu Vo
- Department of Life Science, Gachon University, Seongnam 461-701, Gyeonggi-do, Korea; (T.X.H.); (T.A.T.V.); (J.Y.K.)
| | - Jae Young Kim
- Department of Life Science, Gachon University, Seongnam 461-701, Gyeonggi-do, Korea; (T.X.H.); (T.A.T.V.); (J.Y.K.)
| | - Sang-Myung Lee
- Cantis Inc., Ansan-si 15588, Gyeonggi-do, Korea; (S.-M.L.); (W.W.C.)
| | - Won Woo Cho
- Cantis Inc., Ansan-si 15588, Gyeonggi-do, Korea; (S.-M.L.); (W.W.C.)
| | - Young Hyo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Inha University, Incheon 22332, Korea;
| | - Seong Hye Choi
- Department of Neurology, School of Medicine, Inha University, Incheon 22332, Korea;
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Gyeonggi-do, Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| |
Collapse
|
14
|
Huang S, Tang R, Zhang T, Zhao J, Jiang Z, Wang Q. Anti-fouling poly adenine coating combined with highly specific CD20 epitope mimetic peptide for rituximab detection in clinical patients' plasma. Biosens Bioelectron 2020; 171:112678. [PMID: 33113382 DOI: 10.1016/j.bios.2020.112678] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
In this study, a high-performance anti-fouling coating based on poly adenine (polyAn) as well as a highly specific cluster of differentiation 20 (CD20) epitope mimetic peptide (CN14) were employed to synergistically construct a facile biosensor for the rapid and sensitive determination of rituximab in lymphoma patients' plasma. The well-designed and optimized polyAn coating displayed excellent stability, hydrophilicity, thanks to its intrinsic affinity with gold surface and thoroughly exposed hydrophilic phosphate groups. Moreover, the proposed strategy avoids the necessity to modify binding groups (e.g. thiol), making it more facile, repeatable and efficient. When dealing with complex clinical plasma samples, the polyAn coating demonstrated better anti-fouling performance and lower background signal in comparison with mercaptan and bovine serum albumin coatings. The dissociation constant (~60 nM) between CN14 and rituximab was measured by microscale thermophoresis and their binding mechanism was further explained using computer simulation. The constructed GE/CN14/polyA20 biosensor displayed satisfactory performance with detection limit of 35.26 ng/mL. Finally, the proposed biosensor was successfully applied for rapidly determining rituximab in lymphoma patients' plasma, and exhibited comparable accuracy to the commercial ELISA, but has advantages including a shorter detection time, wider detection range and lower cost. It's worth noting that the anti-fouling polyAn coating can be tailored according to the surface property of sensing interface and can be easily expanded to other gold electrode related biosensors.
Collapse
Affiliation(s)
- Shengfeng Huang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou, 510632, China.
| | - Rentao Tang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou, 510632, China
| | - Tingting Zhang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou, 510632, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, China
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou, 510632, China.
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
15
|
Toyos-Rodríguez C, García-Alonso FJ, de la Escosura-Muñiz A. Electrochemical Biosensors Based on Nanomaterials for Early Detection of Alzheimer's Disease. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4748. [PMID: 32842632 PMCID: PMC7506792 DOI: 10.3390/s20174748] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is an untreatable neurodegenerative disease that initially manifests as difficulty to remember recent events and gradually progresses to cognitive impairment. The incidence of AD is growing yearly as life expectancy increases, thus early detection is essential to ensure a better quality of life for diagnosed patients. To reach that purpose, electrochemical biosensing has emerged as a cost-effective alternative to traditional diagnostic techniques, due to its high sensitivity and selectivity. Of special relevance is the incorporation of nanomaterials in biosensors, as they contribute to enhance electron transfer while promoting the immobilization of biological recognition elements. Moreover, nanomaterials have also been employed as labels, due to their unique electroactive and electrocatalytic properties. The aim of this review is to add value in the advances achieved in the detection of AD biomarkers, the strategies followed for the incorporation of nanomaterials and its effect in biosensors performance.
Collapse
Affiliation(s)
- Celia Toyos-Rodríguez
- NanoBioAnalysis Group-Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain;
- Biotechnology Institute of Asturias, University of Oviedo, Santiago Gascon Building, 33006 Oviedo, Spain;
| | - Francisco Javier García-Alonso
- Biotechnology Institute of Asturias, University of Oviedo, Santiago Gascon Building, 33006 Oviedo, Spain;
- NanoBioAnalysis Group-Department of Organic and Inorganic Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Alfredo de la Escosura-Muñiz
- NanoBioAnalysis Group-Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain;
- Biotechnology Institute of Asturias, University of Oviedo, Santiago Gascon Building, 33006 Oviedo, Spain;
| |
Collapse
|
16
|
Cajigas S, Orozco J. Nanobioconjugates for Signal Amplification in Electrochemical Biosensing. Molecules 2020; 25:molecules25153542. [PMID: 32756410 PMCID: PMC7436128 DOI: 10.3390/molecules25153542] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Nanobioconjugates are hybrid materials that result from the coalescence of biomolecules and nanomaterials. They have emerged as a strategy to amplify the signal response in the biosensor field with the potential to enhance the sensitivity and detection limits of analytical assays. This critical review collects a myriad of strategies for the development of nanobioconjugates based on the conjugation of proteins, antibodies, carbohydrates, and DNA/RNA with noble metals, quantum dots, carbon- and magnetic-based nanomaterials, polymers, and complexes. It first discusses nanobioconjugates assembly and characterization to focus on the strategies to amplify a biorecognition event in biosensing, including molecular-, enzymatic-, and electroactive complex-based approaches. It provides some examples, current challenges, and future perspectives of nanobioconjugates for the amplification of signals in electrochemical biosensing.
Collapse
|
17
|
Pereira M, Marques AC, Oliveira D, Martins R, Moreira FTC, Sales MGF, Fortunato E. Paper-Based Platform with an In Situ Molecularly Imprinted Polymer for β-Amyloid. ACS OMEGA 2020; 5:12057-12066. [PMID: 32548384 PMCID: PMC7271027 DOI: 10.1021/acsomega.0c00062] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/19/2020] [Indexed: 05/23/2023]
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia affecting millions of people worldwide. Currently, an easy and effective form of diagnosis is missing, which significantly hinders a possible improvement of the patient's quality of life. In this context, biosensors emerge as a future solution, opening the doors for preventive medicine and allowing the premature diagnosis of numerous pathologies. This work presents a pioneering biosensor that combines a bottom-up design approach using paper as a platform for the electrochemical recognition of peptide amyloid β-42 (Aβ-42), a biomarker for AD present in blood, associated with visible differences in the brain tissue and responsible for the formation of senile plaques. The sensor layer relies on a molecularly imprinted polymer as a biorecognition element, created on the carbon ink electrode's surface by electropolymerizing a mixture of the target analyte (Aβ-42) and a monomer (O-phenylenediamine) at neutral pH 7.2. Next, the template molecule was removed from the polymeric network by enzymatic and acidic treatments. The vacant sites so obtained preserved the shape of the imprinted protein and were able to rebind the target analyte. Morphological and chemical analyses were performed in order to control the surface modification of the materials. The analytical performance of the biosensor was evaluated by an electroanalytical technique, namely, square wave voltammetry. For this purpose, the analytical response of the biosensor was tested with standard solutions ranging from 0.1 ng/mL to 1 μg/mL of Aβ-42. The linear response of the biosensor went down to 0.1 ng/mL. Overall, the developed biosensor offered numerous benefits, such as simplicity, low cost, reproducibility, fast response, and repeatability less than 10%. All together, these features may have a strong impact in the early detection of AD.
Collapse
Affiliation(s)
- Marta
V. Pereira
- BioMark,
Sensor Research/ISEP, School of Engineering, Polytechnic Institute
Porto 4249-015 Porto, Portugal
- CEB,
Centre of Biological Engineering Minho University, 4710-957 Braga, Portugal
- i3N/CENIMAT,
Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Ana C. Marques
- BioMark,
Sensor Research/ISEP, School of Engineering, Polytechnic Institute
Porto 4249-015 Porto, Portugal
- i3N/CENIMAT,
Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Daniela Oliveira
- BioMark,
Sensor Research/ISEP, School of Engineering, Polytechnic Institute
Porto 4249-015 Porto, Portugal
- CEB,
Centre of Biological Engineering Minho University, 4710-957 Braga, Portugal
| | - Rodrigo Martins
- i3N/CENIMAT,
Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Felismina T. C. Moreira
- BioMark,
Sensor Research/ISEP, School of Engineering, Polytechnic Institute
Porto 4249-015 Porto, Portugal
- CEB,
Centre of Biological Engineering Minho University, 4710-957 Braga, Portugal
| | - M. Goreti F. Sales
- BioMark,
Sensor Research/ISEP, School of Engineering, Polytechnic Institute
Porto 4249-015 Porto, Portugal
- CEB,
Centre of Biological Engineering Minho University, 4710-957 Braga, Portugal
| | - Elvira Fortunato
- i3N/CENIMAT,
Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
18
|
Deng C, Liu H, Si S, Zhu X, Tu Q, Jin Y, Xiang J. An electrochemical aptasensor for amyloid-β oligomer based on double-stranded DNA as "conductive spring". Mikrochim Acta 2020; 187:239. [PMID: 32189141 DOI: 10.1007/s00604-020-4217-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023]
Abstract
In order to overcome the antibody-based sensor's shortcomings, an electrochemical aptamer (Apt)-based sensor was developed for amyloid-β40 oligomer (Aβ40-O). The aptasensor was constructed by locating Apt and ferrocence (Fc) on streptavidin-modified gold (SA-gold) nanoparticles. The obtained AptFc@SA-gold nanoparticles were linked onto the Au electrode via the connection of double-stranded DNA (dsDNA) as a "conductive spring." The determination of Aβ40-O was performed with square-wave voltammetry (SWV). Upon bio-recognition between Apt and Aβ40-O, the conformation of Apt changed and the formed Apt/Aβ40-O complex separated from the SA-gold surface. As a result, the surface charge of SA-gold positively shifted, weakening the electrostatic attraction between the SA-gold and the positively charged Au electrode surface (at potential range of 0.1~0.5 V, corresponding to the Fc redox transformation), and stretching the dsDNA chain. Based on the exponential decay of dsDNA's electron transfer efficiency on its chain stretching, the oxidation current density from Fc decreased and displayed linear correlation to the concentration of Aβ40-O. A wide linear range of 0.100 nM to 1.00 μM with a low detection limit of 93.0 pM was obtained. The aptasensor displayed excellent selectivity toward Aβ40-O in contrast to other possible interfering analogs (Aβ40 monomer, Aβ42 monomer, and oligomer) at × 100 higher concentrations. The recoveries for Aβ40-O-spiked artificial cerebrospinal fluid and healthy human serum were 94.0~104% and 92.8~95.4%, respectively. The electrochemical aptasensor meets the demands of clinic determination of Aβ40-O, which is significant for the early diagnosis of AD. Graphical abstract Schematic representation of the electrochemical aptasensor for amyloid-β oligomer based on the surface charge change induced by target binding.
Collapse
Affiliation(s)
- Chunyan Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Hui Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Shihui Si
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Xiaojun Zhu
- School of Information Science and Technology, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Qiuyun Tu
- Department of Geratology, The Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
| | - Yan Jin
- Department of Geratology, The Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
| | - Juan Xiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China.
| |
Collapse
|
19
|
Ma X, Chen D, Tu X, Gao F, Xie Y, Dai R, Lu L, Wang X, Qu F, Yu Y, Huang X, Liu G. Ratiometric electrochemical sensor for sensitive detection of sunset yellow based on three-dimensional polyethyleneimine functionalized reduced graphene oxide aerogels@Au nanoparticles/SH-β-cyclodextrin. NANOTECHNOLOGY 2019; 30:475503. [PMID: 31349242 DOI: 10.1088/1361-6528/ab3601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrochemical methods have been deemed effective strategies for the detection of dye additive sunset yellow (SY) owing to their low cost, good stability, and high sensitivity. However, the application of the existing sensors with single electrical signal response is limited by their inadequate sensitivity and large background interference. Herein, a ratiometric electrochemical strategy with a dual signal was developed to detect SY. The strategy had an intrinsic built-in correction to the effects from the system, and thus reduced the influence of environmental change. 3D polyethyleneimine functionalized reduced graphene oxide aerogels@Au nanoparticles/SH-β-cyclodextrin (PEI-rGAs@AuNPs/SH-β-CD) was used as the sensing material due to its 3D macroporous microstructure with high specific surface area and excellent electronic conductivity. Guest molecule methylene blue (MB) was chosen as a probe molecule, which formed an inclusion host-guest complex with a SH-β-CD host in advance. The target molecule SY displaced MB from the CD cavities, resulting in the decrease of MB current and the increase of SY current. With the logarithmic value of ISY/IMB as the readout signal, the detection limit of the developed ratiometric electrochemical sensor reached as low as 0.3 nM, confirming the excellent sensitivity. Furthermore, this strategy exhibited good selectivity and repeatability, and could be used for the detection of SY in a real sample.
Collapse
Affiliation(s)
- Xue Ma
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of functional materials and agricultural applied chemistry, College of Science, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhang Y, Cao X, Deng R, Liu Q, Xia J, Wang Z. DNA synergistic enzyme-mediated cascade reaction for homogeneous electrochemical bioassay. Biosens Bioelectron 2019; 142:111510. [DOI: 10.1016/j.bios.2019.111510] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022]
|
21
|
Kevadiya BD, Ottemann BM, Thomas MB, Mukadam I, Nigam S, McMillan J, Gorantla S, Bronich TK, Edagwa B, Gendelman HE. Neurotheranostics as personalized medicines. Adv Drug Deliv Rev 2019; 148:252-289. [PMID: 30421721 PMCID: PMC6486471 DOI: 10.1016/j.addr.2018.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022]
Abstract
The discipline of neurotheranostics was forged to improve diagnostic and therapeutic clinical outcomes for neurological disorders. Research was facilitated, in largest measure, by the creation of pharmacologically effective multimodal pharmaceutical formulations. Deployment of neurotheranostic agents could revolutionize staging and improve nervous system disease therapeutic outcomes. However, obstacles in formulation design, drug loading and payload delivery still remain. These will certainly be aided by multidisciplinary basic research and clinical teams with pharmacology, nanotechnology, neuroscience and pharmaceutic expertise. When successful the end results will provide "optimal" therapeutic delivery platforms. The current report reviews an extensive body of knowledge of the natural history, epidemiology, pathogenesis and therapeutics of neurologic disease with an eye on how, when and under what circumstances neurotheranostics will soon be used as personalized medicines for a broad range of neurodegenerative, neuroinflammatory and neuroinfectious diseases.
Collapse
Affiliation(s)
- Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brendan M Ottemann
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Midhun Ben Thomas
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Insiya Mukadam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Saumya Nigam
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
22
|
In-situ synthesis of hierarchically porous polypyrrole@ZIF-8/graphene aerogels for enhanced electrochemical sensing of 2, 2-methylenebis (4-chlorophenol). Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.132] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Yu Y, Yin T, Peng Q, Kong L, Li C, Tang D, Yin X. Simultaneous Monitoring of Amyloid-β (Aβ) Oligomers and Fibrils for Effectively Evaluating the Dynamic Process of Aβ Aggregation. ACS Sens 2019; 4:471-478. [PMID: 30693761 DOI: 10.1021/acssensors.8b01493] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Herein, we provide a proof of concept for a novel strategy that targets the assessment of the aggregation of amyloid-β (Aβ) by simultaneously determining its oligomers (Aβo) and fibrils (Aβf) in one analytical system. By fabricating and combining two immunosensors for Aβo and Aβf, respectively, we constructed a two-channel electrochemical system. The ratio of Aβf to Aβo was calculated and taken as a possible criterion for evaluating the extent of aggregation. Thereby, the presence of and transformation between oligomers and fibrils were accurately probed by incubating the Aβ monomer for different times and then calculating the ratios of Aβf to Aβo. The applicability of this method was further validated by tracking the dynamic progress of Aβ aggregation in the cerebrospinal fluid and tissues of Alzheimer's disease (AD) rats, which revealed that the ratio of Aβf to Aβo in rat brain gradually increased with the progression of AD, which was indicative of the severity of peptide aggregation during this process. Overall, this study represents the first example of a quantitative strategy for precisely evaluating the aggregation process that is related to pathological events in AD brain.
Collapse
Affiliation(s)
- Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, P. R. China
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, P. R. China
| | - Tianxiao Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, P. R. China
| | - Qiwen Peng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, P. R. China
| | - Lingna Kong
- Department of Chemistry, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Chenglin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, P. R. China
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, P. R. China
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, P. R. China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, P. R. China
| |
Collapse
|
24
|
Jia Y, Yang L, Feng R, Ma H, Fan D, Yan T, Feng R, Du B, Wei Q. MnCO 3 as a New Electrochemiluminescence Emitter for Ultrasensitive Bioanalysis of β-Amyloid 1-42 Oligomers Based on Site-Directed Immobilization of Antibody. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7157-7163. [PMID: 30688432 DOI: 10.1021/acsami.8b21928] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, an electrochemiluminescence (ECL) immunosensor utilizing MnCO3 nanospheres as a novel ECL luminophor and the HWRGWVC (HC-7) heptapeptide as an efficient antibody capturer for site-directed immobilization with high affinity was proposed. MnCO3 nanospheres prepared by a homogeneous precipitation method exhibited high ECL efficiency, low toxicity, favorable biocompatibility, and excellent stability. After the functionalization of polydimethyldiallylammonium chloride (PDDA), the obtained MnCO3/PDDA could combine with gold nanoparticles (Au NPs) via electrostatic interaction (MnCO3/PDDA/Au). Besides, HC-7 as a small peptide ligand has demonstrated an ability to bind the Fc portion of an antibody with high affinity. Because the end of HC-7 is a cysteine, it can connect to MnCO3/PDDA/Au via a Au-S bond. Then, the antibody could be effectively captured by HC-7 through specific interaction with a better maintained activity than traditional coupling reaction. To verify the practicability of the constructed immunosensor, β-amyloid1-42 oligomers (Aβ) were employed as an analyte. On the basis of the above points, the immunosensor performed favorable ECL property to Aβ concentrations in a wide linear range (0.1 pg/mL to 10 ng/mL) with a low detection limit (19.95 fg/mL). With excellent repeatability, selectivity, and stability, this method opened up a new avenue for realizing the ultrasensitive detection of Aβ and other biomarkers in a real sample analysis.
Collapse
|
25
|
Determination of Alzheimer biomarker DNA by using an electrode modified with in-situ precipitated molybdophosphate catalyzed by alkaline phosphatase-encapsulated DNA hydrogel and target recycling amplification. Mikrochim Acta 2019; 186:158. [DOI: 10.1007/s00604-019-3283-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
|
26
|
Schaduangrat N, Prachayasittikul V, Choomwattana S, Wongchitrat P, Phopin K, Suwanjang W, Malik AA, Vincent B, Nantasenamat C. Multidisciplinary approaches for targeting the secretase protein family as a therapeutic route for Alzheimer's disease. Med Res Rev 2019; 39:1730-1778. [PMID: 30628099 DOI: 10.1002/med.21563] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/21/2018] [Accepted: 12/24/2018] [Indexed: 12/27/2022]
Abstract
The continual increase of the aging population worldwide renders Alzheimer's disease (AD) a global prime concern. Several attempts have been focused on understanding the intricate complexity of the disease's development along with the on- andgoing search for novel therapeutic strategies. Incapability of existing AD drugs to effectively modulate the pathogenesis or to delay the progression of the disease leads to a shift in the paradigm of AD drug discovery. Efforts aimed at identifying AD drugs have mostly focused on the development of disease-modifying agents in which effects are believed to be long lasting. Of particular note, the secretase enzymes, a group of proteases responsible for the metabolism of the β-amyloid precursor protein (βAPP) and β-amyloid (Aβ) peptides production, have been underlined for their promising therapeutic potential. This review article attempts to comprehensively cover aspects related to the identification and use of drugs targeting the secretase enzymes. Particularly, the roles of secretases in the pathogenesis of AD and their therapeutic modulation are provided herein. Moreover, an overview of the drug development process and the contribution of computational (in silico) approaches for facilitating successful drug discovery are also highlighted along with examples of relevant computational works. Promising chemical scaffolds, inhibitors, and modulators against each class of secretases are also summarized herein. Additionally, multitarget secretase modulators are also taken into consideration in light of the current growing interest in the polypharmacology of complex diseases. Finally, challenging issues and future outlook relevant to the discovery of drugs targeting secretases are also discussed.
Collapse
Affiliation(s)
- Nalini Schaduangrat
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| | - Veda Prachayasittikul
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| | - Saowapak Choomwattana
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| | - Prapimpun Wongchitrat
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Bangkok, Thailand
| | - Kamonrat Phopin
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Bangkok, Thailand
| | - Wilasinee Suwanjang
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Bangkok, Thailand
| | - Aijaz Ahmad Malik
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.,Centre National de la Recherche Scientifique, Paris, France
| | - Chanin Nantasenamat
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| |
Collapse
|
27
|
Zhang X, Zhang L, Li J. Peptide-modified nanochannel system for carboxypeptidase B activity detection. Anal Chim Acta 2019; 1057:36-43. [DOI: 10.1016/j.aca.2019.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/08/2019] [Accepted: 01/15/2019] [Indexed: 10/27/2022]
|
28
|
Liu L, Chen C, Chen C, Kang X, Zhang H, Tao Y, Xie Q, Yao S. Poly(noradrenalin) based bi-enzyme biosensor for ultrasensitive multi-analyte determination. Talanta 2018; 194:343-349. [PMID: 30609541 DOI: 10.1016/j.talanta.2018.10.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/08/2018] [Accepted: 10/17/2018] [Indexed: 01/10/2023]
Abstract
In order to realize the multi-analyte assays for physiological molecules and environmental contaminants, a bi-enzyme biosensor based on horseradish peroxidase (HRP)-catalyzed noradrenalin (NA) polymerization in the presence of H2O2 was fabricated for the first time and utilized in immobilizing HRP and glucose oxidase (GOx) simultaneously. The resultant bi-enzyme modified electrode was demonstrated to be efficient in monitoring multi-analyte (H2O2, Cr(III), glucose, and Cr(VI)). It was shown that the prepared PNA-HRP-GOx/Pt electrode exhibits a sensitivity (S) high up to 628.4 μA mM-1 cm-2 in the linear range (LR) of 0.50 μM ~ 0.42 mM and a S of 208.9 μA mM-1 cm-2 in the LR of 0.42 mM~3.5 mM in glucose sensing, with a limit of detection (LOD) of 0.08 μM observed; in Cr(VI) sensing a LOD of 0.20 nM and a LR of 0.50 ~ 6.0 nM were obtained. With the addition of polyaniline (PANI), the resultant PNA-HRP-GOx/PANI/Pt electrode potentiostated at - 0.20 V responded linearly to H2O2 concentration in 0.05 ~ 30.2 mM range, with linearly responses to Cr(III) concentration in the LR of 0.01 ~ 3.8 μM. Hence, amperometric biosensors with high S, low LOD and good anti-interference ability for detection of glucose, H2O2 and heavy metal ions (Cr(III) and Cr(VI)) were developed.
Collapse
Affiliation(s)
- Lanjunzi Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Chao Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Chenpu Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Xiuzhi Kang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Heping Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Yao Tao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
29
|
Zhang Y, Xia J, Zhang F, Wang Z, Liu Q. A dual-channel homogeneous aptasensor combining colorimetric with electrochemical strategy for thrombin. Biosens Bioelectron 2018; 120:15-21. [PMID: 30142478 DOI: 10.1016/j.bios.2018.08.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/09/2018] [Accepted: 08/14/2018] [Indexed: 02/02/2023]
Abstract
In this protocol, a dual-channel homogeneous aptasenor was proposed for protein molecule determination, employing thrombin as target analyte. The colorimetric and electrochemical transducers were combined in a single analytical system for signal readout. In this dual-channel sensing strategy, the G-quadruplex sequence was released and incorporated with hemin to form DNAzyme for naked-eye colorimetric detection. Meanwhile, the hydroxyapatite nanoparticle as signal probe was combined with magnetic nanoparticles to construct sandwich-type structure for generating the electrochemical current when thrombin was present in solution. By introducing two kinds of reporter probes and transducers, this dual-channel sensor produced two different kinds of signal to improve the analytical accuracy and diversity. The results revealed that the dual-channel sensor achieved the quantatitive determination of thrombin with low limit of detection (0.40 fM) and wide range (0.1 fM to 1 nM), which offer a promise for rapid and accurate detection of biomolecule.
Collapse
Affiliation(s)
- Yaxing Zhang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, PR China
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, PR China.
| | - Feifei Zhang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, PR China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, PR China
| | - Qingyun Liu
- College of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao, PR China
| |
Collapse
|
30
|
Eguílaz M, Villalonga R, Rivas G. Electrochemical biointerfaces based on carbon nanotubes-mesoporous silica hybrid material: Bioelectrocatalysis of hemoglobin and biosensing applications. Biosens Bioelectron 2018; 111:144-151. [DOI: 10.1016/j.bios.2018.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 01/06/2023]
|
31
|
Gold nanoparticle enhanced hybridization chain reaction as a method for signal amplification. Application to electrochemical immunodetection of the ovarian cancer biomarker carbohydrate antigen 125. Mikrochim Acta 2018; 185:331. [DOI: 10.1007/s00604-018-2869-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/08/2018] [Indexed: 12/12/2022]
|
32
|
Wang Y, Zhao G, Wang H, Cao W, Du B, Wei Q. Sandwich-type electrochemical immunoassay based on Co3O4@MnO2-thionine and pseudo-ELISA method toward sensitive detection of alpha fetoprotein. Biosens Bioelectron 2018; 106:179-185. [DOI: 10.1016/j.bios.2018.02.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/10/2018] [Accepted: 02/01/2018] [Indexed: 12/29/2022]
|
33
|
Hydroxyapatite nanoparticle based fluorometric determination and imaging of cysteine and homocysteine in living cells. Mikrochim Acta 2018; 185:271. [PMID: 29704070 DOI: 10.1007/s00604-018-2801-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/12/2018] [Indexed: 12/31/2022]
Abstract
Fluorescent hydroxyapatite nanoparticles (HAP-NPs) were prepared by reacting calcium ion with phosphate in the presence of Eu(III) ion. The HAP-NPs display large Stokes' shift and two strong fluorescence emissions with peaks at 590 nm and 615 nm when excited at 250 nm. The HAP-NPs also have good photostability and water solubility. The HAP-NPs combined with Cu(II) were applied to fluorometric determination of cysteine and homocysteine in biological samples and in living cells. In this detection scheme, the fluorescence of HAP-NPs is initially quenched by Cu(II). The addition of biothiols results in the formation of Cu(II)-thiol complexes and leads to fluorescence recovery. The assay allows cysteine to be detected with a 110 nM detection limit, and homocysteine with a 160 nM detection limit. The assay was successfully applied to the analysis of cysteine in spiked human serum samples and to imaging of cysteine in HeLa cells, and this demonstrates its potential for clinical testing and in biomedical research. Graphical abstract Fluorescent hydroxyapatite nanoparticles were synthesized and combined with Cu2+ for fluorescence sensing of biothiols (cysteine and homocysteine) in complex biological samples and in living cells.
Collapse
|
34
|
Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens Bioelectron 2018; 103:113-129. [DOI: 10.1016/j.bios.2017.12.031] [Citation(s) in RCA: 472] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 12/18/2022]
|
35
|
Determination of protein kinase A activity and inhibition by using hydroxyapatite nanoparticles as a fluorescent probe. Mikrochim Acta 2018; 185:225. [PMID: 29594552 DOI: 10.1007/s00604-018-2754-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/01/2018] [Indexed: 10/17/2022]
Abstract
The authors describe a fluorometric method for the determination of the activity and inhibition of protein kinase A (PKA). In the presence of ATP, PKA catalyzes the transfer of phosphate groups from ATP to a peptide, and the generated phosphorylated peptide quenches the fluorescence (measured at excitation/emission peaks of 340/440 nm) of the hydroxyapatite nanoparticles (HAP-NPs). A linear logarithmic relationship of PKA concentrations with fluorescence intensity in the range from 1 to 50 U·L-1 was obtained, and the lower limit of detection (LOD) is 0.5 U·L-1. This is much lower than LODs reported in the literature. The PKA inhibitor H-89 was studied, and the inhibition plot has a sigmoidal shape with a half-maximal inhibitory concentration of around 750 nM of H-89. At a 4.5 nM level of H-89, fluorescence of HAP-NPs fell to levels of no PKA controls, demonstrating that the assay is a viable tool to screen for kinase inhibitors. An assay with Hela cell lysates in combination with forskolin (an activator of adenylyl cyclase) and IBMX (a phosphodiesterase inhibitor used to activate the cellular activity of PKA) resulted in decreased fluorescence of HAP-NPs. This suggests that the assay can be applied for testing in vitro cell kinase activity. In our perception, this method will enable high-throughput screening for kinase-related drugs and fluorometric enzymatic detection in various areas. Graphical abstract Fluorescence assay based on hydroxyapatite nanoparticles (HAP) fluorescence quenching was developed for analysis of the activity and inhibition of protein kinase A (PKA).
Collapse
|
36
|
Li X, Shen C, Yang M, Rasooly A. Polycytosine DNA Electric-Current-Generated Immunosensor for Electrochemical Detection of Human Epidermal Growth Factor Receptor 2 (HER2). Anal Chem 2018; 90:4764-4769. [DOI: 10.1021/acs.analchem.8b00023] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaoqing Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China, 410083
| | - Congcong Shen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China, 410083
| | - Minghui Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China, 410083
| | - Avraham Rasooly
- National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| |
Collapse
|
37
|
L-tyrosine polymerization-based ultrasensitive multi-analyte enzymatic biosensor. Talanta 2018; 179:803-809. [DOI: 10.1016/j.talanta.2017.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 12/25/2022]
|
38
|
Liu Y, Cai M, Wu W, Fang Y, She P, Xu S, Li J, Zhao K, Xu J, Bao N, Deng A. Multichannel electroanalytical devices for competitive ELISA of phenylethanolamine A. Biosens Bioelectron 2018; 99:21-27. [DOI: 10.1016/j.bios.2017.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 01/07/2023]
|
39
|
Feng K, Liu J, Deng L, Yu H, Yang M. Amperometric detection of microRNA based on DNA-controlled current of a molybdophosphate redox probe and amplification via hybridization chain reaction. Mikrochim Acta 2017; 185:28. [DOI: 10.1007/s00604-017-2579-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/18/2017] [Indexed: 01/23/2023]
|
40
|
Miao X, Yu H, Gu Z, Yang L, Teng J, Cao Y, Zhao J. Peptide self-assembly assisted signal labeling for an electrochemical assay of protease activity. Anal Bioanal Chem 2017; 409:6723-6730. [PMID: 29026956 DOI: 10.1007/s00216-017-0636-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/10/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022]
Abstract
Peptide self-assembly holds tremendous promise for a range of applications in chemistry and biology. In the work reported here, we explored the potential functions of peptide self-assembly in electrochemical bioanalysis by developing a peptide self-assembly assisted signal labeling strategy for assaying protease activity. The fundamental principle of this assay is that target-protease-catalyzed specific proteolytic cleavage blocks self-assembly between the probe peptide and signal peptide, thus preventing the signal labeling of electroactive silver nanoparticles on the electrode surface, which in turn causes the electrochemical signal to decrease. Using trypsin as an example protease target, the linear range of this assay was found to be 1 ng mL-1 to 100 mg mL-1, and its detection limit was 0.032 ng mL-1, which are better than the corresponding parameters for previously reported assays. Further experiments also highlighted the good selectivity of the assay method and demonstrated its usability when applied to serum samples. Therefore, this report not only introduces a valuable tool for assaying protease activity, but it also promotes the utilization of peptide self-assembly in electrochemical bioanalysis, as this approach has great potential for practical use in the future.
Collapse
Affiliation(s)
- Xiangyang Miao
- Department of Biological and Chemical Engineering, Suzhou Chien-shiung Institute of Technology, Taicang, Jiangsu, 215411, China.,Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Huizhen Yu
- Department of Biological and Chemical Engineering, Suzhou Chien-shiung Institute of Technology, Taicang, Jiangsu, 215411, China
| | - Zhun Gu
- Department of Biological and Chemical Engineering, Suzhou Chien-shiung Institute of Technology, Taicang, Jiangsu, 215411, China
| | - Lili Yang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Jiahuan Teng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Ya Cao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Jing Zhao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
41
|
Sensitive immunosensing of the carcinoembryonic antigen utilizing aptamer-based in-situ formation of a redox-active heteropolyacid and rolling circle amplification. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2522-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
42
|
Shen C, Zeng K, Luo J, Li X, Yang M, Rasooly A. Self-Assembled DNA Generated Electric Current Biosensor for HER2 Analysis. Anal Chem 2017; 89:10264-10269. [PMID: 28859480 DOI: 10.1021/acs.analchem.7b01747] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We have developed a new DNA self-assembly amplification technology that generates electric current for electrochemical biosensing. The new technology was used for detection of human epidermal growth factor receptor 2 (HER2). In our technology, an aptamer was utilized both as a ligand for recognition and as a signal generating reporter. The aptasensor is based on a sandwich format and a DNA primer on a HER2 aptamer initiates auxiliary DNA self-assembled on the electrode to form a long one-dimensional DNA. The resulting DNA is then reacted with molybdate to generate electrochemical current. The sensitivity of the aptasensor with DNA self-assembly was greater than that of the aptasensor without DNA self-assembly due to the extended length of the DNA strand. Aptasensor analysis of HER2 in serum of breast cancer patients and healthy individuals is highly correlated (R2 = 0.9924) with ELISA measurements, with a p value of 1.37 × 10-7. The analysis of HER2 in serum (confirmed by ELISA) suggests that HER2 levels in breast cancer patients are much higher than healthy individuals. For HER2 positive patients, the levels are higher than those of HER2 negative patients. After surgery, there is a drop of HER2 levels in serum, suggesting potential clinical applications of the new self-assembled DNA electric current generating biosensor. Unlike proteins, DNA is easily amplifiable. The DNA signal amplification method presented here enables effective current generation, which can find wide range of biomedical applications for protein detection.
Collapse
Affiliation(s)
- Congcong Shen
- College of Chemistry and Chemical Engineering, Central South University , Changsha, China , 410083
| | - Ke Zeng
- College of Chemistry and Chemical Engineering, Central South University , Changsha, China , 410083
| | - Junjun Luo
- College of Chemistry and Chemical Engineering, Central South University , Changsha, China , 410083
| | - Xiaoqing Li
- College of Chemistry and Chemical Engineering, Central South University , Changsha, China , 410083
| | - Minghui Yang
- College of Chemistry and Chemical Engineering, Central South University , Changsha, China , 410083
| | - Avraham Rasooly
- National Cancer Institute, National Institutes of Health , Rockville, Maryland 20850, United States
| |
Collapse
|
43
|
Dual signal amplification strategy for amperometric aptasensing using hydroxyapatite nanoparticles. Application to the sensitive detection of the cancer biomarker platelet-derived growth factor BB. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2471-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Si Z, Xie B, Chen Z, Tang C, Li T, Yang M. Electrochemical aptasensor for the cancer biomarker CEA based on aptamer induced current due to formation of molybdophosphate. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2338-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Schejbal J, Slezáčková L, Řemínek R, Glatz Z. A capillary electrophoresis-mass spectrometry based method for the screening of β-secretase inhibitors as potential Alzheimer's disease therapeutics. J Chromatogr A 2017; 1487:235-241. [DOI: 10.1016/j.chroma.2017.01.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/16/2017] [Accepted: 01/22/2017] [Indexed: 02/06/2023]
|
46
|
Huang Y, Tang C, Liu J, Cheng J, Si Z, Li T, Yang M. Signal amplification strategy for electrochemical immunosensing based on a molybdophosphate induced enhanced redox current on the surface of hydroxyapatite nanoparticles. Mikrochim Acta 2017; 184:855-861. [DOI: 10.1007/s00604-016-2069-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
47
|
Hu L, Hu S, Guo L, Shen C, Yang M, Rasooly A. DNA Generated Electric Current Biosensor. Anal Chem 2017; 89:2547-2552. [PMID: 28219246 DOI: 10.1021/acs.analchem.6b04756] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In addition to its primary function as a genetic material, deoxyribonucleic acid (DNA) is also a potential biologic energy source for molecular electronics. For the first time, we demonstrate that DNA can generate a redox electric current. As an example of this new functionality, DNA generated redox current was used for electrochemical detection of human epidermal growth factor receptor 2 (HER2), a clinically important breast cancer biomarker. To induce redox current, the phosphate of the single stranded DNA aptamer backbone was reacted with molybdate to form redox molybdophosphate precipitate and generate an electrochemical current of ∼16.8 μA/μM cm2. This detection of HER2 was performed using a sandwich detection assay. A HER2 specific peptide was immobilized onto a gold electrode surface for capturing HER2 in buffer and serum. The HER2 specific aptamer was used as both ligand to bind the captured HER2 and to generate a redox current signal. When tested for HER2 detection, the electrochemical current generated by the aptasensor was proportional to HER2 concentration in the range of 0.01 to 5 ng/mL, with a current generated in the range of ∼6.37 to 31.8 μA/cm2 in both buffer and serum. This detection level is within the clinically relevant range of HER2 concentrations. This method of electrochemical signal amplification greatly simplifies the signal transduction of aptasensors, broadening their use for HER2 analysis. This novel approach of using the same aptamer as biosensor ligand and as transducer can be universally extended to other aptasensors for a wide array of biodetection applications. Moreover, electric currents generated by DNA or other nucleic acids can be used in molecular electronics or implanted devices for both power generation and measurement of output.
Collapse
Affiliation(s)
- Lanshuang Hu
- College of Chemistry and Chemical Engineering, Central South University , Changsha, China , 410083
| | - Shengqiang Hu
- College of Chemistry and Chemical Engineering, Central South University , Changsha, China , 410083
| | - Linyan Guo
- College of Chemistry and Chemical Engineering, Central South University , Changsha, China , 410083
| | - Congcong Shen
- College of Chemistry and Chemical Engineering, Central South University , Changsha, China , 410083
| | - Minghui Yang
- College of Chemistry and Chemical Engineering, Central South University , Changsha, China , 410083
| | - Avraham Rasooly
- National Cancer Institute, National Institutes of Health , Rockville, Maryland 20850, United States
| |
Collapse
|
48
|
Guo Y, Shu Y, Li A, Li B, Pi J, Cai J, Cai HH, Gao Q. Efficient electrochemical detection of cancer cells on in situ surface-functionalized MoS2nanosheets. J Mater Chem B 2017. [DOI: 10.1039/c7tb01024a] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In situsurface functionalization by reactant molecules (thiourea) is feasible to engineer MoS2surfaces with rich amino groups, leading to facile antigen immobilization and thus selective recognition of cancer cells.
Collapse
Affiliation(s)
- Yulin Guo
- Department of Chemistry
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- China
| | - Yijin Shu
- Department of Chemistry
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- China
| | - Aiqun Li
- Department of Chemistry
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- China
| | - Baole Li
- Department of Chemistry
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- China
| | - Jiang Pi
- Department of Microbiology and Immunology
- University of Illinois
- Chicago 60612
- USA
| | - Jiye Cai
- Department of Chemistry
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- China
| | - Huai-hong Cai
- Department of Chemistry
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- China
| | - Qingsheng Gao
- Department of Chemistry
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|
49
|
Tan X, Zhang L, Deng X, Miao L, Li H, zheng G. Redox active molybdophosphate produced by Cu3(PO4)2nanospheres for enhancing enzyme-free electrochemical immunoassay of C-reactive protein. NEW J CHEM 2017. [DOI: 10.1039/c7nj02629c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Redox-active molybdophosphate produced by Cu3(PO4)2nanospheres has been directly employed for signal amplification of an enzyme-free electrochemical immunosensor.
Collapse
Affiliation(s)
- Xiaofeng Tan
- School of Chemistry and Chemical Engineering, University of Jinan
- Jinan
- China
| | - Lianhua Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University
- Shanghai
- China
| | - Xiaobo Deng
- Shandong Key Laboratory for Testing Technology of Material Chemical Safety
- Jinan
- China
| | - Luyang Miao
- School of Chemistry and Chemical Engineering, University of Jinan
- Jinan
- China
| | - He Li
- School of Chemistry and Chemical Engineering, University of Jinan
- Jinan
- China
| | - Gengxiu zheng
- School of Chemistry and Chemical Engineering, University of Jinan
- Jinan
- China
| |
Collapse
|
50
|
Azimzadeh M, Nasirizadeh N, Rahaie M, Naderi-Manesh H. Early detection of Alzheimer's disease using a biosensor based on electrochemically-reduced graphene oxide and gold nanowires for the quantification of serum microRNA-137. RSC Adv 2017. [DOI: 10.1039/c7ra09767k] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Serum miR-137 is quantified for the early detection of Alzheimer's disease using a electrochemically reduced graphene oxide and gold nanowire modified electrode.
Collapse
Affiliation(s)
- Mostafa Azimzadeh
- Stem Cell Biology Research Center
- Yazd Reproductive Sciences Institute
- Shahid Sadoughi University of Medical Sciences
- Yazd
- Iran
| | - Navid Nasirizadeh
- Department of Textile and Polymer Engineering
- Yazd Branch
- Islamic Azad University
- Yazd
- Iran
| | - Mahdi Rahaie
- Department of Life Science Engineering
- Faculty of New Sciences and Technologies
- University of Tehran
- Tehran
- Iran
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology/Biophysics
- Faculty of Biological Sciences
- Tarbiat Modares University
- Tehran
- Iran
| |
Collapse
|