1
|
Denefeld B, Hajduk J, Cerar J, Rondeau JM, Dayer J, Lang M, Kern W, Griaud F. Revealing Unpredicted Aspartic Acid Isomerization Hotspots by Probing Diagnostic Fragmentation Propensities in Top-Down and Middle-Down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:969-979. [PMID: 39829412 DOI: 10.1021/jasms.4c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Isomerization of aspartic acid residues is a relevant degradation pathway of protein biopharmaceuticals as it can impair their biological activity. However, the in silico prediction of isomerization hotspots and their consequences remains ambiguous and misleading. We have previously shown that all ion differential analysis (AiDA) of middle-down spectra can be used to reveal diagnostic terminal and internal fragments with more sensitivity than the conventional fragment ion mass matching methodology. In this study, we use AiDA to characterize the degradation of an antibody fragment at three aspartic acid isomerization sites including a novel DW motif directly with electron-transfer/higher-energy collisional dissociation top-down and middle-down mass spectrometry. We show that AiDA methodology is pivotal to probe diagnostic fragmentation propensities of terminal c and z fragments at the N-terminus and vicinity of isomerization sites in addition to the diagnostic c+57 terminal fragments. Furthermore, AiDA can probe remote structural changes in the loop of an antibody complementarity-determining region induced by isomerization and the succinimide intermediate, revealing interactions between residues in agreement with molecular simulations. This study shows that aspartic acid residues at noncanonical DW and DF motifs can be hotspots for isomerization despite being ranked as false positives in physics-based prediction models. We show that the enzyme-free, fast, and sensitive AiDA methodology can be used as an orthogonal technique to fractionation for online variant characterization.
Collapse
Affiliation(s)
- Blandine Denefeld
- Analytical Characterization, Biologics Analytical Development, Technical Research & Development, Novartis Pharma AG, WKL693.3.20, Postfach, CH-4002 Basel, Switzerland
| | - Joanna Hajduk
- Analytical Characterization, Biologics Analytical Development, Technical Research & Development, Novartis Pharma AG, WKL693.3.20, Postfach, CH-4002 Basel, Switzerland
| | - Jure Cerar
- Structure-Biophysics-Stability, Biologics Drug Product Development, Technical Research & Development, Novartis Pharmaceutical Manufacturing LLC, Kolodvorska 27, SI-1234 Mengeš, Slovenia
| | - Jean-Michel Rondeau
- Protein Sciences, Discovery Sciences, Novartis Biomedical Research, Virchow 16, CH-4056 Basel, Switzerland
| | - Jérôme Dayer
- Analytical Characterization, Biologics Analytical Development, Technical Research & Development, Novartis Pharma AG, WKL693.3.20, Postfach, CH-4002 Basel, Switzerland
| | - Manuel Lang
- Analytical Characterization, Biologics Analytical Development, Technical Research & Development, Novartis Pharma AG, WKL693.3.20, Postfach, CH-4002 Basel, Switzerland
| | - Wolfram Kern
- Analytical Characterization, Biologics Analytical Development, Technical Research & Development, Novartis Pharma AG, WKL693.3.20, Postfach, CH-4002 Basel, Switzerland
| | - François Griaud
- Analytical Characterization, Biologics Analytical Development, Technical Research & Development, Novartis Pharma AG, WKL693.3.20, Postfach, CH-4002 Basel, Switzerland
| |
Collapse
|
2
|
Reichel C, Filip T, Gmeiner G, Thevis M. Gel Electrophoretic Detection of Black Market ACE-031. Drug Test Anal 2025. [PMID: 40312924 DOI: 10.1002/dta.3898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 05/03/2025]
Abstract
The usage of ACE-031 (Ramatercept), a dimeric fusion protein consisting of a human activin receptor IIB (ACVR2B) fragment linked to an Fc-part of human IgG1, is banned according to chapter S4.3 of the "WADA 2024 List of Prohibited Substances and Methods" due to its potential performance enhancing properties. While ACE-031 has not yet been pharmaceutically approved, it is sold as research chemical on the "black market" (BM). The article presents a study on BM ACE-031 products and its detection by gel-electrophoresis and Western blotting. Of 14 tested products, only 12 contained an ACVR2B-immunoreactive protein. Electrophoretic separation by SDS-PAGE also showed that the 12 ACVR2B-products contained many other proteins in addition to the main compound (ca. 58.4 kDa). Further analyses by mass spectrometry and immunoblotting revealed that the 12 products contained the full-length human activin receptor IIB instead of ACE-031. The absence of an Fc-fusion protein was further confirmed by treatment with IdeS protease, which was unable to cleave the BM products. In addition, it was demonstrated that the protocol we developed to detect luspatercept (another ACVR2B-Fc fusion protein) in human serum could also be successfully applied for the detection of BM ACE-031. Because administering black market products to human subjects was not ethically justifiable, a study was conducted with rats. In rat serum, BM ACE-031 was detectable up to 48 h post administration. However, due to the relatively high dose applied (10 mg/kg body weight) and possible differences in metabolism, the detection window may be different in humans.
Collapse
Affiliation(s)
- Christian Reichel
- Doping Control Laboratory Seibersdorf, Seibersdorf Labor GmbH, Seibersdorf, Austria
- European Monitoring Center for Emerging Doping Agents, German Sport University Cologne, Cologne, Germany
| | - Thomas Filip
- University of Veterinary Medicine Vienna, Vienna, Austria
| | - Günter Gmeiner
- Doping Control Laboratory Seibersdorf, Seibersdorf Labor GmbH, Seibersdorf, Austria
| | - Mario Thevis
- European Monitoring Center for Emerging Doping Agents, German Sport University Cologne, Cologne, Germany
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
3
|
Schairer J, Römer J, Neusüß C. CE-MS and CE-MS/MS for the multiattribute analysis of monoclonal antibody variants at the subunit level. J Pharm Biomed Anal 2025; 252:116495. [PMID: 39368136 DOI: 10.1016/j.jpba.2024.116495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
The analysis of product-related substances and impurities is a critical step in the biopharmaceutical quality control of multiattribute monoclonal antibodies (mAbs), as posttranslational modifications or other variants can influence the product's biological activity. Many approaches are available for variant analysis; however, they are either variant-specific, mAb-specific, time-consuming, or require expensive equipment. Here, we present a generic capillary electrophoretic method based on a neutral-coated capillary which was coupled to mass spectrometry (MS) via the nanoCEasy interface for mAb variant analysis at the subunit level (enzymatically digested and reduced mAb). The method enabled the separation of several (i) size variants (e.g. glycosylation variants) and (ii) charge variants (e.g. c-terminal lysin clipping) as well as (iii) multiple other proteoforms (e.g. additional glycation) and (iv) incompletely reduced subunits. Separated variants were confirmed by MS/MS fragmentation even for small mass deviations like deamidation or open disulfide bridges. The system, initially developed for one mAb, was tested with nine other IgG1s to show the general applicability of the system. The presented multiattribute method enables fast and detailed characterization of mAb variants with little sample preparation and relatively simple separation equipment enabling the separation of a large set of mAb variants.
Collapse
Affiliation(s)
- Jasmin Schairer
- Faculty of Chemistry, Aalen University, Beethovenstraße 1, Aalen 73430, Germany; Faculty of Science, University of Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany
| | - Jennifer Römer
- Rentschler Biopharma SE, Erwin-Rentschler-Straße 21, Laupheim 88471, Germany
| | - Christian Neusüß
- Faculty of Chemistry, Aalen University, Beethovenstraße 1, Aalen 73430, Germany.
| |
Collapse
|
4
|
Blöchl C, Gstöttner C, Sénard T, Stork EM, Scherer HU, Toes REM, Wuhrer M, Domínguez-Vega E. A robust nanoscale RP HPLC-MS approach for sensitive Fc proteoform profiling of IgG allotypes. Anal Chim Acta 2023; 1279:341795. [PMID: 37827688 DOI: 10.1016/j.aca.2023.341795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023]
Abstract
The conserved region (Fc) of IgG antibodies dictates the interactions with designated receptors thus defining the immunological effector functions of IgG. Amino acid sequence variations in the Fc, recognized as subclasses and allotypes, as well as post-translational modifications (PTMs) modulate these interactions. Yet, the high similarity of Fc sequences hinders allotype-specific PTM analysis by state-of-the-art bottom-up methods and current subunit approaches lack sensitivity and face co-elution of near-isobaric allotypes. To circumvent these shortcomings, we present a nanoscale reversed-phase (RP) HPLC-MS workflow of intact Fc subunits for comprehensive characterization of Fc proteoforms in an allotype- and subclass-specific manner. Polyclonal IgGs were purified from individuals followed by enzymatic digestion releasing single chain Fc subunits (Fc/2) that were directly subjected to analysis. Chromatographic conditions were optimized to separate Fc/2 subunits of near-isobaric allotypes and subclasses allowing allotype and proteoform identification and quantification across all four IgG subclasses. The workflow was complemented by a semi-automated data analysis pipeline based on the open-source software Skyline followed by post-processing in R. The approach revealed pronounced differences in Fc glycosylation between donors, besides inter-subclass and inter-allotype variability within donors. Notably, partial occupancy of the N-glycosylation site in the CH3 domain of IgG3 was observed that is generally neglected by established approaches. The described method was benchmarked across several hundred runs and showed good precision and robustness. This methodology represents a first mature Fc subunit profiling approach allowing truly subclass- and allotype-specific Fc proteoform characterization beyond established approaches. The comprehensive information obtained paired with the high sensitivity provided by the miniaturization of the approach guarantees applicability to a broad range of research questions including clinically relevant (auto)antibody characterization or pharmacokinetics assessment of therapeutic IgGs.
Collapse
Affiliation(s)
- Constantin Blöchl
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Christoph Gstöttner
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Thomas Sénard
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Eva Maria Stork
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Hans Ulrich Scherer
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Rene E M Toes
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Elena Domínguez-Vega
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands.
| |
Collapse
|
5
|
Development and optimization of a LC-MS based multi-attribute method (MAM) workflow for characterization of therapeutic Fc-fusion protein. Anal Biochem 2023; 660:114969. [PMID: 36343663 DOI: 10.1016/j.ab.2022.114969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
The growing complexity of novel biopharmaceutical formats, such as Fc-fusion proteins, in increasingly competitive environment has highlighted the need of high-throughput analytical platforms. Multi-attribute method (MAM) is an emerging analytical technology that utilizes liquid chromatography coupled with mass spectrometry to monitor critical quality attributes (CQAs) in biopharmaceuticals. MAM is intended to supplement or replace the conventional chromatographic and electrophoretic approaches used for quality control and drug release purpose. In this investigation, we have developed an agile sample preparation approach for deploying MAM workflow for a complex VEGFR-targeted therapeutic Fc-fusion protein. Initially, a systematic time course evaluation of tryptic digestion step was performed to achieve maximum amino acid sequence coverage of >96.5%, in a short duration of 2 h, with minimum assay artifacts. This approach facilitated precise identification of five sites of N-glycosylation with successful monitoring of other CQAs such as deamidation, oxidation, etc. Subsequently, the developed MAM workflow with suitable tryptic digestion time was qualified according to the International council for harmonisation (i.e. ICH) Q2R1 guidelines for method validation. Post-validation, the analytical workflow was also evaluated for its capability to identify unknown moieties, termed as 'New Peak Detection' (i.e. NPD), and assess fold change between the reference and non-reference samples, in a representative investigation of pH stress study. The study, thus, demonstrated the suitability of the MAM workflow for characterization of heavily glycosylated Fc-fusion proteins. Moreover, its NPD feature could offer an all-encompassing view if applied for forced degradation and stability studies.
Collapse
|
6
|
Wang T, Liu L, Voglmeir J. mAbs N-glycosylation: Implications for biotechnology and analytics. Carbohydr Res 2022; 514:108541. [DOI: 10.1016/j.carres.2022.108541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/29/2022]
|
7
|
Proteolytic Profiling of Streptococcal Pyrogenic Exotoxin B (SpeB) by Complementary HPLC-MS Approaches. Int J Mol Sci 2021; 23:ijms23010412. [PMID: 35008838 PMCID: PMC8745752 DOI: 10.3390/ijms23010412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 01/25/2023] Open
Abstract
Streptococcal pyrogenic exotoxin B (SpeB) is a cysteine protease expressed during group A streptococcal infection that represents a major virulence factor. Although subject to several studies, its role during infection is still under debate, and its proteolytic properties remain insufficiently characterized. Here, we revisited this protease through a set of complementary approaches relying on state of-the-art HPLC-MS methods. After conceiving an efficient protocol to recombinantly express SpeB, the zymogen of the protease and its activation were characterized. Employing proteome-derived peptide libraries, a strong preference for hydrophobic and aromatic residues at P2 alongside negatively charged amino acids at P3′ to P6′ was revealed. To identify relevant in vivo substrates, native proteins were obtained from monocytic secretome and plasma to assess their cleavage under physiological conditions. Besides corroborating our findings concerning specificity, more than 200 cleaved proteins were identified, including proteins of the extracellular matrix, proteins of the immune system, and proteins involved in inflammation. Finally, the cleavage of IgG subclasses was studied in detail. This study precisely depicts the proteolytic properties of SpeB and provides a library of potential host substrates, including their exact cleavage positions, as a valuable source for further research to unravel the role of SpeB during streptococcal infection.
Collapse
|
8
|
Hipper E, Blech M, Hinderberger D, Garidel P, Kaiser W. Photo-Oxidation of Therapeutic Protein Formulations: From Radical Formation to Analytical Techniques. Pharmaceutics 2021; 14:72. [PMID: 35056968 PMCID: PMC8779573 DOI: 10.3390/pharmaceutics14010072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022] Open
Abstract
UV and ambient light-induced modifications and related degradation of therapeutic proteins are observed during manufacturing and storage. Therefore, to ensure product quality, protein formulations need to be analyzed with respect to photo-degradation processes and eventually protected from light exposure. This task usually demands the application and combination of various analytical methods. This review addresses analytical aspects of investigating photo-oxidation products and related mediators such as reactive oxygen species generated via UV and ambient light with well-established and novel techniques.
Collapse
Affiliation(s)
- Elena Hipper
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany; (E.H.); (D.H.)
| | - Michaela Blech
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| | - Dariush Hinderberger
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany; (E.H.); (D.H.)
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| | - Wolfgang Kaiser
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| |
Collapse
|
9
|
Al Abdulmonem W, Aljohani ASM, Alhumaydhi FA, Mousa AHM, Rasheed Z. Protective Potential of Uric Acid, Folic Acid, Glutathione and Ascorbic Acid Against the Formation of Toxic Met-Myoglobin. Protein Pept Lett 2021; 28:282-289. [PMID: 32957872 DOI: 10.2174/0929866527666200921165312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Myoglobin is an oxygen binding protein and its dysfunction has been associated with the pathology of several human disorders. This study was undertaken to investigation the role of hydrogen peroxide (H2O2) in the formation of met-myoglobin and the protective potential of four different reductants such as uric acid, folic acid, glutathione and ascorbic acid were also tested against met-myoglobin formation. METHODS Human myoglobin was treated with H2O2 in-vitro in order to prepare met-myoglobin. The generation of met-myoglobin was confirmed by UV-visible spectroscopy and its stability was analysed by the treatment of human myoglobin with H2O2 at varying pH or time. High performance liquid chromatography (HPLC) was used to determine the oxidatively modified heme products in met-myoglobin. Spectroscopic analysis was used to identify the protective potential of uric acid, folic acid, glutathione and ascorbic acid against the formation of met-myoglobin. RESULTS The novel data of this study showed that H2O2 induced extensive damage of myoglobin but the treatment with uric acid, folic acid, glutathione or ascorbic acid provides protection of myoglobin against H2O2 induced oxidative damaged. The study apparently proved the protective potential of all these compounds against the toxicity produced by H2O2. CONCLUSION This is the first study that shows uric acid, folic acid, glutathione and ascorbic acid provide protection against the generation of toxic met-myoglobin and might be used therapeutically to modify the blood conditions in order to prevent the progression of human disorders associated with myoglobin dysfunction.
Collapse
Affiliation(s)
- Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agricultural and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Amira H M Mousa
- Department of Pathology, Postgraduate Medical College, University of Khartoum, Khartoum, Sudan
| | - Zafar Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
10
|
Martelet A, Garrigue V, Zhang Z, Genet B, Guttman A. Multi-attribute method based characterization of antibody drug conjugates (ADC) at the intact and subunit levels. J Pharm Biomed Anal 2021; 201:114094. [PMID: 33957368 DOI: 10.1016/j.jpba.2021.114094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 01/06/2023]
Abstract
Antibody-drug conjugates (ADCs) represent an important class of new biopharmaceutical modalities. ADCs are highly complex and heterogeneous molecules, potentially containing numerous product-related structures, that can contribute to the quality, efficacy and safety of the product. To keep up with product life cycle related changes, wide-range and targeted characterization of product quality attributes (PQA) are of high demand. Multi-attribute methods (MAM) can screen numerous PQAs in a parallel fashion including product properties as well as product and process-related impurities. MAM is usually based on a bottom-up approach relying on the enzymatic digestion of the protein into peptides prior to mass spectrometry (MS). However, this processing workflow can result in considerable information loss, such as the drug distribution profile of an antibody-drug conjugate. Therefore, complementary MAM approaches, based on subunit and intact mass analyses, are necessary approaches offering the advantage of product identity confirmation, quantification of the different conjugated species and monitoring the drug-to-antibody ratio at the same time. In this work we introduce a high throughput MS based attribute tracking method for ADC characterization at the intact and subunit levels by simultaneously monitoring multiple PQAs. The workflow includes sample preparation and MS instrument suitability testing for heterogeneous lysine-linked ADCs, software solutions for routine PQAs tracking, method repeatability and an easy data review fitting perfectly into high throughput analyses. As methionine oxidation is one of the modifications that should be closely monitored at any step of process development, an important application to oxidative stress evaluation using forced degradation demonstrated the applicability of the workflow.
Collapse
|
11
|
Application of middle-down approach in quantitation and catabolite identification of protein by LC-high-resolution mass spectrometry. Bioanalysis 2021; 13:465-479. [PMID: 33719526 DOI: 10.4155/bio-2020-0315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: To further enhance the detection sensitivity and increase resolving power of top-down intact protein bioanalysis, middle-down approach was explored. Materials & methods: An monoclonal antibody (mAb) was used as a model protein to evaluate quantitative bioanalytical assay performance and a disulfide linked dimer protein was investigated for its pharmacokinetics properties and catabolism in vivo by middle-down approach. Results & Conclusion: For quantitation of the mAb, different subunits generated by middle-down approach provided different level of signal improvement in biological samples with Lc and half Fc giving five-times better sensitivity than intact mAb. For the dimer protein, middle-down analysis by reduction enabled effective differentiation of the unchanged protein and its oxidized form, and clearly elucidated their respective proteolytic catabolites.
Collapse
|
12
|
Blöchl C, Regl C, Huber CG, Winter P, Weiss R, Wohlschlager T. Towards middle-up analysis of polyclonal antibodies: subclass-specific N-glycosylation profiling of murine immunoglobulin G (IgG) by means of HPLC-MS. Sci Rep 2020; 10:18080. [PMID: 33093535 PMCID: PMC7581757 DOI: 10.1038/s41598-020-75045-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 10/09/2020] [Indexed: 12/21/2022] Open
Abstract
In recent years, advanced HPLC-MS strategies based on intact protein (“top-down”) or protein subunit (“middle-up/middle-down”) analysis have been implemented for the characterization of therapeutic monoclonal antibodies. Here, we assess feasibility of middle-up/middle-down analysis for polyclonal IgGs exhibiting extensive sequence variability. Specifically, we addressed IgGs from mouse, representing an important model system in immunological investigations. To obtain Fc/2 portions as conserved subunits of IgGs, we made use of the bacterial protease SpeB. For this purpose, we initially determined SpeB cleavage sites in murine IgGs. The resulting Fc/2 portions characteristic of different subclasses were subsequently analysed by ion-pair reversed-phase HPLC hyphenated to high-resolution mass spectrometry. This enabled simultaneous relative quantification of IgG subclasses and their N-glycosylation variants, both of which influence IgG effector functions. To assess method capabilities in an immunological context, we applied the analytical workflow to polyclonal antibodies obtained from BALB/c mice immunized with the grass pollen allergen Phl p 6. The study revealed a shift in IgG subclasses and Fc-glycosylation patterns in total and antigen-specific IgGs from different mouse cohorts, respectively. Eventually, Fc/2 characterization may reveal other protein modifications including oxidation, amino acid exchanges, and C-terminal lysine, and may thus be implemented for quality control of functional antibodies.
Collapse
Affiliation(s)
- Constantin Blöchl
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - Christof Regl
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - Christian G Huber
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - Petra Winter
- Department of Biosciences, Division of Allergy and Immunology, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - Richard Weiss
- Department of Biosciences, Division of Allergy and Immunology, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - Therese Wohlschlager
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria. .,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria.
| |
Collapse
|
13
|
Duivelshof BL, Murisier A, Camperi J, Fekete S, Beck A, Guillarme D, D'Atri V. Therapeutic Fc-fusion proteins: Current analytical strategies. J Sep Sci 2020; 44:35-62. [PMID: 32914936 DOI: 10.1002/jssc.202000765] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
Fc-Fusion proteins represent a successful class of biopharmaceutical products, with already 13 drugs approved in the European Union and United States as well as three biosimilar versions of etanercept. Fc-Fusion products combine tailored pharmacological properties of biological ligands, together with multiple functions of the fragment crystallizable domain of immunoglobulins. There is a great diversity in terms of possible biological ligands, including the extracellular domains of natural receptors, functionally active peptides, recombinant enzymes, and genetically engineered binding constructs acting as cytokine traps. Due to their highly diverse structures, the analytical characterization of Fc-Fusion proteins is far more complex than that of monoclonal antibodies and requires the use and development of additional product-specific methods over conventional generic/platform methods. This can be explained, for example, by the presence of numerous sialic acids, leading to high diversity in terms of isoelectric points and complex glycosylation profiles including multiple N- and O-linked glycosylation sites. In this review, we highlight the wide range of analytical strategies used to fully characterize Fc-fusion proteins. We also present case studies on the structural assessment of all commercially available Fc-fusion proteins, based on the features and critical quality attributes of their ligand-binding domains.
Collapse
Affiliation(s)
- Bastiaan L Duivelshof
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - Amarande Murisier
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - Julien Camperi
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - Alain Beck
- IRPF - Centre d'Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - Valentina D'Atri
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| |
Collapse
|
14
|
Hinterholzer A, Stanojlovic V, Regl C, Huber CG, Cabrele C, Schubert M. Identification and Quantification of Oxidation Products in Full-Length Biotherapeutic Antibodies by NMR Spectroscopy. Anal Chem 2020; 92:9666-9673. [PMID: 32530275 PMCID: PMC7467420 DOI: 10.1021/acs.analchem.0c00965] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Therapeutic
proteins are an indispensable class of drugs and often
therapeutics of last resort. They are sensitive to oxidation, which
is of critical concern, because it can affect drug safety and efficacy.
Protein oxidation, with methionine and tryptophan as the most susceptible
moieties, is mainly monitored by HPLC–MS techniques. However,
since several oxidation products display the same mass difference,
their identification by MS is often ambiguous. Therefore, an alternative
analytical method able to unambiguously identify and, ideally, also
quantify oxidation species in proteins is highly desired. Here, we
present an NMR-based approach to monitor oxidation in full-length
proteins under denaturing conditions, as demonstrated on two biotherapeutic
monoclonal antibodies (mAbs). We show that methionine sulfoxide, methionine
sulfone, N-formylkynurenine, kynurenine, oxindolylalanine,
hydroxypyrroloindole, and 5-hydroxytryptophan result in characteristic
chemical shift correlations suited for their identification and quantification.
We identified the five most abundant oxidation products in forced
degradation studies of two full-length therapeutic mAbs and can also
unambiguously distinguish oxindolylalanine from 5-hydroxytryptophan,
which are undistinguishable by MS due to the same mass shift. Quantification
of the abundant methionine sulfoxide by NMR and MS gave highly comparable
values. These results underline the suitability of NMR spectroscopy
for the identification and quantification of critical quality attributes
of biotherapeutics.
Collapse
Affiliation(s)
- Arthur Hinterholzer
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria.,Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Vesna Stanojlovic
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Christof Regl
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria.,Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Christian G Huber
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria.,Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Chiara Cabrele
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria.,Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Mario Schubert
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria.,Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| |
Collapse
|
15
|
Susceptibility of protein therapeutics to spontaneous chemical modifications by oxidation, cyclization, and elimination reactions. Amino Acids 2019; 51:1409-1431. [DOI: 10.1007/s00726-019-02787-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/07/2019] [Indexed: 12/12/2022]
Abstract
AbstractPeptides and proteins are preponderantly emerging in the drug market, as shown by the increasing number of biopharmaceutics already approved or under development. Biomolecules like recombinant monoclonal antibodies have high therapeutic efficacy and offer a valuable alternative to small-molecule drugs. However, due to their complex three-dimensional structure and the presence of many functional groups, the occurrence of spontaneous conformational and chemical changes is much higher for peptides and proteins than for small molecules. The characterization of biotherapeutics with modern and sophisticated analytical methods has revealed the presence of contaminants that mainly arise from oxidation- and elimination-prone amino-acid side chains. This review focuses on protein chemical modifications that may take place during storage due to (1) oxidation (methionine, cysteine, histidine, tyrosine, tryptophan, and phenylalanine), (2) intra- and inter-residue cyclization (aspartic and glutamic acid, asparagine, glutamine, N-terminal dipeptidyl motifs), and (3) β-elimination (serine, threonine, cysteine, cystine) reactions. It also includes some examples of the impact of such modifications on protein structure and function.
Collapse
|
16
|
Dyck YFK, Rehm D, Joseph JF, Winkler K, Sandig V, Jabs W, Parr MK. Forced Degradation Testing as Complementary Tool for Biosimilarity Assessment. Bioengineering (Basel) 2019; 6:bioengineering6030062. [PMID: 31330921 PMCID: PMC6783961 DOI: 10.3390/bioengineering6030062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/25/2022] Open
Abstract
Oxidation of monoclonal antibodies (mAbs) can impact their efficacy and may therefore represent critical quality attributes (CQA) that require evaluation. To complement classical CQA, bevacizumab and infliximab were subjected to oxidative stress by H2O2 for 24, 48, or 72 h to probe their oxidation susceptibility. For investigation, a middle-up approach was used utilizing liquid chromatography hyphenated with mass spectrometry (LC-QTOF-MS). In both mAbs, the Fc/2 subunit was completely oxidized. Additional oxidations were found in the light chain (LC) and in the Fd’ subunit of infliximab, but not in bevacizumab. By direct comparison of methionine positions, the oxidized residues in infliximab were assigned to M55 in LC and M18 in Fd’. The forced oxidation approach was further exploited for comparison of respective biosimilar products. Both for bevacizumab and infliximab, comparison of posttranslational modification profiles demonstrated high similarity of the unstressed reference product (RP) and the biosimilar (BS). However, for bevacizumab, comparison after forced oxidation revealed a higher susceptibility of the BS compared to the RP. It may thus be considered a useful tool for biopharmaceutical engineering, biosimilarity assessment, as well as for quality control of protein drugs.
Collapse
Affiliation(s)
- Yan Felix Karl Dyck
- Department of Pharmaceutical & Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
- Department of Life Sciences & Technology, Beuth Hochschule für Technik Berlin, Seestraße 64, 13347 Berlin, Germany
| | - Daniel Rehm
- Department of Pharmaceutical & Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
- ProBioGen AG, Goethestraße 54, 13086 Berlin, Germany
| | - Jan Felix Joseph
- Department of Pharmaceutical & Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
- Core Facility BioSupraMol, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | | | - Volker Sandig
- ProBioGen AG, Goethestraße 54, 13086 Berlin, Germany
| | - Wolfgang Jabs
- Department of Life Sciences & Technology, Beuth Hochschule für Technik Berlin, Seestraße 64, 13347 Berlin, Germany
| | - Maria Kristina Parr
- Department of Pharmaceutical & Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany.
| |
Collapse
|
17
|
Differentiating the Effects of Oxidative Stress Tests on Biopharmaceuticals. Pharm Res 2019; 36:103. [DOI: 10.1007/s11095-019-2627-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/10/2019] [Indexed: 02/05/2023]
|
18
|
Regl C, Wohlschlager T, Esser-Skala W, Wagner I, Samonig M, Holzmann J, Huber CG. Dilute-and-shoot analysis of therapeutic monoclonal antibody variants in fermentation broth: a method capability study. MAbs 2019; 11:569-582. [PMID: 30668249 PMCID: PMC6512939 DOI: 10.1080/19420862.2018.1563034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Monoclonal antibodies (mAbs) are widely applied as highly specific and efficient therapeutic agents for various medical conditions, including cancer, inflammatory and autoimmune diseases. As protein production in cellular systems inherently generates a multitude of molecular variants, manufacturing of mAbs requires stringent control in order to ensure safety and efficacy of the drugs. Moreover, monitoring of mAb variants in the course of the fermentation process may allow instant tuning of process parameters to maintain optimal cell culture conditions. Here, we describe a fast and robust workflow for the characterization of mAb variants in fermentation broth. Sample preparation is minimal in that the fermentation broth is shortly centrifuged before dilution and HPLC-MS analysis in a short 15-min gradient run. In a single analysis, N-glycosylation and truncation variants of the expressed mAb are identified at the intact protein level. Simultaneously, absolute quantification of mAb content in fermentation broth is achieved. The whole workflow features excellent robustness as well as retention time and peak area stability. Additional enzymatic removal of N-glycans enables determination of mAb glycation levels, which are subsequently considered in relative N-glycoform quantification to correct for isobaric galactosylation. Several molecular attributes of the expressed therapeutic protein may thus be continuously monitored to ensure the desired product profile. Application of the described workflow in an industrial environment may therefore substantially enhance in-process control in mAb production, as well as targeted biosimilar development.
Collapse
Affiliation(s)
- Christof Regl
- a Department of Biosciences, Bioanalytical Research Labs , University of Salzburg , Salzburg , Austria.,b Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Salzburg , Austria
| | - Therese Wohlschlager
- a Department of Biosciences, Bioanalytical Research Labs , University of Salzburg , Salzburg , Austria.,b Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Salzburg , Austria
| | - Wolfgang Esser-Skala
- a Department of Biosciences, Bioanalytical Research Labs , University of Salzburg , Salzburg , Austria.,b Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Salzburg , Austria
| | - Iris Wagner
- a Department of Biosciences, Bioanalytical Research Labs , University of Salzburg , Salzburg , Austria.,b Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Salzburg , Austria
| | - Martin Samonig
- a Department of Biosciences, Bioanalytical Research Labs , University of Salzburg , Salzburg , Austria.,b Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Salzburg , Austria.,c Thermo Fisher Scientific GmbH , Germering , Germany
| | - Johann Holzmann
- b Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Salzburg , Austria.,d Technical Development Biosimilars , Global Drug Development, Novartis, Sandoz GmbH , Kundl , Austria
| | - Christian G Huber
- a Department of Biosciences, Bioanalytical Research Labs , University of Salzburg , Salzburg , Austria.,b Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Salzburg , Austria
| |
Collapse
|
19
|
Liu P, Zhu X, Wu W, Ludwig R, Song H, Li R, Zhou J, Tao L, Leone AM. Subunit mass analysis for monitoring multiple attributes of monoclonal antibodies. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:31-40. [PMID: 30286260 DOI: 10.1002/rcm.8301] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/26/2018] [Accepted: 09/29/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Multi-Attribute Methods (MAMs) are appealing due to their ability to provide data on multiple molecular attributes from a single assay. If fully realized, such tests could reduce the number of assays required to support a product control strategy while providing equivalent or greater product understanding relative to the conventional approach. In doing so, MAMs have the potential to decrease development and manufacturing costs by reducing the number of tests in a release panel. METHODS In this work, we report a MAM which is based on subunit mass analysis. RESULTS The MAM assay is shown to be suitable for use as a combined method for identity testing, glycan profiling, and protein ratio determination for co-formulated monoclonal antibody (mAb) drugs. This is achieved by taking advantage of the high mass accuracy and relative quantification capabilities of intact mass analysis using quadrupole time-of-flight mass spectrometry (Q-TOF MS). Protein identification is achieved by comparing the measured masses of light chain (LC) and heavy chain (HC) mAbs against their theoretical values. Specificity is based on instrument mass accuracy. Glycan profiling and relative protein ratios are determined by the relative peak intensities of the protein HC glycoforms and LC glycoforms, respectively. Results for these relative quantifications agree well with those obtained by the conventional hydrophilic interaction liquid chromatography (HILIC) and reversed-phase LC methods. CONCLUSIONS The suitability of this MAM for use in a quality control setting is demonstrated through assessment specificity for mAb identity, and accuracy, precision, linearity and robustness for glycan profiling and ratio determination. Results from this study indicate that a MAM with subunit mass analysis has the potential to replace three conventional methods widely used for mAb release testing including identification assay, glycosylation profiling, and ratio determination for co-formulated mAbs.
Collapse
Affiliation(s)
- Peiran Liu
- Molecular and Analytical Development, Bristol-Myers Squibb, Pennington, NJ, 08534, USA
| | - Xin Zhu
- Agilent Technologies, Wilmington, DE, USA
| | - Wei Wu
- Molecular and Analytical Development, Bristol-Myers Squibb, Pennington, NJ, 08534, USA
| | - Richard Ludwig
- Molecular and Analytical Development, Bristol-Myers Squibb, Pennington, NJ, 08534, USA
| | - Hangtian Song
- Molecular and Analytical Development, Bristol-Myers Squibb, Pennington, NJ, 08534, USA
| | - Ruojia Li
- Molecular and Analytical Development, Bristol-Myers Squibb, Pennington, NJ, 08534, USA
| | - Jiping Zhou
- Global Product Development and Supply, Bristol-Myers Squibb, New Brunswick, NJ, 08903, USA
| | - Li Tao
- Molecular and Analytical Development, Bristol-Myers Squibb, Pennington, NJ, 08534, USA
| | - Anthony M Leone
- Molecular and Analytical Development, Bristol-Myers Squibb, Pennington, NJ, 08534, USA
| |
Collapse
|
20
|
D’Atri V, Nováková L, Fekete S, Stoll D, Lauber M, Beck A, Guillarme D. Orthogonal Middle-up Approaches for Characterization of the Glycan Heterogeneity of Etanercept by Hydrophilic Interaction Chromatography Coupled to High-Resolution Mass Spectrometry. Anal Chem 2018; 91:873-880. [DOI: 10.1021/acs.analchem.8b03584] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Valentina D’Atri
- Section of Pharmaceutical Sciences, School of Pharmacy Geneva−Lausanne, University of Geneva, Centre Médical Universitaire, Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Szabolcs Fekete
- Section of Pharmaceutical Sciences, School of Pharmacy Geneva−Lausanne, University of Geneva, Centre Médical Universitaire, Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Dwight Stoll
- Department of Chemistry, Gustavus Adolphus College, St. Peter, Minnesota 56082, United States
| | - Matthew Lauber
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757-3696, United States
| | - Alain Beck
- Center of Immunology Pierre Fabre, 5 Avenue Napoléon III, BP 60497 Saint-Julien-en-Genevois, France
| | - Davy Guillarme
- Section of Pharmaceutical Sciences, School of Pharmacy Geneva−Lausanne, University of Geneva, Centre Médical Universitaire, Rue Michel Servet 1, 1211 Geneva, Switzerland
| |
Collapse
|
21
|
Stock LG, Wildner S, Regl C, Gadermaier G, Huber CG, Stutz H. Monitoring of Deamidation and Lanthionine Formation in Recombinant Mugwort Allergen by Capillary Zone Electrophoresis (CZE)-UV and Transient Capillary Isotachophoresis-CZE-Electrospray Ionization-TOF-MS. Anal Chem 2018; 90:11933-11940. [PMID: 30179456 DOI: 10.1021/acs.analchem.8b02328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The response to thermal stress is an important parameter relevant for characterizing the biological activity and long-term stability of recombinant proteins, which may show irreversible, pH dependent structural changes under these conditions. We selected the recombinant pollen allergen of mugwort ( Artemisia vulgaris) rArt v 3.0201 as a relevant model to study structural changes due to thermal and pH stress by means of capillary zone electrophoresis (CZE)-UV and capillary zone electrophoresis (CZE)-electrospray ionization (ESI)-TOF-MS. Therefore, this recombinant protein was exposed to 95 °C under acidic (pH 3.4) and slightly alkaline (pH 7.3) conditions for up to 120 min. CZE-UV data showed a continuous degradation of the allergen accompanied by the gradual formation of several reaction products. Characterization of novel allergen variants occurring at longer migration times was done via CZE-ESI-TOF-MS using in-capillary transient capillary isotachophoresis (tCITP) preconcentration to facilitate the identification of minor variants. MS data revealed various modifications of rArt v 3.0201 in response to heating. Variants with deamidations and sulfur-related modifications including both yield and loss of sulfur were identified at increased migration times. Desulfurization produced allergen variants with up to four lanthionines that replaced initial disulfide bonds. In addition, mass spectra revealed shifts in the charge state distribution which indicate concomitant conformational alterations. Moreover, several low-abundant oxidized variants were identified. With extended thermal stress, the portfolio of variants increased and progressively shifted toward rArt v 3.0201 with high lanthionine content. The kinetics of conversion and the complexity of variant composition were pH dependent and increased under alkaline conditions.
Collapse
Affiliation(s)
- Lorenz G Stock
- Department of Biosciences , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria
| | - Sabrina Wildner
- Department of Biosciences , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria
| | - Christof Regl
- Department of Biosciences , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria
| | - Gabriele Gadermaier
- Department of Biosciences , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria
| | - Christian G Huber
- Department of Biosciences , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria
| | - Hanno Stutz
- Department of Biosciences , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria
| |
Collapse
|
22
|
Zhang J, Woods C, He F, Han M, Treuheit MJ, Volkin DB. Structural Changes and Aggregation Mechanisms of Two Different Dimers of an IgG2 Monoclonal Antibody. Biochemistry 2018; 57:5466-5479. [DOI: 10.1021/acs.biochem.8b00575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jun Zhang
- Process Development, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Christopher Woods
- Process Development, Amgen Inc., Thousand Oaks, California 91320, United States
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66049, United States
| | - Feng He
- Process Development, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Mei Han
- Pharmacokinetics & Drug Metabolism, Amgen Inc., South San Francisco, California 94080, United States
| | - Michael J. Treuheit
- Process Development, Amgen Inc., Thousand Oaks, California 91320, United States
| | - David B. Volkin
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66049, United States
| |
Collapse
|
23
|
Mazzoccanti G, Pierri G, Ciogli A, Ismail OH, Giorgi F, De Santis R, Villani C, Gasparrini F. Stepwise “bridge-to-bridge” reduction of monoclonal antibodies and light chain detection: Case studies of tenatumomab and trastuzumab. SEPARATION SCIENCE PLUS 2018. [DOI: 10.1002/sscp.201800002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Giulia Mazzoccanti
- Dipartimento di Chimica e Tecnologie del Farmaco; “Sapienza” Università di Roma; Roma Italy
| | - Giuseppe Pierri
- Dipartimento di Chimica e Tecnologie del Farmaco; “Sapienza” Università di Roma; Roma Italy
| | - Alessia Ciogli
- Dipartimento di Chimica e Tecnologie del Farmaco; “Sapienza” Università di Roma; Roma Italy
| | - Omar H. Ismail
- Dipartimento di Chimica e Tecnologie del Farmaco; “Sapienza” Università di Roma; Roma Italy
| | | | | | - Claudio Villani
- Dipartimento di Chimica e Tecnologie del Farmaco; “Sapienza” Università di Roma; Roma Italy
| | - Francesco Gasparrini
- Dipartimento di Chimica e Tecnologie del Farmaco; “Sapienza” Università di Roma; Roma Italy
| |
Collapse
|