1
|
Yang T, Shen T, Duan B, Liu Z, Wang C. In Vivo Electrochemical Biosensing Technologies for Neurochemicals: Recent Advances in Electrochemical Sensors and Devices. ACS Sens 2025; 10:100-121. [PMID: 39748564 DOI: 10.1021/acssensors.4c03314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
In vivo electrochemical sensing of neurotransmitters, neuromodulators, and metabolites plays a critical role in real-time monitoring of various physiological or psychological processes in the central nervous system. Currently, advanced electrochemical biosensors and technologies have been emerging as prominent ways to meet the surging requirements of in vivo monitoring of neurotransmitters and neuromodulators ranging from single cells to brain slices, even the entire brain. This review introduces the fundamental working principles and summarizes the achievements of in vivo electrochemical biosensing technologies including voltammetry, amperometry, potentiometry, field-effect transistor (FET), and organic electrochemical transistor (OECT). According to the elaborate feature of sensing technology, versatile strategies have been devoted to solve critical issues associated with the sensing of neurochemicals under an intricate physiological environment. Voltammetry is a universal technique to investigate electrochemical processes in complex matrices which could realize the miniaturization of electrodes, while amperometry serves as a well-suited approach offering high temporal resolution which is favorable for the fast oxidation-reduction kinetics of neurochemicals. Potentiometry realizes quantitative analysis by recording the potential difference with reduced invasiveness and high compatibility. FET and OECT serve as amplification strategies with higher sensitivity than traditional technologies. Furthermore, we point out the current shortcomings and address the challenges and perspectives of in vivo electrochemical biosensing technologies.
Collapse
Affiliation(s)
- Tuo Yang
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Tongjun Shen
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Boyuan Duan
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Zeyang Liu
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Chunxia Wang
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| |
Collapse
|
2
|
Qi Z, Chen X, Zhu Y, Yue Q, Ji W. Electrochemical sensing of transient ascorbate fluctuation under hypoxic stress in live rat brain. Talanta 2025; 282:126996. [PMID: 39383720 DOI: 10.1016/j.talanta.2024.126996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Hypoxia, a common cause of programmed cell death or apoptosis, represents a neuropathological process. Although certain response proteins to hypoxic stress and their effects on cell status and fate have been identified, the real-time quantification of smaller neurochemicals to understand pathogenic mechanism in live rat brain during such stress remains unexplored. In this study, by employing a cutting-edge electrochemical tool developed with carbon nanotube-sheathed carbon fiber microelectrode that offers remarkable selectivity and temporal/spatial resolution for monitoring ascorbate, we observed a substantial efflux of ascorbate in response to hypoxic stress in live rat brain. Furthermore, using a small molecule compound as channel inhibitor to investigate the behavior of ascorbate efflux, we found that this efflux is closely correlated with N-methyl-D-aspartic acid receptor-induced neuronal excitability. Notably, antagonistic actions on volume-sensitive anion channel can suppress ascorbate efflux evoked by hypoxic stress, further revealing that ascorbate fluctuation is volume-sensitive anion channel-dependent. This research not only facilitates a greater understanding of the neurochemical mechanism in hypoxia but also uncovers a potential biomarker for future closed-loop therapies.
Collapse
Affiliation(s)
- Ziyang Qi
- School of Education and Psychology, University of Jinan, Jinan, 250022, China
| | - Xingshuai Chen
- School of Physical Education, University of Jinan, Jinan, 250022, China
| | - Ye Zhu
- Shenzhen Research Institute of Shandong University, Shenzhen, 518000, China
| | - Qingwei Yue
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China.
| | - Wenliang Ji
- School of Physical Education, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
3
|
Zheng Z, Liu N, Lu J, Zhou X, Song Z, An Y, Lu L, Zhao P, Tao J. Hydrogen-Bonded Organic Framework Enhanced Antifouling Property for Efficient In Situ Electrochemical Assay of Cerebral Ascorbic Acid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407101. [PMID: 39396376 DOI: 10.1002/smll.202407101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/24/2024] [Indexed: 10/15/2024]
Abstract
Accurate determination of cerebral ascorbic acid (AA) is crucial for understanding ischemic stroke (IS) related pathological events. Carbon fiber microelectrodes (CFEs) have proven to be robust tools with high sensitivity toward AA, however, they face ongoing challenges for in situ measurement due to the non-specific adsorption of proteins in brain tissue. In this study, the hydrogen-bonded organic framework PFC-71 is synthesized and modified on CFEs through π-π stacking interactions with carboxylated carbon nanotubes (CNT-COOH). It is found that the gating effect and hydrophilicity of PFC-71 provided the CFE with excellent antibiofouling properties. As a result, AA exhibited a low oxidation potential of -30 mV on the CFE/CNT-COOH/PFC-71, even in the presence of 20 mg mL-1 bovine serum albumin. Given the structural advantages of CFE/CNT-COOH/PFC-71, a ratiometric electrochemical strategy for AA is established, enabling the in situ assay of cerebral AA in a middle cerebral artery occlusion (MCAO) model with high accuracy and stability.
Collapse
Affiliation(s)
- Zhiyuan Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ningxuan Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiajia Lu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiang Zhou
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Zibin Song
- Neurosurgery Center, Department of Functional Neurosurgery, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yida An
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ling Lu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
4
|
Chen J, Ding X, Zhang D. Challenges and strategies faced in the electrochemical biosensing analysis of neurochemicals in vivo: A review. Talanta 2024; 266:124933. [PMID: 37506520 DOI: 10.1016/j.talanta.2023.124933] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Our brain is an intricate neuromodulatory network, and various neurochemicals, including neurotransmitters, neuromodulators, gases, ions, and energy metabolites, play important roles in regulating normal brain function. Abnormal release or imbalance of these substances will lead to various diseases such as Parkinson's and Alzheimer's diseases, therefore, in situ and real-time analysis of neurochemical interactions in pathophysiological conditions is beneficial to facilitate our understanding of brain function. Implantable electrochemical biosensors are capable of monitoring neurochemical signals in real time in extracellular fluid of specific brain regions because they can provide excellent temporal and spatial resolution. However, in vivo electrochemical biosensing analysis mainly faces the following challenges: First, foreign body reactions induced by microelectrode implantation, non-specific adsorption of proteins and redox products, and aggregation of glial cells, which will cause irreversible degradation of performance such as stability and sensitivity of the microsensor and eventually lead to signal loss; Second, various neurochemicals coexist in the complex brain environment, and electroactive substances with similar formal potentials interfere with each other. Therefore, it is a great challenge to design recognition molecules and tailor functional surfaces to develop in vivo electrochemical biosensors with high selectivity. Here, we take the above challenges as a starting point and detail the basic design principles for improving in vivo stability, selectivity and sensitivity of microsensors through some specific functionalized surface strategies as case studies. At the same time, we summarize surface modification strategies for in vivo electrochemical biosensing analysis of some important neurochemicals for researchers' reference. In addition, we also focus on the electrochemical detection of low basal concentrations of neurochemicals in vivo via amperometric waveform techniques, as well as the stability and biocompatibility of reference electrodes during long-term sensing, and provide an outlook on the future direction of in vivo electrochemical neurosensing.
Collapse
Affiliation(s)
- Jiatao Chen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiuting Ding
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Dongdong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
5
|
Wang D, Li L, Ji W, Wei H, Yu P, Mao L. Online ascorbate sensing reveals oxidative injury occurrence in inferior colliculus in salicylate-induced tinnitus animal model. Talanta 2023; 258:124404. [PMID: 36889190 DOI: 10.1016/j.talanta.2023.124404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Tinnitus is a widespread and serious clinical and social problem. Although oxidative injury has been suggested to be one of pathological mechanisms in auditory cortex, whether this mechanism could be applied to inferior colliculus remains unclear. In this study, we used an online electrochemical system (OECS) integrating in vivo microdialysis with selective electrochemical detector to continuously monitor the dynamics of ascorbate efflux, an index of oxidative injury, in inferior colliculus of living rats during sodium salicylate-induced tinnitus. We found that OECS with a carbon nanotubes (CNTs)-modified electrode as the detector selectively responses to ascorbate, which is free from the interference from sodium salicylate and MK-801 that were used to induce tinnitus animal model and investigate the N-methyl-d-aspartate (NMDA) receptor mediated excitotoxicity, respectively. With the OECS, we found that the extracellular ascorbate level in inferior colliculus significantly increases after salicylate administration and such increase was suppressed by immediate injection of NMDA receptor antagonist MK-801. In addition, we found that salicylate administration significantly increases the spontaneous and sound stimuli evoked neural activity in inferior colliculus and that the increases were inhibited by the injection of MK-801. These results suggest that oxidative injury may occur in inferior colliculus following salicylate-induced tinnitus, which is closely relevant to the NMDA-mediated neuronal excitotoxicity. This information is useful for understanding the neurochemical processes in inferior colliculus involved in tinnitus and its related brain diseases.
Collapse
Affiliation(s)
- Dalei Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, China
| | - Lijuan Li
- Department of Otolaryngology, Peking University Third Hospital, Beijing, 100191, China
| | - Wenliang Ji
- College of Chemistry, Beijing Normal University, Xinjiekouwai Street 19, Beijing, 100875, China
| | - Huan Wei
- College of Chemistry, Beijing Normal University, Xinjiekouwai Street 19, Beijing, 100875, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, China; College of Chemistry, Beijing Normal University, Xinjiekouwai Street 19, Beijing, 100875, China.
| |
Collapse
|
6
|
In situ electrodeposition of bismuth oxide nanowires @MWNT on the carbon fiber microelectrode for the sensitively electrochemical detection of folic acid. Talanta 2023; 253:123944. [PMID: 36201956 DOI: 10.1016/j.talanta.2022.123944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/25/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022]
Abstract
A microminiaturized electrochemical device, BiO@CNW/CFE was fabricated based on the in situ co-electrodeposition of bismuth oxide nanowires (BiNWs) and multi-walled carbon nanotubes (MWNTs) on the surface of carbon fiber electrode (CFE). The nanostructure of BiNWs could bind MWNTs on the surface of CFE during the precipitation of bismuth at the potential of -1.1 V. The vimineous nanostructure of BiO@CNW improved the surface area and electrochemical activity of the microelectrode. With the low background noise, folic acid (FA) can be detected sensitively by BiO@CNW/CFE based on the electrochemical reduction via the method of square wave voltammetry. The linear range of FA in sodium acetate-acetic acid buffer was achieved in the range of 5.00 nM-200 nM, the detection limit was estimated to be 0.63 nM. The recoveries of FA in human serum and artificial cerebral spinal fluid were between 99% and 103%, which indicates BiO@CNW/CFE was a reliable sensor for the detection of FA in biological samples.
Collapse
|
7
|
Vaneev AN, Timoshenko RV, Gorelkin PV, Klyachko NL, Korchev YE, Erofeev AS. Nano- and Microsensors for In Vivo Real-Time Electrochemical Analysis: Present and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3736. [PMID: 36364512 PMCID: PMC9656311 DOI: 10.3390/nano12213736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/16/2022] [Accepted: 10/21/2022] [Indexed: 05/14/2023]
Abstract
Electrochemical nano- and microsensors have been a useful tool for measuring different analytes because of their small size, sensitivity, and favorable electrochemical properties. Using such sensors, it is possible to study physiological mechanisms at the cellular, tissue, and organ levels and determine the state of health and diseases. In this review, we highlight recent advances in the application of electrochemical sensors for measuring neurotransmitters, oxygen, ascorbate, drugs, pH values, and other analytes in vivo. The evolution of electrochemical sensors is discussed, with a particular focus on the development of significant fabrication schemes. Finally, we highlight the extensive applications of electrochemical sensors in medicine and biological science.
Collapse
Affiliation(s)
- Alexander N. Vaneev
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Roman V. Timoshenko
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Petr V. Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Natalia L. Klyachko
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Yuri E. Korchev
- Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Alexander S. Erofeev
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
8
|
|
9
|
Huang Y, Zhang W, Xia F, Jiang L. Solid-State Nanochannel-Based Sensing Systems: Development, Challenges, and Opportunities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2415-2422. [PMID: 35170974 DOI: 10.1021/acs.langmuir.1c03159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Solid-state nanochannel-based sensing systems with various structures and morphologies have realized precise measurements for various key biomarkers due to their tunable physical structures and morphologies, controllable chemical properties, and a nanoconfined space-induced target enriching effect. In the past several decades, series of solid-state nanochannel-based sensing systems mainly focused on modifying functional elements on nanochannels have allowed for a highly sensitive and specific detection of various key biomarkers between 0.1 and 100 nm, including small molecules, nucleic acids, and proteins. However, traditional solid-state nanochannel-based sensing systems have mainly focused on the functional element modified on their inner-walls (FEIW), ignoring the ion-gating effect of functional elements modified on the outer surface (FEOS). Therefore, the direct detection of targets with sizes larger than the diameters of nanochannels, i.e., cells, was hard to realize. Recently, research has turned its attention to nanochannels with FEOS, which extends the range of measurable biomarkers to cells (50 μm) and promotes precise measurements. In this Perspective, we mainly focus on exhibiting the great breakthroughs of solid-state nanochannels with distinct partitions of the inner wall (IW) and outer surface (OS). Meanwhile, the cutting-edge concept of nanochannels with quantum confined superfluid (QSF) is also discussed. A possible explanation for the ultrafast flow of liquids and gases through nanopores based on wave-particle duality was also provided. The quantum effect on ultrafast flow would provide new perspectives for nanochannel-based sensing systems for various key biomarkers, which may also promote the development of seawater desalination, energy conversion, and information systems.
Collapse
Affiliation(s)
- Yu Huang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
- Zhejiang Institute, China University of Geosciences, Hangzhou 311305, P. R. China
| | - Weiqi Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
- Zhejiang Institute, China University of Geosciences, Hangzhou 311305, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
10
|
Qu ZB, Jiang Y, Zhang J, Chen S, Zeng R, Zhuo Y, Lu M, Shi G, Gu H. Tailoring Oxygen-Containing Groups on Graphene for Ratiometric Electrochemical Measurements of Ascorbic Acid in Living Subacute Parkinson's Disease Mouse Brains. Anal Chem 2021; 93:16598-16607. [PMID: 34844405 DOI: 10.1021/acs.analchem.1c03965] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ascorbic acid (AA), a major antioxidant in the central nervous system (CNS), is involved in withstanding oxidative stress that plays a significant role in the pathogenesis of Parkinson's disease (PD). Exploring the AA disturbance in the process of PD is of great value in understanding the molecular mechanism of PD. Herein, by virtue of a carbon fiber electrode (CFE) as a matric electrode, a three-step electrochemical process for tailoring oxygen-containing groups on graphene was well designed: potentiostatic deposition was carried out to fabricate graphene oxide on CFE, electrochemical reduction that assisted in removing the epoxy groups accelerated the electron transfer kinetics of AA oxidation, and electrochemical oxidation that increased the content of the carbonyl group (C═O) generated an inner-reference signal. The mechanism was solidified by ab initio calculations by comparing AA absorption on defected models of graphene functionalized with different oxygen groups including carboxyl, hydroxyl, epoxy, and carbonyl. It was found that epoxy groups would hinder the physical absorption of AA onto graphene, while other functional groups would be beneficial to it. Biocompatible polyethylenedioxythiophene (PEDOT) was further rationally assembled to improve the antifouling property of graphene. As a result, a new platform for ratiometric electrochemical measurements of AA with high sensitivity, excellent selectivity, and reproducibility was established. In vivo determination of AA levels in different regions of living mouse brains by the proposed method demonstrated that AA decreased remarkably in the hippocampus and cortex of a subacute PD mouse than those of a normal mouse.
Collapse
Affiliation(s)
- Zhi-Bei Qu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yimin Jiang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Jiaxin Zhang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Shu Chen
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Rongjin Zeng
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Yi Zhuo
- Hunan Provincial Key Laboratory of Neurorestoratology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Ming Lu
- Hunan Provincial Key Laboratory of Neurorestoratology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, P. R. China
| | - Hui Gu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| |
Collapse
|
11
|
Liang H, Zhu M, Ye H, Zeng C, Wang S, Niu Y. Carbon fiber microelectrode array loaded with the diazonium salt-single-walled carbon nanotubes composites for the simultaneous monitoring of dopamine and serotonin in vivo. Anal Chim Acta 2021; 1186:339086. [PMID: 34756249 DOI: 10.1016/j.aca.2021.339086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/27/2022]
Abstract
Carbon fiber microelectrode arrays based on diazonium salt and single-walled carbon nanotubes composites (DS-SWCNT/CFMEA) have been fabricated, and it developed for the simultaneous monitoring of dopamine (DA) and serotonin (5-HT) with differential pulse voltammary (DPV). The diazonium salt can improve the water-solubility of single-walled carbon nanotubes and show good selectivity to DA, thus DS-SWCNT/CFMEA exhibits enhanced electrocatalytic activity for the oxidation of DA and 5-HT, and well antifouling ability to the other biomolecules. Moreover, DS-SWCNT/CFMEA shows the wider liner range, and the good performance of precision, reproducibility and biocompatibility. The excellent characteristics of the prepared microsensor array make it to be used to monitor the release of DA and 5-HT in the mouse brain striatum of different group over time. Meanwhile, the results of in vivo on line assay further confirmed the pharmacological effects of Uncaria alkaloid extract solution on DA and 5-HT. This research may provide a new method for monitoring the release of neurobiomolecules, and the microsensor array are expected to be a tool for the study of pharmacological and physiological processes on line in vivo.
Collapse
Affiliation(s)
- Huanru Liang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Mingfang Zhu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Hongqing Ye
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Changqing Zeng
- College of Chinese Traditional Medicines, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Shumei Wang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou, 510006, PR China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou, PR China
| | - Yanan Niu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| |
Collapse
|
12
|
Hatamie A, Ren L, Zhang X, Ewing AG. Vesicle Impact Electrochemical Cytometry to Determine Carbon Nanotube-Induced Fusion of Intracellular Vesicles. Anal Chem 2021; 93:13161-13168. [PMID: 34499839 PMCID: PMC8495673 DOI: 10.1021/acs.analchem.1c01462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carbon nanotube (CNT)-modified electrodes are used to obtain new measurements of vesicle content via amperometry. We have investigated the interaction between CNTs and isolated adrenal chromaffin vesicles (as a model) by vesicle impact electrochemical cytometry. Our data show that the presence of CNTs not only significantly increased the vesicular catecholamine number from 2,250,000 ± 112,766 molecules on a bare electrode to 3,880,000 ± 686,573 molecules on CNT/carbon fiber electrodes but also caused an enhancement in the maximum intensity of the current, which implies the existence of strong interactions between vesicle biolayers and CNTs and an altered electroporation process. We suggest that CNTs might perturb and destabilize the membrane structure of intracellular vesicles and cause the aggregation or fusion of vesicles into new vesicles with larger size and higher content. Our findings are consistent with previous computational and experimental results and support the hypothesis that CNTs as a mediator can rearrange the phospholipid bilayer membrane and trigger homotypic fusion of intracellular vesicles.
Collapse
Affiliation(s)
- Amir Hatamie
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Lin Ren
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Xinwei Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| |
Collapse
|
13
|
Electrochemical treatment in KOH renews and activates carbon fiber microelectrode surfaces. Anal Bioanal Chem 2021; 413:6737-6746. [PMID: 34302181 DOI: 10.1007/s00216-021-03539-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 12/30/2022]
Abstract
Carbon fiber microelectrodes (CFMEs) are the standard electrodes for fast-scan cyclic voltammetry (FSCV) detection of neurotransmitters. CFMEs are generally used untreated but the surface can be activated with different treatments to improve electrochemical performance. In this work, we explored electrochemical treatments to clean and activate the CFME surface. We used different solution conditions for electrochemical treatment and found that electrochemical pretreatment in KOH outperforms treatment in KCl, H2O2, or HCl by accelerating the surface renewal process. The etching rate of carbon with electrochemical treatment in KOH is 37 nm/min, which is 10 times faster than that in the other solutions. Electrochemical treatment in KOH for several minutes regenerates a new carbon surface, which introduces more oxygen functional groups beneficial for adsorption and electron transfer. The KOH-treated CFMEs improved the limit of detection (LOD) to 9 ± 2 nM from 14 ± 4 nM for untreated CFMEs, and they successfully detected stimulated dopamine release in rat brain slices, demonstrating that they are stable and sensitive enough to use in biological systems. Electrochemical treatment in KOH completely restores the electrode sensitivity after biofouling. The proposed electrochemical treatment is simple and fast and can be applied prior to using CFMEs or after use to restore the surface. Thus, the method has potential to be a standard step to clean the carbon surface, or restore the sensitivity of electrodes from biofouling.
Collapse
|
14
|
Zhang C, Tang C, Mei Y, Zhang L, Zhu A, Tian Y. A ratiometric electrochemical sensor for selectively monitoring monoamine oxidase A in the live brain. Chem Commun (Camb) 2021; 57:6487-6490. [PMID: 34100043 DOI: 10.1039/d1cc00787d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, an electrochemical method for selectively sensing and accurately quantifying monoamine oxidase A (MAO-A) in the cortex and thalamus of a live mouse brain was reported. Using this tool, it was found that MAO-A increased Ca2+ entry into neurons via the TPRM2 channel in the live mouse brain of an AD model.
Collapse
Affiliation(s)
- Chuanping Zhang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | | | | | | | | | | |
Collapse
|
15
|
Brain neurochemical monitoring. Biosens Bioelectron 2021; 189:113351. [PMID: 34049083 DOI: 10.1016/j.bios.2021.113351] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 02/08/2023]
Abstract
Brain neurochemical monitoring aims to provide continuous and accurate measurements of brain biomarkers. It has enabled significant advances in neuroscience for application in clinical diagnostics, treatment, and prevention of brain diseases. Microfabricated electrochemical and optical spectroscopy sensing technologies have been developed for precise monitoring of brain neurochemicals. Here, a comprehensive review on the progress of sensing technologies developed for brain neurochemical monitoring is presented. The review provides a summary of the widely measured clinically relevant neurochemicals and commonly adopted recognition technologies. Recent advances in sampling, electrochemistry, and optical spectroscopy for brain neurochemical monitoring are highlighted and their application are discussed. Existing gaps in current technologies and future directions to design industry standard brain neurochemical sensing devices for clinical applications are addressed.
Collapse
|
16
|
Liu Y, Du J, Wang M, Zhang J, Liu C, Li X. Recent Progress in Quantitatively Monitoring Vesicular Neurotransmitter Release and Storage With Micro/Nanoelectrodes. Front Chem 2021; 8:591311. [PMID: 33505953 PMCID: PMC7831278 DOI: 10.3389/fchem.2020.591311] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/20/2020] [Indexed: 01/31/2023] Open
Abstract
Exocytosis is one of the essential steps for chemical signal transmission between neurons. In this process, vesicles dock and fuse with the plasma membrane and release the stored neurotransmitters through fusion pores into the extracellular space, and all of these steps are governed with various molecules, such as proteins, ions, and even lipids. Quantitatively monitoring vesicular neurotransmitter release in exocytosis and initial neurotransmitter storage in individual vesicles is significant for the study of chemical signal transmission of the central nervous system (CNS) and neurological diseases. Electrochemistry with micro/nanoelectrodes exhibits great spatial-temporal resolution and high sensitivity. It can be used to examine the exocytotic kinetics from the aspect of neurotransmitters and quantify the neurotransmitter storage in individual vesicles. In this review, we first introduce the recent advances of single-cell amperometry (SCA) and the nanoscale interface between two immiscible electrolyte solutions (nanoITIES), which can monitor the quantity and release the kinetics of electrochemically and non-electrochemically active neurotransmitters, respectively. Then, the development and application of the vesicle impact electrochemical cytometry (VIEC) and intracellular vesicle impact electrochemical cytometry (IVIEC) and their combination with other advanced techniques can further explain the mechanism of neurotransmitter storage in vesicles before exocytosis. It has been proved that these electrochemical techniques have great potential in the field of neuroscience.
Collapse
Affiliation(s)
| | | | | | | | - Chunlan Liu
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xianchan Li
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
17
|
Yu P, Wei H, Zhong P, Xue Y, Wu F, Liu Y, Fei J, Mao L. Single‐Carbon‐Fiber‐Powered Microsensor for In Vivo Neurochemical Sensing with High Neuronal Compatibility. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ping Yu
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Huan Wei
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Peipei Zhong
- Key Laboratory of Environmentally Friendly Chemistry and Applications of the Ministry of Education College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Yifei Xue
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Fei Wu
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yang Liu
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of the Ministry of Education College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
18
|
Jin J, Ji W, Li L, Zhao G, Wu W, Wei H, Ma F, Jiang Y, Mao L. Electrochemically Probing Dynamics of Ascorbate during Cytotoxic Edema in Living Rat Brain. J Am Chem Soc 2020; 142:19012-19016. [PMID: 33108734 DOI: 10.1021/jacs.0c09011] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cytotoxic edema is the initial and most important step in the sequence that almost inevitably leads to brain damage. Exploring the neurochemical disturbances in this process is of great significance in providing a measurable biological parameter for signaling specific pathological conditions. Here, we present an electrochemical system that pinpoints a critical neurochemical involved in cytotoxic edema. Specially, we report a molecularly tailored brain-implantable ascorbate sensor (CFEAA2.0) featuring excellent selectivity and spatiotemporal resolution that assists the first observation of release of ascorbate induced by cytotoxic edema in vivo. Importantly, we reveal that this release is associated with an increase in the amount of cytotoxic edema-inducing agent and that blockage of cytotoxic edema abolishes ascorbate release, further supporting that ascorbate efflux is cytotoxic edema-dependent. Our study holds the promise for understanding the molecular basis of cytotoxic edema that can lead to the discovery of biomarkers or potential therapeutic strategies of brain diseases.
Collapse
Affiliation(s)
- Jing Jin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenliang Ji
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| | - Lijuan Li
- Department of Otorhinolaryngology, Peking University Third Hospital, Beijing 100083, China
| | - Gang Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| | - Wenjie Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| | - Huan Wei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Furong Ma
- Department of Otorhinolaryngology, Peking University Third Hospital, Beijing 100083, China
| | - Ying Jiang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Yu P, Wei H, Zhong P, Xue Y, Wu F, Liu Y, Fei J, Mao L. Single‐Carbon‐Fiber‐Powered Microsensor for In Vivo Neurochemical Sensing with High Neuronal Compatibility. Angew Chem Int Ed Engl 2020; 59:22652-22658. [DOI: 10.1002/anie.202010195] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Ping Yu
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Huan Wei
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Peipei Zhong
- Key Laboratory of Environmentally Friendly Chemistry and Applications of the Ministry of Education College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Yifei Xue
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Fei Wu
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yang Liu
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of the Ministry of Education College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
20
|
Tao J, Zhu Y, Zhao S, Chen P, Zhang S, Sun J, Shen X. A novel approach with glass needle enclosed movable probe for in vivo real-time detection of glucose in cisternal cerebrospinal fluid. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Wei H, Li L, Jin J, Wu F, Yu P, Ma F, Mao L. Galvanic Redox Potentiometry Based Microelectrode Array for Synchronous Ascorbate and Single-Unit Recordings in Rat Brain. Anal Chem 2020; 92:10177-10182. [PMID: 32600032 DOI: 10.1021/acs.analchem.0c02225] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neuronal communication relies on cooperation between the chemical and electrical patterns of neurons. Thus, techniques for illustrating the linkage of the neurochemical events and action potentials with high temporal and spatial resolution is imperative to gain a comprehensive understanding of the intricacies of brain function. Herein, we integrate galvanic redox potentiometry (GRP) and electrophysiological recording onto a 16-site Au microelectrode array (MEA), one of which is for indicating the ascorbate concentration while the others for single-unit activity assessment. The electrochemical probing site was modified with single-walled carbon nanotubes to promote electron-transfer kinetics of ascorbate at low overpotential so as to enlarge the driving force for the spontaneous ascorbate/O2 cell reaction. The resulting GRP-based MEA outputs open-circuit potential that is in a linear relationship with the logarithmic ascorbate concentration and exhibits high selectivity against a set of coexisting electroactive species. Furthermore, no reciprocal interference between the two recording systems is observed during concurrent GRP sensing of ascorbate and single-unit recording in a rat brain. In vivo feasibility of the GRP-based MEA is demonstrated by synchronous real-time measurement of ascorbate release and electrical activity from multiple neuronal populations during spreading depression. Our GRP-based MEA sensor creates new opportunities to realize high-throughput screening or mapping of neurochemical patterns in a larger dimension and correlate them to neuron functions across a spatial scale.
Collapse
Affiliation(s)
- Huan Wei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijuan Li
- Department of Otorhinolaryngology, Peking University Third Hospital, Beijing 100083, China
| | - Jing Jin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Furong Ma
- Department of Otorhinolaryngology, Peking University Third Hospital, Beijing 100083, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Ying YL, Wang J, Leach AR, Jiang Y, Gao R, Xu C, Edwards MA, Pendergast AD, Ren H, Weatherly CKT, Wang W, Actis P, Mao L, White HS, Long YT. Single-entity electrochemistry at confined sensing interfaces. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9716-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Qi H, Song J, Fu Y, Wu X, Qi H. Highly dispersive Pt-Pd nanoparticles on graphene oxide sheathed carbon fiber microelectrodes for electrochemical detection of H 2O 2 released from living cells. NANOTECHNOLOGY 2020; 31:135503. [PMID: 31825903 DOI: 10.1088/1361-6528/ab60ce] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report a facile strategy for the synthesis of surfactant-free, small and highly dispersive Pt-Pd nanoparticles on graphene oxide (Pt-Pd NPs/GO) by an electroless deposition method, which is sheathed on carbon fiber microelectrodes (CFMs) as an electrochemical sensing platform for highly sensitive and selective detection of hydrogen peroxide (H2O2) released from the living cells. GO serves as the reducing agent and stabilizer for electroless deposition of Pd NPs on the surface of GO owing to its low work function (4.38 eV) and highly conjugated electronic structure. The obtained Pd NPs/GO have a relatively high work function (4.64 eV), and thereby could be used as stabilizer for synthesis of surfactant-free, small and highly dispersive Pt-Pd NPs/GO by chemical reduction of K2PtCl4. The obtained Pt-Pd NPs have a uniform size of 4.0 ± 0.6 nm on the surface of GO. Moreover, the Pt-Pd NPs/GO sheathed CFMs exhibit an excellent electrocatalytic activity for the reduction of H2O2 with a low detection limit of 0.3 μM and good selectivity. These good properties enable the modified microelectrode to detect the H2O2 released from living cells.
Collapse
Affiliation(s)
- Hetong Qi
- Institute of Analytical Science, Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | | | | | | | | |
Collapse
|
24
|
Abstract
Fast-scan cyclic voltammetry (FSCV) is used with carbon-fiber microelectrodes for the real-time detection of neurotransmitters on the subsecond time scale. With FSCV, the potential is ramped up from a holding potential to a switching potential and back, usually at a 400 V s-1 scan rate and a frequency of 10 Hz. The plot of current vs. applied potential, the cyclic voltammogram (CV), has a very different shape for FSCV than for traditional cyclic voltammetry collected at scan rates which are 1000-fold slower. Here, we explore the theory of FSCV, with a focus on dopamine detection. First, we examine the shape of the CVs. Background currents, which are 100-fold higher than faradaic currents, are subtracted out. Peak separation is primarily due to slow electron transfer kinetics, while the symmetrical peak shape is due to exhaustive electrolysis of all the adsorbed neurotransmitters. Second, we explain the origins of the dopamine waveform, and the factors that limit the holding potential (oxygen reduction), switching potential (water oxidation), scan rate (electrode instability), and repetition rate (adsorption). Third, we discuss data analysis, from data visualization with color plots, to the automated algorithms like principal components regression that distinguish dopamine from pH changes. Finally, newer applications are discussed, including optimization of waveforms for analyte selectivity, carbon nanomaterial electrodes that trap dopamine, and basal level measurements that facilitate neurotransmitter measurements on a longer time scale. FSCV theory is complex, but understanding it enables better development of new techniques to monitor neurotransmitters in vivo.
Collapse
Affiliation(s)
- B Jill Venton
- Dept. of Chemistry, University of Virginia, PO Box 400319, Charlottesville, VA 22901, USA.
| | | |
Collapse
|
25
|
Abstract
In vivo electrochemical sensing based on implantable microelectrodes is a strong driving force of analytical neurochemistry in brain. The complex and dynamic neurochemical network sets stringent standards of in vivo electrochemical sensors including high spatiotemporal resolution, selectivity, sensitivity, and minimized disturbance on brain function. Although advanced materials and novel technologies have promoted the development of in vivo electrochemical sensors drastically, gaps with the goals still exist. This Review mainly focuses on recent attempts on the key issues of in vivo electrochemical sensors including selectivity, tissue response and sensing reliability, and compatibility with electrophysiological techniques. In vivo electrochemical methods with bare carbon fiber electrodes, of which the selectivity is achieved either with electrochemical techniques such as fast-scan cyclic voltammetry and differential pulse voltammetry or based on the physiological nature will not be reviewed. Following the elaboration of each issue involved in in vivo electrochemical sensors, possible solutions supported by the latest methodological progress will be discussed, aiming to provide inspiring and practical instructions for future research.
Collapse
Affiliation(s)
- Cong Xu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Wu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Yu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Liu X, Feng T, Ji W, Wang Z, Zhang M. A cobalt corrole/carbon nanotube enables simultaneous electrochemical monitoring of oxygen and ascorbic acid in the rat brain. Analyst 2019; 145:70-75. [PMID: 31720591 DOI: 10.1039/c9an01946d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is of interest to in vivo monitor the co-dynamics of different substances. However, the tracking of multiple species is still challenging. In this work, we demonstrate an in vivo electrochemical method by using multi-potential step amperometry to in vivo detect ascorbic acid (AA) and oxygen (O2) simultaneously. In order to achieve good selectivity and high sensitivity for both AA and O2, we design a cobalt corrole [Co(tpfc)(py)2] (tpfc = 5,10,15-tris(penta-fluorophenyl) corrole, py = pyridine, denoted as Co-TPFC) and carbon nanotube nanocomposite to modify a carbon fiber microelectrode (Co-TPFC/MWNT/CFE). This Co-TPFC/MWNT/CFE exhibits excellent electrocatalytic properties towards the reduction of O2 preceding a 4e process and facilitates the oxidation of AA at low potential in the physiological environment. Based on this, we realize simultaneous detection of AA and O2 using two-potential steps (one cathodic (-0.2 V) and the other anodic (+0.05 V)) with 1 second step time. Both in vitro and in vivo experiments proved the feasibility of this method. This demonstrated strategy is useful for us to understand various physiological and pathological processes associated with O2 and AA co-dynamics, and also provides an idea for detecting multiple substances simultaneously.
Collapse
Affiliation(s)
- Xiaomeng Liu
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | | | | | | | | |
Collapse
|
27
|
Simple self-referenced ratiometric electrochemical sensor for dopamine detection using electrochemically pretreated glassy carbon electrode modified by acid-treated multiwalled carbon nanotube. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113446] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
ZHANG S, FENG TT, ZHANG L, ZHANG MN. In Vivo Electrochemical Detection of Hydrogen Peroxide and Dopamine. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61193-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
29
|
Xiao T, Wang Y, Wei H, Yu P, Jiang Y, Mao L. Electrochemical Monitoring of Propagative Fluctuation of Ascorbate in the Live Rat Brain during Spreading Depolarization. Angew Chem Int Ed Engl 2019; 58:6616-6619. [DOI: 10.1002/anie.201901035] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/20/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Tongfang Xiao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
| | - Yuexiang Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
| | - Huan Wei
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ping Yu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ying Jiang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
30
|
Xiao T, Wang Y, Wei H, Yu P, Jiang Y, Mao L. Electrochemical Monitoring of Propagative Fluctuation of Ascorbate in the Live Rat Brain during Spreading Depolarization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tongfang Xiao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
| | - Yuexiang Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
| | - Huan Wei
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ping Yu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ying Jiang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
31
|
Cao Y, Ma W, Ji W, Yu P, Wu F, Wu H, Mao L. Electrophoretically Sheathed Carbon Fiber Microelectrodes with Metal/Nitrogen/Carbon Electrocatalyst for Electrochemical Monitoring of Oxygen in Vivo. ACS APPLIED BIO MATERIALS 2019; 2:1376-1383. [DOI: 10.1021/acsabm.9b00100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yang Cao
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenliang Ji
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huixia Wu
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Zhou L, Hou H, Wei H, Yao L, Sun L, Yu P, Su B, Mao L. In Vivo Monitoring of Oxygen in Rat Brain by Carbon Fiber Microelectrode Modified with Antifouling Nanoporous Membrane. Anal Chem 2019; 91:3645-3651. [DOI: 10.1021/acs.analchem.8b05658] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lin Zhou
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hanfeng Hou
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Huan Wei
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Lina Yao
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Lei Sun
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Ping Yu
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Lanqun Mao
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| |
Collapse
|
33
|
Cao Q, Puthongkham P, Venton BJ. Review: New insights into optimizing chemical and 3D surface structures of carbon electrodes for neurotransmitter detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2019; 11:247-261. [PMID: 30740148 PMCID: PMC6366673 DOI: 10.1039/c8ay02472c] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The carbon-fiber microelectrode has been used for decades as a neurotransmitter sensor. Recently, new strategies have been developed for making carbon electrodes, including using carbon nanomaterials or pyrolyzing photoresist etched by nanolithography or 3D printing. This review summarizes how chemical and 3D surface structures of new carbon electrodes are optimized for neurotransmitter detection. There are effects of the chemical structure that are advantageous and nanomaterials are used ranging from carbon nanotube (CNT) to graphene to nanodiamond. Functionalization of these materials promotes surface oxide groups that adsorb dopamine and dopants introduce defect sites good for electron transfer. Polymer coatings such as poly(3,4-ethylenedioxythiophene) (PEDOT) or Nafion also enhance the selectivity, particularly for dopamine over ascorbic acid. Changing the 3D surface structure of an electrode increases current by adding more surface area. If the surface structure has roughness or pores on the micron scale, the electrode also acts as a thin layer cell, momentarily trapping the analyte for redox cycling. Vertically-aligned CNTs as well as lithographically-made or 3D printed pillar arrays act as thin layer cells, producing more reversible cyclic voltammograms. A better understanding of how chemical and surface structure affects electrochemistry enables rational design of electrodes. New carbon electrodes are being tested in vivo and strategies to reduce biofouling are being developed. Future studies should test the robustness for long term implantation, explore electrochemical properties of neurotransmitters beyond dopamine, and combine optimized chemical and physical structures for real-time monitoring of neurotransmitters.
Collapse
Affiliation(s)
| | | | - B. Jill Venton
- Dept. of Chemistry, University of Virginia, Charlottesville, VA 22901
| |
Collapse
|
34
|
Pu C, Xu Y, Liu Q, Zhu A, Shi G. Enantiomers of Single Chirality Nanotube as Chiral Recognition Interface for Enhanced Electrochemical Chiral Analysis. Anal Chem 2019; 91:3015-3020. [DOI: 10.1021/acs.analchem.8b05336] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Chunling Pu
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People’s Republic of China
| | - Yunxia Xu
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People’s Republic of China
| | - Qi Liu
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People’s Republic of China
| | - Anwei Zhu
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People’s Republic of China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People’s Republic of China
| |
Collapse
|
35
|
|
36
|
Xiao T, Li X, Wei H, Ji W, Yue Q, Yu P, Mao L. In Vivo Monitoring of Oxygen Fluctuation Simultaneously at Multiple Sites of Rat Cortex during Spreading Depression. Anal Chem 2018; 90:13783-13789. [DOI: 10.1021/acs.analchem.8b04348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Tongfang Xiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| | - Xianchan Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| | - Huan Wei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenliang Ji
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| | - Qingwei Yue
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|