1
|
Salamatian AA, Alvarez-Hernandez JL, Ramesh KB, Leone L, Lombardi A, Bren KL. Electrocatalytic CO 2 reduction by a cobalt porphyrin mini-enzyme. Chem Sci 2025; 16:5707-5716. [PMID: 40046076 PMCID: PMC11877352 DOI: 10.1039/d4sc07026g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Cobalt-mimochrome VI*a (CoMC6*a), a synthetic mini-enzyme with a cobalt porphyrin active site, is developed as a biomolecular catalyst for electrocatalytic CO2 reduction in water. The catalytic turnover number reaches ∼14 000 for CO production with a selectivity of 86 : 5 over H2 production under the same conditions. Varying the applied potential and the pK a of the proton donor was used to gain insight into the basis for selectivity. The protected active site of CoMC6*a is proposed to enhance selectivity for CO2 reduction under conditions that typically favor H2 production by related catalysts. CoMC6*a activity and selectivity change only marginally under air, indicating excellent oxygen tolerance.
Collapse
Affiliation(s)
- Alison A Salamatian
- Department of Chemistry, University of Rochester Rochester NY 14627-0216 USA
| | | | - Karishma B Ramesh
- Department of Chemistry, University of Rochester Rochester NY 14627-0216 USA
| | - Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo Via Cintia 80126 Naples Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo Via Cintia 80126 Naples Italy
| | - Kara L Bren
- Department of Chemistry, University of Rochester Rochester NY 14627-0216 USA
| |
Collapse
|
2
|
Kosko RM, Kuphal KL, Salamatian AA, Bren KL. Engineered metallobiocatalysts for energy-relevant reactions. Curr Opin Chem Biol 2025; 84:102545. [PMID: 39591928 DOI: 10.1016/j.cbpa.2024.102545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/06/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024]
Abstract
Engineering metallobiocatalysts is a promising approach to addressing challenges in energy-relevant electrocatalysis and photocatalysis. The design freedom provided by semisynthetic and fully synthetic approaches to catalyst design allows researchers to demonstrate how structural modifications can improve selectivity and activity of biocatalysts. Furthermore, the provision of a superstructure in many metallobiocatalysts facilitates active-site microenvironment engineering. Recurring themes include the role of the biomolecular scaffold in enhancing reactivity in water and catalyst robustness, the impact of the outer sphere on reactivity, and the importance of tuning system components in full system optimization. In this perspective, recent strategies to design and modify novel biocatalysts, understand proton and electron transfer mechanisms, and tune system activity by modifying catalysts and system conditions are highlighted within the field of energy-related catalysis. Opportunities in this field include developing robust structure-function relationships to support approaches to engineering second-sphere interactions and identifying ways to enhance biocatalyst activity over time.
Collapse
Affiliation(s)
- Ryan M Kosko
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA
| | - Kaye L Kuphal
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA
| | - Alison A Salamatian
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA
| | - Kara L Bren
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA.
| |
Collapse
|
3
|
Esposito A, Leone L, De Simone A, Fusco G, Nastri F, Lombardi A. Catalytic Nanomaterials by Conjugation of an Artificial Heme-Peroxidase to Amyloid Fibrils. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45371-45382. [PMID: 39140178 DOI: 10.1021/acsami.4c10449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The self-assembly of proteins and peptides into fibrillar amyloid aggregates is a highly promising route to define the next generation of functional nanomaterials. Amyloid fibrils, traditionally associated with neurodegenerative diseases, offer exceptional conformational and chemical stability and mechanical properties, and resistance to degradation. Here, we report the development of catalytic amyloid nanomaterials through the conjugation of a miniaturized artificial peroxidase (FeMC6*a) to a self-assembling amyloidogenic peptide derived from human transthyretin, TTR(105-115), whose sequence is YTIAALLSPYS. Our synthetic approach relies on fast and selective click ligation upon proper modification of both the peptide and FeMC6*a, leading to TTRLys108@FeMC6*a. Mixing unmodified TTR(105-115) with TTRLys108@FeMC6*a allowed the generation of enzyme-loaded amyloid fibrils, namely, FeMC6*a@fibrils. Catalytic studies, performed in aqueous solution at nearly neutral pH, using ABTS as a model substrate and H2O2 as the oxidizing agent revealed that the enzyme retains its catalytic activity. Moreover, the activity was found to depend on the TTRLys108@FeMC6*a/unmodified TTR(105-115) peptide ratio. In particular, those with the 2:100 ratio showed the highest activity in terms of initial rates and substrate conversion among the screened nanoconjugates and compared to the freely diffusing enzyme. Finally, the newly developed nanomaterials were integrated into a flow system based on a polyvinylidene difluoride membrane filter. Within this flow-reactor, multiple reaction cycles were performed, showcasing the reusability and stability of the catalytic amyloids over extended periods, thus offering significantly improved characteristics compared to the isolated FeMC6*a in the application to a number of practical scenarios.
Collapse
Affiliation(s)
- Alessandra Esposito
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, 80126 Naples, Italy
| | - Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, 80126 Naples, Italy
| | - Alfonso De Simone
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Giuliana Fusco
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, 80126 Naples, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, 80126 Naples, Italy
| |
Collapse
|
4
|
Wolfe JA, Horne WS. Application of artificial backbone connectivity in the development of metalloenzyme mimics. Curr Opin Chem Biol 2024; 81:102509. [PMID: 39098212 PMCID: PMC11345794 DOI: 10.1016/j.cbpa.2024.102509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Metal-dependent enzymes are abundant and vital catalytic agents in nature. The functional versatility of metalloenzymes has made them common targets for improvement by protein engineering as well as mimicry by de novo designed sequences. In both strategies, the incorporation of non-canonical cofactors and/or non-canonical side chains has proved a useful tool. Less explored-but similarly powerful-is the utilization of non-canonical covalent modifications to the polypeptide backbone itself. Such efforts can entail either introduction of limited artificial monomers in natural chains to produce heterogeneous backbones or construction of completely abiotic oligomers that adopt defined folds. Herein, we review recent research applying artificial protein-like backbones in the construction of metalloenzyme mimics, highlighting progress as well as open questions in this emerging field.
Collapse
Affiliation(s)
- Jacob A Wolfe
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - W Seth Horne
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
5
|
Alvarez-Hernandez JL, Salamatian AA, Sopchak AE, Bren KL. Hydrogen evolution catalysis by a cobalt porphyrin peptide: A proposed role for porphyrin propionic acid groups. J Inorg Biochem 2023; 249:112390. [PMID: 37801884 DOI: 10.1016/j.jinorgbio.2023.112390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023]
Abstract
Cobalt microperoxidase-11 (CoMP11-Ac) is a cobalt porphyrin-peptide catalyst for hydrogen (H2) evolution from water. Herein, we assess electrocatalytic activity of CoMP11-Ac from pH 1.0-10.0. This catalyst remains intact and active under highly acidic conditions (pH 1.0) that are desirable for maximizing H2 evolution activity. Analysis of electrochemical data indicate that H2 evolution takes place by two pH-dependent mechanisms. At pH < 4.3, a proton transfer mechanism involving the propionic acid groups of the porphyrin is proposed, decreasing the catalytic overpotential by 280 mV.
Collapse
Affiliation(s)
| | - Alison A Salamatian
- Department of Chemistry, University of Rochester. Rochester, NY 14627-0216, United States.
| | - Andrew E Sopchak
- Department of Chemistry, University of Rochester. Rochester, NY 14627-0216, United States.
| | - Kara L Bren
- Department of Chemistry, University of Rochester. Rochester, NY 14627-0216, United States.
| |
Collapse
|
6
|
Chino M, La Gatta S, Leone L, De Fenza M, Lombardi A, Pavone V, Maglio O. Dye Decolorization by a Miniaturized Peroxidase Fe-MimochromeVI*a. Int J Mol Sci 2023; 24:11070. [PMID: 37446248 DOI: 10.3390/ijms241311070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/23/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Oxidases and peroxidases have found application in the field of chlorine-free organic dye degradation in the paper, toothpaste, and detergent industries. Nevertheless, their widespread use is somehow hindered because of their cost, availability, and batch-to-batch reproducibility. Here, we report the catalytic proficiency of a miniaturized synthetic peroxidase, Fe-Mimochrome VI*a, in the decolorization of four organic dyes, as representatives of either the heterocyclic or triarylmethane class of dyes. Fe-Mimochrome VI*a performed over 130 turnovers in less than five minutes in an aqueous buffer at a neutral pH under mild conditions.
Collapse
Affiliation(s)
- Marco Chino
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Salvatore La Gatta
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Linda Leone
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Maria De Fenza
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
7
|
Leone L, Muñoz-García AB, D'Alonzo D, Pavone V, Nastri F, Lombardi A. Peptide-based metalloporphyrin catalysts: unveiling the role of the metal ion in indole oxidation. J Inorg Biochem 2023; 246:112298. [PMID: 37379767 DOI: 10.1016/j.jinorgbio.2023.112298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023]
Abstract
Over the last decades, much effort has been devoted to the construction of protein and peptide-based metalloporphyrin catalysts capable of promoting difficult transformations with high selectivity. In this context, mechanistic studies are fundamental to elucidate all the factors that contribute to catalytic performances and product selectivity. In our previous work, we selected the synthetic peptide-porphyrin conjugate MnMC6*a as a proficient catalyst for indole oxidation, promoting the formation of a 3-oxindole derivative with unprecedented selectivity. In this work, we have evaluated the role of the metal ion in affecting reaction outcome, by replacing manganese with iron in the MC6*a scaffold. Even though product selectivity is not altered upon metal substitution, FeMC6*a shows a lower substrate conversion and prolonged reaction times with respect to its manganese analogue. Experimental and theoretical studies have enabled us to delineate the reaction free energy profiles for both catalysts, indicating different thermodynamic limiting steps, depending on the nature of the metal ion.
Collapse
Affiliation(s)
- Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Ana Belén Muñoz-García
- Department of Physics "Ettore Pancini", University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Daniele D'Alonzo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy.
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy.
| |
Collapse
|
8
|
T Waffo AF, Lorent C, Katz S, Schoknecht J, Lenz O, Zebger I, Caserta G. Structural Determinants of the Catalytic Ni a-L Intermediate of [NiFe]-Hydrogenase. J Am Chem Soc 2023. [PMID: 37328284 DOI: 10.1021/jacs.3c01625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
[NiFe]-hydrogenases catalyze the reversible cleavage of H2 into two protons and two electrons at the inorganic heterobimetallic NiFe center of the enzyme. Their catalytic cycle involves at least four intermediates, some of which are still under debate. While the core reaction, including H2/H- binding, takes place at the inorganic cofactor, a major challenge lies in identifying those amino acid residues that contribute to the reactivity and how they stabilize (short-lived) intermediate states. Using cryogenic infrared and electron paramagnetic resonance spectroscopy on the regulatory [NiFe]-hydrogenase from Cupriavidus necator, a model enzyme for the analysis of catalytic intermediates, we deciphered the structural basis of the hitherto elusive Nia-L intermediates. We unveiled the protonation states of a proton-accepting glutamate and a Ni-bound cysteine residue in the Nia-L1, Nia-L2, and the hydride-binding Nia-C intermediates as well as previously unknown conformational changes of amino acid residues in proximity of the bimetallic active site. As such, this study unravels the complexity of the Nia-L intermediate and reveals the importance of the protein scaffold in fine-tuning proton and electron dynamics in [NiFe]-hydrogenase.
Collapse
Affiliation(s)
- Armel F T Waffo
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Christian Lorent
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Sagie Katz
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Janna Schoknecht
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Oliver Lenz
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Ingo Zebger
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Giorgio Caserta
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
9
|
Leone L, Sgueglia G, La Gatta S, Chino M, Nastri F, Lombardi A. Enzymatic and Bioinspired Systems for Hydrogen Production. Int J Mol Sci 2023; 24:ijms24108605. [PMID: 37239950 DOI: 10.3390/ijms24108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The extraordinary potential of hydrogen as a clean and sustainable fuel has sparked the interest of the scientific community to find environmentally friendly methods for its production. Biological catalysts are the most attractive solution, as they usually operate under mild conditions and do not produce carbon-containing byproducts. Hydrogenases promote reversible proton reduction to hydrogen in a variety of anoxic bacteria and algae, displaying unparallel catalytic performances. Attempts to use these sophisticated enzymes in scalable hydrogen production have been hampered by limitations associated with their production and stability. Inspired by nature, significant efforts have been made in the development of artificial systems able to promote the hydrogen evolution reaction, via either electrochemical or light-driven catalysis. Starting from small-molecule coordination compounds, peptide- and protein-based architectures have been constructed around the catalytic center with the aim of reproducing hydrogenase function into robust, efficient, and cost-effective catalysts. In this review, we first provide an overview of the structural and functional properties of hydrogenases, along with their integration in devices for hydrogen and energy production. Then, we describe the most recent advances in the development of homogeneous hydrogen evolution catalysts envisioned to mimic hydrogenases.
Collapse
Affiliation(s)
- Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Gianmattia Sgueglia
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Salvatore La Gatta
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
10
|
D'Alonzo D, De Fenza M, Pavone V, Lombardi A, Nastri F. Selective Oxidation of Halophenols Catalyzed by an Artificial Miniaturized Peroxidase. Int J Mol Sci 2023; 24:ijms24098058. [PMID: 37175773 PMCID: PMC10178546 DOI: 10.3390/ijms24098058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The development of artificial enzymes for application in sustainable technologies, such as the transformation of environmental pollutants or biomass, is one of the most challenging goals in metalloenzyme design. In this work, we describe the oxidation of mono-, di-, tri- and penta-halogenated phenols catalyzed by the artificial metalloenzyme Fe-MC6*a. It promoted the dehalogenation of 4-fluorophenol into the corresponding 1,4-benzoquinone, while under the same experimental conditions, 4-chloro, 4-bromo and 4-iodophenol were selectively converted into higher molecular weight compounds. Analysis of the 4-chlorophenol oxidation products clarified that oligomers based on C-O bonds were exclusively formed in this case. All results show that Fe-MC6*a holds intriguing enzymatic properties, as it catalyzes halophenol oxidation with substrate-dependent chemoselectivity.
Collapse
Affiliation(s)
- Daniele D'Alonzo
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Maria De Fenza
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| |
Collapse
|
11
|
Chino M, Di Costanzo LF, Leone L, La Gatta S, Famulari A, Chiesa M, Lombardi A, Pavone V. Designed Rubredoxin miniature in a fully artificial electron chain triggered by visible light. Nat Commun 2023; 14:2368. [PMID: 37185349 PMCID: PMC10130062 DOI: 10.1038/s41467-023-37941-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Designing metal sites into de novo proteins has significantly improved, recently. However, identifying the minimal coordination spheres, able to encompass the necessary information for metal binding and activity, still represents a great challenge, today. Here, we test our understanding with a benchmark, nevertheless difficult, case. We assemble into a miniature 28-residue protein, the quintessential elements required to fold properly around a FeCys4 redox center, and to function efficiently in electron-transfer. This study addresses a challenge in de novo protein design, as it reports the crystal structure of a designed tetra-thiolate metal-binding protein in sub-Å agreement with the intended design. This allows us to well correlate structure to spectroscopic and electrochemical properties. Given its high reduction potential compared to natural and designed FeCys4-containing proteins, we exploit it as terminal electron acceptor of a fully artificial chain triggered by visible light.
Collapse
Affiliation(s)
- Marco Chino
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126, Napoli, Italy
| | - Luigi Franklin Di Costanzo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy
| | - Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126, Napoli, Italy
| | - Salvatore La Gatta
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126, Napoli, Italy
| | - Antonino Famulari
- Department of Chemistry, University of Torino, Via Giuria 9, 10125, Torino, Italy
- Department of Condensed Matter Physics, University of Zaragoza, Calle Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Mario Chiesa
- Department of Chemistry, University of Torino, Via Giuria 9, 10125, Torino, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126, Napoli, Italy.
| | - Vincenzo Pavone
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126, Napoli, Italy.
| |
Collapse
|
12
|
Wang M, Qiao J, Sheng Y, Wei J, Cui H, Li X, Yue G. Bioconversion of corn fiber to bioethanol: Status and perspectives. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 157:256-268. [PMID: 36577277 DOI: 10.1016/j.wasman.2022.12.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/17/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Due to the rising demand for green energy, bioethanol has attracted increasing attention from academia and industry. Limited by the bottleneck of bioethanol yield in traditional corn starch dry milling processes, an increasing number of studies focus on fully utilizing all corn ingredients, especially kernel fiber, to further improve the bioethanol yield. This mini-review addresses the technological challenges and opportunities on the way to achieving the efficient conversion of corn fiber. Significant advances during the review period include the detailed characterization of different forms of corn kernel fiber and the development of off-line and in-situ conversion strategies. Lessons from cellulosic ethanol technologies offer new ways to utilize corn fiber in traditional processes. However, the commercialization of corn kernel fiber conversion may be hampered by enzyme cost, conversion efficiency, and overall process economics. Thus, future studies should address these technical limitations.
Collapse
Affiliation(s)
- Minghui Wang
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Jie Qiao
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Yijie Sheng
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Junnan Wei
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Haiyang Cui
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Xiujuan Li
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China.
| | - Guojun Yue
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China; SDIC Biotech Investment Co., Ltd., Beijing 100034, China
| |
Collapse
|
13
|
Salamatian AA, Bren KL. Bioinspired and biomolecular catalysts for energy conversion and storage. FEBS Lett 2023; 597:174-190. [PMID: 36331366 DOI: 10.1002/1873-3468.14533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Metalloenzymes are remarkable for facilitating challenging redox transformations with high efficiency and selectivity. In the area of alternative energy, scientists aim to capture these properties in bioinspired and engineered biomolecular catalysts for the efficient and fast production of fuels from low-energy feedstocks such as water and carbon dioxide. In this short review, efforts to mimic biological catalysts for proton reduction and carbon dioxide reduction are highlighted. Two important recurring themes are the importance of the microenvironment of the catalyst active site and the key role of proton delivery to the active site in achieving desired reactivity. Perspectives on ongoing and future challenges are also provided.
Collapse
Affiliation(s)
| | - Kara L Bren
- Department of Chemistry, University of Rochester, NY, USA
| |
Collapse
|
14
|
Alvarez-Hernandez JL, Salamatian AA, Han JW, Bren KL. Potential- and Buffer-Dependent Selectivity for the Conversion of CO 2 to CO by a Cobalt Porphyrin-Peptide Electrocatalyst in Water. ACS Catal 2022; 12:14689-14697. [PMID: 36504916 PMCID: PMC9724230 DOI: 10.1021/acscatal.2c03297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/02/2022] [Indexed: 11/17/2022]
Abstract
A semisynthetic electrocatalyst for carbon dioxide reduction to carbon monoxide in water is reported. Cobalt microperoxidase-11 (CoMP11-Ac) is shown to reduce CO2 to CO with a turnover number of up to 32,000 and a selectivity of up to 88:5 CO:H2. Higher selectivity for CO production is favored by a less cathodic applied potential and use of a higher pK a buffer. A mechanistic hypothesis is presented in which avoiding the formation and protonation of a formal Co(I) species favors CO production. These results demonstrate how tuning reaction conditions impact reactivity toward CO2 reduction for a biocatalyst previously developed for H2 production.
Collapse
|
15
|
Porphyrin-catalyzed electrochemical hydrogen evolution reaction. Metal-centered and ligand-centered mechanisms. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Edwards EH, Le JM, Salamatian AA, Peluso NL, Leone L, Lombardi A, Bren KL. A cobalt mimochrome for photochemical hydrogen evolution from neutral water. J Inorg Biochem 2022; 230:111753. [PMID: 35182844 PMCID: PMC9586700 DOI: 10.1016/j.jinorgbio.2022.111753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/21/2022]
Abstract
A system for visible light-driven hydrogen production from water is reported. This system makes use of a synthetic mini-enzyme known as a mimochrome (CoMC6*a) consisting of a cobalt deuteroporphyrin and two attached peptides as a catalyst, [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) as a photosensitizer, and ascorbic acid as a sacrificial electron donor. The system achieves turnover numbers (TONs) up to 10,000 with respect to catalyst and optimal activity at pH 7. Comparison with related systems shows that CoMC6*a maintains the advantages of biomolecular catalysts, while exceeding other cobalt porphyrins in terms of total TON and longevity of catalysis. Herein, we lay groundwork for future study, where the synthetic nature of CoMC6*a will provide a unique opportunity to tailor proton reduction chemistry and expand to new reactivity.
Collapse
Affiliation(s)
- Emily H Edwards
- Department of Chemistry, University of Rochester, 120 Trustee Rd., Rochester, NY 14627-0216, USA.
| | - Jennifer M Le
- Department of Chemistry, University of Rochester, 120 Trustee Rd., Rochester, NY 14627-0216, USA.
| | - Alison A Salamatian
- Department of Chemistry, University of Rochester, 120 Trustee Rd., Rochester, NY 14627-0216, USA.
| | - Noelle L Peluso
- Department of Chemistry, University of Rochester, 120 Trustee Rd., Rochester, NY 14627-0216, USA.
| | - Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia 45, 80126 Naples, Italy.
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia 45, 80126 Naples, Italy.
| | - Kara L Bren
- Department of Chemistry, University of Rochester, 120 Trustee Rd., Rochester, NY 14627-0216, USA.
| |
Collapse
|
17
|
Sowmya S, Vijaikanth V. Electrochemistry and Electrocatalytic Activity of Cobaloxime Complexes. ChemistrySelect 2022. [DOI: 10.1002/slct.202104044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Subramanian Sowmya
- Department of Applied Chemistry Karunya Institute of Technology and Sciences Coimbatore 641114 Tamil Nadu India
| | - Vijendran Vijaikanth
- Department of Applied Chemistry Karunya Institute of Technology and Sciences Coimbatore 641114 Tamil Nadu India
| |
Collapse
|
18
|
Cobb SJ, Badiani VM, Dharani AM, Wagner A, Zacarias S, Oliveira AR, Pereira IAC, Reisner E. Fast CO 2 hydration kinetics impair heterogeneous but improve enzymatic CO 2 reduction catalysis. Nat Chem 2022; 14:417-424. [PMID: 35228690 PMCID: PMC7612589 DOI: 10.1038/s41557-021-00880-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
The performance of heterogeneous catalysts for electrocatalytic CO2 reduction (CO2R) suffers from unwanted side reactions and kinetic inefficiencies at the required large overpotential. However, immobilised CO2R enzymes — such as formate dehydrogenase — can operate with high turnover and selectivity at a minimal overpotential and are therefore ‘ideal’ model catalysts. Here, through the co-immobilisation of carbonic anhydrase, we study the effect of CO2 hydration on the local environment and performance of a range of disparate CO2R systems from enzymatic (formate dehydrogenase) to heterogeneous systems. We show that the co-immobilisation of carbonic anhydrase increases the kinetics of CO2 hydration at the electrode. This benefits enzymatic CO2 reduction — despite the decrease in CO2 concentration — due to a reduction in local pH change, whereas it is detrimental to heterogeneous catalysis (on Au), because the system is unable to suppress the H2 evolution side reaction. Understanding the role of CO2 hydration kinetics within the local environment on the performance of electrocatalyst systems provides important insights for the development of next generation synthetic CO2R catalysts.
Collapse
Affiliation(s)
- Samuel J Cobb
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Vivek M Badiani
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Azim M Dharani
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Andreas Wagner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Sónia Zacarias
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Ana Rita Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
19
|
Stern CM, Meche DD, Elgrishi N. Impact of the choice of buffer on the electrochemical reduction of Cr( vi) in water on carbon electrodes. RSC Adv 2022; 12:32592-32599. [DOI: 10.1039/d2ra05943f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The nature of the buffer influences the PCET step gating Cr(vi) reduction in water at pH 4.75, as well as the extent of deposition on carbon electrodes. Electrode activity is recovered without polishing, through a simple acid wash step.
Collapse
Affiliation(s)
- Callie M. Stern
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA, 70803, USA
| | - Devin D. Meche
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA, 70803, USA
| | - Noémie Elgrishi
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA, 70803, USA
| |
Collapse
|
20
|
Zambrano G, Sekretareva A, D'Alonzo D, Leone L, Pavone V, Lombardi A, Nastri F. Oxidative dehalogenation of trichlorophenol catalyzed by a promiscuous artificial heme-enzyme. RSC Adv 2022; 12:12947-12956. [PMID: 35527726 PMCID: PMC9067433 DOI: 10.1039/d2ra00811d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/13/2022] [Indexed: 01/21/2023] Open
Abstract
The miniaturized metalloenzyme Fe(iii)-mimochrome VI*a (Fe(iii)-MC6*a) acts as an excellent biocatalyst in the H2O2-mediated oxidative dehalogenation of the well-known pesticide and biocide 2,4,6-trichlorophenol (TCP). The artificial enzyme can oxidize TCP with a catalytic efficiency (kcat/KTCPm = 150 000 mM−1 s−1) up to 1500-fold higher than the most active natural metalloenzyme horseradish peroxidase (HRP). UV-visible and EPR spectroscopies were used to provide indications of the catalytic mechanism. One equivalent of H2O2 fully converts Fe(iii)-MC6*a into the oxoferryl-porphyrin radical cation intermediate [(Fe(iv)
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O)por˙+], similarly to peroxidase compound I (Cpd I). Addition of TCP to Cpd I rapidly leads to the formation of the corresponding quinone, while Cpd I decays back to the ferric resting state in the absence of substrate. EPR data suggest a catalytic mechanism involving two consecutive one-electron reactions. All results highlight the value of the miniaturization strategy for the development of chemically stable, highly efficient artificial metalloenzymes as powerful catalysts for the oxidative degradation of toxic pollutants. The artificial metalloenzyme FeMC6*a is able to perform the H2O2-mediated dechlorination of 2,4,6-trichlorophenol with unrivalled catalytic efficiency, highlighting its potential application for the removal of toxic pollutants.![]()
Collapse
Affiliation(s)
- Gerardo Zambrano
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Alina Sekretareva
- Department of Chemistry – Ångström, Uppsala University, Lägerhyddsvägen 1, 75120 Uppsala, Sweden
| | - Daniele D'Alonzo
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Linda Leone
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| |
Collapse
|
21
|
Hydrothermal synthesis of long-chain hydrocarbons up to C 24 with NaHCO 3-assisted stabilizing cobalt. Proc Natl Acad Sci U S A 2021; 118:2115059118. [PMID: 34911765 PMCID: PMC8713749 DOI: 10.1073/pnas.2115059118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 01/28/2023] Open
Abstract
Abiotic CO2 reduction on transition metal minerals has been proposed to account for the synthesis of organic compounds in alkaline hydrothermal systems, but this reaction lacks experimental support, as only short-chain hydrocarbons (<C5) have been synthesized in artificial simulation. This presents a question: What particular hydrothermal conditions favor long-chain hydrocarbon synthesis? Here, we demonstrate the hydrothermal bicarbonate reduction at ∼300 °C and 30 MPa into long-chain hydrocarbons using iron (Fe) and cobalt (Co) metals as catalysts. We found the Co0 promoter responsible for synthesizing long-chain hydrocarbons to be extraordinarily stable when coupled with Fe-OH formation. Under these hydrothermal conditions, the traditional water-induced deactivation of Co is inhibited by bicarbonate-assisted CoOx reduction, leading to honeycomb-native Co nanosheets generated in situ as a new motif. The Fe-OH formation, confirmed by operando infrared spectroscopy, enhances CO adsorption on Co, thereby favoring further reduction to long-chain hydrocarbons (up to C24). These results not only advance theories for an abiogenic origin for some petroleum accumulations and the hydrothermal hypothesis of the emergence of life but also introduce an approach for synthesizing long-chain hydrocarbons by nonnoble metal catalysts for artificial CO2 utilization.
Collapse
|
22
|
Unravelling the Structure of the Tetrahedral Metal-Binding Site in METP3 through an Experimental and Computational Approach. Molecules 2021; 26:molecules26175221. [PMID: 34500655 PMCID: PMC8434281 DOI: 10.3390/molecules26175221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding the structural determinants for metal ion coordination in metalloproteins is a fundamental issue for designing metal binding sites with predetermined geometry and activity. In order to achieve this, we report in this paper the design, synthesis and metal binding properties of METP3, a homodimer made up of a small peptide, which self assembles in the presence of tetrahedrally coordinating metal ions. METP3 was obtained through a redesign approach, starting from the previously developed METP molecule. The undecapeptide sequence of METP, which dimerizes to house a Cys4 tetrahedral binding site, was redesigned in order to accommodate a Cys2His2 site. The binding properties of METP3 were determined toward different metal ions. Successful assembly of METP3 with Co(II), Zn(II) and Cd(II), in the expected 2:1 stoichiometry and tetrahedral geometry was proven by UV-visible spectroscopy. CD measurements on both the free and metal-bound forms revealed that the metal coordination drives the peptide chain to fold into a turned conformation. Finally, NMR data of the Zn(II)-METP3 complex, together with a retrostructural analysis of the Cys-X-X-His motif in metalloproteins, allowed us to define the model structure. All the results establish the suitability of the short METP sequence for accommodating tetrahedral metal binding sites, regardless of the first coordination ligands.
Collapse
|
23
|
Fan G, Wasuwanich P, Furst AL. Biohybrid Systems for Improved Bioinspired, Energy-Relevant Catalysis. Chembiochem 2021; 22:2353-2367. [PMID: 33594779 DOI: 10.1002/cbic.202100037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/15/2021] [Indexed: 12/31/2022]
Abstract
Biomimetic catalysts, ranging from small-molecule metal complexes to supramolecular assembles, possess many exciting properties that could address salient challenges in industrial-scale manufacturing. Inspired by natural enzymes, these biohybrid catalytic systems demonstrate superior characteristics, including high activity, enantioselectivity, and enhanced aqueous solubility, over their fully synthetic counterparts. However, instability and limitations in the prediction of structure-function relationships are major drawbacks that often prevent the application of biomimetic catalysts outside of the laboratory. Despite these obstacles, recent advances in synthetic enzyme models have improved our understanding of complicated biological enzymatic processes and enabled the production of catalysts with increased efficiency. This review outlines important developments and future prospects for the design and application of bioinspired and biohybrid systems at multiple length scales for important, biologically relevant, clean energy transformations.
Collapse
Affiliation(s)
- Gang Fan
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Pris Wasuwanich
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Ariel L Furst
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| |
Collapse
|
24
|
Pavani P, Kumar K, Rani A, Venkatesu P, Lee MJ. The influence of sodium phosphate buffer on the stability of various proteins: Insights into protein-buffer interactions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Alcala-Torano R, Halloran N, Gwerder N, Sommer DJ, Ghirlanda G. Light-Driven CO 2 Reduction by Co-Cytochrome b 562. Front Mol Biosci 2021; 8:609654. [PMID: 33937320 PMCID: PMC8082397 DOI: 10.3389/fmolb.2021.609654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 11/23/2022] Open
Abstract
The current trend in atmospheric carbon dioxide concentrations is causing increasing concerns for its environmental impacts, and spurring the developments of sustainable methods to reduce CO2 to usable molecules. We report the light-driven CO2 reduction in water in mild conditions by artificial protein catalysts based on cytochrome b 562 and incorporating cobalt protoporphyrin IX as cofactor. Incorporation into the protein scaffolds enhances the intrinsic reactivity of the cobalt porphyrin toward proton reduction and CO generation. Mutations around the binding site modulate the activity of the enzyme, pointing to the possibility of further improving catalytic activity through rational design or directed evolution.
Collapse
Affiliation(s)
| | | | | | | | - Giovanna Ghirlanda
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
26
|
Maglio O, Chino M, Vicari C, Pavone V, Louro RO, Lombardi A. Histidine orientation in artificial peroxidase regioisomers as determined by paramagnetic NMR shifts. Chem Commun (Camb) 2021; 57:990-993. [PMID: 33399143 DOI: 10.1039/d0cc06676a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Fe-Mimochrome VI*a is a synthetic peroxidase and peroxygenase, featuring two different peptides that are covalently-linked to deuteroheme. To perform a systematic structure/function correlation, we purposely shortened the distance between the distal peptide and the heme, allowing for the separation and characterization of two regioisomers. They differ in both His axial-ligand orientation, as determined by paramagnetic NMR shifts, and activity. These findings highlight that synthetic metalloenzymes may provide an efficient tool for disentangling the role of axial ligand orientation over peroxidase activity.
Collapse
Affiliation(s)
- Ornella Maglio
- Department of Chemical Sciences, University Federico II of Naples, Via Cintia 21, Naples, 80126, Italy. and IBB-CNR, Via Mezzocannone 16, Naples, 80134, Italy
| | - Marco Chino
- Department of Chemical Sciences, University Federico II of Naples, Via Cintia 21, Naples, 80126, Italy.
| | - Claudia Vicari
- Department of Chemical Sciences, University Federico II of Naples, Via Cintia 21, Naples, 80126, Italy.
| | - Vincenzo Pavone
- Department of Chemical Sciences, University Federico II of Naples, Via Cintia 21, Naples, 80126, Italy.
| | - Ricardo O Louro
- ITQB-UNL, Av. da Republica (EAN), Oeiras 2780-157, Portugal.
| | - Angela Lombardi
- Department of Chemical Sciences, University Federico II of Naples, Via Cintia 21, Naples, 80126, Italy.
| |
Collapse
|
27
|
Clary KE, Karayilan M, McCleary-Petersen KC, Petersen HA, Glass RS, Pyun J, Lichtenberger DL. Increasing the rate of the hydrogen evolution reaction in neutral water with protic buffer electrolytes. Proc Natl Acad Sci U S A 2020; 117:32947-32953. [PMID: 33310905 PMCID: PMC7777250 DOI: 10.1073/pnas.2012085117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Electrocatalytic generation of H2 is challenging in neutral pH water, where high catalytic currents for the hydrogen evolution reaction (HER) are particularly sensitive to the proton source and solution characteristics. A tris(hydroxymethyl)aminomethane (TRIS) solution at pH 7 with a [2Fe-2S]-metallopolymer electrocatalyst gave catalytic current densities around two orders of magnitude greater than either a more conventional sodium phosphate solution or a potassium chloride (KCl) electrolyte solution. For a planar polycrystalline Pt disk electrode, a TRIS solution at pH 7 increased the catalytic current densities for H2 generation by 50 mA/cm2 at current densities over 100 mA/cm2 compared to a sodium phosphate solution. As a special feature of this study, TRIS is acting not only as the primary source of protons and the buffer of the pH, but the protonated TRIS ([TRIS-H]+) is also the sole cation of the electrolyte. A species that is simultaneously the proton source, buffer, and sole electrolyte is termed a protic buffer electrolyte (PBE). The structure-activity relationships of the TRIS PBE that increase the HER rate of the metallopolymer and platinum catalysts are discussed. These results suggest that appropriately designed PBEs can improve HER rates of any homogeneous or heterogeneous electrocatalyst system. General guidelines for selecting a PBE to improve the catalytic current density of HER systems are offered.
Collapse
Affiliation(s)
- Kayla E. Clary
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721
| | - Metin Karayilan
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721
| | | | - Haley A. Petersen
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721
| | - Richard S. Glass
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721
| | - Jeffrey Pyun
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721
- Department of Chemical and Biological Engineering, Program for Chemical Convergence for Energy and Environment and the Center for Intelligent Hybrids, Seoul National University, 151-744 Seoul, Korea
| | | |
Collapse
|
28
|
Stroka JR, Kandemir B, Matson EM, Bren KL. Electrocatalytic Multielectron Nitrite Reduction in Water by an Iron Complex. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03600] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jesse R. Stroka
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Banu Kandemir
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Ellen M. Matson
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Kara L. Bren
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| |
Collapse
|
29
|
Zeng T, Gautam RP, Barile CJ, Li Y, Tse ECM. Nitrile-Facilitated Proton Transfer for Enhanced Oxygen Reduction by Hybrid Electrocatalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tian Zeng
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, University of Hong Kong, Hong Kong SAR 999077, China
| | - Rajendra P. Gautam
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | | | - Ying Li
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, University of Hong Kong, Hong Kong SAR 999077, China
- HKU Shenzhen Institute of Research and Innovation, Shenzhen 518057, China
| | - Edmund C. M. Tse
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, University of Hong Kong, Hong Kong SAR 999077, China
- HKU Zhejiang Institute of Research and Innovation, Zhejiang 311305, China
| |
Collapse
|
30
|
Leone L, Chino M, Nastri F, Maglio O, Pavone V, Lombardi A. Mimochrome, a metalloporphyrin‐based catalytic Swiss knife†. Biotechnol Appl Biochem 2020; 67:495-515. [DOI: 10.1002/bab.1985] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Linda Leone
- Department of Chemical Sciences University of Napoli “Federico II” Napoli Italy
| | - Marco Chino
- Department of Chemical Sciences University of Napoli “Federico II” Napoli Italy
| | - Flavia Nastri
- Department of Chemical Sciences University of Napoli “Federico II” Napoli Italy
| | - Ornella Maglio
- Department of Chemical Sciences University of Napoli “Federico II” Napoli Italy
- IBB ‐ National Research Council Napoli Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences University of Napoli “Federico II” Napoli Italy
| | - Angela Lombardi
- Department of Chemical Sciences University of Napoli “Federico II” Napoli Italy
| |
Collapse
|
31
|
Zambrano G, Nastri F, Pavone V, Lombardi A, Chino M. Use of an Artificial Miniaturized Enzyme in Hydrogen Peroxide Detection by Chemiluminescence. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3793. [PMID: 32640736 PMCID: PMC7374304 DOI: 10.3390/s20133793] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 11/16/2022]
Abstract
Advanced oxidation processes represent a viable alternative in water reclamation for potable reuse. Sensing methods of hydrogen peroxide are, therefore, needed to test both process progress and final quality of the produced water. Several bio-based assays have been developed so far, mainly relying on peroxidase enzymes, which have the advantage of being fast, efficient, reusable, and environmentally safe. However, their production/purification and, most of all, batch-to-batch consistency may inherently prevent their standardization. Here, we provide evidence that a synthetic de novo miniaturized designed heme-enzyme, namely Mimochrome VI*a, can be proficiently used in hydrogen peroxide assays. Furthermore, a fast and automated assay has been developed by using a lab-bench microplate reader. Under the best working conditions, the assay showed a linear response in the 10.0-120 μM range, together with a second linearity range between 120 and 500 μM for higher hydrogen peroxide concentrations. The detection limit was 4.6 μM and quantitation limits for the two datasets were 15.5 and 186 μM, respectively. In perspective, Mimochrome VI*a could be used as an active biological sensing unit in different sensor configurations.
Collapse
Affiliation(s)
| | | | | | | | - Marco Chino
- Department of Chemical Sciences, University of Naples “Federico II”. Via Cintia, 80126 Napoli, Italy; (G.Z.); (F.N.); (V.P.); (A.L.)
| |
Collapse
|
32
|
Zambrano G, Chino M, Renzi E, Di Girolamo R, Maglio O, Pavone V, Lombardi A, Nastri F. Clickable artificial heme-peroxidases for the development of functional nanomaterials. Biotechnol Appl Biochem 2020; 67:549-562. [PMID: 33463759 DOI: 10.1002/bab.1969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/06/2020] [Indexed: 11/08/2022]
Abstract
Artificial metalloenzymes as catalysts are promising candidates for their use in different technologies, such as bioremediation, biomass transformation, or biosensing. Despite this, their practical exploitation is still at an early stage. Immobilized natural enzymes have been proposed to enhance their applicability. Immobilization may offer several advantages: (i) catalyst reuse; (ii) easy separation of the enzyme from the reaction medium; (iii) better tolerance to harsh temperature and pH conditions. Here, we report an easy immobilization procedure of an artificial peroxidase on different surfaces, by means of click chemistry. FeMC6*a, a recently developed peroxidase mimic, has been functionalized with a pegylated aza-dibenzocyclooctyne to afford a "clickable" biocatalyst, namely FeMC6*a-PEG4@DBCO, which easily reacts with azide-functionalized molecules and/or nanomaterials to afford functional bioconjugates. The clicked biocatalyst retains its structural and, to some extent, its functional behaviors, thus housing high potential for biotechnological applications.
Collapse
Affiliation(s)
- Gerardo Zambrano
- Department of Chemical Sciences, University of Napoli "Federico II," Via Cintia, Napoli, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Napoli "Federico II," Via Cintia, Napoli, Italy
| | - Emilia Renzi
- Department of Chemical Sciences, University of Napoli "Federico II," Via Cintia, Napoli, Italy
| | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Napoli "Federico II," Via Cintia, Napoli, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Napoli "Federico II," Via Cintia, Napoli, Italy.,Istituto di Biostrutture e Bioimmagini, CNR, Napoli, Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences, University of Napoli "Federico II," Via Cintia, Napoli, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli "Federico II," Via Cintia, Napoli, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Napoli "Federico II," Via Cintia, Napoli, Italy
| |
Collapse
|
33
|
Alvarez-Hernandez JL, Sopchak AE, Bren KL. Buffer pKa Impacts the Mechanism of Hydrogen Evolution Catalyzed by a Cobalt Porphyrin-Peptide. Inorg Chem 2020; 59:8061-8069. [DOI: 10.1021/acs.inorgchem.0c00362] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Andrew E. Sopchak
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Kara L. Bren
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| |
Collapse
|