1
|
Shankar S, Pan J, Yang P, Bian Y, Oroszlán G, Yu Z, Mukherjee P, Filman DJ, Hogle JM, Shekhar M, Coen DM, Abraham J. Viral DNA polymerase structures reveal mechanisms of antiviral drug resistance. Cell 2024; 187:5572-5586.e15. [PMID: 39197451 PMCID: PMC11787825 DOI: 10.1016/j.cell.2024.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024]
Abstract
DNA polymerases are important drug targets, and many structural studies have captured them in distinct conformations. However, a detailed understanding of the impact of polymerase conformational dynamics on drug resistance is lacking. We determined cryoelectron microscopy (cryo-EM) structures of DNA-bound herpes simplex virus polymerase holoenzyme in multiple conformations and interacting with antivirals in clinical use. These structures reveal how the catalytic subunit Pol and the processivity factor UL42 bind DNA to promote processive DNA synthesis. Unexpectedly, in the absence of an incoming nucleotide, we observed Pol in multiple conformations with the closed state sampled by the fingers domain. Drug-bound structures reveal how antivirals may selectively bind enzymes that more readily adopt the closed conformation. Molecular dynamics simulations and the cryo-EM structure of a drug-resistant mutant indicate that some resistance mutations modulate conformational dynamics rather than directly impacting drug binding, thus clarifying mechanisms that drive drug selectivity.
Collapse
Affiliation(s)
- Sundaresh Shankar
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Junhua Pan
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Biomedical Research Institute and School of Life and Health Sciences, Hubei University of Technology, Wuhan, Hubei, China
| | - Pan Yang
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yuemin Bian
- School of Medicine, Shanghai University, Shanghai, China; Center for the Development of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Gábor Oroszlán
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Zishuo Yu
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Purba Mukherjee
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, UK
| | - David J Filman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - James M Hogle
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Mrinal Shekhar
- Center for the Development of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Donald M Coen
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan Abraham
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Center for Integrated Solutions in Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
2
|
Li Y, Chen B. Therapeutic effect of intravenous acyclovir in children with infectious mononucleosis and immune function. Am J Transl Res 2023; 15:5258-5266. [PMID: 37692931 PMCID: PMC10492057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023]
Abstract
OBJECTIVE To explore the application value of intravenous acyclovir in children with infectious mononucleosis (IM) and its effects on immune function. METHODS The data of 136 children with IM treated in Anhui Provincial Children's Hospital from March 2019 to March 2022 were retrospectively analyzed. According to the inclusion and exclusion criteria, 98 children were selected. Among them, 45 children treated with routine ribavirin were assigned to the control group, and the other 53 children treated with intravenous acyclovir were enrolled into the observation group. The two groups were compared in terms of efficacy, incidence of adverse reactions, recovery time of clinical symptoms, and immune function indexes, IgG, IgA, IgM, white blood cell (WBC) count and lymphocyte proportion, before and 10 days after the treatment. Independent risk factors affecting efficacy were analyzed by multivariate logistic regression analysis. RESULTS The observation group showed a significantly higher overall response rate than the control group (P=0.025). The control group experienced significantly longer recovery time of body temperature returning to normal, cure time of isthmitis, time for lymph node reduction, and alleviation time of hepatomegaly than the observation group (P<0.05). Additionally, the control group presented with a significantly higher incidence of adverse reactions than the observation group (P=0.028). After treatment, the observation group showed significantly lower levels of IgG, IgA, IgM, WBC count and lymphocyte proportion than the control group (all P<0.010). Longer average course of disease (OR: 1.449, 95% CI: 1.095-1.918), higher admission temperature (OR: 6.996, 95% CI: 1.350-36.257), higher admission IgA level (OR: 4.735, 95% CI: 1.357-16.520) and higher admission IgG level (OR: 1.470, 95% CI: 1.012-2.134) were independent risk factors for ineffective efficacy, while acyclovir (OR: 0.058, 95% CI: 0.005-0.729) was an independent protective factor. CONCLUSION In the treatment of IM, intravenous acyclovir can substantially improve the overall clinical response rate for patients, with less adverse reactions, and can greatly alleviate various clinical symptoms and signs including fever, isthmitis, cervical lymph node enlargement, and hepatosplenomegaly, with obvious regulating effects on the immune function, so it is worth popularizing and applying in clinical practice.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Infectious Diseases, Anhui Provincial Children's Hospital No. 39, Wangjiang East Road, Baohe District, Hefei 230022, Anhui, China
| | - Biquan Chen
- Department of Infectious Diseases, Anhui Provincial Children's Hospital No. 39, Wangjiang East Road, Baohe District, Hefei 230022, Anhui, China
| |
Collapse
|
3
|
Guo X, An Y, Tan W, Ma L, Wang M, Li J, Li B, Hou W, Wu L. Cathelicidin-derived antiviral peptide inhibits herpes simplex virus 1 infection. Front Microbiol 2023; 14:1201505. [PMID: 37342565 PMCID: PMC10277505 DOI: 10.3389/fmicb.2023.1201505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) is a widely distributed virus. HSV-1 is a growing public health concern due to the emergence of drug-resistant strains and the current lack of a clinically specific drug for treatment. In recent years, increasing attention has been paid to the development of peptide antivirals. Natural host-defense peptides which have uniquely evolved to protect the host have been reported to have antiviral properties. Cathelicidins are a family of multi-functional antimicrobial peptides found in almost all vertebrate species and play a vital role in the immune system. In this study, we demonstrated the anti-HSV-1 effect of an antiviral peptide named WL-1 derived from human cathelicidin. We found that WL-1 inhibited HSV-1 infection in epithelial and neuronal cells. Furthermore, the administration of WL-1 improved the survival rate and reduced viral load and inflammation during HSV-1 infection via ocular scarification. Moreover, facial nerve dysfunction, involving the abnormal blink reflex, nose position, and vibrissae movement, and pathological injury were prevented when HSV-1 ear inoculation-infected mice were treated with WL-1. Together, our findings demonstrate that WL-1 may be a potential novel antiviral agent against HSV-1 infection-induced facial palsy.
Collapse
Affiliation(s)
- Xiaomin Guo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Yanxing An
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Wanmin Tan
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ling Ma
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mingyang Wang
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juyan Li
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Binghong Li
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei Hou
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Li Wu
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
4
|
Khwaza V, Buyana B, Nqoro X, Peter S, Mbese Z, Feketshane Z, Alven S, Aderibigbe BA. Strategies for delivery of antiviral agents. VIRAL INFECTIONS AND ANTIVIRAL THERAPIES 2023:407-492. [DOI: 10.1016/b978-0-323-91814-5.00018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Acyclovir resistance in herpes simplex viruses: Prevalence and therapeutic alternatives. Biochem Pharmacol 2022; 206:115322. [DOI: 10.1016/j.bcp.2022.115322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022]
|
6
|
Khorenko M, Rand U, Cicin-Sain L, Feldmann C. Foscarnet-Type Inorganic-Organic Hybrid Nanoparticles for Effective Antiviral Therapy. ACS Biomater Sci Eng 2022; 8:1596-1603. [PMID: 35344659 PMCID: PMC9007112 DOI: 10.1021/acsbiomaterials.2c00074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
[ZrO]2+[(FCN)0.4(OH)0.8]2- and Gd3+[FCN]3- inorganic-organic hybrid nanoparticles (IOH-NPs) are novel saline antiviral nanocarriers with foscarnet (FCN) as a drug anion. FCN as a pyrophosphate analogue serves as a prototype of a viral DNA polymerase inhibitor. FCN is used for the treatment of herpesvirus infections, including the drug-resistant cytomegalovirus (CMV) and herpes simplex viruses, HSV-1 and HSV-2. The novel [ZrO]2+[(FCN)0.4(OH)0.8]2- and Gd3+[FCN]3- IOH-NPs are characterized by aqueous synthesis, small size (20-30 nm), low material complexity, high biocompatibility, and high drug load (up to 44 wt % FCN per nanoparticle). The antiviral activity of the FCN-type IOH-NPs is probed for the human cytomegalovirus (HCMV). Moreover, the uptake of FCN-type IOH-NPs into vesicles, cytoplasm, and nuclei of nonphagocytic lung epithelial cells is evaluated. As a result, a promising antiviral activity of the FCN-type IOH-NPs that significantly outperforms freely dissolved FCN at the level of clinical formulations is observed, encouraging a future use of FCN-type IOH-NPs for the delivery of antivirals against respiratory viruses.
Collapse
Affiliation(s)
- Mikhail Khorenko
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, D-76131 Karlsruhe, Germany
| | - Ulfert Rand
- Helmholtz Center for Infection Research, Inhoffenstraße 7, D-38124 Braunschweig, Germany
| | - Luka Cicin-Sain
- Helmholtz Center for Infection Research, Inhoffenstraße 7, D-38124 Braunschweig, Germany
| | - Claus Feldmann
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, D-76131 Karlsruhe, Germany
| |
Collapse
|
7
|
Abstract
The majority of drug discovery efforts against herpesviruses have focused on nucleoside analogs that target viral DNA polymerases, agents that are associated with dose-limiting toxicity and/or a narrow spectrum of activity. We are pursuing a strategy based on targeting two-metal ion-dependent (TMID) viral enzymes. This family of enzymes consists of structurally related proteins that share common active sites containing conserved carboxylates predicted to coordinate divalent cations essential for catalysis. Compounds that target TMID enzymes, such as HIV integrase and influenza endoribonuclease, have been successfully developed for clinical use. HIV integrase inhibitors have been reported to inhibit replication of herpes simplex virus (HSV) and other herpesviruses; however, the molecular targets of their antiviral activities have not been identified. We employed a candidate-based approach utilizing several two-metal-directed chemotypes and the potential viral TMID enzymatic targets in an effort to correlate target-based activity with antiviral potency. The panel of compounds tested included integrase inhibitors, the anti-influenza agent baloxavir, three natural products previously shown to exhibit anti-HSV activity, and two 8-hydroxyquinolines (8-HQs), AK-157 and AK-166, from our in-house program. The integrase inhibitors exhibited weak overall anti-HSV-1 activity, while the 8-HQs were shown to inhibit both HSV-1 and cytomegalovirus (CMV). Target-based analysis demonstrated that none of the antiviral compounds acted by inhibiting ICP8, contradicting previous reports. On the other hand, baloxavir inhibited the proofreading exonuclease of HSV polymerase, while AK-157 and AK-166 inhibited the alkaline exonuclease UL12. In addition, AK-157 also inhibited the catalytic activity of the HSV polymerase, which provides an opportunity to potentially develop dual-targeting agents against herpesviruses. IMPORTANCE Human herpesviruses (HHVs) establish lifelong latent infections, which undergo periodic reactivation and remain a major cause of morbidity and mortality, especially in immunocompromised individuals. Currently, HHV infections are treated primarily with agents that target viral DNA polymerase, including nucleoside analogs; however, long-term treatment can be complicated by the development of drug resistance. New therapies with novel modes of action would be important not only for the treatment of resistant viruses but also for use in combination therapy to reduce dose-limiting toxicities and potentially eliminate infection. Since many essential HHV proteins are well conserved, inhibitors of novel targets would ideally exhibit broad-spectrum activity against multiple HHVs.
Collapse
|
8
|
Wu X, Zhang H, Zhang B, Zhang Y, Wang Q, Shen W, Wu X, Li L, Xia W, Nakamura R, Liu B, Liu F, Takeda H, Meng A, Xie W. Methylome inheritance and enhancer dememorization reset an epigenetic gate safeguarding embryonic programs. SCIENCE ADVANCES 2021; 7:eabl3858. [PMID: 34936444 PMCID: PMC8694617 DOI: 10.1126/sciadv.abl3858] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/10/2021] [Indexed: 05/31/2023]
Abstract
Marked epigenetic reprogramming is essential to convert terminally differentiated gametes to totipotent embryos. It remains puzzling why postfertilization global DNA reprogramming occurs in mammals but not in nonmammalian vertebrates. In zebrafish, global methylome inheritance is however accompanied by extensive enhancer “dememorization” as they become fully methylated. By depleting maternal dnmt1 using oocyte microinjection, we eliminated DNA methylation in early embryos, which died around gastrulation with severe differentiation defects. Notably, methylation deficiency leads to derepression of adult tissue–specific genes and CG-rich enhancers, which acquire ectopic transcription factor binding and, unexpectedly, histone H3 lysine 4 trimethylation (H3K4me3). By contrast, embryonic enhancers are generally CG-poor and evade DNA methylation repression. Hence, global DNA hypermethylation inheritance coupled with enhancer dememorization installs an epigenetic gate that safeguards embryonic programs and ensures temporally ordered gene expression. We propose that “enhancer dememorization” underlies and unifies distinct epigenetic reprogramming modes in early development between mammals and nonmammals.
Collapse
Affiliation(s)
- Xiaotong Wu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hongmei Zhang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bingjie Zhang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yu Zhang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiuyan Wang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Weimin Shen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xi Wu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lijia Li
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Weikun Xia
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ryohei Nakamura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Bofeng Liu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Science, Beijing, China
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Anming Meng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Xie
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Abstract
Herpesviruses comprise a family of DNA viruses that cause a variety of human and veterinary diseases. During productive infection, mammalian, avian, and reptilian herpesviruses replicate their genomes using a set of conserved viral proteins that include a two subunit DNA polymerase. This enzyme is both a model system for family B DNA polymerases and a target for inhibition by antiviral drugs. This chapter reviews the structure, function, and mechanisms of the polymerase of herpes simplex viruses 1 and 2 (HSV), with only occasional mention of polymerases of other herpesviruses such as human cytomegalovirus (HCMV). Antiviral polymerase inhibitors have had the most success against HSV and HCMV. Detailed structural information regarding HSV DNA polymerase is available, as is much functional information regarding the activities of the catalytic subunit (Pol), which include a DNA polymerization activity that can utilize both DNA and RNA primers, a 3'-5' exonuclease activity, and other activities in DNA synthesis and repair and in pathogenesis, including some remaining to be biochemically defined. Similarly, much is known regarding the accessory subunit, which both resembles and differs from sliding clamp processivity factors such as PCNA, and the interactions of this subunit with Pol and DNA. Both subunits contribute to replication fidelity (or lack thereof). The availability of both pharmacologic and genetic tools not only enabled the initial identification of Pol and the pol gene, but has also helped dissect their functions. Nevertheless, important questions remain for this long-studied enzyme, which is still an attractive target for new drug discovery.
Collapse
|
10
|
Abstract
Human herpesviruses are large double-stranded DNA viruses belonging to the Herpesviridae family. The main characteristics of these viruses are their ability to establish a lifelong latency into the host with a potential to reactivate periodically. Primary infections and reactivations with herpesviruses are responsible for a large spectrum of diseases and may result in severe complications in immunocompromised patients. The viral DNA polymerase is a key enzyme in the replicative cycle of herpesviruses, and the target of most antiviral agents (i.e., nucleoside, nucleotide and pyrophosphate analogs). However, long-term prophylaxis and treatment with these antivirals may lead to the emergence of drug-resistant isolates harboring mutations in genes encoding viral enzymes that phosphorylate drugs (nucleoside analogs) and/or DNA polymerases, with potential cross-resistance between the different analogs. Drug resistance mutations mainly arise in conserved regions of the polymerase and exonuclease functional domains of these enzymes. In the polymerase domain, mutations associated with resistance to nucleoside/nucleotide analogs may directly or indirectly affect drug binding or incorporation into the primer strand, or increase the rate of extension of DNA to overcome chain termination. In the exonuclease domain, mutations conferring resistance to nucleoside/nucleotide analogs may reduce the rate of excision of incorporated drug, or continue DNA elongation after drug incorporation without excision. Mutations associated with resistance to pyrophosphate analogs may alter drug binding or the conformational changes of the polymerase domain required for an efficient activity of the enzyme. Novel herpesvirus inhibitors with a potent antiviral activity against drug-resistant isolates are thus needed urgently.
Collapse
Affiliation(s)
| | - Guy Boivin
- CHU de Québec-Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
11
|
Current Drugs to Treat Infections with Herpes Simplex Viruses-1 and -2. Viruses 2021; 13:v13071228. [PMID: 34202050 PMCID: PMC8310346 DOI: 10.3390/v13071228] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
Herpes simplex viruses-1 and -2 (HSV-1 and -2) are two of the three human alphaherpesviruses that cause infections worldwide. Since both viruses can be acquired in the absence of visible signs and symptoms, yet still result in lifelong infection, it is imperative that we provide interventions to keep them at bay, especially in immunocompromised patients. While numerous experimental vaccines are under consideration, current intervention consists solely of antiviral chemotherapeutic agents. This review explores all of the clinically approved drugs used to prevent the worst sequelae of recurrent outbreaks by these viruses.
Collapse
|
12
|
Novel Antibiotics Targeting Bacterial Replicative DNA Polymerases. Antibiotics (Basel) 2020; 9:antibiotics9110776. [PMID: 33158178 PMCID: PMC7694242 DOI: 10.3390/antibiotics9110776] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Multidrug resistance is a worldwide problem that is an increasing threat to global health. Therefore, the development of new antibiotics that inhibit novel targets is of great urgency. Some of the most successful antibiotics inhibit RNA transcription, RNA translation, and DNA replication. Transcription and translation are inhibited by directly targeting the RNA polymerase or ribosome, respectively. DNA replication, in contrast, is inhibited indirectly through targeting of DNA gyrases, and there are currently no antibiotics that inhibit DNA replication by directly targeting the replisome. This contrasts with antiviral therapies where the viral replicases are extensively targeted. In the last two decades there has been a steady increase in the number of compounds that target the bacterial replisome. In particular a variety of inhibitors of the bacterial replicative polymerases PolC and DnaE have been described, with one of the DNA polymerase inhibitors entering clinical trials for the first time. In this review we will discuss past and current work on inhibition of DNA replication, and the potential of bacterial DNA polymerase inhibitors in particular as attractive targets for a new generation of antibiotics.
Collapse
|
13
|
Evaluation of the effect of hydro alcoholic extract of cinnamon on herpes simplex virus-1. Dent Res J (Isfahan) 2020; 17:114-119. [PMID: 32435433 PMCID: PMC7224267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Long-term treatments of herpes simplex with drugs such as acyclovir, the side effects to such drugs including limited usage during the lactation period, and concerns for the emergence of drug-resistant strains have given rise to a need for new medications with fewer complications. Nowadays, there is an increasing usage of herbal medicines throughout the world due to their higher effectiveness and safety. The present study aims to assess the effects of hydroalcoholic cinnamon extract on herpes simplex virus type 1 (HSV-1) in culture with vero cells. MATERIALS AND METHODS In this in vitro study Hydroalcoholic extract of cinnamon was extracted through percolation. To assess cell survival rates, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was employed, and the tissue culture infective dose 50 assay was used to quantify the virus. Effects of the extract were evaluated in three stages, including before, during, and after viral inoculation into the culture medium. Two-way ANOVA and Post hoc analysis the test was performed in 1, 0.5, and 0.25 mg/ml concentrations of cinnamon extract in every stage (P < 0.05). RESULTS Over 50% of the cells survived in the 0.25 mg/ml extract concentration. Results of our viral quantification showed a viral load of 105. The cinnamon extract was able to reduce the viral titer in all concentrations under study. CONCLUSION Hydroalcoholic extract of cinnamon was effective in reducing the viral titer of HSV-1. This effect could have been caused by prevention of viral attachment to cells; however, further research is required to determine the exact mechanisms at play.
Collapse
|
14
|
Lavaee F, Moshaverinia M, Rastegarfar M, Moattari A. Evaluation of the effect of hydro alcoholic extract of cinnamon on herpes simplex virus-1. Dent Res J (Isfahan) 2020. [DOI: 10.4103/1735-3327.280889] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
15
|
Herbal Gel Formulation Developed for Anti-Human Immunodeficiency Virus (HIV)-1 Activity Also Inhibits In Vitro HSV-2 Infection. Viruses 2018; 10:v10110580. [PMID: 30352961 PMCID: PMC6266149 DOI: 10.3390/v10110580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 11/25/2022] Open
Abstract
Herpes simplex virus-2 (HSV-2) infection is the most common cause of genital ulcers. The impact of ulcers also demonstrates a strong link to the human immunodeficiency virus (HIV) infection. Complications, drug resistance, and side-effects of anti-viral drugs make the treatment of HSV-2 infection challenging. Herbal medicines have shown potential against HSV-2 and HIV infections. In this context, polyherbal gel formulation comprising 50% ethanolic extracts from Acacia catechu, Lagerstroemia speciosa, Terminalia chebula and Phyllanthus emblica has been developed. The gel formulation significantly exhibited virucidal activity against both HIV-1 and HSV-2 infections with IC50, 55.93 ± 5.30 µg/mL and 27.26 ± 4.87 µg/mL, respectively. It also inhibited HSV-2 attachment and penetration to the Vero cells with an IC50 = 46.55 ± 1.25 µg/mL and 54.94 ± 2.52 µg/mL respectively, which were significantly lower than acyclovir. However, acyclovir is more potent in post-infection assay with an IC50 = 0.065 ± 0.01 µg/mL whereas gel formulation showed an IC50 = 469.05 ± 16.65 µg/mL under similar conditions. Gel formulation showed no inhibitory effect on the viability of lactobacilli, human vaginal keratinocyte cells (Vk2/E6E7), and the integrity of the Caco-2 cells monolayer. Gel formulation did not lead to any significant increase in the secretion of pro-inflammatory cytokines and mutagenic index. The proposed gel formulation may be a promising candidate microbicide for the prevention of sexually transmitted HIV-1 and HSV-2.
Collapse
|
16
|
Annunziata G, Maisto M, Schisano C, Ciampaglia R, Narciso V, Tenore GC, Novellino E. Resveratrol as a Novel Anti-Herpes Simplex Virus Nutraceutical Agent: An Overview. Viruses 2018; 10:v10090473. [PMID: 30177661 PMCID: PMC6164158 DOI: 10.3390/v10090473] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/01/2018] [Accepted: 09/02/2018] [Indexed: 01/01/2023] Open
Abstract
The herpes simplex virus (HSV) is a common human virus affecting many people worldwide. HSV infections manifest with lesions that occur in different parts of the body, including oral, ocular, nasal, and genital skin and mucosa. In rare cases, HSV infections can be serious and lethal. Several anti-HSV drugs have been developed, but the existence of mutant viruses resistant to these drugs led to the individuation of novel antiviral agents. Plant-derived bioactive compounds, and more specifically polyphenols, have been demonstrated to exert marked anti-HSV activity and, among these, resveratrol (RSV) would be considered a good candidate. The purpose of this manuscript is to review the available literature elucidating the efficacy of RSV against HSV and the main demonstrated mechanisms of action.
Collapse
Affiliation(s)
- Giuseppe Annunziata
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Maria Maisto
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Connie Schisano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Roberto Ciampaglia
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Viviana Narciso
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
17
|
Vashishtha AK, Konigsberg WH. The effect of different divalent cations on the kinetics and fidelity of Bacillus stearothermophilus DNA polymerase. AIMS BIOPHYSICS 2018; 5:125-143. [PMID: 29888334 PMCID: PMC5992921 DOI: 10.3934/biophy.2018.2.125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although Mg2+ is the metal ion that functions as the cofactor for DNA polymerases (DNA pols) in vivo, Mn2+ can also serve in this capacity but it reduces base discrimination. Metal ions aside from Mg2+ or Mn2+ can act as cofactors for some DNA pols but not for others. Here we report on the ability of several divalent metal ions to substitute for Mg2+ or Mn2+ with BST DNA polymerase (BST pol), an A family DNA pol. We selected the metal ions based on whether they had previously been shown to be effective with other DNA pols. We found that Co2+ and Cd2+ were the only cations tested that could replace Mg2+ or Mn2+. When Co2+ was substituted for Mg2+, the incorporation efficiency for correct dNTPs increased 6-fold but for incorrect dNTPs there was a decrease which depended on the incoming dNTP. With Mn2+, base selectivity was impaired compared to Co2+ and Cd2+. In addition, Co2+ and Mn2+ helped BST pol to catalyze primer-extension past a mismatch. Finally both Co2+ and Mn2+ enhanced ground-state binding of both correct and incorrect dNTPs to BST pol: Dideoxy terminated primer-template complexes.
Collapse
|
18
|
Kumar Vashishtha A, H. Konigsberg W. Effect of Different Divalent Cations on the Kinetics and Fidelity of DNA Polymerases. AIMS BIOPHYSICS 2018. [DOI: 10.3934/biophy.2018.4.272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
19
|
Chernyavskaya Y, Mudbhary R, Zhang C, Tokarz D, Jacob V, Gopinath S, Sun X, Wang S, Magnani E, Madakashira BP, Yoder JA, Hoshida Y, Sadler KC. Loss of DNA methylation in zebrafish embryos activates retrotransposons to trigger antiviral signaling. Development 2017; 144:2925-2939. [PMID: 28698226 PMCID: PMC5592811 DOI: 10.1242/dev.147629] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 07/02/2017] [Indexed: 12/19/2022]
Abstract
Complex cytoplasmic nucleotide-sensing mechanisms can recognize foreign DNA based on a lack of methylation and initiate an immune response to clear the infection. Zebrafish embryos with global DNA hypomethylation caused by mutations in the ubiquitin-like with PHD and ring finger domains 1 (uhrf1) or DNA methyltransferase 1 (dnmt1) genes exhibit a robust interferon induction characteristic of the first line of defense against viral infection. We found that this interferon induction occurred in non-immune cells and examined whether intracellular viral sensing pathways in these cells were the trigger. RNA-seq analysis of uhrf1 and dnmt1 mutants revealed widespread induction of Class I retrotransposons and activation of cytoplasmic DNA viral sensors. Attenuating Sting, phosphorylated Tbk1 and, importantly, blocking reverse transcriptase activity suppressed the expression of interferon genes in uhrf1 mutants. Thus, activation of transposons in cells with global DNA hypomethylation mimics a viral infection by activating cytoplasmic DNA sensors. This suggests that antiviral pathways serve as surveillance of cells that have derepressed intragenomic parasites due to DNA hypomethylation.
Collapse
Affiliation(s)
- Yelena Chernyavskaya
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Raksha Mudbhary
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| | - Chi Zhang
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Debra Tokarz
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC 27607, USA
| | - Vinitha Jacob
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| | - Smita Gopinath
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| | - Xiaochen Sun
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| | - Shuang Wang
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| | - Elena Magnani
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC 27607, USA
| | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| | - Kirsten C Sadler
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| |
Collapse
|
20
|
Guanine α-carboxy nucleoside phosphonate (G-α-CNP) shows a different inhibitory kinetic profile against the DNA polymerases of human immunodeficiency virus (HIV) and herpes viruses. Biochem Pharmacol 2017; 136:51-61. [PMID: 28390939 DOI: 10.1016/j.bcp.2017.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/03/2017] [Indexed: 12/24/2022]
Abstract
α-Carboxy nucleoside phosphonates (α-CNPs) are modified nucleotides that represent a novel class of nucleotide-competing reverse transcriptase (RT) inhibitors (NcRTIs). They were designed to act directly against HIV-1 RT without the need for prior activation (phosphorylation). In this respect, they differ from the nucleoside or nucleotide RTIs [N(t)RTIs] that require conversion to their triphosphate forms before being inhibitory to HIV-1 RT. The guanine derivative (G-α-CNP) has now been synthesized and investigated for the first time. The (L)-(+)-enantiomer of G-α-CNP directly and competitively inhibits HIV-1 RT by interacting with the substrate active site of the enzyme. The (D)-(-)-enantiomer proved inactive against HIV-1 RT. In contrast, the (+)- and (-)-enantiomers of G-α-CNP inhibited herpes (i.e. HSV-1, HCMV) DNA polymerases in a non- or uncompetitive manner, strongly indicating interaction of the (L)-(+)- and the (D)-(-)-G-α-CNPs at a location different from the polymerase substrate active site of the herpes enzymes. Such entirely different inhibition profile of viral polymerases is unprecedented for a single antiviral drug molecule. Moreover, within the class of α-CNPs, subtle differences in their sensitivity to mutant HIV-1 RT enzymes were observed depending on the nature of the nucleobase in the α-CNP molecules. The unique properties of the α-CNPs make this class of compounds, including G-α-CNP, direct acting inhibitors of multiple viral DNA polymerases.
Collapse
|
21
|
Zarrouk K, Piret J, Boivin G. Herpesvirus DNA polymerases: Structures, functions and inhibitors. Virus Res 2017; 234:177-192. [PMID: 28153606 DOI: 10.1016/j.virusres.2017.01.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/10/2017] [Accepted: 01/22/2017] [Indexed: 11/25/2022]
Abstract
Human herpesviruses are large double-stranded DNA viruses belonging to the Herpesviridae family. These viruses have the ability to establish lifelong latency into the host and to periodically reactivate. Primary infections and reactivations of herpesviruses cause a large spectrum of diseases and may lead to severe complications in immunocompromised patients. The viral DNA polymerase is a key enzyme in the lytic phase of the infection by herpesviruses. This review focuses on the structures and functions of viral DNA polymerases of herpes simplex virus (HSV) and human cytomegalovirus (HCMV). DNA polymerases of HSV (UL30) and HCMV (UL54) belong to B family DNA polymerases with which they share seven regions of homology numbered I to VII as well as a δ-region C which is homologous to DNA polymerases δ. These DNA polymerases are multi-functional enzymes exhibiting polymerase, 3'-5' exonuclease proofreading and ribonuclease H activities. Furthermore, UL30 and UL54 DNA polymerases form a complex with UL42 and UL44 processivity factors, respectively. The mechanisms involved in their polymerisation activity have been elucidated based on structural analyses of the DNA polymerase of bacteriophage RB69 crystallized under different conformations, i.e. the enzyme alone or in complex with DNA and with both DNA and incoming nucleotide. All antiviral agents currently used for the prevention or treatment of HSV and HCMV infections target the viral DNA polymerases. However, long-term administration of these antivirals may lead to the emergence of drug-resistant isolates harboring mutations in genes encoding viral enzymes that phosphorylate drugs (i.e., nucleoside analogues) and/or DNA polymerases.
Collapse
Affiliation(s)
- Karima Zarrouk
- Research Center in Infectious Diseases, CHU de Québec and Laval University, Quebec City, Quebec, Canada
| | - Jocelyne Piret
- Research Center in Infectious Diseases, CHU de Québec and Laval University, Quebec City, Quebec, Canada
| | - Guy Boivin
- Research Center in Infectious Diseases, CHU de Québec and Laval University, Quebec City, Quebec, Canada.
| |
Collapse
|
22
|
Zhang Y, Cong Y, Teng Y. Acute renal injury induced by valacyclovir hydrochloride: A case report. Exp Ther Med 2017; 12:4025-4028. [PMID: 28101180 DOI: 10.3892/etm.2016.3905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/06/2016] [Indexed: 11/06/2022] Open
Abstract
Acyclovir has been a frequently used antiviral agent in the clinical treatment of leukemia, acute encephalitis, malignant tumor and herpes simplex. The adverse effects of this drug have been widely described in clinical practice. In the present study, a case of a 35-year-old female patient diagnosed with herpes simplex, who developed acute renal injury following treatment with valacyclovir hydrochloride, is described. Kidney biopsy, light microscopy and laboratory examination were performed, and all findings revealed the signs of evident vacuolar degeneration of capillary endothelial and renal tubular epithelial cells, erythrocyte aggregation in partial renal tubule and microvilli exfoliation from epithelial cells. Renal interstitial edema was clearly identified. The clinical evidence observed from this female patient indicated that renal functions should be closely monitored during valacyclovir hydrochloride administration. A variety of effective measures, such as hydration, alkalizing urine, promoting the discharge of medication and the use of antagonists are recommended following the administration of antiviral agents.
Collapse
Affiliation(s)
- Yanning Zhang
- Department of Nephrology, People's Liberation Army No. 202 Hospital, Shenyang, Liaoning 110000, P.R. China
| | - Yuxi Cong
- Department of Nephrology, People's Liberation Army No. 202 Hospital, Shenyang, Liaoning 110000, P.R. China
| | - Yan Teng
- Department of Nephrology, People's Liberation Army No. 202 Hospital, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
23
|
Topalis D, Gillemot S, Snoeck R, Andrei G. Distribution and effects of amino acid changes in drug-resistant α and β herpesviruses DNA polymerase. Nucleic Acids Res 2016; 44:9530-9554. [PMID: 27694307 PMCID: PMC5175367 DOI: 10.1093/nar/gkw875] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/13/2016] [Accepted: 09/21/2016] [Indexed: 12/15/2022] Open
Abstract
Emergence of drug-resistance to all FDA-approved antiherpesvirus agents is an increasing concern in immunocompromised patients. Herpesvirus DNA polymerase (DNApol) is currently the target of nucleos(t)ide analogue-based therapy. Mutations in DNApol that confer resistance arose in immunocompromised patients infected with herpes simplex virus 1 (HSV-1) and human cytomegalovirus (HCMV), and to lesser extent in herpes simplex virus 2 (HSV-2), varicella zoster virus (VZV) and human herpesvirus 6 (HHV-6). In this review, we present distinct drug-resistant mutational profiles of herpesvirus DNApol. The impact of specific DNApol amino acid changes on drug-resistance is discussed. The pattern of genetic variability related to drug-resistance differs among the herpesviruses. Two mutational profiles appeared: one favoring amino acid changes in the Palm and Finger domains of DNApol (in α-herpesviruses HSV-1, HSV-2 and VZV), and another with mutations preferentially in the 3′-5′ exonuclease domain (in β-herpesvirus HCMV and HHV-6). The mutational profile was also related to the class of compound to which drug-resistance emerged.
Collapse
Affiliation(s)
- D Topalis
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - S Gillemot
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - R Snoeck
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - G Andrei
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| |
Collapse
|
24
|
Vashishtha AK, Wang J, Konigsberg WH. Different Divalent Cations Alter the Kinetics and Fidelity of DNA Polymerases. J Biol Chem 2016; 291:20869-20875. [PMID: 27462081 DOI: 10.1074/jbc.r116.742494] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Divalent metal ions are essential components of DNA polymerases both for catalysis of the nucleotidyl transfer reaction and for base excision. They occupy two sites, A and B, for DNA synthesis. Recently, a third metal ion was shown to be essential for phosphoryl transfer reaction. The metal ion in the A site is coordinated by the carboxylate of two highly conserved acidic residues, water molecules, and the 3'-hydroxyl group of the primer so that the A metal is in an octahedral complex. Its catalytic function is to lower the pKa of the hydroxyl group, making it a highly effective nucleophile that can attack the α phosphorous atom of the incoming dNTP. The metal ion in the B site is coordinated by the same two carboxylates that are affixed to the A metal ion as well as the non-bridging oxygen atoms of the incoming dNTP. The carboxyl oxygen of an adjacent peptide bond serves as the sixth ligand that completes the octahedral coordination geometry of the B metal ion. Similarly, two metal ions are required for proofreading; one helps to lower the pKa of the attacking water molecule, and the other helps to stabilize the transition state for nucleotide excision. The role of different divalent cations are discussed in relation to these two activities as well as their influence on base selectivity and misincorporation by DNA polymerases. Some, but not all, of the effects of these different metal ions can be rationalized based on their intrinsic properties, which are tabulated in this review.
Collapse
Affiliation(s)
- Ashwani Kumar Vashishtha
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8024 and
| | - Jimin Wang
- the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114
| | - William H Konigsberg
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8024 and
| |
Collapse
|
25
|
Ahmed KBA, Raman T, Veerappan A. Future prospects of antibacterial metal nanoparticles as enzyme inhibitor. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:939-947. [PMID: 27524096 DOI: 10.1016/j.msec.2016.06.034] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/23/2016] [Accepted: 06/09/2016] [Indexed: 12/15/2022]
Abstract
Nanoparticles are being widely used as antibacterial agents with metal nanoparticles emerging as the most efficient antibacterial agents. There have been many studies which have reported the mechanism of antibacterial activity of nanoparticles on bacteria. In this review we aim to emphasize on all the possible mechanisms which are involved in the antibacterial activity of nanoparticles and also to understand their mode of action and role as bacterial enzyme inhibitor by comparing their antibacterial mechanism to that of antibiotics with enzyme inhibition as a major mechanism. With the emergence of widespread antibiotic resistance, nanoparticles offer a better alternative to our conventional arsenal of antibiotics. Once the biological safety of these nanoparticles is addressed, these nanoparticles can be of great medical importance in our fight against bacterial infections.
Collapse
Affiliation(s)
- Khan Behlol Ayaz Ahmed
- School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - Thiagarajan Raman
- School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India.
| | - Anbazhagan Veerappan
- School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|