1
|
Schumacher MA, Salinas R, Travis BA, Singh RR, Lent N. M. mazei glutamine synthetase and glutamine synthetase-GlnK1 structures reveal enzyme regulation by oligomer modulation. Nat Commun 2023; 14:7375. [PMID: 37968329 PMCID: PMC10651883 DOI: 10.1038/s41467-023-43243-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023] Open
Abstract
Glutamine synthetases (GS) play central roles in cellular nitrogen assimilation. Although GS active-site formation requires the oligomerization of just two GS subunits, all GS form large, multi-oligomeric machines. Here we describe a structural dissection of the archaeal Methanosarcina mazei (Mm) GS and its regulation. We show that Mm GS forms unstable dodecamers. Strikingly, we show this Mm GS oligomerization property is leveraged for a unique mode of regulation whereby labile Mm GS hexamers are stabilized by binding the nitrogen regulatory protein, GlnK1. Our GS-GlnK1 structure shows that GlnK1 functions as molecular glue to affix GS hexamers together, stabilizing formation of GS active-sites. These data, therefore, reveal the structural basis for a unique form of enzyme regulation by oligomer modulation.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Raul Salinas
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Brady A Travis
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Rajiv Ranjan Singh
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Nicholas Lent
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
2
|
Neira JL, Palomino-Schätzlein M. Folding of the nascent polypeptide chain of a histidine phosphocarrier protein in vitro. Arch Biochem Biophys 2023; 736:109538. [PMID: 36738980 DOI: 10.1016/j.abb.2023.109538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
The phosphotransferase system (PTS), a metabolic pathway formed by five proteins, modulates the use of sugars in bacteria. The second protein in the chain is the histidine phosphocarrier, HPr, with the binding site at His15. The HPr kinase/phosphorylase (HPrK/P), involved in the bacterial use of carbon sources, phosphorylates HPr at Ser46, and it binds at its binding site. The regulator of sigma D protein (Rsd) also binds to HPr at His15. We have designed fragments of HPr, growing from its N-terminus and containing the His15. In this work, we obtained three fragments, HPr38, HPr58 and HPr70, comprising the first thirty-eight, fifty-eight and seventy residues of HPr, respectively. All fragments were mainly disordered, with evidence of a weak native-like, helical population around the binding site, as shown by fluorescence, far-ultraviolet circular dichroism, size exclusion chromatography and nuclear magnetic resonance. Although HPr38, HPr58 and HPr70 were disordered, they could bind to: (i) the N-terminal domain of first protein of the PTS, EIN; (ii) Rsd; and, (iii) HPrK/P, as shown by fluorescence and biolayer interferometry (BLI). The association constants for each protein to any of the fragments were in the low micromolar range, within the same range than those measured in the binding of HPr to each protein. Then, although acquisition of stable, native-like secondary and tertiary structures occurred at the last residues of the polypeptide, the ability to bind protein partners happened much earlier in the growing chain. Binding was related to the presence of the native-like structure around His15.
Collapse
Affiliation(s)
- José L Neira
- IDIBE, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Joint Units IQFR-CSIC-BIFI and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018, Zaragoza, Spain.
| | - Martina Palomino-Schätzlein
- ProtoQSAR SL, CEEI-Valencia, Parque Tecnológico de Valencia, Av. Benjamin Franklin 12 (Dep. 8), 46980, Paterna, Valencia, Spain
| |
Collapse
|
3
|
Rizzuti B, Iovanna JL, Neira JL. Deciphering the Binding of the Nuclear Localization Sequence of Myc Protein to the Nuclear Carrier Importin α3. Int J Mol Sci 2022; 23:ijms232315333. [PMID: 36499669 PMCID: PMC9739371 DOI: 10.3390/ijms232315333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The oncoprotein Myc is a transcription factor regulating global gene expression and modulating cell proliferation, apoptosis, and metabolism. Myc has a nuclear localization sequence (NLS) comprising residues Pro320 to Asp328, to allow for nuclear translocation. We designed a peptide comprising such region and the flanking residues (Ala310-Asn339), NLS-Myc, to study, in vitro and in silico, the ability to bind importin α3 (Impα3) and its truncated species (ΔImpα3) depleted of the importin binding domain (IBB), by using fluorescence, circular dichroism (CD), biolayer interferometry (BLI), nuclear magnetic resonance (NMR), and molecular simulations. NLS-Myc interacted with both importin species, with affinity constants of ~0.5 µM (for Impα3) and ~60 nM (for ΔImpα3), as measured by BLI. The molecular simulations predicted that the anchoring of NLS-Myc took place in the major binding site of Impα3 for the NLS of cargo proteins. Besides clarifying the conformational behavior of the isolated NLS of Myc in solution, our results identified some unique properties in the binding of this localization sequence to the nuclear carrier Impα3, such as a difference in the kinetics of its release mechanism depending on the presence or absence of the IBB domain.
Collapse
Affiliation(s)
- Bruno Rizzuti
- CNR-NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, 87036 Rende, Italy
- Instituto de Biocomputación y Física de Sistemas Complejos–Unidad Mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Correspondence: (B.R.); (J.L.N.)
| | - Juan L. Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille Université, 13288 Marseille, France
| | - José L. Neira
- Instituto de Biocomputación y Física de Sistemas Complejos–Unidad Mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDIBE), Universidad Miguel Hernández, 03202 Elche, Spain
- Correspondence: (B.R.); (J.L.N.)
| |
Collapse
|
4
|
Human Enzyme PADI4 Binds to the Nuclear Carrier Importin α3. Cells 2022; 11:cells11142166. [PMID: 35883608 PMCID: PMC9319256 DOI: 10.3390/cells11142166] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 07/08/2022] [Indexed: 12/18/2022] Open
Abstract
PADI4 is a peptidyl-arginine deiminase (PADI) involved in the conversion of arginine to citrulline. PADI4 is present in macrophages, monocytes, granulocytes, and several cancer cells. It is the only PADI family member observed within both the nucleus and the cytoplasm. PADI4 has a predicted nuclear localization sequence (NLS) comprising residues Pro56 to Ser83, to allow for nuclear translocation. Recent predictors also suggest that the region Arg495 to Ile526 is a possible NLS. To understand how PADI4 is involved in cancer, we studied the ability of intact PADI4 to bind importin α3 (Impα3), a nuclear transport factor that plays tumor-promoting roles in several cancers, and its truncated species (ΔImpα3) without the importin-binding domain (IBB), by using fluorescence, circular dichroism (CD), and isothermal titration calorimetry (ITC). Furthermore, the binding of two peptides, encompassing the first and the second NLS regions, was also studied using the same methods and molecular docking simulations. PADI4 interacted with both importin species, with affinity constants of ~1–5 µM. The isolated peptides also interacted with both importins. The molecular simulations predict that the anchoring of both peptides takes place in the major binding site of Impα3 for the NLS of cargo proteins. These findings suggest that both NLS regions were essentially responsible for the binding of PADI4 to the two importin species. Our data are discussed within the framework of a cell mechanism of nuclear transport that is crucial in cancer.
Collapse
|
5
|
Travis BA, Peck JV, Salinas R, Dopkins B, Lent N, Nguyen VD, Borgnia MJ, Brennan RG, Schumacher MA. Molecular dissection of the glutamine synthetase-GlnR nitrogen regulatory circuitry in Gram-positive bacteria. Nat Commun 2022; 13:3793. [PMID: 35778410 PMCID: PMC9249791 DOI: 10.1038/s41467-022-31573-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022] Open
Abstract
How bacteria sense and respond to nitrogen levels are central questions in microbial physiology. In Gram-positive bacteria, nitrogen homeostasis is controlled by an operon encoding glutamine synthetase (GS), a dodecameric machine that assimilates ammonium into glutamine, and the GlnR repressor. GlnR detects nitrogen excess indirectly by binding glutamine-feedback-inhibited-GS (FBI-GS), which activates its transcription-repression function. The molecular mechanisms behind this regulatory circuitry, however, are unknown. Here we describe biochemical and structural analyses of GS and FBI-GS-GlnR complexes from pathogenic and non-pathogenic Gram-positive bacteria. The structures show FBI-GS binds the GlnR C-terminal domain within its active-site cavity, juxtaposing two GlnR monomers to form a DNA-binding-competent GlnR dimer. The FBI-GS-GlnR interaction stabilizes the inactive GS conformation. Strikingly, this interaction also favors a remarkable dodecamer to tetradecamer transition in some GS, breaking the paradigm that all bacterial GS are dodecamers. These data thus unveil unique structural mechanisms of transcription and enzymatic regulation.
Collapse
Affiliation(s)
- Brady A Travis
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Jared V Peck
- Cryo-EM core, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Raul Salinas
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Brandon Dopkins
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Nicholas Lent
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Viet D Nguyen
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Richard G Brennan
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Maria A Schumacher
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
6
|
Neira JL, Palomino-Schätzlein M, Hurtado-Gómez E, Ortore MG, Falcó A. An N-terminal half fragment of the histidine phosphocarrier protein, HPr, is disordered but binds to HPr partners and shows antibacterial properties. Biochim Biophys Acta Gen Subj 2021; 1865:130015. [PMID: 34537288 DOI: 10.1016/j.bbagen.2021.130015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/26/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The phosphotransferase system (PTS) modulates the preferential use of sugars in bacteria. It is formed by a protein cascade in which the first two proteins are general (namely enzyme I, EI, and the histidine phosphocarrier protein, HPr) and the others are sugar-specific permeases; the active site of HPr is His15. The HPr kinase/phosphorylase (HPrK/P), involved in the use of carbon sources in Gram-positive, phopshorylates HPr at a serine. The regulator of sigma D protein (Rsd) also binds to HPr. We are designing specific fragments of HPr, which can be used to interfere with those protein-protein interactions (PPIs), where the intact HPr intervenes. METHODS We obtained a fragment (HPr48) comprising the first forty-eight residues of HPr. HPr48 was disordered as shown by fluorescence, far-ultraviolet (UV) circular dichroism (CD), small angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR). RESULTS Secondary structure propensities, from the assigned backbone nuclei, further support the unfolded nature of the fragment. However, HPr48 was capable of binding to: (i) the N-terminal region of EI, EIN; (ii) the intact Rsd; and, (iii) HPrK/P, as shown by fluorescence, far-UV CD, NMR and biolayer interferometry (BLI). The association constants for each protein, as measured by fluorescence and BLI, were in the order of the low micromolar range, similar to those measured between the intact HPr and each of the other macromolecules. CONCLUSIONS Although HPr48 is forty-eight-residue long, it assisted antibiotics to exert antimicrobial activity. GENERAL SIGNIFICANCE HPr48 could be used as a lead compound in the development of new antibiotics, or, alternatively, to improve the efficiency of existing ones.
Collapse
Affiliation(s)
- José L Neira
- IDIBE, Universidad Miguel Hernández, 03202, Elche (Alicante), Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain.
| | | | | | - María G Ortore
- Dipartimento DiSVA, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Alberto Falcó
- IDIBE, Universidad Miguel Hernández, 03202, Elche (Alicante), Spain.
| |
Collapse
|
7
|
Neira JL, Ortore MG, Florencio FJ, Muro-Pastor MI, Rizzuti B. Dynamics of the intrinsically disordered inhibitor IF7 of glutamine synthetase in isolation and in complex with its partner. Arch Biochem Biophys 2020; 683:108303. [PMID: 32074499 DOI: 10.1016/j.abb.2020.108303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 11/26/2022]
Abstract
Glutamine synthetase (GS) catalyzes the ATP-dependent formation of glutamine from glutamate and ammonia. The activity of Synechocystis sp. PCC 6803 GS is regulated, among other mechanisms, by protein-protein interactions with a 65-residue-long, intrinsically disordered protein (IDP), named IF7. IDPs explore diverse conformations in their free states and, in some cases, in their molecular complexes. We used both nuclear magnetic resonance (NMR) at 11.7 T and small angle X-ray scattering (SAXS) to study the size and the dynamics in the picoseconds-to-nanosecond (ps-ns) timescale of: (i) isolated IF7; and (ii) the IF7/GS complex. Our SAXS findings, together with MD results, show: (i) some of the possible IF7 structures in solution; and, (ii) that the presence of IF7 affected the structure of GS in solution. The joint use of SAXS and NMR shows that movements of each amino acid of IF7 were uncorrelated with those of its neighbors. Residues of IF7 with the largest values of the relaxation rates (R1, R2 and ηxy), in the free and bound species, were mainly clustered around: (i) the C terminus of the protein; and (ii) Ala30. These residues, together with Arg8 (which is a hot-spot residue in the interaction with GS), had a restricted mobility in the presence of GS. The C-terminal region, which appeared more compact in our MD simulations of isolated IF7, seemed to be involved in non-native contacts with GS that help in the binding between the two macromolecules.
Collapse
Affiliation(s)
- José L Neira
- IDIBE, Universidad Miguel Hernández, Elche, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, Spain.
| | - Maria Grazia Ortore
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy.
| | - Francisco J Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Seville, Spain
| | - M Isabel Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Seville, Spain
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, Via P. Bucci, Cubo 31 C, 87036, Arcavacata di Rende, Cosenza, Italy
| |
Collapse
|
8
|
Contreras LM, Sevilla P, Cámara-Artigas A, Hernández-Cifre JG, Rizzuti B, Florencio FJ, Muro-Pastor MI, García de la Torre J, Neira JL. The Cyanobacterial Ribosomal-Associated Protein LrtA from Synechocystis sp. PCC 6803 Is an Oligomeric Protein in Solution with Chameleonic Sequence Properties. Int J Mol Sci 2018; 19:ijms19071857. [PMID: 29937518 PMCID: PMC6073757 DOI: 10.3390/ijms19071857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/25/2022] Open
Abstract
The LrtA protein of Synechocystis sp. PCC 6803 intervenes in cyanobacterial post-stress survival and in stabilizing 70S ribosomal particles. It belongs to the hibernating promoting factor (HPF) family of proteins, involved in protein synthesis. In this work, we studied the conformational preferences and stability of isolated LrtA in solution. At physiological conditions, as shown by hydrodynamic techniques, LrtA was involved in a self-association equilibrium. As indicated by Nuclear Magnetic Resonance (NMR), circular dichroism (CD) and fluorescence, the protein acquired a folded, native-like conformation between pH 6.0 and 9.0. However, that conformation was not very stable, as suggested by thermal and chemical denaturations followed by CD and fluorescence. Theoretical studies of its highly-charged sequence suggest that LrtA had a Janus sequence, with a context-dependent fold. Our modelling and molecular dynamics (MD) simulations indicate that the protein adopted the same fold observed in other members of the HPF family (β-α-β-β-β-α) at its N-terminal region (residues 1–100), whereas the C terminus (residues 100–197) appeared disordered and collapsed, supporting the overall percentage of overall secondary structure obtained by CD deconvolution. Then, LrtA has a chameleonic sequence and it is the first member of the HPF family involved in a self-association equilibrium, when isolated in solution.
Collapse
Affiliation(s)
- Lellys M Contreras
- Center for Environmental Biology and Chemistry Research, Facultad Experimental de Ciencias y Tecnología, Universidad de Carabobo, 2001 Valencia, Venezuela.
| | - Paz Sevilla
- Facultad de Farmacia, Departamento de Química Física II, Universidad Complutense de Madrid, 28040 Madrid, Spain.
- Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid, Spain.
| | - Ana Cámara-Artigas
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería- ceiA3, 04120 Almería, Spain.
| | | | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, 87036 Rende, Italy.
| | - Francisco J Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, 41092 Seville, Spain.
| | - María Isabel Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, 41092 Seville, Spain.
| | | | - José L Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain.
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain.
| |
Collapse
|
9
|
Neira JL, Hornos F, Cozza C, Cámara-Artigas A, Abián O, Velázquez-Campoy A. The histidine phosphocarrier protein, HPr, binds to the highly thermostable regulator of sigma D protein, Rsd, and its isolated helical fragments. Arch Biochem Biophys 2017; 639:26-37. [PMID: 29288053 DOI: 10.1016/j.abb.2017.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 02/06/2023]
Abstract
The phosphotransferase system (PTS) controls the preferential use of sugars in bacteria and it is also involved in other processes, such as chemotaxis. It is formed by a protein cascade in which the first two proteins are general (namely, EI and HPr) and the others are sugar-specific permeases. The Rsd protein binds specifically to the RNA polymerase (RNAP) σ70 factor. We first characterized the conformational stability of Escherichia coli Rsd. And second, we delineated the binding regions of Streptomyces coelicolor, HPrsc, and E. coli Rsd, by using fragments derived from each protein. To that end, we used several biophysical probes, namely, fluorescence, CD, NMR, ITC and BLI. Rsd had a free energy of unfolding of 15 kcal mol-1 at 25 °C, and a thermal denaturation midpoint of 103 °C at pH 6.5. The affinity between Rsd and HPrsc was 2 μM. Interestingly enough, the isolated helical-peptides, comprising the third (RsdH3) and fourth (RsdH4) Rsd helices, also interacted with HPrsc in a specific manner, and with affinities similar to that of the whole Rsd. Moreover, the isolated peptide of HPrsc, HPr9-30, comprising the active site, His15, also was bound to intact Rsd with similar affinity. Therefore, binding between Rsd and HPrsc was modulated by the two helices H3 and H4 of Rsd, and the regions around the active site of HPrsc. This implies that specific fragments of Rsd and HPrsc can be used to interfere with other protein-protein interactions (PPIs) of each other protein.
Collapse
Affiliation(s)
- José L Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Spain.
| | - Felipe Hornos
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Alicante, Spain
| | - Concetta Cozza
- Molecular Biophysics Laboratory, Department of Physics, University of Calabria, Rende, Italy
| | - Ana Cámara-Artigas
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería- ceiA3, Almería, Spain
| | - Olga Abián
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Spain; Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain; Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Spain; Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain; Fundación ARAID, Diputación General de Aragón, Zaragoza, Spain.
| |
Collapse
|
10
|
Neira JL, Florencio FJ, Muro-Pastor MI. The isolated, twenty-three-residue-long, N-terminal region of the glutamine synthetase inactivating factor binds to its target. Biophys Chem 2017; 228:1-9. [DOI: 10.1016/j.bpc.2017.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 01/31/2023]
|
11
|
Neira JL, Cámara-Artigas A. Trifluoroethanol-induced conformational transition of the C-terminal sterile alpha motif (SAM) of human p73. Arch Biochem Biophys 2017; 619:1-9. [DOI: 10.1016/j.abb.2017.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 01/03/2023]
|
12
|
Cozza C, Neira JL, Florencio FJ, Muro-Pastor MI, Rizzuti B. Intrinsically disordered inhibitor of glutamine synthetase is a functional protein with random-coil-like pK a values. Protein Sci 2017; 26:1105-1115. [PMID: 28295918 DOI: 10.1002/pro.3157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 01/22/2023]
Abstract
The sequential action of glutamine synthetase (GS) and glutamate synthase (GOGAT) in cyanobacteria allows the incorporation of ammonium into carbon skeletons. In the cyanobacterium Synechocystis sp. PCC 6803, the activity of GS is modulated by the interaction with proteins, which include a 65-residue-long intrinsically disordered protein (IDP), the inactivating factor IF7. This interaction is regulated by the presence of charged residues in both IF7 and GS. To understand how charged amino acids can affect the binding of an IDP with its target and to provide clues on electrostatic interactions in disordered states of proteins, we measured the pKa values of all IF7 acidic groups (Glu32, Glu36, Glu38, Asp40, Asp58, and Ser65, the backbone C-terminus) at 100 mM NaCl concentration, by using NMR spectroscopy. We also obtained solution structures of IF7 through molecular dynamics simulation, validated them on the basis of previous experiments, and used them to obtain theoretical estimates of the pKa values. Titration values for the two Asp and three Glu residues of IF7 were similar to those reported for random-coil models, suggesting the lack of electrostatic interactions around these residues. Furthermore, our results suggest the presence of helical structure at the N-terminus of the protein and of conformational changes at acidic pH values. The overall experimental and in silico findings suggest that local interactions and conformational equilibria do not play a role in determining the electrostatic features of the acidic residues of IF7.
Collapse
Affiliation(s)
- Concetta Cozza
- Molecular Biophysics Laboratory, Department of Physics, University of Calabria, Rende, Italy
| | - José L Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Alicante, Spain.,Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Unidad Asociada IQFR-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, Spain
| | - Francisco J Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Seville, Spain
| | - M Isabel Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Seville, Spain
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, Rende, Italy
| |
Collapse
|