1
|
Viskupicova J, Espinoza-Fonseca LM. Allosteric Modulation of SERCA Pumps in Health and Disease: Structural Dynamics, Posttranslational Modifications, and Therapeutic Potential. J Mol Biol 2025:169200. [PMID: 40349954 DOI: 10.1016/j.jmb.2025.169200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/29/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Sarco/endoplasmic reticulum (SR/ER) Ca2+-ATPase (SERCA) pumps are ubiquitous membrane proteins in all eukaryotic cells, playing a central role in maintaining intracellular calcium homeostasis by re-sequestering Ca2+ ions from the cytosol into the SR/ER at the expense of ATP hydrolysis. SERCA pumps are well-characterized components of the calcium transport machinery in the cell, playing a role in various physiological processes, including muscle contraction, energy metabolism, secretion exocytosis, gene expression, synaptic transmission, cell survival, and fertilization. Allosteric regulation of SERCA pumps plays a key role in health and disease, and modulation of the SERCA pumps has emerged as a therapeutic approach for the treatment of cardiovascular, muscular, metabolic, and neurodegenerative disorders. In this review, we provide a comprehensive overview of the structural dynamics underlying allosteric modulation of SERCA, focusing on the effects of endogenous regulatory proteins, Ca2+ ions, ATP, and small molecules. We also examine in detail the role of posttranslational modifications as allosteric modulators of SERCA function, focusing on the oxidative modifications S-glutathionylation, S-nitrosylation, tyrosine nitration, and carbonylation, and non-oxidative modifications that include SUMOylation, acetylation, O-GlcNAcylation, phosphorylation, and ubiquitination. Finally, we discuss the therapeutic potential and challenges of allosteric modulation of SERCA pumps, including the design of small-molecule effectors, microRNA-based interventions, and targeted strategies that modulate SERCA posttranslational regulation. Overall, this review aims to bridge the gap between the mechanisms underlying allosteric modulation of SERCA and the translation of basic science discoveries into effective therapies targeting SERCA pumps.
Collapse
Affiliation(s)
- Jana Viskupicova
- Centre of Experimental Medicine, Institute of Experimental Pharmacology & Toxicology, Slovak Academy of Sciences, 84104 Bratislava, Slovakia.
| | - L Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Yu Q, Tian W. The role of SERCA in vascular diseases, a potential therapeutic target. Cell Calcium 2025; 129:103039. [PMID: 40367766 DOI: 10.1016/j.ceca.2025.103039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/19/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025]
Abstract
SERCA, the sarco/endoplasmic reticulum Ca2+-ATPase, is a pivotal protein that transports calcium ions (Ca2+) from the cytoplasm into the sarcoplasmic/endoplasmic reticulum (SR/ER), thus sustaining cellular Ca2+ homeostasis. A growing body of evidence indicates that SERCA dysfunction correlates with disrupted cellular Ca2+ homeostasis and ER stress, precipitating a spectrum of chronic diseases. As a regulator of Ca2+ homeostasis, SERCA emerges as a potential therapeutic target for conditions associated with Ca2+ imbalance. This review delineates the association between SERCA and a variety of vascular diseases.
Collapse
Affiliation(s)
- Qinghua Yu
- Department of Geriatric Cardiology, The First Hospital of China Medical University, China
| | - Wen Tian
- Department of Geriatric Cardiology, The First Hospital of China Medical University, China.
| |
Collapse
|
3
|
Yu X, Chen S, Funcke JB, Straub LG, Pirro V, Emont MP, Droz BA, Collins KA, Joung C, Pearson MJ, James CM, Babu GJ, Efthymiou V, Vernon A, Patti ME, An YA, Rosen ED, Coghlan MP, Samms RJ, Scherer PE, Kusminski CM. The GIP receptor activates futile calcium cycling in white adipose tissue to increase energy expenditure and drive weight loss in mice. Cell Metab 2025; 37:187-204.e7. [PMID: 39642881 PMCID: PMC11711001 DOI: 10.1016/j.cmet.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/31/2024] [Accepted: 11/04/2024] [Indexed: 12/09/2024]
Abstract
Obesity is a chronic disease that contributes to the development of insulin resistance, type 2 diabetes (T2D), and cardiovascular risk. Glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) and glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) co-agonism provide an improved therapeutic profile in individuals with T2D and obesity when compared with selective GLP-1R agonism. Although the metabolic benefits of GLP-1R agonism are established, whether GIPR activation impacts weight loss through peripheral mechanisms is yet to be fully defined. Here, we generated a mouse model of GIPR induction exclusively in the adipocyte. We show that GIPR induction in the fat cell protects mice from diet-induced obesity and triggers profound weight loss (∼35%) in an obese setting. Adipose GIPR further increases lipid oxidation, thermogenesis, and energy expenditure. Mechanistically, we demonstrate that GIPR induction activates SERCA-mediated futile calcium cycling in the adipocyte. GIPR activation further triggers a metabolic memory effect, which maintains weight loss after the transgene has been switched off, highlighting a unique aspect in adipocyte biology. Collectively, we present a mechanism of peripheral GIPR action in adipose tissue, which exerts beneficial metabolic effects on body weight and energy balance.
Collapse
Affiliation(s)
- Xinxin Yu
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shiuhwei Chen
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jan-Bernd Funcke
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Leon G Straub
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Valentina Pirro
- Eli Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Margo P Emont
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Brian A Droz
- Eli Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Kyla Ai Collins
- Eli Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Chanmin Joung
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mackenzie J Pearson
- Eli Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Corey M James
- Eli Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Gopal J Babu
- Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Vissarion Efthymiou
- Research Division, Joslin Diabetes Center, and Harvard Medical School, Boston, MA, USA
| | - Ashley Vernon
- Department of Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Mary Elizabeth Patti
- Research Division, Joslin Diabetes Center, and Harvard Medical School, Boston, MA, USA
| | - Yu A An
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Matthew P Coghlan
- Eli Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Ricardo J Samms
- Eli Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christine M Kusminski
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
4
|
Giraud D, Pomportes L, Nicol C, Bertin D, Gardarein JL, Hays A. Mechanism involved of post-exercise cold water immersion: Blood redistribution and increase in energy expenditure during rewarming. Temperature (Austin) 2024; 11:137-156. [PMID: 38846524 PMCID: PMC11152100 DOI: 10.1080/23328940.2024.2303332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/03/2024] [Indexed: 06/09/2024] Open
Abstract
Thermogenesis is well understood, but the relationships between cold water immersion (CWI), the post-CWI rewarming and the associated physiological changes are not. This study investigated muscle and systemic oxygenation, cardiorespiratory and hemodynamic responses, and gastrointestinal temperature during and after CWI. 21 healthy men completed randomly 2 protocols. Both protocols consisted of a 48 minutes heating cycling exercise followed by 3 recovery periods (R1-R3), but they differed in R2. R1 lasted 20 minutes in a passive semi-seated position on a physiotherapy table at ambient room temperature. Depending on the protocol, R2 lasted 15 minutes at either ambient condition (R2_AMB) or in a CWI condition at 10°C up to the iliac crest (R2_CWI). R3 lasted 40 minutes at AMB while favoring rewarming after R2_CWI. This was followed by 10 minutes of cycling. Compared to R2_AMB, R2_CWI ended at higherV ˙ O2 in the non-immersed body part due to thermogenesis (7.16(2.15) vs. 4.83(1.62) ml.min-1.kg-1) and lower femoral artery blood flow (475(165) vs. 704(257) ml.min-1) (p < 0.001). Only after CWI, R3 showed a progressive decrease in vastus and gastrocnemius medialis O2 saturation, significant after 34 minutes (p < 0.001). As blood flow did not differ from the AMB protocol, this indicated local thermogenesis in the immersed part of the body. After CWI, a lower gastrointestinal temperature on resumption of cycling compared to AMB (36.31(0.45) vs. 37.30(0.49) °C, p < 0.001) indicated incomplete muscle thermogenesis. In conclusion, the rewarming period after CWI was non-linear and metabolically costly. Immersion and rewarming should be considered as a continuum rather than separate events.
Collapse
Affiliation(s)
- Dorian Giraud
- Faculty of Medical and Paramedical Sciences, Aix-Marseille University, HIPE Human Lab, Marseille, France
- Polytech Marseille, Aix-Marseille University, CNRS, IUSTI, Marseille, France
| | - Laura Pomportes
- Faculty of Sport Science, Aix-Marseille University, CNRS, ISM, Marseille, France
| | - Caroline Nicol
- Faculty of Sport Science, Aix-Marseille University, CNRS, ISM, Marseille, France
| | - Denis Bertin
- Faculty of Medical and Paramedical Sciences, Aix-Marseille University, HIPE Human Lab, Marseille, France
- Faculty of Sport Science, Aix-Marseille University, CNRS, ISM, Marseille, France
| | | | - Arnaud Hays
- Faculty of Medical and Paramedical Sciences, Aix-Marseille University, HIPE Human Lab, Marseille, France
| |
Collapse
|
5
|
Rathod N, Guerrero-Serna G, Young HS, Espinoza-Fonseca LM. Replacement of Lys27 by asparagine in the SERCA regulator myoregulin: A Ca 2+ affinity modulator or a catalytic activity switch? BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119613. [PMID: 37918638 DOI: 10.1016/j.bbamcr.2023.119613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
Myoregulin (MLN) is a protein that regulates the activity of the sarcoplasmic reticulum Ca2+-ATPase (SERCA) without affecting its affinity for Ca2+. MLN's residue Lys27 is located at a site where other SERCA regulators control Ca2+ affinity. Therefore, we conducted atomistic simulations and ATPase activity experiments to determine whether replacing Lys27 with asparagine, a conserved residue found in various muscle SERCA regulators, would enable MLN to modulate both the Ca2+ affinity and catalytic activity of SERCA. Our findings indicate that replacing Lys27 with Asn significantly enhances the inhibitory potency of MLN, but it does not affect SERCA's affinity for Ca2+. We suggest that the SERCA site modulating Ca2+ affinity also acts as a catalytic activity switch. Therefore, this site is a key element contributing to the functional divergence among homologous SERCA regulators. This study paves the way for future investigations to explore how biological function diverges during the evolution of the SERCA regulator family.
Collapse
Affiliation(s)
- Nishadh Rathod
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Guadalupe Guerrero-Serna
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Howard S Young
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - L Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Rivera-Morán MA, Sampedro JG. Isolation of the Sarcoplasmic Reticulum Ca 2+-ATPase from Rabbit Fast-Twitch Muscle. Methods Protoc 2023; 6:102. [PMID: 37888034 PMCID: PMC10608927 DOI: 10.3390/mps6050102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
The sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) is a membrane protein that is destabilized during purification in the absence of calcium ions. The disaccharide trehalose is a protein stabilizer that accumulates in the yeast cytoplasm when under stress. In the present work, SERCA was purified by including trehalose in the purification protocol. The purified SERCA showed high protein purity (~95%) and ATPase activity. ATP hydrolysis was dependent on the presence of Ca2+ and the enzyme kinetics showed a hyperbolic dependence on ATP (Km = 12.16 ± 2.25 μM ATP). FITC labeling showed the integrity of the ATP-binding site and the identity of the isolated enzyme as a P-type ATPase. Circular dichroism (CD) spectral changes at a wavelength of 225 nm were observed upon titration with ATP, indicating α-helical rearrangements in the nucleotide-binding domain (N-domain), which correlated with ATP affinity (Km). The presence of Ca2+ did not affect FITC labeling or the ATP-mediated structural changes at the N-domain. The use of trehalose in the SERCA purification protocol stabilized the enzyme. The isolated SERCA appears to be suitable for structural and ligand binding studies, e.g., for testing newly designed or natural inhibitors. The use of trehalose is recommended for the isolation of unstable enzymes.
Collapse
Affiliation(s)
| | - José G. Sampedro
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Avenida Chapultepec 1570, Privadas del Pedregal, San Luis Potosí 78295, Mexico
| |
Collapse
|
7
|
Ramón A, Esteves A, Villadóniga C, Chalar C, Castro-Sowinski S. A general overview of the multifactorial adaptation to cold: biochemical mechanisms and strategies. Braz J Microbiol 2023; 54:2259-2287. [PMID: 37477802 PMCID: PMC10484896 DOI: 10.1007/s42770-023-01057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023] Open
Abstract
Cold environments are more frequent than people think. They include deep oceans, cold lakes, snow, permafrost, sea ice, glaciers, cold soils, cold deserts, caves, areas at elevations greater than 3000 m, and also artificial refrigeration systems. These environments are inhabited by a diversity of eukaryotic and prokaryotic organisms that must adapt to the hard conditions imposed by cold. This adaptation is multifactorial and includes (i) sensing the cold, mainly through the modification of the liquid-crystalline membrane state, leading to the activation of a two-component system that transduce the signal; (ii) adapting the composition of membranes for proper functions mainly due to the production of double bonds in lipids, changes in hopanoid composition, and the inclusion of pigments; (iii) producing cold-adapted proteins, some of which show modifications in the composition of amino acids involved in stabilizing interactions and structural adaptations, e.g., enzymes with high catalytic efficiency; and (iv) producing ice-binding proteins and anti-freeze proteins, extracellular polysaccharides and compatible solutes that protect cells from intracellular and extracellular ice. However, organisms also respond by reprogramming their metabolism and specifically inducing cold-shock and cold-adaptation genes through strategies such as DNA supercoiling, distinctive signatures in promoter regions and/or the action of CSPs on mRNAs, among others. In this review, we describe the main findings about how organisms adapt to cold, with a focus in prokaryotes and linking the information with findings in eukaryotes.
Collapse
Affiliation(s)
- Ana Ramón
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Adriana Esteves
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Carolina Villadóniga
- Laboratorio de Biocatalizadores Y Sus Aplicaciones, Facultad de Ciencias, Instituto de Química Biológica, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Cora Chalar
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Susana Castro-Sowinski
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay.
- Laboratorio de Biocatalizadores Y Sus Aplicaciones, Facultad de Ciencias, Instituto de Química Biológica, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay.
| |
Collapse
|
8
|
Plasterer C, Semenikhina M, Tsaih SW, Flister MJ, Palygin O. NNAT is a novel mediator of oxidative stress that suppresses ER + breast cancer. Mol Med 2023; 29:87. [PMID: 37400769 PMCID: PMC10318825 DOI: 10.1186/s10020-023-00673-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/30/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Neuronatin (NNAT) was recently identified as a novel mediator of estrogen receptor-positive (ER+) breast cancer cell proliferation and migration, which correlated with decreased tumorigenic potential and prolonged patient survival. However, despite these observations, the molecular and pathophysiological role(s) of NNAT in ER + breast cancer remains unclear. Based on high protein homology with phospholamban, we hypothesized that NNAT mediates the homeostasis of intracellular calcium [Ca2+]i levels and endoplasmic reticulum (EndoR) function, which is frequently disrupted in ER + breast cancer and other malignancies. METHODS To evaluate the role of NNAT on [Ca2+]i homeostasis, we used a combination of bioinformatics, gene expression and promoter activity assays, CRISPR gene manipulation, pharmacological tools and confocal imaging to characterize the association between ROS, NNAT and calcium signaling. RESULTS Our data indicate that NNAT localizes predominantly to EndoR and lysosome, and genetic manipulation of NNAT levels demonstrated that NNAT modulates [Ca2+]i influx and maintains Ca2+ homeostasis. Pharmacological inhibition of calcium channels revealed that NNAT regulates [Ca2+]i levels in breast cancer cells through the interaction with ORAI but not the TRPC signaling cascade. Furthermore, NNAT is transcriptionally regulated by NRF1, PPARα, and PPARγ and is strongly upregulated by oxidative stress via the ROS and PPAR signaling cascades. CONCLUSION Collectively, these data suggest that NNAT expression is mediated by oxidative stress and acts as a regulator of Ca2+ homeostasis to impact ER + breast cancer proliferation, thus providing a molecular link between the longstanding observation that is accumulating ROS and altered Ca2+ signaling are key oncogenic drivers of cancer.
Collapse
Affiliation(s)
- Cody Plasterer
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marharyta Semenikhina
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Shirng-Wern Tsaih
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael J Flister
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA.
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
9
|
Cinato M, Mardani I, Miljanovic A, Drevinge C, Laudette M, Bollano E, Henricsson M, Tolö J, Bauza Thorbrügge M, Levin M, Lindbom M, Arif M, Pacher P, Andersson L, Olofsson CS, Borén J, Levin MC. Cardiac Plin5 interacts with SERCA2 and promotes calcium handling and cardiomyocyte contractility. Life Sci Alliance 2023; 6:e202201690. [PMID: 36717246 PMCID: PMC9887753 DOI: 10.26508/lsa.202201690] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
The adult heart develops hypertrophy to reduce ventricular wall stress and maintain cardiac function in response to an increased workload. Although pathological hypertrophy generally progresses to heart failure, physiological hypertrophy may be cardioprotective. Cardiac-specific overexpression of the lipid-droplet protein perilipin 5 (Plin5) promotes cardiac hypertrophy, but it is unclear whether this response is beneficial. We analyzed RNA-sequencing data from human left ventricle and showed that cardiac PLIN5 expression correlates with up-regulation of cardiac contraction-related processes. To investigate how elevated cardiac Plin5 levels affect cardiac contractility, we generated mice with cardiac-specific overexpression of Plin5 (MHC-Plin5 mice). These mice displayed increased left ventricular mass and cardiomyocyte size but preserved heart function. Quantitative proteomics identified sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) as a Plin5-interacting protein. In situ proximity ligation assay further confirmed the Plin5/SERCA2 interaction. Live imaging showed increases in intracellular Ca2+ release during contraction, Ca2+ removal during relaxation, and SERCA2 function in MHC-Plin5 versus WT cardiomyocytes. These results identify a role of Plin5 in improving cardiac contractility through enhanced Ca2+ signaling.
Collapse
Affiliation(s)
- Mathieu Cinato
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ismena Mardani
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Azra Miljanovic
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Christina Drevinge
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marion Laudette
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Entela Bollano
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marcus Henricsson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johan Tolö
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Marcos Bauza Thorbrügge
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Max Levin
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Malin Lindbom
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Muhammad Arif
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Linda Andersson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Charlotta S Olofsson
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Malin C Levin
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
10
|
Guarnieri AR, Benson TW, Tranter M. Calcium cycling as a mediator of thermogenic metabolism in adipose tissue. Mol Pharmacol 2022; 102:MOLPHARM-MR-2021-000465. [PMID: 35504660 PMCID: PMC9341262 DOI: 10.1124/molpharm.121.000465] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 11/22/2022] Open
Abstract
Canonical non-shivering thermogenesis (NST) in brown and beige fat relies on uncoupling protein 1 (UCP1)-mediated heat generation, although alternative mechanisms of NST have been identified, including sarcoplasmic reticulum (SR)-calcium cycling. Intracellular calcium is a crucial cell signaling molecule for which compartmentalization is tightly regulated, and the sarco-endoplasmic calcium ATPase (SERCA) actively pumps calcium from the cytosol into the SR. In this review, we discuss the capacity of SERCA-mediated calcium cycling as a significant mediator of thermogenesis in both brown and beige adipocytes. Here, we suggest two primary mechanisms of SR calcium mediated thermogenesis. The first mechanism is through direct uncoupling of the ATPase and calcium pump activity of SERCA, resulting in the energy of ATP catalysis being expended as heat in the absence of calcium transport. Regulins, a class of SR membrane proteins, act to decrease the calcium affinity of SERCA and uncouple the calcium transport function from ATPase activity, but remain largely unexplored in adipose tissue thermogenesis. A second mechanism is through futile cycling of SR calcium whereby SERCA-mediated SR calcium influx is equally offset by SR calcium efflux, resulting in ATP consumption without a net change in calcium compartmentalization. A fuller understanding of the functional and mechanistic role of calcium cycling as a mediator of adipose tissue thermogenesis and how manipulation of these pathways can be harnessed for therapeutic gain remains unexplored. Significance Statement Enhancing thermogenic metabolism in brown or beige adipose tissue may be of broad therapeutic utility to reduce obesity and metabolic syndrome. Canonical BAT-mediated thermogenesis occurs via uncoupling protein 1 (UCP1). However, UCP1-independent pathways of thermogenesis, such as sarcoplasmic (SR) calcium cycling, have also been identified, but the regulatory mechanisms and functional significance of these pathways remain largely unexplored. Thus, this mini-review discusses the state of the field with regard to calcium cycling as a thermogenic mediator in adipose tissue.
Collapse
Affiliation(s)
| | - Tyler W Benson
- University of Cincinnati College of Medicine, United States
| | | |
Collapse
|
11
|
Brownstein AJ, Veliova M, Acin-Perez R, Liesa M, Shirihai OS. ATP-consuming futile cycles as energy dissipating mechanisms to counteract obesity. Rev Endocr Metab Disord 2022; 23:121-131. [PMID: 34741717 PMCID: PMC8873062 DOI: 10.1007/s11154-021-09690-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/25/2022]
Abstract
Obesity results from an imbalance in energy homeostasis, whereby excessive energy intake exceeds caloric expenditure. Energy can be dissipated out of an organism by producing heat (thermogenesis), explaining the long-standing interest in exploiting thermogenic processes to counteract obesity. Mitochondrial uncoupling is a process that expends energy by oxidizing nutrients to produce heat, instead of ATP synthesis. Energy can also be dissipated through mechanisms that do not involve mitochondrial uncoupling. Such mechanisms include futile cycles described as metabolic reactions that consume ATP to produce a product from a substrate but then converting the product back into the original substrate, releasing the energy as heat. Energy dissipation driven by cellular ATP demand can be regulated by adjusting the speed and number of futile cycles. Energy consuming futile cycles that are reviewed here are lipolysis/fatty acid re-esterification cycle, creatine/phosphocreatine cycle, and the SERCA-mediated calcium import and export cycle. Their reliance on ATP emphasizes that mitochondrial oxidative function coupled to ATP synthesis, and not just uncoupling, can play a role in thermogenic energy dissipation. Here, we review ATP consuming futile cycles, the evidence for their function in humans, and their potential employment as a strategy to dissipate energy and counteract obesity.
Collapse
Affiliation(s)
- Alexandra J Brownstein
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Molecular Cellular Integrative Physiology Interdepartmental Program, University of California, Los Angeles, CA, 90095, USA
| | - Michaela Veliova
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Rebeca Acin-Perez
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Marc Liesa
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Molecular Cellular Integrative Physiology Interdepartmental Program, University of California, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Orian S Shirihai
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
- Molecular Cellular Integrative Physiology Interdepartmental Program, University of California, Los Angeles, CA, 90095, USA.
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
12
|
Liu AY, Aguayo-Ortiz R, Guerrero-Serna G, Wang N, Blin MG, Goldstein DR, Michel Espinoza-Fonseca L. Homologous cardiac calcium pump regulators phospholamban and sarcolipin adopt distinct oligomeric states in the membrane. Comput Struct Biotechnol J 2021; 20:380-384. [PMID: 35035790 PMCID: PMC8748397 DOI: 10.1016/j.csbj.2021.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022] Open
Abstract
Phospholamban (PLN) and Sarcolipin (SLN) are homologous membrane proteins that belong to the family of proteins that regulate the activity of the cardiac calcium pump (sarcoplasmic reticulum Ca2+-ATPase, SERCA). PLN and SLN share highly conserved leucine zipper motifs that control self-association; consequently, it has been proposed that both PLN and SLN assemble into stable pentamers in the membrane. In this study, we used molecular dynamics (MD) simulations and Western blot analysis to investigate the precise molecular architecture of the PLN and SLN oligomers. Analysis showed that the PLN pentamer is the predominant oligomer present in mouse ventricles and ventricle-like human iPSC-derived cardiomyocytes, in agreement with the MD simulations showing stable leucine zipper interactions across all protomer-protomer interfaces and MD replicates. Interestingly, we found that the PLN pentamer populates an asymmetric structure of the transmembrane region, which is likely an intrinsic feature of the oligomer in a lipid bilayer. The SLN pentamer is not favorably formed across MD replicates and species of origin; instead, SLN from human and mouse atria primarily populate coexisting dimeric and trimeric states. In contrast to previous studies, our findings indicate that the SLN pentamer is not the predominant oligomeric state populated in the membrane. We conclude that despite their structural homology, PLN and SLN adopt distinct oligomeric states in the membrane. We propose that the distinct oligomeric states populated by PLN and SLN may contribute to tissue-specific SERCA regulation via differences in protomer-oligomer exchange, oligomer-SERCA dynamics, and noise filtering during β-adrenergic stimulation in the heart.
Collapse
Affiliation(s)
- Andy Y. Liu
- Center for Arrhythmia Research, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- McKetta Department of Chemical Engineering, The University of Texas, Austin, TX 78712, USA
| | - Rodrigo Aguayo-Ortiz
- Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Guadalupe Guerrero-Serna
- Center for Arrhythmia Research, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nulang Wang
- Center for Arrhythmia Research, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Muriel G. Blin
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel R. Goldstein
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
- Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109, USA
| | - L. Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Wang S, Gopinath T, Larsen EK, Weber DK, Walker C, Uddigiri VR, Mote KR, Sahoo SK, Periasamy M, Veglia G. Structural basis for sarcolipin's regulation of muscle thermogenesis by the sarcoplasmic reticulum Ca 2+-ATPase. SCIENCE ADVANCES 2021; 7:eabi7154. [PMID: 34826239 PMCID: PMC8626070 DOI: 10.1126/sciadv.abi7154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/06/2021] [Indexed: 06/10/2023]
Abstract
The sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA) plays a central role in muscle contractility and nonshivering thermogenesis. SERCA is regulated by sarcolipin (SLN), a single-pass membrane protein that uncouples Ca2+ transport from ATP hydrolysis, promoting futile enzymatic cycles and heat generation. The molecular determinants for regulating heat release by the SERCA/SLN complex are unclear. Using thermocalorimetry, chemical cross-linking, and solid-state NMR spectroscopy in oriented phospholipid bicelles, we show that SERCA’s functional uncoupling and heat release rate are dictated by specific SERCA/SLN intramembrane interactions, with the carboxyl-terminal residues anchoring SLN to the SR membrane in an inhibitory topology. Systematic deletion of the carboxyl terminus does not prevent the SERCA/SLN complex formation but reduces uncoupling in a graded manner. These studies emphasize the critical role of lipids in defining the active topology of SLN and modulating the heat release rate by the SERCA/SLN complex, with implications in fat metabolism and basal metabolic rate.
Collapse
Affiliation(s)
- Songlin Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tata Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Erik K. Larsen
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel K. Weber
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Caitlin Walker
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Venkateswara Reddy Uddigiri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kaustubh R. Mote
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad, Telangana 500046, India
| | - Sanjaya K. Sahoo
- Department of Physiology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Muthu Periasamy
- Department of Physiology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
14
|
Sarcoplasmic Reticulum from Horse Gluteal Muscle Is Poised for Enhanced Calcium Transport. Vet Sci 2021; 8:vetsci8120289. [PMID: 34941816 PMCID: PMC8705379 DOI: 10.3390/vetsci8120289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/02/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
We have analyzed the enzymatic activity of the sarcoplasmic reticulum (SR) Ca2+-transporting ATPase (SERCA) from the horse gluteal muscle. Horses are bred for peak athletic performance yet exhibit a high incidence of exertional rhabdomyolysis, with elevated levels of cytosolic Ca2+ proposed as a correlative linkage. We recently reported an improved protocol for isolating SR vesicles from horse muscle; these horse SR vesicles contain an abundant level of SERCA and only trace-levels of sarcolipin (SLN), the inhibitory peptide subunit of SERCA in mammalian fast-twitch skeletal muscle. Here, we report that the in vitro Ca2+ transport rate of horse SR vesicles is 2.3 ± 0.7-fold greater than rabbit SR vesicles, which express close to equimolar levels of SERCA and SLN. This suggests that horse myofibers exhibit an enhanced SR Ca2+ transport rate and increased luminal Ca2+ stores in vivo. Using the densitometry of Coomassie-stained SDS-PAGE gels, we determined that horse SR vesicles express an abundant level of the luminal SR Ca2+ storage protein calsequestrin (CASQ), with a CASQ-to-SERCA ratio about double that in rabbit SR vesicles. Thus, we propose that SR Ca2+ cycling in horse myofibers is enhanced by a reduced SLN inhibition of SERCA and by an abundant expression of CASQ. Together, these results suggest that horse muscle contractility and susceptibility to exertional rhabdomyolysis are promoted by enhanced SR Ca2+ uptake and luminal Ca2+ storage.
Collapse
|
15
|
Nothing Regular about the Regulins: Distinct Functional Properties of SERCA Transmembrane Peptide Regulatory Subunits. Int J Mol Sci 2021; 22:ijms22168891. [PMID: 34445594 PMCID: PMC8396278 DOI: 10.3390/ijms22168891] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
The sarco-endoplasmic reticulum calcium ATPase (SERCA) is responsible for maintaining calcium homeostasis in all eukaryotic cells by actively transporting calcium from the cytosol into the sarco-endoplasmic reticulum (SR/ER) lumen. Calcium is an important signaling ion, and the activity of SERCA is critical for a variety of cellular processes such as muscle contraction, neuronal activity, and energy metabolism. SERCA is regulated by several small transmembrane peptide subunits that are collectively known as the “regulins”. Phospholamban (PLN) and sarcolipin (SLN) are the original and most extensively studied members of the regulin family. PLN and SLN inhibit the calcium transport properties of SERCA and they are required for the proper functioning of cardiac and skeletal muscles, respectively. Myoregulin (MLN), dwarf open reading frame (DWORF), endoregulin (ELN), and another-regulin (ALN) are newly discovered tissue-specific regulators of SERCA. Herein, we compare the functional properties of the regulin family of SERCA transmembrane peptide subunits and consider their regulatory mechanisms in the context of the physiological and pathophysiological roles of these peptides. We present new functional data for human MLN, ELN, and ALN, demonstrating that they are inhibitors of SERCA with distinct functional consequences. Molecular modeling and molecular dynamics simulations of SERCA in complex with the transmembrane domains of MLN and ALN provide insights into how differential binding to the so-called inhibitory groove of SERCA—formed by transmembrane helices M2, M6, and M9—can result in distinct functional outcomes.
Collapse
|
16
|
Zekri Y, Flamant F, Gauthier K. Central vs. Peripheral Action of Thyroid Hormone in Adaptive Thermogenesis: A Burning Topic. Cells 2021; 10:1327. [PMID: 34071979 PMCID: PMC8229489 DOI: 10.3390/cells10061327] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Thyroid hormones (TH) contribute to the control of adaptive thermogenesis, which is associated with both higher energy expenditure and lower body mass index. While it was clearly established that TH act directly in the target tissues to fulfill its metabolic activities, some studies have rather suggested that TH act in the hypothalamus to control these processes. This paradigm shift has subjected the topic to intense debates. This review aims to recapitulate how TH control adaptive thermogenesis and to what extent the brain is involved in this process. This is of crucial importance for the design of new pharmacological agents that would take advantage of the TH metabolic properties.
Collapse
Affiliation(s)
- Yanis Zekri
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, INRAE USC 1370 École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d’Italie, 69007 Lyon, France; (F.F.); (K.G.)
| | | | | |
Collapse
|
17
|
Qaisar R, Qayum M, Muhammad T. Reduced sarcoplasmic reticulum Ca 2+ ATPase activity underlies skeletal muscle wasting in asthma. Life Sci 2021; 273:119296. [PMID: 33675897 DOI: 10.1016/j.lfs.2021.119296] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/10/2021] [Accepted: 02/20/2021] [Indexed: 12/13/2022]
Abstract
AIMS Skeletal muscle mass and strength are reduced in asthma and contribute to compromised functional capacity in asthmatic patients. However, an effective pharmacological intervention remains elusive, partly because molecular mechanisms dictating muscle decline in asthma are not known. MATERIALS We investigated the potential contribution(s) of skeletal muscle sarcoplasmic reticulum Ca2+ ATPase (SERCA) to muscle atrophy and weakness in asthmatic patients. Quadriceps muscle biopsies were taken from 58 to 72 years old male patients with mild and advanced asthma and the SERCA activity was analyzed in association with cellular redox environment and myonuclear domain (MND) size. KEY FINDINGS Maximal SERCA activity was reduced in skeletal muscles of mild and advanced asthmatics and was associated with reduced expression of SERCA2 protein and upregulation of sarcolipin, a SERCA inhibitory lipoprotein. We also found downregulation of Ca2+ release protein calstabin and upregulation of Ca2+ buffer, calsequestrin in skeletal muscles of asthmatic patients. The atrophic single muscle fibers had smaller cytoplasmic domains per myonucleus possibly indicating the reduced transcriptional reserves of individual myonuclei. Plasma periostin and CAF22 levels were significantly elevated in asthmatic patients and showed a strong correlation with hand-grip strength. These changes were accompanied by substantially elevated markers of global oxidative stress including lipid peroxidation and mitochondrial ROS production. CONCLUSION Taken together, our data suggest that muscle weakness and atrophy in asthma is in part driven by SERCA dysfunction and oxidative stress. The data propose SERCA dysfunction as a therapeutic intervention to address muscle decline in asthma.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| | - Mughal Qayum
- Department of Pharmacy, Kohat University of Science & Technology, Kohat 26000, Pakistan
| | - Tahir Muhammad
- Department of Biochemistry, Gomal Medical College, Dera Ismail Khan, Pakistan
| |
Collapse
|
18
|
Barbot T, Beswick V, Montigny C, Quiniou É, Jamin N, Mouawad L. Deciphering the Mechanism of Inhibition of SERCA1a by Sarcolipin Using Molecular Simulations. Front Mol Biosci 2021; 7:606254. [PMID: 33614704 PMCID: PMC7890198 DOI: 10.3389/fmolb.2020.606254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/06/2020] [Indexed: 12/02/2022] Open
Abstract
SERCA1a is an ATPase calcium pump that transports Ca2+ from the cytoplasm to the sarco/endoplasmic reticulum lumen. Sarcolipin (SLN), a transmembrane peptide, regulates the activity of SERCA1a by decreasing its Ca2+ transport rate, but its mechanism of action is still not well-understood. To decipher this mechanism, we have performed normal mode analysis in the all-atom model, with the SERCA1a-SLN complex, or the isolated SERCA1a, embedded in an explicit membrane. The comparison of the results allowed us to provide an explanation at the atomic level for the action of SLN that is in good agreement with experimental observations. In our analyses, the presence of SLN locally perturbs the TM6 transmembrane helix and as a consequence modifies the position of D800, one of the key metal-chelating residues. Additionally, it reduces the flexibility of the gating residues, V304, and E309 in TM4, at the entrance of the Ca2+ binding sites, which would decrease the affinity for Ca2+. Unexpectedly, SLN has also an effect on the ATP binding site more than 35 Å away, due to the straightening of TM5, a long helix considered as the spine of the protein. The straightening of TM5 modifies the structure of the P-N linker that sits above it, and which comprises the 351DKTG354 conserved motif, resulting in an increase of the distance between ATP and the phosphorylation site. As a consequence, the turn-over rate could be affected. All this gives SERCA1a the propensity to go toward a Ca2+ low-affinity E2-like state in the presence of SLN and toward a Ca2+ high-affinity E1-like state in the absence of SLN. In addition to a general mechanism of inhibition of SERCA1a regulatory peptides, this study also provides an insight into the conformational transition between the E2 and E1 states.
Collapse
Affiliation(s)
- Thomas Barbot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Veronica Beswick
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France.,Physics Department, Evry-Val-d'Essonne University, Paris-Saclay University, Evry, France
| | - Cédric Montigny
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Éric Quiniou
- CNRS UMR9187 / INSERM U1196, Institut Curie, PSL Research University, Université Paris-Saclay, Orsay, France
| | - Nadège Jamin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Liliane Mouawad
- CNRS UMR9187 / INSERM U1196, Institut Curie, PSL Research University, Université Paris-Saclay, Orsay, France
| |
Collapse
|
19
|
Montigny C, Huang DL, Beswick V, Barbot T, Jaxel C, le Maire M, Zheng JS, Jamin N. Sarcolipin alters SERCA1a interdomain communication by impairing binding of both calcium and ATP. Sci Rep 2021; 11:1641. [PMID: 33452371 PMCID: PMC7810697 DOI: 10.1038/s41598-021-81061-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/31/2020] [Indexed: 01/08/2023] Open
Abstract
Sarcolipin (SLN), a single-spanning membrane protein, is a regulator of the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA1a). Chemically synthesized SLN, palmitoylated or not (pSLN or SLN), and recombinant wild-type rabbit SERCA1a expressed in S. cerevisiae design experimental conditions that provide a deeper understanding of the functional role of SLN on the regulation of SERCA1a. Our data show that chemically synthesized SLN interacts with recombinant SERCA1a, with calcium-deprived E2 state as well as with calcium-bound E1 state. This interaction hampers the binding of calcium in agreement with published data. Unexpectedly, SLN has also an allosteric effect on SERCA1a transport activity by impairing the binding of ATP. Our results reveal that SLN significantly slows down the E2 to Ca2.E1 transition of SERCA1a while it affects neither phosphorylation nor dephosphorylation. Comparison with chemically synthesized SLN deprived of acylation demonstrates that palmitoylation is not necessary for either inhibition or association with SERCA1a. However, it has a small but statistically significant effect on SERCA1a phosphorylation when various ratios of SLN-SERCA1a or pSLN-SERCA1a are tested.
Collapse
Affiliation(s)
- Cédric Montigny
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France.
| | - Dong Liang Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Veronica Beswick
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
- Department of Physics, Evry-Val-d'Essonne University, 91025, Evry, France
| | - Thomas Barbot
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Christine Jaxel
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Marc le Maire
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Ji-Shen Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
| | - Nadège Jamin
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| |
Collapse
|
20
|
Sarcolipin Exhibits Abundant RNA Transcription and Minimal Protein Expression in Horse Gluteal Muscle. Vet Sci 2020; 7:vetsci7040178. [PMID: 33202832 PMCID: PMC7711957 DOI: 10.3390/vetsci7040178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/05/2020] [Indexed: 01/02/2023] Open
Abstract
Ca2+ regulation in equine muscle is important for horse performance, yet little is known about this species-specific regulation. We reported recently that horse encode unique gene and protein sequences for the sarcoplasmic reticulum (SR) Ca2+-transporting ATPase (SERCA) and the regulatory subunit sarcolipin (SLN). Here we quantified gene transcription and protein expression of SERCA and its inhibitory peptides in horse gluteus, as compared to commonly-studied rabbit skeletal muscle. RNA sequencing and protein immunoblotting determined that horse gluteus expresses the ATP2A1 gene (SERCA1) as the predominant SR Ca2+-ATPase isoform and the SLN gene as the most-abundant SERCA inhibitory peptide, as also found in rabbit skeletal muscle. Equine muscle expresses an insignificant level of phospholamban (PLN), another key SERCA inhibitory peptide expressed commonly in a variety of mammalian striated muscles. Surprisingly in horse, the RNA transcript ratio of SLN-to-ATP2A1 is an order of magnitude higher than in rabbit, while the corresponding protein expression ratio is an order of magnitude lower than in rabbit. Thus, SLN is not efficiently translated or maintained as a stable protein in horse muscle, suggesting a non-coding role for supra-abundant SLN mRNA. We propose that the lack of SLN and PLN inhibition of SERCA activity in equine muscle is an evolutionary adaptation that potentiates Ca2+ cycling and muscle contractility in a prey species domestically selected for speed.
Collapse
|
21
|
Aguayo-Ortiz R, Espinoza-Fonseca LM. Atomistic Structure and Dynamics of the Ca 2+-ATPase Bound to Phosphorylated Phospholamban. Int J Mol Sci 2020; 21:ijms21197261. [PMID: 33019581 PMCID: PMC7583845 DOI: 10.3390/ijms21197261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 01/22/2023] Open
Abstract
Sarcoplasmic reticulum Ca2+-ATPase (SERCA) and phospholamban (PLB) are essential components of the cardiac Ca2+ transport machinery. PLB phosphorylation at residue Ser16 (pSer16) enhances SERCA activity in the heart via an unknown structural mechanism. Here, we report a fully atomistic model of SERCA bound to phosphorylated PLB and study its structural dynamics on the microsecond time scale using all-atom molecular dynamics simulations in an explicit lipid bilayer and water environment. The unstructured N-terminal phosphorylation domain of PLB samples different orientations and covers a broad area of the cytosolic domain of SERCA but forms a stable complex mediated by pSer16 interactions with a binding site formed by SERCA residues Arg324/Lys328. PLB phosphorylation does not affect the interaction between the transmembrane regions of the two proteins; however, pSer16 stabilizes a disordered structure of the N-terminal phosphorylation domain that releases key inhibitory contacts between SERCA and PLB. We found that PLB phosphorylation is sufficient to guide the structural transitions of the cytosolic headpiece that are required to produce a competent structure of SERCA. We conclude that PLB phosphorylation serves as an allosteric molecular switch that releases inhibitory contacts and strings together the catalytic elements required for SERCA activation. This atomistic model represents a vivid atomic-resolution visualization of SERCA bound to phosphorylated PLB and provides previously inaccessible insights into the structural mechanism by which PLB phosphorylation releases SERCA inhibition in the heart.
Collapse
Affiliation(s)
- Rodrigo Aguayo-Ortiz
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
- Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - L. Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
- Correspondence: ; Tel.: +1-734-998-7500
| |
Collapse
|
22
|
Autry JM, Karim CB, Cocco M, Carlson SF, Thomas DD, Valberg SJ. Purification of sarcoplasmic reticulum vesicles from horse gluteal muscle. Anal Biochem 2020; 610:113965. [PMID: 32956693 DOI: 10.1016/j.ab.2020.113965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/24/2020] [Accepted: 09/14/2020] [Indexed: 01/09/2023]
Abstract
We have analyzed protein expression and enzyme activity of the sarcoplasmic reticulum Ca2+-transporting ATPase (SERCA) in horse gluteal muscle. Horses exhibit a high incidence of recurrent exertional rhabdomyolysis, with myosolic Ca2+ proposed, but yet to be established, as the underlying cause. To better assess Ca2+ regulatory mechanisms, we developed an improved protocol for isolating sarcoplasmic reticulum (SR) vesicles from horse skeletal muscle, based on mechanical homogenization and optimized parameters for differential centrifugation. Immunoblotting identified the peak subcellular fraction containing the SERCA1 protein (fast-twitch isoform). Gel analysis using the Stains-all dye demonstrated that calsequestrin (CASQ) and phospholipids are highly enriched in the SERCA-containing subcellular fraction isolated from horse gluteus. Immunoblotting also demonstrated that these horse SR vesicles show low content of glycogen phosphorylase (GP), which is likely an abundant contaminating protein of traditional horse SR preps. The maximal Ca2+-activated ATPase activity (Vmax) of SERCA in horse SR vesicles isolated using this protocol is 5‒25-fold greater than previously-reported SERCA activity in SR preps from horse skeletal muscle. We propose that this new protocol for isolating SR vesicles will be useful for determining enzymatic parameters of horse SERCA with high fidelity, plus assessing regulatory effect of SERCA peptide subunit(s) expressed in horse muscle.
Collapse
Affiliation(s)
- Joseph M Autry
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Christine B Karim
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mariana Cocco
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Samuel F Carlson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stephanie J Valberg
- Department of Large Animal Clinical Sciences, McPhail Equine Performance Center, Michigan State University, East Lansing, MI, 48823, USA.
| |
Collapse
|
23
|
Aguayo-Ortiz R, Fernández-de Gortari E, Espinoza-Fonseca LM. Conserved Luminal C-Terminal Domain Dynamically Controls Interdomain Communication in Sarcolipin. J Chem Inf Model 2020; 60:3985-3991. [PMID: 32668157 DOI: 10.1021/acs.jcim.0c00418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sarcolipin (SLN) mediates Ca2+ transport and metabolism in muscle by regulating the activity of the Ca2+ pump SERCA. SLN has a conserved luminal C-terminal domain that contributes to its functional divergence among homologous SERCA regulators, but the precise mechanistic role of this domain remains poorly understood. We used all-atom molecular dynamics (MD) simulations of SLN totaling 77.5 μs to show that the N- (NT) and C-terminal (CT) domains function in concert. Analysis of the MD simulations showed that serial deletions of the SLN C-terminus do not affect the stability of the peptide nor induce dissociation of SLN from the membrane but promote a gradual decrease in both the tilt angle of the transmembrane helix and the local thickness of the lipid bilayer. Mutual information analysis showed that the NT and CT domains communicate with each other in SLN and that interdomain communication is partially or completely abolished upon deletion of the conserved segment Tyr29-Tyr31 as well as by serial deletions beyond this domain. Phosphorylation of SLN at residue Thr5 also induces changes in the communication between the CT and NT domains, which thus provides additional evidence for interdomain communication within SLN. We found that interdomain communication is independent of the force field used and lipid composition, which thus demonstrates that communication between the NT and CT domains is an intrinsic functional feature of SLN. We propose the novel hypothesis that the conserved C-terminus is an essential element required for dynamic control of SLN regulatory function.
Collapse
Affiliation(s)
- Rodrigo Aguayo-Ortiz
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Eli Fernández-de Gortari
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - L Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
24
|
Liu Z, Zhang Y, Qiu C, Zhu H, Pan S, Jia H, Kang H, Guan G, Hui R, Zhu L, Wang J. Diabetes mellitus exacerbates post-myocardial infarction heart failure by reducing sarcolipin promoter methylation. ESC Heart Fail 2020; 7:1935-1948. [PMID: 32525286 PMCID: PMC7373908 DOI: 10.1002/ehf2.12789] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Aims Sarcolipin (SLN) is a key regulator of sarcoplasmic reticulum calcium‐ATPase (SERCA)2a, which handles intracellular calcium re‐uptake. This study was aimed to investigate the involvement of SLN in post‐myocardial infarction (MI) heart failure (HF) in diabetes. Methods and results Diabetes/MI rat models were established. Altered SLN expression in diabetic hearts was screened out by microarray. A myocardiotropic viral vector was used to deliver siRNA to silence SLN. DNA methylation was evaluated by bisulfite sequencing. Cardiac functions were evaluated by invasive haemodynamic examinations. The SERCA2a activity, cytoplasmic calcium concentration ([Ca2+]i), calcium spark, and myocyte contraction were detected. Correlation between HF and diabetes was analysed in a cohort consisted of 101 ST‐segment elevated myocardial infarction (STEMI) patients between 2017 and 2019 [53.54 ± 4.64 years old; 61.4% male gender; HbA1c% 6.15 ± 2.00; and left ventricular ejection fraction (LVEF%) 40.64 ± 3.20%]. SLN expression was evaluated in left ventricular tissue sample from six STEMI patients complicated with diabetes and six STEMI patients without diabetes. Expressions of DNA methyltransferase 1a and DNA methyltransferase 3 were reduced in diabetic hearts, leading to down‐regulation of SLN promoter methylation, resulting in increased SLN expression in rats. Impaired heart systolic functions were found in experimental diabetic MI rats, which were attenuated by SLN silencing. SERCA2a activity reduction and [Ca2+]i elevation were attenuated by SLN silencing in diabetic animal hearts and high‐glucose incubated primary myocytes. SLN silencing suppressed calcium sparks and improved contraction and sarcoplasmic reticulum calcium re‐uptake in high‐glucose incubated primary myocytes. Expression of SLN was up‐regulated in LV sampled from STEMI patients complicated with diabetes compared with non‐diabetic ones (P < 0.05). LVEF% was reduced in STEMI patients complicated with diabetes compared with non‐diabetic ones (P < 0.01). HbA1c% and LVEF% was related (r = −0.218, P = 0.028). Increased HbA1c% was correlated with reduced LVEF% after adjustment for age, sex, body mass index, cigarette smoking, creatinine, UA, low density lipoprotein, K+, Na+, and troponin I (adjusted odds ration = 0.75, 95% confidence interval 0.62–0.90, P = 0.002). Conclusions Diabetes increases the vulnerability of STEMI patients to post‐MI HF by down‐regulating SLN promoter methylation, which further regulates SERCA2a activity via increasing cardiac SLN expression.
Collapse
Affiliation(s)
- Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, 710068, China
| | - Yong Zhang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, 710068, China
| | - Chuan Qiu
- Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Haitao Zhu
- Department of Pediatrics, Northwest Women's and Children's Hospital, Xi'an, China
| | - Shuo Pan
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, 710068, China
| | - Hao Jia
- International Medical Services, Affiliated Hospital of Northwest University, Xi'an, China
| | - Hongyan Kang
- Department of Cardiology, Heyang County People's Hospital, Weinan, China
| | - Gongchang Guan
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, 710068, China
| | - Rutai Hui
- Department of Cardiology, Fuwai Hospital, National Center of Cardiovascular Diseases, Beijing, China
| | - Ling Zhu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, 710068, China
| | - Junkui Wang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, 710068, China
| |
Collapse
|
25
|
Aguayo-Ortiz R, Espinoza-Fonseca LM. Linking Biochemical and Structural States of SERCA: Achievements, Challenges, and New Opportunities. Int J Mol Sci 2020; 21:ijms21114146. [PMID: 32532023 PMCID: PMC7313052 DOI: 10.3390/ijms21114146] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Sarcoendoplasmic reticulum calcium ATPase (SERCA), a member of the P-type ATPase family of ion and lipid pumps, is responsible for the active transport of Ca2+ from the cytoplasm into the sarcoplasmic reticulum lumen of muscle cells, into the endoplasmic reticulum (ER) of non-muscle cells. X-ray crystallography has proven to be an invaluable tool in understanding the structural changes of SERCA, and more than 70 SERCA crystal structures representing major biochemical states (defined by bound ligand) have been deposited in the Protein Data Bank. Consequently, SERCA is one of the best characterized components of the calcium transport machinery in the cell. Emerging approaches in the field, including spectroscopy and molecular simulation, now help integrate and interpret this rich structural information to understand the conformational transitions of SERCA that occur during activation, inhibition, and regulation. In this review, we provide an overview of the crystal structures of SERCA, focusing on identifying metrics that facilitate structure-based categorization of major steps along the catalytic cycle. We examine the integration of crystallographic data with different biophysical approaches and computational methods to link biochemical and structural states of SERCA that are populated in the cell. Finally, we discuss the challenges and new opportunities in the field, including structural elucidation of functionally important and novel regulatory complexes of SERCA, understanding the structural basis of functional divergence among homologous SERCA regulators, and bridging the gap between basic and translational research directed toward therapeutic modulation of SERCA.
Collapse
|
26
|
ANS Interacts with the Ca 2+-ATPase Nucleotide Binding Site. J Fluoresc 2020; 30:483-496. [PMID: 32146650 DOI: 10.1007/s10895-020-02518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/14/2020] [Indexed: 10/24/2022]
Abstract
The binding of 8-anilino-1-naphthalene sulfonate (ANS) to the nucleotide binding domain (N-domain) of the sarcoplasmic reticulum Ca2+-ATPase (SERCA) was studied. Molecular docking predicted two ANS binding modes (BMI and BMII) in the nucleotide binding site. The molecular interaction was confirmed as the fluorescence intensity of ANS was dramatically increased when in the presence of an engineered recombinant N-domain. Molecular dynamics simulation showed BMI (which occupies the ATP binding site) as the mode that is stable in solution. The above was confirmed by the absence of ANS fluorescence in the presence of a fluorescein isothiocyanate (FITC)-labeled N-domain. Further, the labeling of the N-domain with FITC was hindered by the presence of ANS, i.e., ANS was bound to the ATP binding site. Importantly, ANS displayed a higher affinity than ATP. In addition, ANS binding led to quenching the N-domain intrinsic fluorescence displaying a FRET pattern, which suggested the existence of a Trp-ANS FRET couple. Nonetheless, the chemical modification of the sole Trp residue with N-bromosuccinimide (NBS) discarded the existence of FRET and instead indicated structural rearrangements in the nucleotide binding site during ANS binding. Finally, Ca2+-ATPase kinetics in the presence of ANS showed a partial mixed-type inhibition. The Dixon plot showed the ANS-Ca2+-ATPase complex as catalytically active, hence supporting the existence of a functional dimeric Ca2+-ATPase in sarcoplasmic reticulum vesicles. ANS may be used as a molecular platform for the development of more effective inhibitors of Ca2+-ATPase and appears to be a new fluorescent probe for the nucleotide binding site. Graphical Abstract Molecular docking of ANS to the nucleotide binding site of Ca2+-ATPase. ANS fluorescence increase reveals molecular interaction.
Collapse
|
27
|
Fernández-de Gortari E, Aguayo-Ortiz R, Autry JM, Michel Espinoza-Fonseca L. A hallmark of phospholamban functional divergence is located in the N-terminal phosphorylation domain. Comput Struct Biotechnol J 2020; 18:705-713. [PMID: 32257054 PMCID: PMC7114604 DOI: 10.1016/j.csbj.2020.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/23/2020] [Accepted: 02/23/2020] [Indexed: 01/12/2023] Open
Abstract
Sarcoplasmic reticulum Ca2+ pump (SERCA) is a critical component of the Ca2+ transport machinery in myocytes. There is clear evidence for regulation of SERCA activity by PLB, whose activity is modulated by phosphorylation of its N-terminal domain (residues 1–25), but there is less clear evidence for the role of this domain in PLB’s functional divergence. It is widely accepted that only sarcolipin (SLN), a protein that shares substantial homology with PLB, uncouples SERCA Ca2+ transport from ATP hydrolysis by inducing a structural change of its energy-transduction domain; yet, experimental evidence shows that the transmembrane domain of PLB (residues 26–52, PLB26–52) partially uncouples SERCA in vitro. These apparently conflicting mechanisms suggest that PLB’s uncoupling activity is encoded in its transmembrane domain, and that it is controlled by the N-terminal phosphorylation domain. To test this hypothesis, we performed molecular dynamics simulations (MDS) of the binary complex between PLB26–52 and SERCA. Comparison between PLB26–52 and wild-type PLB (PLBWT) showed no significant changes in the stability and orientation of the transmembrane helix, indicating that PLB26–52 forms a native-like complex with SERCA. MDS showed that PLB26–52 produces key intermolecular contacts and structural changes required for inhibition, in agreement with studies showing that PLB26–52 inhibits SERCA. However, deletion of the N-terminal phosphorylation domain facilitates an order-to-disorder shift in the energy-transduction domain associated with uncoupling of SERCA, albeit weaker than that induced by SLN. This mechanistic evidence reveals that the N-terminal phosphorylation domain of PLB is a primary contributor to the functional divergence among homologous SERCA regulators.
Collapse
Affiliation(s)
- Eli Fernández-de Gortari
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rodrigo Aguayo-Ortiz
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joseph M Autry
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.,Biophysical Technology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - L Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
28
|
Rodríguez Y, Májeková M. Structural Changes of Sarco/Endoplasmic Reticulum Ca 2+-ATPase Induced by Rutin Arachidonate: A Molecular Dynamics Study. Biomolecules 2020; 10:biom10020214. [PMID: 32024167 PMCID: PMC7072167 DOI: 10.3390/biom10020214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/15/2020] [Accepted: 01/28/2020] [Indexed: 11/16/2022] Open
Abstract
Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) maintains the level of calcium concentration in cells by pumping calcium ions from the cytoplasm to the lumen while undergoing substantial conformational changes, which can be stabilized or prevented by various compounds. Here we attempted to clarify the molecular mechanism of action of new inhibitor rutin arachidonate, one of the series of the acylated rutin derivatives. We performed molecular dynamics simulations of SERCA1a protein bound to rutin arachidonate positioned in a pure dipalmitoylphosphatidylcholine bilayer membrane. Our study predicted the molecular basis for the binding of rutin arachidonate towards SERCA1a in the vicinity of the binding site of calcium ions and near the location of the well-known inhibitor thapsigargin. The stable hydrogen bond between Glu771 and rutin arachidonate plays a key role in the binding. SERCA1a is kept in the E2 conformation preventing the formation of important salt bridges between the side chains of several residues, primarily Glu90 and Lys297. All in all, the structural changes induced by the binding of rutin arachidonate to SERCA1a may shift proton balance near the titrable residues Glu771 and Glu309 into neutral species, hence preventing the binding of calcium ions to the transmembrane binding sites and thus affecting calcium homeostasis. Our results could lead towards the design of new types of inhibitors, potential drug candidates for cancer treatment, which could be anchored to the transmembrane region of SERCA1a by a lipophilic fatty acid group.
Collapse
Affiliation(s)
- Yoel Rodríguez
- Department of Natural Sciences, Eugenio María de Hostos Community College of The City University of New York, 500 Grand Concourse, Bronx, New York, NY 10451, USA; or
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Magdaléna Májeková
- Center of Experimental Medicine of Slovak Academy of Sciences, Institute of Experimental Pharmacology and Toxicology, Department of Biochemical Pharmacology, Dubravska cesta 9, 841 04 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-2-3229-5709
| |
Collapse
|
29
|
Saleh N, Wang Y, Nissen P, Lindorff-Larsen K. Allosteric modulation of the sarcoplasmic reticulum Ca 2+ ATPase by thapsigargin via decoupling of functional motions. Phys Chem Chem Phys 2019; 21:21991-21995. [PMID: 31552962 DOI: 10.1039/c9cp04736k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The sarcoplasmic reticulum Ca2+-ATPase (SERCA) is a widely studied member of the large family of phosphorylation(P)-type ATPase membrane transporters. Ligands and nucleotide binding naturally modulate the conformational space of P-type ATPases through allosteric inter-domain communications. Whereas many inhibitory ATPase ligands act by directly blocking substrate uptake or release, SERCA is a target for thapsigargin (TG), a plant-derived natural product that allosterically inhibits the transport cycle. While thapsigargin's inhibitory effects on SERCA have been widely studied experimentally, the molecular mechanisms underlying these remain incompletely understood. Here, we apply modelling and molecular simulations to probe the effects of TG binding to the major functional states along SERCA's reaction cycle. Our results provide insight into the atomic-level details of the conformational changes induced by TG binding to SERCA, and suggest mechanisms for its effect. Since other P-type ATPases share closely related reaction cycles, our data suggests that similar modulators might exist for these.
Collapse
Affiliation(s)
- Noureldin Saleh
- Linderstrøm-Lang Centre for Protein Science, Dept. of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
30
|
Rahate K, Bhatt LK, Prabhavalkar KS. SERCA stimulation: A potential approach in therapeutics. Chem Biol Drug Des 2019; 95:5-15. [DOI: 10.1111/cbdd.13620] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Kiran Rahate
- Department of Pharmacology SVKM’s Dr. Bhanuben Nanavati College of Pharmacy Mumbai India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology SVKM’s Dr. Bhanuben Nanavati College of Pharmacy Mumbai India
| | - Kedar S. Prabhavalkar
- Department of Pharmacology SVKM’s Dr. Bhanuben Nanavati College of Pharmacy Mumbai India
| |
Collapse
|
31
|
Espinoza-Fonseca LM. Probing the effects of nonannular lipid binding on the stability of the calcium pump SERCA. Sci Rep 2019; 9:3349. [PMID: 30833659 PMCID: PMC6399444 DOI: 10.1038/s41598-019-40004-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/07/2019] [Indexed: 01/14/2023] Open
Abstract
The calcium pump SERCA is a transmembrane protein that is critical for calcium transport in cells. SERCA resides in an environment made up largely by the lipid bilayer, so lipids play a central role on its stability and function. Studies have provided insights into the effects of annular and bulk lipids on SERCA activation, but the role of a nonannular lipid site in the E2 intermediate state remains elusive. Here, we have performed microsecond molecular dynamics simulations to probe the effects of nonannular lipid binding on the stability and structural dynamics of the E2 state of SERCA. We found that the structural integrity and stability of the E2 state is independent of nonannular lipid binding, and that occupancy of a lipid molecule at this site does not modulate destabilization of the E2 state, a step required to initiate the transition toward the competent E1 state. We also found that binding of the nonannular lipid does not induce direct allosteric control of the intrinsic functional dynamics the E2 state. We conclude that nonannular lipid binding is not necessary for the stability of the E2 state, but we speculate that it becomes functionally significant during the E2-to-E1 transition of the pump.
Collapse
Affiliation(s)
- L Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
32
|
Gamu D, Juracic ES, Fajardo VA, Rietze BA, Tran K, Bombardier E, Tupling AR. Phospholamban deficiency does not alter skeletal muscle SERCA pumping efficiency or predispose mice to diet-induced obesity. Am J Physiol Endocrinol Metab 2019; 316:E432-E442. [PMID: 30601702 DOI: 10.1152/ajpendo.00288.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pump is a major contributor to skeletal muscle Ca2+ homeostasis and metabolic rate. SERCA activity can become adaptively uncoupled by its regulator sarcolipin (SLN) to increase the energy demand of Ca2+ pumping, preventing excessive obesity and glucose intolerance in mice. Several other SERCA regulators bear structural and functional resemblance to SLN, including phospholamban (PLN). Here, we sought to examine whether endogenous levels of skeletal muscle PLN control SERCA Ca2+ pumping efficiency and whole body metabolism. Using PLN-null mice ( Pln-/-), we found that soleus (SOL) muscle's SERCA pumping efficiency (measured as an apparent coupling ratio: Ca2+ uptake/ATP hydrolysis) was unaffected by PLN. Expression of Ca2+-handling proteins within the SOL, including SLN, were comparable between Pln-/- and wild-type (WT) littermates, as were fiber-type characteristics. Not surprisingly then, Pln-/- mice developed a similar degree of diet-induced obesity and glucose intolerance as WT controls when given a "Western" high-fat diet. Lack of an excessively obesogenic phenotype of Pln-/- could not be explained by compensation from skeletal muscle SLN or brown adipose tissue uncoupling protein-1 content. In agreement with several other reports, our study lends support to the notion that PLN serves a functionally distinct role from that of SLN in skeletal muscle physiology.
Collapse
Affiliation(s)
- Daniel Gamu
- Department of Kinesiology, University of Waterloo , Waterloo, Ontario , Canada
| | - Emma Sara Juracic
- Department of Kinesiology, University of Waterloo , Waterloo, Ontario , Canada
| | - Val A Fajardo
- Department of Kinesiology, University of Waterloo , Waterloo, Ontario , Canada
| | | | - Khanh Tran
- Department of Kinesiology, University of Waterloo , Waterloo, Ontario , Canada
| | - Eric Bombardier
- Department of Kinesiology, University of Waterloo , Waterloo, Ontario , Canada
| | - A Russell Tupling
- Department of Kinesiology, University of Waterloo , Waterloo, Ontario , Canada
| |
Collapse
|
33
|
Valberg SJ, Soave K, Williams ZJ, Perumbakkam S, Schott M, Finno CJ, Petersen JL, Fenger C, Autry JM, Thomas DD. Coding sequences of sarcoplasmic reticulum calcium ATPase regulatory peptides and expression of calcium regulatory genes in recurrent exertional rhabdomyolysis. J Vet Intern Med 2019; 33:933-941. [PMID: 30720217 PMCID: PMC6430904 DOI: 10.1111/jvim.15425] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022] Open
Abstract
Background Sarcolipin (SLN), myoregulin (MRLN), and dwarf open reading frame (DWORF) are transmembrane regulators of the sarcoplasmic reticulum calcium transporting ATPase (SERCA) that we hypothesized played a role in recurrent exertional rhabdomyolysis (RER). Objectives Compare coding sequences of SLN, MRLN, DWORF across species and between RER and control horses. Compare expression of muscle Ca2+ regulatory genes between RER and control horses. Animals Twenty Thoroughbreds (TB), 5 Standardbreds (STD), 6 Quarter Horses (QH) with RER and 39 breed‐matched controls. Methods Sanger sequencing of SERCA regulatory genes with comparison of amino acid (AA) sequences among control, RER horses, human, mouse, and rabbit reference genomes. In RER and control gluteal muscle, quantitative real‐time polymerase chain reaction of SERCA regulatory peptides, the calcium release channel (RYR1), and its accessory proteins calsequestrin (CASQ1), and calstabin (FKBP1A). Results The SLN gene was the highest expressed horse SERCA regulatory gene with a uniquely truncated AA sequence (29 versus 31) versus other species. Coding sequences of SLN, MRLN, and DWORF were identical in RER and control horses. A sex‐by‐phenotype effect occurred with lower CASQ1 expression in RER males versus control males (P < .001) and RER females (P = .05) and higher FKBP1A (P = .01) expression in RER males versus control males. Conclusions and Clinical Importance The SLN gene encodes a uniquely truncated peptide in the horse versus other species. Variants in the coding sequence of SLN, MLRN, or DWORF were not associated with RER. Males with RER have differential gene expression that could reflect adaptations to stabilize RYR1.
Collapse
Affiliation(s)
- Stephanie J Valberg
- McPhail Equine Performance Center, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| | - Kaitlin Soave
- McPhail Equine Performance Center, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| | - Zoë J Williams
- McPhail Equine Performance Center, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| | - Sudeep Perumbakkam
- McPhail Equine Performance Center, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| | - Melissa Schott
- McPhail Equine Performance Center, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| | - Carrie J Finno
- Department of Population Health and Reproduction, University of California-Davis, Davis, California
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Clara Fenger
- Equine Integrated Medicine, PLC, Lexington, Kentucky
| | - Joseph M Autry
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
34
|
Bal NC, Sahoo SK, Maurya SK, Periasamy M. The Role of Sarcolipin in Muscle Non-shivering Thermogenesis. Front Physiol 2018; 9:1217. [PMID: 30319433 PMCID: PMC6170647 DOI: 10.3389/fphys.2018.01217] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/13/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Naresh C Bal
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Sanjaya K Sahoo
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, United States
| | - Santosh K Maurya
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, United States
| | - Muthu Periasamy
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, United States
| |
Collapse
|
35
|
Campbell KL, Dicke AA. Sarcolipin Makes Heat, but Is It Adaptive Thermogenesis? Front Physiol 2018; 9:714. [PMID: 29962960 PMCID: PMC6011225 DOI: 10.3389/fphys.2018.00714] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/24/2018] [Indexed: 11/19/2022] Open
Affiliation(s)
- Kevin L Campbell
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Alysha A Dicke
- Technology Specialist, Fish and Richardson P.C., Minneapolis, MN, United States
| |
Collapse
|