1
|
Meyer K, Huang B, Weiner OD. Emerging roles of transcriptional condensates as temporal signal integrators. Nat Rev Genet 2025:10.1038/s41576-025-00837-y. [PMID: 40240649 DOI: 10.1038/s41576-025-00837-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2025] [Indexed: 04/18/2025]
Abstract
Transcription factors relay information from the external environment to gene regulatory networks that control cell physiology. To confer signalling specificity, robustness and coordination, these signalling networks use temporal communication codes, such as the amplitude, duration or frequency of signals. Although much is known about how temporal information is encoded, a mechanistic understanding of how gene regulatory networks decode signalling dynamics is lacking. Recent advances in our understanding of phase separation of transcriptional condensates provide new biophysical frameworks for both temporal encoding and decoding mechanisms. In this Perspective, we summarize the mechanisms by which transcriptional condensates could enable temporal decoding through signal adaptation, memory and persistence. We further outline methods to probe and manipulate dynamic communication codes of transcription factors and condensates to rationally control gene activation.
Collapse
Affiliation(s)
- Kirstin Meyer
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.
| | - Bo Huang
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
| | - Orion D Weiner
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
2
|
Andrews J, Weirich K, Schiller UD. Molecular-Scale Simulation of Wetting of Actin Filaments by Protein Droplets. J Phys Chem B 2025; 129:1109-1121. [PMID: 39801048 DOI: 10.1021/acs.jpcb.4c07282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Liquid phase-separating proteins can form condensates that play an important role in spatial and temporal organization of biological cells. The understanding of the mechanisms that lead to the formation of protein condensates and their interactions with other biomolecules may lead to processing routes for soft materials with tailored geometry and function. Fused in sarcoma (FUS) is an example of a nuclear protein that forms stable complexes, and recent studies have highlighted its ability to wet actin filaments and bundle them into networks. We perform coarse-grained molecular dynamics simulations to investigate the wetting and spreading of FUS droplets on actin filaments. We employ the Martini model and rescale the protein-protein and protein-actin interactions to tune the interfacial and wetting properties of FUS droplets. By measuring the molecular displacements in the three-phase region, we are able to relate contact angle, contact line velocity, and contact line friction in terms of a linear approximation of molecular kinetic theory. The results show that the rescaled Martini model can be used to study the molecular mechanisms of dynamic wetting at the nanoscale and to obtain quantitative predictions of the contact line friction and contact angles during dynamic wetting.
Collapse
Affiliation(s)
- James Andrews
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Kimberly Weirich
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Ulf D Schiller
- Department of Computer and Information Sciences, Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
3
|
Holehouse AS, Alberti S. Molecular determinants of condensate composition. Mol Cell 2025; 85:290-308. [PMID: 39824169 PMCID: PMC11750178 DOI: 10.1016/j.molcel.2024.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 01/20/2025]
Abstract
Cells use membraneless compartments to organize their interiors, and recent research has begun to uncover the molecular principles underlying their assembly. Here, we explore how site-specific and chemically specific interactions shape the properties and functions of condensates. Site-specific recruitment involves precise interactions at specific sites driven by partially or fully structured interfaces. In contrast, chemically specific recruitment is driven by complementary chemical interactions without the requirement for a persistent bound-state structure. We propose that site-specific and chemically specific interactions work together to determine the composition of condensates, facilitate biochemical reactions, and regulate enzymatic activities linked to metabolism, signaling, and gene expression. Characterizing the composition of condensates requires novel experimental and computational tools to identify and manipulate the molecular determinants guiding condensate recruitment. Advancing this research will deepen our understanding of how condensates regulate cellular functions, providing valuable insights into cellular physiology and organization.
Collapse
Affiliation(s)
- Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA.
| | - Simon Alberti
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
4
|
Sztacho M, Červenka J, Šalovská B, Antiga L, Hoboth P, Hozák P. The RNA-dependent association of phosphatidylinositol 4,5-bisphosphate with intrinsically disordered proteins contribute to nuclear compartmentalization. PLoS Genet 2024; 20:e1011462. [PMID: 39621780 DOI: 10.1371/journal.pgen.1011462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/24/2024] [Accepted: 10/14/2024] [Indexed: 12/25/2024] Open
Abstract
The RNA content is crucial for the formation of nuclear compartments, such as nuclear speckles and nucleoli. Phosphatidylinositol 4,5-bisphosphate (PIP2) is found in nuclear speckles, nucleoli, and nuclear lipid islets and is involved in RNA polymerase I/II transcription. Intriguingly, the nuclear localization of PIP2 was also shown to be RNA-dependent. We therefore investigated whether PIP2 and RNA cooperate in the establishment of nuclear architecture. In this study, we unveiled the RNA-dependent PIP2-associated (RDPA) nuclear proteome in human cells by mass spectrometry. We found that intrinsically disordered regions (IDRs) with polybasic PIP2-binding K/R motifs are prevalent features of RDPA proteins. Moreover, these IDRs of RDPA proteins exhibit enrichment for phosphorylation, acetylation, and ubiquitination sites. Our results show for the first time that the RDPA protein Bromodomain-containing protein 4 (BRD4) associates with PIP2 in the RNA-dependent manner via electrostatic interactions, and that altered PIP2 levels affect the number of nuclear foci of BRD4 protein. Thus, we propose that PIP2 spatiotemporally orchestrates nuclear processes through association with RNA and RDPA proteins and affects their ability to form foci presumably via phase separation. This suggests the pivotal role of PIP2 in the establishment of a functional nuclear architecture competent for gene expression.
Collapse
Affiliation(s)
- Martin Sztacho
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Laboratory of Cancer Cell Architecture, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jakub Červenka
- Laboratory of Applied Proteome Analyses, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
- Laboratory of Proteomics, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Barbora Šalovská
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Yale Cancer Biology Institute, Yale University School of Medicine, West Haven, Connecticut, United States of America
| | - Ludovica Antiga
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Hoboth
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Hozák
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
5
|
Chin Sang C, Moore G, Tereshchenko M, Zhang H, Nosella ML, Dasovich M, Alderson TR, Leung AKL, Finkelstein IJ, Forman-Kay JD, Lee HO. PARP1 condensates differentially partition DNA repair proteins and enhance DNA ligation. EMBO Rep 2024; 25:5635-5666. [PMID: 39496836 PMCID: PMC11624282 DOI: 10.1038/s44319-024-00285-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 11/06/2024] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is one of the first responders to DNA damage and plays crucial roles in recruiting DNA repair proteins through its activity - poly(ADP-ribosyl)ation (PARylation). The enrichment of DNA repair proteins at sites of DNA damage has been described as the formation of a biomolecular condensate. However, it remains unclear how exactly PARP1 and PARylation contribute to the formation and organization of DNA repair condensates. Using recombinant human single-strand repair proteins in vitro, we find that PARP1 readily forms viscous biomolecular condensates in a DNA-dependent manner and that this depends on its three zinc finger (ZnF) domains. PARylation enhances PARP1 condensation in a PAR chain length-dependent manner and increases the internal dynamics of PARP1 condensates. DNA and single-strand break repair proteins XRCC1, LigIII, Polβ, and FUS partition in PARP1 condensates, although in different patterns. While Polβ and FUS are both homogeneously mixed within PARP1 condensates, FUS enrichment is greatly enhanced upon PARylation whereas Polβ partitioning is not. XRCC1 and LigIII display an inhomogeneous organization within PARP1 condensates; their enrichment in these multiphase condensates is enhanced by PARylation. Functionally, PARP1 condensates concentrate short DNA fragments, which correlates with PARP1 clusters compacting long DNA and bridging DNA ends. Furthermore, the presence of PARP1 condensates significantly promotes DNA ligation upon PARylation. These findings provide insight into how PARP1 condensation and PARylation regulate the assembly and biochemical activities of DNA repair factors, which may inform on how PARPs function in DNA repair foci and other PAR-driven condensates in cells.
Collapse
Affiliation(s)
| | - Gaelen Moore
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Maria Tereshchenko
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Hongshan Zhang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA
| | - Michael L Nosella
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Morgan Dasovich
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
- Green Centre for Reproductive Biology Sciences, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - T Reid Alderson
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Institute of Structural Biology, Helmholtz Zentrum München, Munich, Bavaria, Germany
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Molecular Biology and Genetics, Department of Oncology, and Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA
| | - Julie D Forman-Kay
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
6
|
Chawla R, Tom JKA, Boyd T, Tu NH, Bai T, Grotjahn DA, Park D, Deniz AA, Racki LR. Reentrant DNA shells tune polyphosphate condensate size. Nat Commun 2024; 15:9258. [PMID: 39462120 PMCID: PMC11513989 DOI: 10.1038/s41467-024-53469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The inorganic biopolymer polyphosphate (polyP) occurs in all domains of life and affects myriad cellular processes. A longstanding observation is polyP's frequent proximity to chromatin, and, in many bacteria, its occurrence as magnesium (Mg2+)-enriched condensates embedded in the nucleoid region, particularly in response to stress. The physical basis of the interaction between polyP, DNA and Mg2+, and the resulting effects on the organization of the nucleoid and polyP condensates, remain poorly understood. Here, using a minimal system of polyP, Mg2+, and DNA, we find that DNA can form shells around polyP-Mg2+ condensates. These shells show reentrant behavior, that is, they form within a window of Mg2+ concentrations, representing a tunable architecture with potential relevance in other multicomponent condensates. This surface association tunes condensate size and DNA morphology in a manner dependent on DNA length and concentration, even at DNA concentrations orders of magnitude lower than found in the cell. Our work also highlights the remarkable capacity of two primordial inorganic species to organize DNA.
Collapse
Affiliation(s)
- Ravi Chawla
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Chakra Techworks Inc., San Diego, CA, USA
| | - Jenna K A Tom
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tumara Boyd
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Nicholas H Tu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tanxi Bai
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Danielle A Grotjahn
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Donghyun Park
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Lisa R Racki
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
7
|
Liu Y, Tuttle MD, Kostylev MA, Roseman GP, Zilm KW, Strittmatter SM. Cellular Prion Protein Conformational Shift after Liquid-Liquid Phase Separation Regulated by a Polymeric Antagonist and Mutations. J Am Chem Soc 2024; 146:27903-27914. [PMID: 39326869 PMCID: PMC11469297 DOI: 10.1021/jacs.4c10590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Liquid-liquid phase separation (LLPS) of intrinsically disordered proteins has been associated with neurodegenerative diseases, although direct mechanisms are poorly defined. Here, we report on a maturation process for the cellular prion protein (PrPC) that involves a conformational change after LLPS and is regulated by mutations and poly(4-styrenesulfonic acid-co-maleic acid) (PSCMA), a molecule that has been reported to rescue Alzheimer's disease-related cognitive deficits by antagonizing the interaction between PrPC and amyloid-β oligomers (Aβo). We show that PSCMA can induce reentrant LLPS of PrPC and lower the saturation concentration (Csat) of PrPC by 100-fold. Regardless of the induction method, PrPC molecules subsequently undergo a maturation process to restrict molecular motion in a more solid-like state. The PSCMA-induced LLPS of PrPC stabilizes the intermediate LLPS conformational state detected by NMR, though the final matured β-sheet-rich state of PrPC is indistinguishable between induction conditions. The disease-associated E200 K mutation of PrPC also accelerates maturation. This post-LLPS shift in protein conformation and dynamics is a possible mechanism of LLPS-induced neurodegeneration.
Collapse
Affiliation(s)
- Yangyi Liu
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
- Departments
of Neuroscience and Neurology, Yale School
of Medicine, 100 College Street, New Haven, Connecticut 06510, United States
| | - Marcus D. Tuttle
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Mikhail A. Kostylev
- Departments
of Neuroscience and Neurology, Yale School
of Medicine, 100 College Street, New Haven, Connecticut 06510, United States
| | - Graham P. Roseman
- Departments
of Neuroscience and Neurology, Yale School
of Medicine, 100 College Street, New Haven, Connecticut 06510, United States
| | - Kurt W. Zilm
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Stephen M. Strittmatter
- Departments
of Neuroscience and Neurology, Yale School
of Medicine, 100 College Street, New Haven, Connecticut 06510, United States
| |
Collapse
|
8
|
Henninger JE, Young RA. An RNA-centric view of transcription and genome organization. Mol Cell 2024; 84:3627-3643. [PMID: 39366351 PMCID: PMC11495847 DOI: 10.1016/j.molcel.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 10/06/2024]
Abstract
Foundational models of transcriptional regulation involve the assembly of protein complexes at DNA elements associated with specific genes. These assemblies, which can include transcription factors, cofactors, RNA polymerase, and various chromatin regulators, form dynamic spatial compartments that contribute to both gene regulation and local genome architecture. This DNA-protein-centric view has been modified with recent evidence that RNA molecules have important roles to play in gene regulation and genome structure. Here, we discuss evidence that gene regulation by RNA occurs at multiple levels that include assembly of transcriptional complexes and genome compartments, feedback regulation of active genes, silencing of genes, and control of protein kinases. We thus provide an RNA-centric view of transcriptional regulation that must reside alongside the more traditional DNA-protein-centric perspectives on gene regulation and genome architecture.
Collapse
Affiliation(s)
- Jonathan E Henninger
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
9
|
Balaj RV, Xue W, Bayati P, Mallory S, Zarzar LD. Dynamic Partitioning of Surfactants into Nonequilibrium Emulsion Droplets. J Am Chem Soc 2024; 146:26340-26350. [PMID: 39255056 DOI: 10.1021/jacs.4c08917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Characterizing the propensity of molecules to distribute between fluid phases is key to describing chemical concentrations in heterogeneous mixtures and the corresponding physiochemical properties of a system. Typically, partitioning is studied under equilibrium conditions. However, some mixtures form a single phase at equilibrium but exist in multiple phases when out-of-equilibrium, such as oil-in-water emulsion droplets stabilized by surfactants. Such droplets persist for extended times but ultimately disappear due to droplet dissolution and micellar solubilization. Consequently, equilibrium properties like oil-water partition coefficients may not accurately describe out-of-equilibrium droplets. This study investigates the partitioning of nonionic surfactants between shrinking microscale oil droplets and water under nonequilibrium conditions. Quantitative mass spectrometry is used to analyze the composition of individual microdroplets over time under conditions of varying surfactant composition, concentrations, and oil molecular structures. Within minutes, nonionic surfactants partition into oil droplets, reaching a nonequilibrium steady-state concentration that can be over an order of magnitude higher than that in the aqueous phase. As the droplets solubilize over hours, the surfactants are released back into water, leading to transiently high surfactant concentrations near the droplet-water interface and the formation of a microemulsion phase with a low interfacial tension. Introducing ionic surfactants that form mixed micelles with nonionic surfactants reduces partitioning. Based on this observation, stimuli-responsive ionic surfactants are used to modulate the nonionic surfactant partitioning and trigger reversible phase separation and mixing inside binary oil droplets. This study reveals generalizable nonequilibrium states and conditions experienced by solubilizing oil droplets that influence emulsion properties.
Collapse
Affiliation(s)
- Rebecca V Balaj
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Wangyang Xue
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Parvin Bayati
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Stewart Mallory
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Lauren D Zarzar
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
10
|
Xiao K, Yang Y, Xu X, Szymanowski JES, Zhou Y, Sigmon GE, Burns PC, Liu T. Coacervate Formation in Dilute Aqueous Solutions of Inorganic Molecular Clusters with Simple Divalent Countercations. Inorg Chem 2024; 63:15331-15339. [PMID: 39106045 DOI: 10.1021/acs.inorgchem.4c02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
We report a complex coacervate formed by a 2.5 nm-diameter, rigid uranyl peroxide molecular cluster (Li68K12(OH)20)[UO2(O2)OH]60, U6060-) and SrCl2 salt in dilute aqueous solutions, including its location in the phase diagram, composition, rheological features, and critical conditions for phase transitions. In this coacervate, the Sr2+ cations are a major building component, and the coacervate phase covers a substantial region of the phase diagram. This coacervate demonstrates features that differ from traditional coacervates formed by oppositely charged long-chain polyelectrolytes, especially in its formation mechanism, dehydration, enhancement of mechanical strength with increasing ionic strength, and the change of salt partition preference into the coacervate and supernatant phases with ionic strength.
Collapse
Affiliation(s)
- Kexing Xiao
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Yuqing Yang
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Xiaohan Xu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | | | - Yifan Zhou
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | | | | | - Tianbo Liu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
11
|
Chew PY, Joseph JA, Collepardo-Guevara R, Reinhardt A. Aromatic and arginine content drives multiphasic condensation of protein-RNA mixtures. Biophys J 2024; 123:1342-1355. [PMID: 37408305 PMCID: PMC11163273 DOI: 10.1016/j.bpj.2023.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023] Open
Abstract
Multiphasic architectures are found ubiquitously in biomolecular condensates and are thought to have important implications for the organization of multiple chemical reactions within the same compartment. Many of these multiphasic condensates contain RNA in addition to proteins. Here, we investigate the importance of different interactions in multiphasic condensates comprising two different proteins and RNA using computer simulations with a residue-resolution coarse-grained model of proteins and RNA. We find that in multilayered condensates containing RNA in both phases, protein-RNA interactions dominate, with aromatic residues and arginine forming the key stabilizing interactions. The total aromatic and arginine content of the two proteins must be appreciably different for distinct phases to form, and we show that this difference increases as the system is driven toward greater multiphasicity. Using the trends observed in the different interaction energies of this system, we demonstrate that we can also construct multilayered condensates with RNA preferentially concentrated in one phase. The "rules" identified can thus enable the design of synthetic multiphasic condensates to facilitate further study of their organization and function.
Collapse
Affiliation(s)
- Pin Yu Chew
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jerelle A Joseph
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | - Rosana Collepardo-Guevara
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; Department of Physics, University of Cambridge, Cambridge, United Kingdom; Department of Genetics, University of Cambridge, Cambridge, United Kingdom.
| | - Aleks Reinhardt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
12
|
Kathe NC, Novakovic M, Allain FHT. Buffer choice and pH strongly influence phase separation of SARS-CoV-2 nucleocapsid with RNA. Mol Biol Cell 2024; 35:ar73. [PMID: 38568799 PMCID: PMC11151101 DOI: 10.1091/mbc.e23-12-0500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024] Open
Abstract
The SARS-CoV-2 nucleocapsid (N) protein is crucial for virus replication and genome packaging. N protein forms biomolecular condensates both in vitro and in vivo in a process known as liquid-liquid phase separation (LLPS), but the exact factors regulating LLPS of N protein are not fully understood. Here, we show that pH and buffer choice have a profound impact on LLPS of N protein. The degree of phase separation is highly dependent on the pH of the solution, which is correlated with histidine protonation in N protein. Specifically, we demonstrate that protonation of H356 is essential for LLPS in phosphate buffer. Moreover, electrostatic interactions of buffer molecules with specific amino acid residues are able to alter the net charge of N protein, thus influencing its ability to undergo phase separation in the presence of RNA. Overall, these findings reveal that even subtle changes in amino acid protonation or surface charge caused by the pH and buffer system can strongly influence the LLPS behavior, and point to electrostatic interactions as the main driving forces of N protein phase separation. Further, our findings emphasize the importance of these experimental parameters when studying phase separation of biomolecules, especially in the context of viral infections where the intracellular milieu undergoes drastic changes and intracellular pH normally decreases.
Collapse
Affiliation(s)
- Nina C. Kathe
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Mihajlo Novakovic
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
13
|
Song J. Adenosine Triphosphate: The Primordial Molecule That Controls Protein Homeostasis and Shapes the Genome-Proteome Interface. Biomolecules 2024; 14:500. [PMID: 38672516 PMCID: PMC11048592 DOI: 10.3390/biom14040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Adenosine triphosphate (ATP) acts as the universal energy currency that drives various biological processes, while nucleic acids function to store and transmit genetic information for all living organisms. Liquid-liquid phase separation (LLPS) represents the common principle for the formation of membrane-less organelles (MLOs) composed of proteins rich in intrinsically disordered regions (IDRs) and nucleic acids. Currently, while IDRs are well recognized to facilitate LLPS through dynamic and multivalent interactions, the precise mechanisms by which ATP and nucleic acids affect LLPS still remain elusive. This review summarizes recent NMR results on the LLPS of human FUS, TDP-43, and the viral nucleocapsid (N) protein of SARS-CoV-2, as modulated by ATP and nucleic acids, revealing the following: (1) ATP binds to folded domains overlapping with nucleic-acid-binding interfaces; (2) ATP and nucleic acids interplay to biphasically modulate LLPS by competitively binding to overlapping pockets of folded domains and Arg/Lys within IDRs; (3) ATP energy-independently induces protein folding with the highest efficiency known so far. As ATP likely emerged in the prebiotic monomeric world, while LLPS represents a pivotal mechanism to concentrate and compartmentalize rare molecules for forming primordial cells, ATP appears to control protein homeostasis and shape genome-proteome interfaces throughout the evolutionary trajectory, from prebiotic origins to modern cells.
Collapse
Affiliation(s)
- Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
14
|
Khorsand FR, Uversky VN. Liquid-liquid phase separation as triggering factor of fibril formation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:143-182. [PMID: 38811080 DOI: 10.1016/bs.pmbts.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Liquid-liquid phase separation (LLPS) refers to the phenomenon, where a homogeneous solution spontaneously undergoes a transition into two or more immiscible phases. Through transient weak multivalent macromolecular interactions, a homogeneous solution can spontaneously separate into two phases: one rich in biomolecules and the other poor in biomolecules. Phase separation is believed to serve as the physicochemical foundation for the formation of membrane-less organelles (MLOs) and bio-molecular condensates within cells. Moreover, numerous biological processes depend on LLPS, such as transcription, immunological response, chromatin architecture, DNA damage response, stress granule formation, viral infection, etc. Abnormalities in phase separation can lead to diseases, such as cancer, neurodegeneration, and metabolic disorders. LLPS is regulated by various factors, such as concentration of molecules undergoing LLPS, salt concentration, pH, temperature, post-translational modifications, and molecular chaperones. Recent research on LLPS of biomolecules has progressed rapidly and led to the development of databases containing information pertaining to various aspects of the biomolecule separation analysis. However, more comprehensive research is still required to fully comprehend the specific molecular mechanisms and biological effects of LLPS.
Collapse
Affiliation(s)
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Pushchino, Moscow, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
15
|
Zheng H, Zhang H. More than a bystander: RNAs specify multifaceted behaviors of liquid-liquid phase-separated biomolecular condensates. Bioessays 2024; 46:e2300203. [PMID: 38175843 DOI: 10.1002/bies.202300203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
Cells contain a myriad of membraneless ribonucleoprotein (RNP) condensates with distinct compositions of proteins and RNAs. RNP condensates participate in different cellular activities, including RNA storage, mRNA translation or decay, stress response, etc. RNP condensates are assembled via liquid-liquid phase separation (LLPS) driven by multivalent interactions. Transition of RNP condensates into bodies with abnormal material properties, such as solid-like amyloid structures, is associated with the pathogenesis of various diseases. In this review, we focus on how RNAs regulate multiple aspects of RNP condensates, such as dynamic assembly and/or disassembly and biophysical properties. RNA properties - including concentration, sequence, length and structure - also determine the phase behaviors of RNP condensates. RNA is also involved in specifying autophagic degradation of RNP condensates. Unraveling the role of RNA in RNPs provides novel insights into pathological accumulation of RNPs in various diseases. This new understanding can potentially be harnessed to develop therapeutic strategies.
Collapse
Affiliation(s)
- Hui Zheng
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
16
|
Choi H, Hong Y, Najafi S, Kim SY, Shea J, Hwang DS, Choi YS. Spontaneous Transition of Spherical Coacervate to Vesicle-Like Compartment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305978. [PMID: 38063842 PMCID: PMC10870063 DOI: 10.1002/advs.202305978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/12/2023] [Indexed: 02/17/2024]
Abstract
Numerous biological systems contain vesicle-like biomolecular compartments without membranes, which contribute to diverse functions including gene regulation, stress response, signaling, and skin barrier formation. Coacervation, as a form of liquid-liquid phase separation (LLPS), is recognized as a representative precursor to the formation and assembly of membrane-less vesicle-like structures, although their formation mechanism remains unclear. In this study, a coacervation-driven membrane-less vesicle-like structure is constructed using two proteins, GG1234 (an anionic intrinsically disordered protein) and bhBMP-2 (a bioengineered human bone morphogenetic protein 2). GG1234 formed both simple coacervates by itself and complex coacervates with the relatively cationic bhBMP-2 under acidic conditions. Upon addition of dissolved bhBMP-2 to the simple coacervates of GG1234, a phase transition from spherical simple coacervates to vesicular condensates occurred via the interactions between GG1234 and bhBMP-2 on the surface of the highly viscoelastic GG1234 simple coacervates. Furthermore, the shell structure in the outer region of the GG1234/bhBMP-2 vesicular condensates exhibited gel-like properties, leading to the formation of multiphasic vesicle-like compartments. A potential mechanism is proposed for the formation of the membrane-less GG1234/bhBMP-2 vesicle-like compartments. This study provides a dynamic process underlying the formation of biomolecular multiphasic condensates, thereby enhancing the understanding of these biomolecular structures.
Collapse
Affiliation(s)
- Hyunsuk Choi
- Department of Chemical Engineering and Applied ChemistryChungnam National UniversityDaejeon34134South Korea
| | - Yuri Hong
- Division of Environmental Science and EngineeringPohang University of Science and Technology (POSTECH)Pohang37673South Korea
| | - Saeed Najafi
- Department of Chemistry and BiochemistryUniversity of CaliforniaSanta BarbaraCA93106USA
| | - Sun Young Kim
- Department of Chemical Engineering and Applied ChemistryChungnam National UniversityDaejeon34134South Korea
| | - Joan‐Emma Shea
- Department of Chemistry and BiochemistryUniversity of CaliforniaSanta BarbaraCA93106USA
| | - Dong Soo Hwang
- Division of Environmental Science and EngineeringPohang University of Science and Technology (POSTECH)Pohang37673South Korea
| | - Yoo Seong Choi
- Department of Chemical Engineering and Applied ChemistryChungnam National UniversityDaejeon34134South Korea
| |
Collapse
|
17
|
Sang CC, Moore G, Tereshchenko M, Nosella ML, Zhang H, Alderson TR, Dasovich M, Leung A, Finkelstein IJ, Forman-Kay JD, Lee HO. PARP1 condensates differentially partition DNA repair proteins and enhance DNA ligation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.575817. [PMID: 38328070 PMCID: PMC10849519 DOI: 10.1101/2024.01.20.575817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is one of the first responders to DNA damage and plays crucial roles in recruiting DNA repair proteins through its activity - poly(ADP-ribosyl)ation (PARylation). The enrichment of DNA repair proteins at sites of DNA damage has been described as the formation of a biomolecular condensate. However, it is not understood how PARP1 and PARylation contribute to the formation and organization of DNA repair condensates. Using recombinant human PARP1 in vitro, we find that PARP1 readily forms viscous biomolecular condensates in a DNA-dependent manner and that this depends on its three zinc finger (ZnF) domains. PARylation enhances PARP1 condensation in a PAR chain-length dependent manner and increases the internal dynamics of PARP1 condensates. DNA and single-strand break repair proteins XRCC1, LigIII, Polβ, and FUS partition in PARP1 condensates, although in different patterns. While Polβ and FUS are both homogeneously mixed within PARP1 condensates, FUS enrichment is greatly enhanced upon PARylation whereas Polβ partitioning is not. XRCC1 and LigIII display an inhomogeneous organization within PARP1 condensates; their enrichment in these multiphase condensates is enhanced by PARylation. Functionally, PARP1 condensates concentrate short DNA fragments and facilitate compaction of long DNA and bridge DNA ends. Furthermore, the presence of PARP1 condensates significantly promotes DNA ligation upon PARylation. These findings provide insight into how PARP1 condensation and PARylation regulate the assembly and biochemical activities in DNA repair foci, which may inform on how PARPs function in other PAR-driven condensates.
Collapse
Affiliation(s)
| | - Gaelen Moore
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Maria Tereshchenko
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Michael L. Nosella
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Hongshan Zhang
- Department of Molecular Biosciences, University of Texas at Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, TX, USA
| | - T. Reid Alderson
- Division of Molecular Biology and Biochemistry, Medizinische Universität Graz, Graz, 8010, Austria
| | - Morgan Dasovich
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anthony Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Department of Oncology, and Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ilya J. Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, TX, USA
| | - Julie D. Forman-Kay
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Hyun O. Lee
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
18
|
Sneideris T, Erkamp NA, Ausserwöger H, Saar KL, Welsh TJ, Qian D, Katsuya-Gaviria K, Johncock MLLY, Krainer G, Borodavka A, Knowles TPJ. Targeting nucleic acid phase transitions as a mechanism of action for antimicrobial peptides. Nat Commun 2023; 14:7170. [PMID: 37935659 PMCID: PMC10630377 DOI: 10.1038/s41467-023-42374-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
Antimicrobial peptides (AMPs), which combat bacterial infections by disrupting the bacterial cell membrane or interacting with intracellular targets, are naturally produced by a number of different organisms, and are increasingly also explored as therapeutics. However, the mechanisms by which AMPs act on intracellular targets are not well understood. Using machine learning-based sequence analysis, we identified a significant number of AMPs that have a strong tendency to form liquid-like condensates in the presence of nucleic acids through phase separation. We demonstrate that this phase separation propensity is linked to the effectiveness of the AMPs in inhibiting transcription and translation in vitro, as well as their ability to compact nucleic acids and form clusters with bacterial nucleic acids in bacterial cells. These results suggest that the AMP-driven compaction of nucleic acids and modulation of their phase transitions constitute a previously unrecognised mechanism by which AMPs exert their antibacterial effects. The development of antimicrobials that target nucleic acid phase transitions may become an attractive route to finding effective and long-lasting antibiotics.
Collapse
Affiliation(s)
- Tomas Sneideris
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Nadia A Erkamp
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Hannes Ausserwöger
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Kadi L Saar
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Timothy J Welsh
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Daoyuan Qian
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Kai Katsuya-Gaviria
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Margaret L L Y Johncock
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Georg Krainer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Alexander Borodavka
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK.
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Ave, Cambridge, UK.
| |
Collapse
|
19
|
Otis JP, Mowry KL. Hitting the mark: Localization of mRNA and biomolecular condensates in health and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1807. [PMID: 37393916 PMCID: PMC10758526 DOI: 10.1002/wrna.1807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023]
Abstract
Subcellular mRNA localization is critical to a multitude of biological processes such as development of cellular polarity, embryogenesis, tissue differentiation, protein complex formation, cell migration, and rapid responses to environmental stimuli and synaptic depolarization. Our understanding of the mechanisms of mRNA localization must now be revised to include formation and trafficking of biomolecular condensates, as several biomolecular condensates that transport and localize mRNA have recently been discovered. Disruptions in mRNA localization can have catastrophic effects on developmental processes and biomolecular condensate biology and have been shown to contribute to diverse diseases. A fundamental understanding of mRNA localization is essential to understanding how aberrations in this biology contribute the etiology of numerous cancers though support of cancer cell migration and biomolecular condensate dysregulation, as well as many neurodegenerative diseases, through misregulation of mRNA localization and biomolecular condensate biology. This article is categorized under: RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Jessica P. Otis
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States, 02912
| | - Kimberly L. Mowry
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States, 02912
| |
Collapse
|
20
|
Brown K, Chew PY, Ingersoll S, Espinosa JR, Aguirre A, Espinoza A, Wen J, Astatike K, Kutateladze TG, Collepardo-Guevara R, Ren X. Principles of assembly and regulation of condensates of Polycomb repressive complex 1 through phase separation. Cell Rep 2023; 42:113136. [PMID: 37756159 PMCID: PMC10862386 DOI: 10.1016/j.celrep.2023.113136] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/01/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Polycomb repressive complex 1 (PRC1) undergoes phase separation to form Polycomb condensates that are multi-component hubs for silencing Polycomb target genes. In this study, we demonstrate that formation and regulation of PRC1 condensates are consistent with the scaffold-client model, where the Chromobox 2 (CBX2) protein behaves as the scaffold while the other PRC1 proteins are clients. Such clients induce a re-entrant phase transition of CBX2 condensates. The composition of the multi-component PRC1 condensates (1) determines the dynamic properties of the scaffold protein; (2) selectively promotes the formation of CBX4-PRC1 condensates while dissolving condensates of CBX6-, CBX7-, and CBX8-PRC1; and (3) controls the enrichment of CBX4-, CBX7-, and CBX8-PRC1 in CBX2-PRC1 condensates and the exclusion of CBX6-PRC1 from CBX2-PRC1 condensates. Our findings uncover how multi-component PRC1 condensates are assembled via an intricate scaffold-client mechanism whereby the properties of the PRC1 condensates are sensitively regulated by its composition and stoichiometry.
Collapse
Affiliation(s)
- Kyle Brown
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Pin Yu Chew
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Steven Ingersoll
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Jorge R Espinosa
- Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
| | - Anne Aguirre
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Axel Espinoza
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Joey Wen
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Kalkidan Astatike
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Rosana Collepardo-Guevara
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK.
| | - Xiaojun Ren
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA; Department of Integrative Biology, University of Colorado Denver, Denver, CO 80217-3364, USA.
| |
Collapse
|
21
|
Liu X, Mokarizadeh AH, Narayanan A, Mane P, Pandit A, Tseng YM, Tsige M, Joy A. Multiphasic Coacervates Assembled by Hydrogen Bonding and Hydrophobic Interactions. J Am Chem Soc 2023; 145:23109-23120. [PMID: 37820374 DOI: 10.1021/jacs.3c06675] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Coacervation has emerged as a prevalent mechanism to compartmentalize biomolecules in living cells. Synthetic coacervates help in understanding the assembly process and mimic the functions of biological coacervates as simplified artificial systems. Though the molecular mechanism and mesoscopic properties of coacervates formed from charged coacervates have been well investigated, the details of the assembly and stabilization of nonionic coacervates remain largely unknown. Here, we describe a library of coacervate-forming polyesteramides and show that the water-tertiary amide bridging hydrogen bonds and hydrophobic interactions stabilize these nonionic, single-component coacervates. Analogous to intracellular biological coacervates, these coacervates exhibit "liquid-like" features with low viscosity and low interfacial energy, and form coacervates with as few as five repeating units. By controlling the temperature and engineering the molar ratio between hydrophobic interaction sites and bridging hydrogen bonding sites, we demonstrate the tuneability of the viscosity and interfacial tension of polyesteramide-based coacervates. Taking advantage of the differences in the mesoscopic properties of these nonionic coacervates, we engineered multiphasic coacervates with core-shell architectures similar to those of intracellular biological coacervates, such as nucleoli and stress granule-p-body complexes. The multiphasic structures produced from these synthetic nonionic polyesteramide coacervates may serve as a valuable tool for investigating physicochemical principles deployed by living cells to spatiotemporally control cargo partitioning, biochemical reaction rates, and interorganellar signal transport.
Collapse
Affiliation(s)
- Xinhao Liu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Abdol Hadi Mokarizadeh
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Amal Narayanan
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Prathamesh Mane
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Avanti Pandit
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Yen-Ming Tseng
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Mesfin Tsige
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Abraham Joy
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
22
|
Chowdhury A, Borgia A, Ghosh S, Sottini A, Mitra S, Eapen RS, Borgia MB, Yang T, Galvanetto N, Ivanović MT, Łukijańczuk P, Zhu R, Nettels D, Kundagrami A, Schuler B. Driving forces of the complex formation between highly charged disordered proteins. Proc Natl Acad Sci U S A 2023; 120:e2304036120. [PMID: 37796987 PMCID: PMC10576128 DOI: 10.1073/pnas.2304036120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/22/2023] [Indexed: 10/07/2023] Open
Abstract
Highly disordered complexes between oppositely charged intrinsically disordered proteins present a new paradigm of biomolecular interactions. Here, we investigate the driving forces of such interactions for the example of the highly positively charged linker histone H1 and its highly negatively charged chaperone, prothymosin α (ProTα). Temperature-dependent single-molecule Förster resonance energy transfer (FRET) experiments and isothermal titration calorimetry reveal ProTα-H1 binding to be enthalpically unfavorable, and salt-dependent affinity measurements suggest counterion release entropy to be an important thermodynamic driving force. Using single-molecule FRET, we also identify ternary complexes between ProTα and H1 in addition to the heterodimer at equilibrium and show how they contribute to the thermodynamics observed in ensemble experiments. Finally, we explain the observed thermodynamics quantitatively with a mean-field polyelectrolyte theory that treats counterion release explicitly. ProTα-H1 complex formation resembles the interactions between synthetic polyelectrolytes, and the underlying principles are likely to be of broad relevance for interactions between charged biomolecules in general.
Collapse
Affiliation(s)
- Aritra Chowdhury
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Alessandro Borgia
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Souradeep Ghosh
- Department of Physical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur741246, India
| | - Andrea Sottini
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Soumik Mitra
- Department of Physical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur741246, India
| | - Rohan S. Eapen
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | | | - Tianjin Yang
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Nicola Galvanetto
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
- Department of Physics, University of Zurich, Zurich8057, Switzerland
| | - Miloš T. Ivanović
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Paweł Łukijańczuk
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Ruijing Zhu
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Arindam Kundagrami
- Department of Physical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur741246, India
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
- Department of Physics, University of Zurich, Zurich8057, Switzerland
| |
Collapse
|
23
|
Chawla R, Tom JKA, Boyd T, Grotjahn DA, Park D, Deniz AA, Racki LR. Reentrant DNA shells tune polyphosphate condensate size. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557044. [PMID: 37745474 PMCID: PMC10515899 DOI: 10.1101/2023.09.13.557044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The ancient, inorganic biopolymer polyphosphate (polyP) occurs in all three domains of life and affects myriad cellular processes. An intriguing feature of polyP is its frequent proximity to chromatin, and in the case of many bacteria, its occurrence in the form of magnesium-enriched condensates embedded in the nucleoid, particularly in response to stress. The physical basis of the interaction between polyP and DNA, two fundamental anionic biopolymers, and the resulting effects on the organization of both the nucleoid and polyP condensates remain poorly understood. Given the essential role of magnesium ions in the coordination of polymeric phosphate species, we hypothesized that a minimal system of polyP, magnesium ions, and DNA (polyP-Mg2+-DNA) would capture key features of the interplay between the condensates and bacterial chromatin. We find that DNA can profoundly affect polyP-Mg2+ coacervation even at concentrations several orders of magnitude lower than found in the cell. The DNA forms shells around polyP-Mg2+ condensates and these shells show reentrant behavior, primarily forming in the concentration range close to polyP-Mg2+ charge neutralization. This surface association tunes both condensate size and DNA morphology in a manner dependent on DNA properties, including length and concentration. Our work identifies three components that could form the basis of a central and tunable interaction hub that interfaces with cellular interactors. These studies will inform future efforts to understand the basis of polyP granule composition and consolidation, as well as the potential capacity of these mesoscale assemblies to remodel chromatin in response to diverse stressors at different length and time scales.
Collapse
Affiliation(s)
| | | | - Tumara Boyd
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Danielle A. Grotjahn
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Donghyun Park
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Ashok A. Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Lisa R. Racki
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
24
|
Jang YH, Raspaud E, Lansac Y. DNA-protamine condensates under low salt conditions: molecular dynamics simulation with a simple coarse-grained model focusing on electrostatic interactions. NANOSCALE ADVANCES 2023; 5:4798-4808. [PMID: 37705794 PMCID: PMC10496769 DOI: 10.1039/d2na00847e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 08/14/2023] [Indexed: 09/15/2023]
Abstract
Protamine, a small, strongly positively-charged protein, plays a key role in achieving chromatin condensation inside sperm cells and is also involved in the formulation of nanoparticles for gene therapy and packaging of mRNA-based vaccines against viral infection and cancer. The detailed mechanisms of such condensations are still poorly understood especially under low salt conditions where electrostatic interaction predominates. Our previous study, with a refined coarse-grained model in full consideration of the long-range electrostatic interactions, has demonstrated the crucial role of electrostatic interaction in protamine-controlled reversible DNA condensation. Therefore, we herein pay our attention only to the electrostatic interaction and devise a coarser-grained bead-spring model representing the right linear charge density on protamine and DNA chains but treating other short-range interactions as simply as possible, which would be suitable for real-scale simulations. Effective pair potential calculations and large-scale molecular dynamics simulations using this extremely simple model reproduce the phase behaviour of DNA in a wide range of protamine concentrations under low salt conditions, again revealing the importance of the electrostatic interaction in this process and providing a detailed nanoscale picture of bundle formation mediated by a charge disproportionation mechanism. Our simulations also show that protamine length alters DNA overcharging and in turn redissolution thresholds of DNA condensates, revealing the important role played by entropies and correlated fluctuations of condensing agents and thus offering an additional opportunity to design tailored nanoparticles for gene therapy. The control mechanism of DNA-protamine condensates will also provide a better microscopic picture of biomolecular condensates, i.e., membraneless organelles arising from liquid-liquid phase separation, that are emerging as key principles of intracellular organization. Such condensates controlled by post-translational modification of protamine, in particular phosphorylation, or by variations in protamine length from species to species may also be responsible for the chromatin-nucleoplasm patterning observed during spermatogenesis in several vertebrate and invertebrate species.
Collapse
Affiliation(s)
- Yun Hee Jang
- GREMAN UMR 7347, Université de Tours, CNRS, INSA CVL 37200 Tours France
- Department of Energy Science and Engineering, DGIST Daegu 42988 Korea
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris-Saclay 91405 Orsay France
| | - Eric Raspaud
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris-Saclay 91405 Orsay France
| | - Yves Lansac
- GREMAN UMR 7347, Université de Tours, CNRS, INSA CVL 37200 Tours France
- Department of Energy Science and Engineering, DGIST Daegu 42988 Korea
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris-Saclay 91405 Orsay France
| |
Collapse
|
25
|
Ay S, Di Nunzio F. HIV-Induced CPSF6 Condensates. J Mol Biol 2023; 435:168094. [PMID: 37061085 DOI: 10.1016/j.jmb.2023.168094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/17/2023]
Abstract
Viruses are obligate parasites that rely on their host's cellular machinery for replication. To facilitate their replication cycle, many viruses have been shown to remodel the cellular architecture by inducing the formation of membraneless organelles (MLOs). Eukaryotic cells have evolved MLOs that are highly dynamic, self-organizing microenvironments that segregate biological processes and increase the efficiency of reactions by concentrating enzymes and substrates. In the context of viral infections, MLOs can be utilized by viruses to complete their replication cycle. This review focuses on the pathway used by the HIV-1 virus to remodel the nuclear landscape of its host, creating viral/host niches that enable efficient viral replication. Specifically, we discuss how the interaction between the HIV-1 capsid and the cellular factor CPSF6 triggers the formation of nuclear MLOs that support nuclear reverse transcription and viral integration in favored regions of the host chromatin. This review compiles current knowledge on the origin of nuclear HIV-MLOs and their role in early post-nuclear entry steps of the HIV-1 replication cycle.
Collapse
Affiliation(s)
- Selen Ay
- Advanced Molecular Virology Unit, Department of Virology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Francesca Di Nunzio
- Advanced Molecular Virology Unit, Department of Virology, Institut Pasteur, Université Paris Cité, 75015 Paris, France.
| |
Collapse
|
26
|
Patel CK, Rani C, Kumar R, Mukherjee TK. Macromolecular Crowding Promotes Re-entrant Liquid-Liquid Phase Separation of Human Serum Transferrin and Prevents Surface-Induced Fibrillation. Biomacromolecules 2023; 24:3917-3928. [PMID: 37503577 DOI: 10.1021/acs.biomac.3c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Protein aggregation and inactivation upon surface immobilization are major limiting factors for analytical applications in biotechnology-related fields. Protein immobilization on solid surfaces often requires multi-step surface passivation, which is time-consuming and inefficient. Herein, we have discovered that biomolecular condensates of biologically active human serum transferrin (Tf) can effectively prevent surface-induced fibrillation and preserve the native-like conformation of phase-separated Tf over a period of 30 days. It has been observed that macromolecular crowding promotes homotypic liquid-liquid phase separation (LLPS) of Tf through enthalpically driven multivalent hydrophobic interactions possibly via the involvement of its low-complexity domain (residues 3-20) containing hydrophobic amino acids. The present LLPS of Tf is a rare example of salt-mediated re-entrant phase separation in a broad range of salt concentrations (0-3 M) solely via the involvement of hydrophobic interactions. Notably, no liquid-to-solid-like phase transition has been observed over a period of 30 days, suggesting the intact conformational integrity of phase-separated Tf, as revealed from single droplet Raman, circular dichroism, and Fourier transform infrared spectroscopy measurements. More importantly, we discovered that the phase-separated condensates of Tf completely inhibit the surface-induced fibrillation of Tf, illustrating the protective role of these liquid-like condensates against denaturation and aggregation of biomolecules. The cell mimicking compact aqueous compartments of biomolecular condensates with a substantial amount of interfacial water preserve the structure and functionality of Tf. Our present study highlights an important functional aspect of biologically active protein condensates and may have wide-ranging implications in cell physiology and biotechnological applications.
Collapse
Affiliation(s)
- Chinmaya Kumar Patel
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Chanchal Rani
- Department of Physics, Indian Institute of Technology (IIT) Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Rajesh Kumar
- Department of Physics, Indian Institute of Technology (IIT) Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Tushar Kanti Mukherjee
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
27
|
Natarajan P, Shrinivas K, Chakraborty AK. A model for cis-regulation of transcriptional condensates and gene expression by proximal lncRNAs. Biophys J 2023; 122:2757-2772. [PMID: 37277993 PMCID: PMC10397817 DOI: 10.1016/j.bpj.2023.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/01/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) perform several important functions in cells including cis-regulation of transcription. Barring a few specific cases, the mechanisms underlying transcriptional regulation by lncRNAs remain poorly understood. Transcriptional proteins can form condensates via phase separation at protein-binding loci (BL) on the genome (e.g., enhancers and promoters). lncRNA-coding genes are present at loci in close genomic proximity of these BL and these RNAs can interact with transcriptional proteins via attractive heterotypic interactions mediated by their net charge. Motivated by these observations, we propose that lncRNAs can dynamically regulate transcription in cis via charge-based heterotypic interactions with transcriptional proteins in condensates. To study the consequences of this mechanism, we developed and studied a dynamical phase-field model. We find that proximal lncRNAs can promote condensate formation at the BL. Vicinally localized lncRNA can migrate to the BL to attract more protein because of favorable interaction free energies. However, increasing the distance beyond a threshold leads to a sharp decrease in protein recruitment to the BL. This finding could potentially explain why genomic distances between lncRNA-coding genes and protein-coding genes are conserved across metazoans. Finally, our model predicts that lncRNA transcription can fine-tune transcription from neighboring condensate-controlled genes, repressing transcription from highly expressed genes and enhancing transcription of genes expressed at a low level. This nonequilibrium effect can reconcile conflicting reports that lncRNAs can enhance or repress transcription from proximal genes.
Collapse
Affiliation(s)
- Pradeep Natarajan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Krishna Shrinivas
- NSF-Simons Center for Mathematical & Statistical Analysis of Biology, Harvard University, Cambridge, Massachusetts
| | - Arup K Chakraborty
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts; Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
28
|
Li C, Li Z, Wu Z, Lu H. Phase separation in gene transcription control. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1052-1063. [PMID: 37265348 PMCID: PMC10415188 DOI: 10.3724/abbs.2023099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Phase separation provides a general mechanism for the formation of biomolecular condensates, and it plays a vital role in regulating diverse cellular processes, including gene expression. Although the role of transcription factors and coactivators in regulating transcription has long been understood, how phase separation is involved in this process is just beginning to be explored. In this review, we highlight recent advance in elucidating the molecular mechanisms and functions of transcriptional condensates in gene expression control. We discuss the different condensates formed at each stage of the transcription cycle and how they are dynamically regulated in response to diverse cellular and extracellular cues that cause rapid changes in gene expression. Furthermore, we present new findings regarding the dysregulation of transcription condensates and their implications in human diseases.
Collapse
Affiliation(s)
- Chengyu Li
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Zhuo Li
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Zhibing Wu
- Department of OncologyAffiliated Zhejiang HospitalZhejiang University School of MedicineHangzhou310058China
| | - Huasong Lu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhou310058China
| |
Collapse
|
29
|
Modi N, Chen S, Adjei INA, Franco BL, Bishop KJM, Obermeyer AC. Designing negative feedback loops in enzymatic coacervate droplets. Chem Sci 2023; 14:4735-4744. [PMID: 37181760 PMCID: PMC10171067 DOI: 10.1039/d2sc03838b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 03/13/2023] [Indexed: 05/16/2023] Open
Abstract
Membraneless organelles within the living cell use phase separation of biomolecules coupled with enzymatic reactions to regulate cellular processes. The diverse functions of these biomolecular condensates motivate the pursuit of simpler in vitro models that exhibit primitive forms of self-regulation based on internal feedback mechanisms. Here, we investigate one such model based on complex coacervation of the enzyme catalase with an oppositely charge polyelectrolyte DEAE-dextran to form pH-responsive catalytic droplets. Upon addition of hydrogen peroxide "fuel", enzyme activity localized within the droplets causes a rapid increase in the pH. Under appropriate conditions, this reaction-induced pH change triggers coacervate dissolution owing to its pH-responsive phase behavior. Notably, this destabilizing effect of the enzymatic reaction on phase separation depends on droplet size owing to the diffusive delivery and removal of reaction components. Reaction-diffusion models informed by the experimental data show that larger drops support larger changes in the local pH thereby enhancing their dissolution relative to smaller droplets. Together, these results provide a basis for achieving droplet size control based on negative feedback between pH-dependent phase separation and pH-changing enzymatic reactions.
Collapse
Affiliation(s)
- Nisha Modi
- Department of Chemical Engineering, Columbia University New York USA
| | - Siwei Chen
- Department of Chemical Engineering, Columbia University New York USA
| | - Imelda N A Adjei
- Department of Biomedical Engineering, Columbia University New York USA
| | - Briana L Franco
- Department of Chemical Engineering, Columbia University New York USA
| | - Kyle J M Bishop
- Department of Chemical Engineering, Columbia University New York USA
| | - Allie C Obermeyer
- Department of Chemical Engineering, Columbia University New York USA
| |
Collapse
|
30
|
Najafi S, McCarty J, Delaney KT, Fredrickson GH, Shea JE. Field-Theoretic Simulation Method to Study the Liquid-Liquid Phase Separation of Polymers. Methods Mol Biol 2023; 2563:37-49. [PMID: 36227467 DOI: 10.1007/978-1-0716-2663-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Liquid-liquid phase separation (LLPS) is a process that results in the formation of a polymer-rich liquid phase coexisting with a polymer-depleted liquid phase. LLPS plays a critical role in the cell through the formation of membrane-less organelles, but it also has a number of biotechnical and biomedical applications such as drug confinement and its targeted delivery. In this chapter, we present a computational efficient methodology that uses field-theoretic simulations (FTS) with complex Langevin (CL) sampling to characterize polymer phase behavior and delineate the LLPS phase boundaries. This approach is a powerful complement to analytical and explicit-particle simulations, and it can serve to inform experimental LLPS studies. The strength of the method lies in its ability to properly sample a large ensemble of polymers in a saturated solution while including the effect of composition fluctuations on LLPS. We describe the approaches that can be used to accurately construct phase diagrams of a variety of molecularly designed polymers and illustrate the method by generating an approximation-free phase diagram for a classical symmetric diblock polyampholyte.
Collapse
Affiliation(s)
- Saeed Najafi
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
- Materials Research Laboratory, University of California, Santa Barbara, CA, USA
| | - James McCarty
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Kris T Delaney
- Materials Research Laboratory, University of California, Santa Barbara, CA, USA
| | - Glenn H Fredrickson
- Materials Research Laboratory, University of California, Santa Barbara, CA, USA
- Department of Chemical Engineering, University of California, Santa Barbara, CA, USA
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA.
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
31
|
Tom JA, Onuchic PL, Deniz AA. Short PolyA RNA Homopolymers Undergo Mg 2+-Mediated Kinetically Arrested Condensation. J Phys Chem B 2022; 126:9715-9725. [PMID: 36378781 PMCID: PMC9706566 DOI: 10.1021/acs.jpcb.2c05935] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RNA-RNA interactions have increasingly been recognized for their potential to shape the mesoscale properties of biomolecular condensates, influencing morphology, organization, and material state through networking interactions. While most studies have focused on networking via Watson-Crick base pairing interactions, previous work has suggested a potential for noncanonical RNA-RNA interactions to also give rise to condensation and alter overall material state. Here, we test the phase separation of short polyA RNA (polyrA) homopolymers. We discover and characterize the potential for short polyrA sequences to form RNA condensates at lower Mg2+ concentrations than previously observed, which appear as internally arrested droplets with slow polyrA diffusion despite continued fusion. Our work also reveals a negative cooperativity effect between the effects of Mg2+ and Na+ on polyrA condensation. Finally, we observe that polyrA sequences can act as promoters of phase separation in mixed sequences. These results demonstrate the potential for noncanonical interactions to act as networking stickers, leading to specific condensation properties inherent to polyrA composition and structure, with implications for the fundamental physical chemistry of the system and function of polyA RNA in biology.
Collapse
|
32
|
van Tartwijk FW, Kaminski CF. Protein Condensation, Cellular Organization, and Spatiotemporal Regulation of Cytoplasmic Properties. Adv Biol (Weinh) 2022; 6:e2101328. [PMID: 35796197 DOI: 10.1002/adbi.202101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/15/2022] [Indexed: 01/28/2023]
Abstract
The cytoplasm is an aqueous, highly crowded solution of active macromolecules. Its properties influence the behavior of proteins, including their folding, motion, and interactions. In particular, proteins in the cytoplasm can interact to form phase-separated assemblies, so-called biomolecular condensates. The interplay between cytoplasmic properties and protein condensation is critical in a number of functional contexts and is the subject of this review. The authors first describe how cytoplasmic properties can affect protein behavior, in particular condensate formation, and then describe the functional implications of this interplay in three cellular contexts, which exemplify how protein self-organization can be adapted to support certain physiological phenotypes. The authors then describe the formation of RNA-protein condensates in highly polarized cells such as neurons, where condensates play a critical role in the regulation of local protein synthesis, and describe how different stressors trigger extensive reorganization of the cytoplasm, both through signaling pathways and through direct stress-induced changes in cytoplasmic properties. Finally, the authors describe changes in protein behavior and cytoplasmic properties that may occur in extremophiles, in particular organisms that have adapted to inhabit environments of extreme temperature, and discuss the implications and functional importance of these changes.
Collapse
Affiliation(s)
- Francesca W van Tartwijk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| |
Collapse
|
33
|
Alemasova EE, Lavrik OI. A sePARate phase? Poly(ADP-ribose) versus RNA in the organization of biomolecular condensates. Nucleic Acids Res 2022; 50:10817-10838. [PMID: 36243979 PMCID: PMC9638928 DOI: 10.1093/nar/gkac866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/14/2022] [Accepted: 10/09/2022] [Indexed: 11/13/2022] Open
Abstract
Condensates are biomolecular assemblies that concentrate biomolecules without the help of membranes. They are morphologically highly versatile and may emerge via distinct mechanisms. Nucleic acids-DNA, RNA and poly(ADP-ribose) (PAR) play special roles in the process of condensate organization. These polymeric scaffolds provide multiple specific and nonspecific interactions during nucleation and 'development' of macromolecular assemblages. In this review, we focus on condensates formed with PAR. We discuss to what extent the literature supports the phase separation origin of these structures. Special attention is paid to similarities and differences between PAR and RNA in the process of dynamic restructuring of condensates during their functioning.
Collapse
Affiliation(s)
- Elizaveta E Alemasova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
34
|
Nair SJ, Suter T, Wang S, Yang L, Yang F, Rosenfeld MG. Transcriptional enhancers at 40: evolution of a viral DNA element to nuclear architectural structures. Trends Genet 2022; 38:1019-1047. [PMID: 35811173 PMCID: PMC9474616 DOI: 10.1016/j.tig.2022.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 02/08/2023]
Abstract
Gene regulation by transcriptional enhancers is the dominant mechanism driving cell type- and signal-specific transcriptional diversity in metazoans. However, over four decades since the original discovery, how enhancers operate in the nuclear space remains largely enigmatic. Recent multidisciplinary efforts combining real-time imaging, genome sequencing, and biophysical strategies provide insightful but conflicting models of enhancer-mediated gene control. Here, we review the discovery and progress in enhancer biology, emphasizing the recent findings that acutely activated enhancers assemble regulatory machinery as mesoscale architectural structures with distinct physical properties. These findings help formulate novel models that explain several mysterious features of the assembly of transcriptional enhancers and the mechanisms of spatial control of gene expression.
Collapse
Affiliation(s)
- Sreejith J Nair
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| | - Tom Suter
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan Wang
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Cellular and Molecular Medicine Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lu Yang
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Feng Yang
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
35
|
Ren CL, Shan Y, Zhang P, Ding HM, Ma YQ. Uncovering the molecular mechanism for dual effect of ATP on phase separation in FUS solution. SCIENCE ADVANCES 2022; 8:eabo7885. [PMID: 36103543 PMCID: PMC9473584 DOI: 10.1126/sciadv.abo7885] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/28/2022] [Indexed: 06/04/2023]
Abstract
Recent studies reported that adenosine triphosphate (ATP) could inhibit and enhance the phase separation in prion-like proteins. The molecular mechanism underlying such a puzzling phenomenon remains elusive. Here, taking the fused in sarcoma (FUS) solution as an example, we comprehensively reveal the underlying mechanism by which ATP regulates phase separation by combining the semiempirical quantum mechanical method, mean-field theory, and molecular simulation. At the microscopic level, ATP acts as a bivalent or trivalent binder; at the macroscopic level, the reentrant phase separation occurs in dilute FUS solutions, resulting from the ATP concentration-dependent binding ability under different conditions. The ATP concentration for dissolving the protein condensates is about 10 mM, agreeing with experimental results. Furthermore, from a dynamic point of view, the effect of ATP on phase separation is also nonmonotonic. This work provides a clear physical description of the microscopic interaction and macroscopic phase diagram of the ATP-modulated phase separation.
Collapse
Affiliation(s)
- Chun-Lai Ren
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yue Shan
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Pengfei Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
36
|
Mapping the per-residue surface electrostatic potential of CAPRIN1 along its phase-separation trajectory. Proc Natl Acad Sci U S A 2022; 119:e2210492119. [PMID: 36040869 PMCID: PMC9457416 DOI: 10.1073/pnas.2210492119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Electrostatic interactions and charge balance are important for the formation of biomolecular condensates involving proteins and nucleic acids. However, a detailed, atomistic picture of the charge distribution around proteins during the phase-separation process is lacking. Here, we use solution NMR spectroscopy to measure residue-specific near-surface electrostatic potentials (ϕENS) of the positively charged carboxyl-terminal intrinsically disordered 103 residues of CAPRIN1, an RNA-binding protein localized to membraneless organelles playing an important role in messenger RNA (mRNA) storage and translation. Measured ϕENS values have been mapped along the adenosine triphosphate (ATP)-induced phase-separation trajectory. In the absence of ATP, ϕENS values for the mixed state of CAPRIN1 are positive and large and progressively decrease as ATP is added. This is coupled to increasing interchain interactions, particularly between aromatic-rich and arginine-rich regions of the protein. Upon phase separation, CAPRIN1 molecules in the condensed phase are neutral (ϕENS [Formula: see text] 0 mV), with ∼five molecules of ATP associated with each CAPRIN1 chain. Increasing the ATP concentration further inverts the CAPRIN1 electrostatic potential, so that molecules become negatively charged, especially in aromatic-rich regions, leading to re-entrance into a mixed phase. Our results collectively show that a subtle balance between electrostatic repulsion and interchain attractive interactions regulates CAPRIN1 phase separation and provides insight into how nucleotides, such as ATP, can induce formation of and subsequently dissolve protein condensates.
Collapse
|
37
|
Abstract
Enhancers confer precise spatiotemporal patterns of gene expression in response to developmental and environmental stimuli. Over the last decade, the transcription of enhancer RNAs (eRNAs) – nascent RNAs transcribed from active enhancers – has emerged as a key factor regulating enhancer activity. eRNAs are relatively short-lived RNA species that are transcribed at very high rates but also quickly degraded. Nevertheless, eRNAs are deeply intertwined within enhancer regulatory networks and are implicated in a number of transcriptional control mechanisms. Enhancers show changes in function and sequence over evolutionary time, raising questions about the relationship between enhancer sequences and eRNA function. Moreover, the vast majority of single nucleotide polymorphisms associated with human complex diseases map to the non-coding genome, with causal disease variants enriched within enhancers. In this Primer, we survey the diverse roles played by eRNAs in enhancer-dependent gene expression, evaluating different models for eRNA function. We also explore questions surrounding the genetic conservation of enhancers and how this relates to eRNA function and dysfunction. Summary: This Primer evaluates the ideas that underpin developing models for eRNA function, exploring cases in which perturbed eRNA function contributes to disease.
Collapse
Affiliation(s)
- Laura J. Harrison
- Molecular and Cellular Biology, School of Biosciences, Sheffield Institute For Nucleic Acids, The University of Sheffield, Firth Court, Western Bank , Sheffield S10 2TN , UK
| | - Daniel Bose
- Molecular and Cellular Biology, School of Biosciences, Sheffield Institute For Nucleic Acids, The University of Sheffield, Firth Court, Western Bank , Sheffield S10 2TN , UK
| |
Collapse
|
38
|
Wei W, Bai L, Yan B, Meng W, Wang H, Zhai J, Si F, Zheng C. When liquid-liquid phase separation meets viral infections. Front Immunol 2022; 13:985622. [PMID: 36016945 PMCID: PMC9395683 DOI: 10.3389/fimmu.2022.985622] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Eukaryotic cells have both membranous and membraneless organelles. While the formation mechanism of membranous organelles is well understood, the formation mechanism of membraneless organelles remains unknown. Many biomolecules in the cytoplasm transition from the liquid phase to the agglutinated phase are known as liquid-liquid phase separation (LLPS). The biomolecular agglomerates’ physical properties enable them to function as dynamic compartments that respond to external pressures and stimuli. Scientists have gradually recognized the importance of phase separation during viral infections. LLPS provides a powerful new framework for understanding the viral life cycle from viral replication to evasion of host immune surveillance. As a result, this review focuses on the progress of LLPS research in viral infection and immune regulation to provide clues for antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Wenqiang Wei
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Lu Bai
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Bing Yan
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Weiquan Meng
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Hongju Wang
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Jingbo Zhai
- Medical College, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China
| | - Fusheng Si
- Institute of Animal Science and Veterinary Medicine, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Chunfu Zheng, ; Fusheng Si,
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
- *Correspondence: Chunfu Zheng, ; Fusheng Si,
| |
Collapse
|
39
|
Palaia I, Šarić A. Controlling cluster size in 2D phase-separating binary mixtures with specific interactions. J Chem Phys 2022; 156:194902. [PMID: 35597653 DOI: 10.1063/5.0087769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
By varying the concentration of molecules in the cytoplasm or on the membrane, cells can induce the formation of condensates and liquid droplets, similar to phase separation. Their thermodynamics, much studied, depends on the mutual interactions between microscopic constituents. Here, we focus on the kinetics and size control of 2D clusters, forming on membranes. Using molecular dynamics of patchy colloids, we model a system of two species of proteins, giving origin to specific heterotypic bonds. We find that concentrations, together with valence and bond strength, control both the size and the growth time rate of the clusters. In particular, if one species is in large excess, it gradually saturates the binding sites of the other species; the system then becomes kinetically arrested and cluster coarsening slows down or stops, thus yielding effective size selection. This phenomenology is observed both in solid and fluid clusters, which feature additional generic homotypic interactions and are reminiscent of the ones observed on biological membranes.
Collapse
Affiliation(s)
- Ivan Palaia
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Anđela Šarić
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
40
|
Ma Y, Li H, Gong Z, Yang S, Wang P, Tang C. Nucleobase Clustering Contributes to the Formation and Hollowing of Repeat-Expansion RNA Condensate. J Am Chem Soc 2022; 144:4716-4720. [PMID: 35179357 DOI: 10.1021/jacs.1c12085] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNA molecules with repeat expansion sequences can phase separate into gel-like condensate, which could lead to neurodegenerative diseases. Here, we report that, in the presence of Mg2+, RNA molecules containing 20× CAG repeats self-assemble into three morphologically distinct droplets. Using hyperspectral stimulated Raman microscopy, we show that RNA phase separation is accompanied by the clustering of nucleobases while forfeiting the canonical base-paired structure. As the RNA/Mg2+ ratio increases, the RNA droplets first expand and then shrink to adopt hollow vesicle-like structures. Significantly, for both large and vesicle-like RNA droplets, the nucleobase-clustered structure is more prominent at the rim, suggesting a continuously hardening process. This mechanism may be implicated in the general aging processes of RNA-containing membrane-less organelles.
Collapse
Affiliation(s)
- Yingxue Ma
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Haozheng Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhou Gong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Shuai Yang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Ping Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chun Tang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life Sciences, Center for Computational Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
41
|
Abyzov A, Blackledge M, Zweckstetter M. Conformational Dynamics of Intrinsically Disordered Proteins Regulate Biomolecular Condensate Chemistry. Chem Rev 2022; 122:6719-6748. [PMID: 35179885 PMCID: PMC8949871 DOI: 10.1021/acs.chemrev.1c00774] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Motions in biomolecules
are critical for biochemical reactions.
In cells, many biochemical reactions are executed inside of biomolecular
condensates formed by ultradynamic intrinsically disordered proteins.
A deep understanding of the conformational dynamics of intrinsically
disordered proteins in biomolecular condensates is therefore of utmost
importance but is complicated by diverse obstacles. Here we review
emerging data on the motions of intrinsically disordered proteins
inside of liquidlike condensates. We discuss how liquid–liquid
phase separation modulates internal motions across a wide range of
time and length scales. We further highlight the importance of intermolecular
interactions that not only drive liquid–liquid phase separation
but appear as key determinants for changes in biomolecular motions
and the aging of condensates in human diseases. The review provides
a framework for future studies to reveal the conformational dynamics
of intrinsically disordered proteins in the regulation of biomolecular
condensate chemistry.
Collapse
Affiliation(s)
- Anton Abyzov
- Translational Structural Biology Group, German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Martin Blackledge
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 38044 Grenoble, France.,CEA, DSV, IBS, 38044 Grenoble, France.,CNRS, IBS, 38044 Grenoble, France
| | - Markus Zweckstetter
- Translational Structural Biology Group, German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany.,Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
42
|
Tau liquid-liquid phase separation in neurodegenerative diseases. Trends Cell Biol 2022; 32:611-623. [PMID: 35181198 DOI: 10.1016/j.tcb.2022.01.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 12/19/2022]
Abstract
Aggregation of the microtubule-associated protein tau plays a major role in Alzheimer's disease and several other neurodegenerative disorders. An exciting recent development is the finding that, akin to some other proteins associated with neurodegenerative disease, tau has a high propensity to condensate via the mechanism of liquid-liquid phase separation (LLPS). Here, we discuss the evidence for tau LLPS in vitro, the molecular mechanisms of this reaction, and the role of post-translational modifications and pathogenic mutations in tau phase separation. We also discuss recent studies on tau LLPS in cells and the insights these studies provide regarding the link between LLPS and neurodegeneration in tauopathies.
Collapse
|
43
|
Scholl D, Deniz AA. Conformational Freedom and Topological Confinement of Proteins in Biomolecular Condensates. J Mol Biol 2022; 434:167348. [PMID: 34767801 PMCID: PMC8748313 DOI: 10.1016/j.jmb.2021.167348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 01/17/2023]
Abstract
The emergence of biomolecular condensation and liquid-liquid phase separation (LLPS) introduces a new layer of complexity into our understanding of cell and molecular biology. Evidence steadily grows indicating that condensates are not only implicated in physiology but also human disease. Macro- and mesoscale characterization of condensates as a whole have been instrumental in understanding their biological functions and dysfunctions. By contrast, the molecular level characterization of condensates and how condensates modify the properties of the molecules that constitute them thus far remain comparably scarce. In this minireview we summarize and discuss the findings of several recent studies that have focused on structure, dynamics, and interactions of proteins undergoing condensation. The mechanistic insights they provide help us identify the relevant properties nature and scientists can leverage to modulate the behavior of condensate systems. We also discuss the unique environment of the droplet surface and speculate on effects of topological constraints and physical exclusion on condensate properties.
Collapse
Affiliation(s)
- Daniel Scholl
- Department of Integrative and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, United States. https://twitter.com/@DanielScholl_be
| | - Ashok A Deniz
- Department of Integrative and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, United States.
| |
Collapse
|
44
|
Sharp PA, Chakraborty AK, Henninger JE, Young RA. RNA in formation and regulation of transcriptional condensates. RNA (NEW YORK, N.Y.) 2022; 28:52-57. [PMID: 34772787 PMCID: PMC8675292 DOI: 10.1261/rna.078997.121] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Macroscopic membraneless organelles containing RNA such as the nucleoli, germ granules, and the Cajal body have been known for decades. These biomolecular condensates are liquid-like bodies that can be formed by a phase transition. Recent evidence has revealed the presence of similar microscopic condensates associated with the transcription of genes. This brief article summarizes thoughts about the importance of condensates in the regulation of transcription and how RNA molecules, as components of such condensates, control the synthesis of RNA. Models and experimental data suggest that RNAs from enhancers facilitate the formation of a condensate that stabilizes the binding of transcription factors and accounts for a burst of transcription at the promoter. Termination of this burst is pictured as a nonequilibrium feedback loop where additional RNA destabilizes the condensate.
Collapse
Affiliation(s)
- Phillip A Sharp
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Arup K Chakraborty
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02139, USA
| | - Jonathan E Henninger
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Richard A Young
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
45
|
Higher-order structure of DNA determines its positioning in cell-size droplets under crowded conditions. PLoS One 2021; 16:e0261736. [PMID: 34937071 PMCID: PMC8694483 DOI: 10.1371/journal.pone.0261736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/08/2021] [Indexed: 11/19/2022] Open
Abstract
Background It is becoming clearer that living cells use water/water (w/w) phase separation to form membraneless organelles that exhibit various important biological functions. Currently, it is believed that the specific localization of biomacromolecules, including DNA, RNA and proteins in w/w microdroplets is closely related to their bio-activity. Despite the importance of this possible role of micro segregation, our understanding of the underlying physico-chemical mechanism is still unrefined. Further research to unveil the underlying mechanism of the localization of macromolecules in relation to their steric conformation in w/w microdroplets is needed. Principal findings Single-DNA observation of genome-size DNA (T4 GT7 bacteriophage DNA; 166kbp) by fluorescence microscopy revealed that DNAs are spontaneously incorporated into w/w microdroplets generated in a binary aqueous polymer solution with polyethylene glycol (PEG) and dextran (DEX). Interestingly, DNAs with elongated coil and shrunken conformations exhibit Brownian fluctuation inside the droplet. On the other hand, tightly packed compact globules, as well as assemblies of multiple condensed DNAs, tend to be located near the interface in the droplet. Conclusion and significance The specific localization of DNA molecules depending on their higher-order structure occurs in w/w microdroplet phase-separation solution under a binary aqueous polymer solution. Such an aqueous solution with polymers mimics the crowded conditions in living cells, where aqueous macromolecules exist at a level of 30–40 weight %. The specific positioning of DNA depending on its higher-order structure in w/w microdroplets is expected to provide novel insights into the mechanism and function of membraneless organelles and micro-segregated particles in living cells.
Collapse
|
46
|
Nussinov R, Tsai CJ, Jang H. Signaling in the crowded cell. Curr Opin Struct Biol 2021; 71:43-50. [PMID: 34218161 PMCID: PMC8648894 DOI: 10.1016/j.sbi.2021.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022]
Abstract
High-resolution technologies have clarified some of the principles underlying cellular actions. However, understanding how cells receive, communicate, and respond to signals is still challenging. Questions include how efficient regulation of assemblies, which execute cell actions at the nanoscales, transmits productively at micrometer scales, especially considering the crowded environment, and how the cell organization makes it happen. Here, we describe how cells can navigate long-range diffusion-controlled signaling via association/dissociation of spatially proximal entities. Dynamic clusters can span the cell, engaging in most signaling steps. Effective local concentration, allostery, scaffolding, affinities, and the chemical and mechanical properties of the macromolecules and the environment play key roles. Signaling strength and duration matter, for example, deciding if a mutation promotes cancer or developmental syndromes.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
47
|
Tom JK, Deniz AA. Complex dynamics of multicomponent biological coacervates. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Mukherjee A, de Izarra A, Degrouard J, Olive E, Maiti PK, Jang YH, Lansac Y. Protamine-Controlled Reversible DNA Packaging: A Molecular Glue. ACS NANO 2021; 15:13094-13104. [PMID: 34328301 DOI: 10.1021/acsnano.1c02337] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Packaging paternal genome into tiny sperm nuclei during spermatogenesis requires 106-fold compaction of DNA, corresponding to a 10-20 times higher compaction than in somatic cells. While such a high level of compaction involves protamine, a small arginine-rich basic protein, the precise mechanism at play is still unclear. Effective pair potential calculations and large-scale molecular dynamics simulations using a simple idealized model incorporating solely electrostatic and steric interactions clearly demonstrate a reversible control on DNA condensates formation by varying the protamine-to-DNA ratio. Microscopic states and condensate structures occurring in semidilute solutions of short DNA fragments are in good agreement with experimental phase diagram and cryoTEM observations. The reversible microscopic mechanisms induced by protamination modulation should provide valuable information to improve a mechanistic understanding of early and intermediate stages of spermatogenesis where an interplay between condensation and liquid-liquid phase separation triggered by protamine expression and post-translational regulation might occur. Moreover, recent vaccines to prevent virus infections and cancers using protamine as a packaging and depackaging agent might be fine-tuned for improved efficiency using a protamination control.
Collapse
Affiliation(s)
- Arnab Mukherjee
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France
| | - Ambroise de Izarra
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea
| | - Jeril Degrouard
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris-Saclay, 91405 Orsay, France
| | - Enrick Olive
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Indian Institute of Science, Bangalore 560012, India
| | - Yun Hee Jang
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea
| | - Yves Lansac
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
49
|
Aledo JC. The Role of Methionine Residues in the Regulation of Liquid-Liquid Phase Separation. Biomolecules 2021; 11:biom11081248. [PMID: 34439914 PMCID: PMC8394241 DOI: 10.3390/biom11081248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Membraneless organelles are non-stoichiometric supramolecular structures in the micron scale. These structures can be quickly assembled/disassembled in a regulated fashion in response to specific stimuli. Membraneless organelles contribute to the spatiotemporal compartmentalization of the cell, and they are involved in diverse cellular processes often, but not exclusively, related to RNA metabolism. Liquid-liquid phase separation, a reversible event involving demixing into two distinct liquid phases, provides a physical framework to gain insights concerning the molecular forces underlying the process and how they can be tuned according to the cellular needs. Proteins able to undergo phase separation usually present a modular architecture, which favors a multivalency-driven demixing. We discuss the role of low complexity regions in establishing networks of intra- and intermolecular interactions that collectively control the phase regime. Post-translational modifications of the residues present in these domains provide a convenient strategy to reshape the residue-residue interaction networks that determine the dynamics of phase separation. Focus will be placed on those proteins with low complexity domains exhibiting a biased composition towards the amino acid methionine and the prominent role that reversible methionine sulfoxidation plays in the assembly/disassembly of biomolecular condensates.
Collapse
Affiliation(s)
- Juan Carlos Aledo
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
50
|
Ahmed J, Meszaros A, Lazar T, Tompa P. DNA-binding domain as the minimal region driving RNA-dependent liquid-liquid phase separation of androgen receptor. Protein Sci 2021; 30:1380-1392. [PMID: 33938068 PMCID: PMC8197421 DOI: 10.1002/pro.4100] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/19/2022]
Abstract
Androgen receptor (AR) is a nuclear hormone receptor that regulates the transcription of genes involved in the development of testis, prostate and the nervous system. Misregulation of AR is a major driver of prostate cancer (PC). The primary agonist of full-length AR is testosterone, whereas its splice variants, for example, AR-v7 implicated in cancer may lack a ligand-binding domain and are thus devoid of proper hormonal control. Recently, it was demonstrated that full-length AR, but not AR-v7, can undergo liquid-liquid phase separation (LLPS) in a cellular model of PC. In a detailed bioinformatics and deletion analysis, we have analyzed which AR region is responsible for LLPS. We found that its DNA-binding domain (DBD) can bind RNA and can undergo RNA-dependent LLPS. RNA regulates its LLPS in a reentrant manner, that is, it has an inhibitory effect at higher concentrations. As RNA binds DBD more weakly than DNA, while both RNA and DNA localizes into AR droplets, its LLPS depends on the relative concentration of the two nucleic acids. The region immediately preceding DBD has no effect on the LLPS propensity of AR, whereas the functional part of its long N-terminal disordered transactivation domain termed activation function 1 (AF1) inhibits AR-v7 phase separation. We suggest that the resulting diminished LLPS tendency of AR-v7 may contribute to the misregulation of the transcription function of AR in prostate cancer.
Collapse
Affiliation(s)
- Junaid Ahmed
- VIB‐VUB Center for Structural Biology, Vlaams Instituut voor BiotechnologyBrusselsBelgium
- Structural Biology Brussels (SBB), Bioengineering Sciences DepartmentVrije Universiteit Brussel (VUB)BrusselsBelgium
| | - Attila Meszaros
- VIB‐VUB Center for Structural Biology, Vlaams Instituut voor BiotechnologyBrusselsBelgium
- Structural Biology Brussels (SBB), Bioengineering Sciences DepartmentVrije Universiteit Brussel (VUB)BrusselsBelgium
| | - Tamas Lazar
- VIB‐VUB Center for Structural Biology, Vlaams Instituut voor BiotechnologyBrusselsBelgium
- Structural Biology Brussels (SBB), Bioengineering Sciences DepartmentVrije Universiteit Brussel (VUB)BrusselsBelgium
| | - Peter Tompa
- VIB‐VUB Center for Structural Biology, Vlaams Instituut voor BiotechnologyBrusselsBelgium
- Structural Biology Brussels (SBB), Bioengineering Sciences DepartmentVrije Universiteit Brussel (VUB)BrusselsBelgium
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| |
Collapse
|