1
|
Usher ET, Fossat MJ, Holehouse AS. Phosphorylation of disordered proteins tunes local and global intramolecular interactions. Biophys J 2024; 123:4082-4096. [PMID: 39539017 PMCID: PMC11628823 DOI: 10.1016/j.bpj.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Protein post-translational modifications, such as phosphorylation, are important regulatory signals for diverse cellular functions. In particular, intrinsically disordered protein regions (IDRs) are subject to phosphorylation as a means to modulate their interactions and functions. Toward understanding the relationship between phosphorylation in IDRs and specific functional outcomes, we must consider how phosphorylation affects the IDR conformational ensemble. Various experimental techniques are suited to interrogate the features of IDR ensembles; molecular simulations can provide complementary insights and even illuminate ensemble features that may be experimentally inaccessible. Therefore, we sought to expand the tools available to study phosphorylated IDRs by all-atom Monte Carlo simulations. To this end, we implemented parameters for phosphoserine (pSer) and phosphothreonine (pThr) into the OPLS version of the continuum solvent model, ABSINTH, and assessed their performance in all-atom simulations compared with published findings. We simulated short (<20 residues) and long (>80 residues) phospho-IDRs that, collectively, survey both local and global phosphorylation-induced changes to the ensemble. Our simulations of four well-studied phospho-IDRs show near-quantitative agreement with published findings for these systems via metrics including changes to radius of gyration, transient helicity, and persistence length. We also leveraged the inherent advantage of sequence control in molecular simulations to explore the conformational effects of diverse combinations of phospho-sites in two multiphosphorylated IDRs. Our results support and expand on previous observations that connect phosphorylation to changes in the IDR conformational ensemble. Herein, we describe phosphorylation as a means to alter sequence chemistry, net charge and charge patterning, and intramolecular interactions, which can collectively modulate the local and global IDR ensemble features.
Collapse
Affiliation(s)
- Emery T Usher
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, Missouri
| | - Martin J Fossat
- Department of Biological Physics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, Missouri.
| |
Collapse
|
2
|
Ding EA, Yokokura TJ, Wang R, Kumar S. Dissecting neurofilament tail sequence-phosphorylation-structure relationships with multicomponent reconstituted protein brushes. Proc Natl Acad Sci U S A 2024; 121:e2410109121. [PMID: 39602260 PMCID: PMC11626179 DOI: 10.1073/pnas.2410109121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Neurofilaments (NFs) are multisubunit, bottlebrush-shaped intermediate filaments abundant in the axonal cytoskeleton. Each NF subunit contains a long intrinsically disordered tail domain, which protrudes from the NF core to form a "brush" surrounding each NF. Precisely how the tails' variable charge patterns and repetitive phosphorylation sites mediate their conformation within the brush remains an open question in axonal biology. We address this problem by grafting recombinant NF tail protein constructs NF-Light, -Medium, and -Heavy (NFL, NFM, and NFH) to surfaces, yielding protein brushes of defined stoichiometry that can be phosphorylated in vitro. Atomic force microscopy measurements reveal that brush height depends on composition monotonically but not always linearly for binary NFL:NFM or NFL:NFH systems, and that NFM-based brushes are highly extended, while brushes incorporating the much larger NFH are surprisingly compact even after multisite phosphorylation. Complementary self-consistent field theory (SCFT) predicts multilayer brush morphologies for NFM and phosphorylated NFH brushes. Further experiments and SCFT analysis with designed mutants reveal that N-terminal negative charges in the NFH tail repel phosphorylated residues to generate the multilayer morphology, while the C-terminal charge-neutral region contributes to multilayer brush morphology but not total brush height. Charge-shuffled NFM variants show that charge segregation promotes brush collapse near physiological ionic strengths. Collectively, this study supports a role for NFM in establishing a dynamic range for NF brush conformation, lending insight into previous in vitro and in vivo findings. More broadly, this work establishes a platform for dissecting contributions of disordered protein sequence to conformation at interfaces.
Collapse
Affiliation(s)
- Erika A. Ding
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
| | - Takashi J. Yokokura
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
| | - Rui Wang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Sanjay Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
- Department of Bioengineering, University of California, Berkeley, CA94720
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA94158
| |
Collapse
|
3
|
Usher ET, Fossat MJ, Holehouse AS. Phosphorylation of disordered proteins tunes local and global intramolecular interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598315. [PMID: 38915510 PMCID: PMC11195077 DOI: 10.1101/2024.06.10.598315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Protein post-translational modifications, such as phosphorylation, are important regulatory signals for diverse cellular functions. In particular, intrinsically disordered protein regions (IDRs) are subject to phosphorylation as a means to modulate their interactions and functions. Toward understanding the relationship between phosphorylation in IDRs and specific functional outcomes, we must consider how phosphorylation affects the IDR conformational ensemble. Various experimental techniques are suited to interrogate the features of IDR ensembles; molecular simulations can provide complementary insights and even illuminate ensemble features that may be experimentally inaccessible. Therefore, we sought to expand the tools available to study phosphorylated IDRs by all-atom Monte Carlo simulations. To this end, we implemented parameters for phosphoserine (pSer) and phosphothreonine (pThr) into the OPLS version of the continuum solvent model, ABSINTH, and assessed their performance in all-atom simulations compared to published findings. We simulated short (< 20 residues) and long (> 80 residues) phospho-IDRs that, collectively, survey both local and global phosphorylation-induced changes to the ensemble. Our simulations of four well-studied phospho-IDRs show near-quantitative agreement with published findings for these systems via metrics including changes to radius of gyration, transient helicity, and persistence length. We also leveraged the inherent advantage of sequence control in molecular simulations to explore the conformational effects of diverse combinations of phospho-sites in two multi-phosphorylated IDRs. Our results support and expand on prior observations that connect phosphorylation to changes in the IDR conformational ensemble. Herein, we describe phosphorylation as a means to alter sequence chemistry, net charge and charge patterning, and intramolecular interactions, which can collectively modulate the local and global IDR ensemble features.
Collapse
Affiliation(s)
- Emery T. Usher
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA
| | - Martin J. Fossat
- Department of Biological Physics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
4
|
Ding EA, Kumar S. Neurofilament Biophysics: From Structure to Biomechanics. Mol Biol Cell 2024; 35:re1. [PMID: 38598299 PMCID: PMC11151108 DOI: 10.1091/mbc.e23-11-0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Neurofilaments (NFs) are multisubunit, neuron-specific intermediate filaments consisting of a 10-nm diameter filament "core" surrounded by a layer of long intrinsically disordered protein (IDP) "tails." NFs are thought to regulate axonal caliber during development and then stabilize the mature axon, with NF subunit misregulation, mutation, and aggregation featuring prominently in multiple neurological diseases. The field's understanding of NF structure, mechanics, and function has been deeply informed by a rich variety of biochemical, cell biological, and mouse genetic studies spanning more than four decades. These studies have contributed much to our collective understanding of NF function in axonal physiology and disease. In recent years, however, there has been a resurgence of interest in NF subunit proteins in two new contexts: as potential blood- and cerebrospinal fluid-based biomarkers of neuronal damage, and as model IDPs with intriguing properties. Here, we review established principles and more recent discoveries in NF structure and function. Where possible, we place these findings in the context of biophysics of NF assembly, interaction, and contributions to axonal mechanics.
Collapse
Affiliation(s)
- Erika A. Ding
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720
| | - Sanjay Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158
| |
Collapse
|
5
|
Volkova A, Semenyuk P. Tyrosine phosphorylation of recombinant hirudin increases affinity to thrombin and antithrombotic activity. Proteins 2024; 92:329-342. [PMID: 37860993 DOI: 10.1002/prot.26616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/22/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Thrombin is one of the key enzymes of the blood coagulation system and a promising target for the development of anticoagulants. One of the most specific natural thrombin inhibitors is hirudin, contained in the salivary glands of medicinal leeches. The medicinal use of recombinant hirudin is limited because of the lack of sulfation on Tyr63, resulting in a 10-fold decrease in activity compared to native (sulfated) hirudin. In the present work, a set of hirudin derivatives was tested for affinity to thrombin: phospho-Tyr63, Tyr63(carboxymethyl)Phe, and Tyr63Glu mutants, which mimic Tyr63 sulfation and Gln65Glu mutant and lysine-succinylated hirudin, which enhance the overall negative charge of hirudin, as well as sulfo-hirudin and desulfo-hirudin as references. Using steered molecular dynamics simulations with subsequent umbrella sampling, phospho-hirudin was shown to exhibit the highest affinity to thrombin among all hirudin analogs, including native sulfo-hirudin; succinylated hirudin was also prospective. Phospho-hirudin exhibited the highest antithrombotic activity in in vitro assay in human plasma. Taking into account the modern methods for obtaining phospho-hirudin and succinylated hirudin, they are prospective as anticoagulants in clinical practice.
Collapse
Affiliation(s)
- Alina Volkova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Pavel Semenyuk
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
6
|
Yokokura TJ, Duan C, Ding EA, Kumar S, Wang R. Effects of Ionic Strength on the Morphology, Scattering, and Mechanical Response of Neurofilament-Derived Protein Brushes. Biomacromolecules 2024; 25:328-337. [PMID: 38052005 PMCID: PMC10872360 DOI: 10.1021/acs.biomac.3c01002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Protein brushes not only play a key role in the functionality of neurofilaments but also have wide applications in biomedical materials. Here, we investigate the effect of ionic strength on the morphology of protein brushes using continuous-space self-consistent field theory. A coarse-grained multiblock charged macromolecular model is developed to capture the chemical identity of amino acid sequences. For neurofilament heavy (NFH) brushes at pH 2.4, we predict three morphological regimes: swollen brushes, condensed brushes, and coexisting brushes, which consist of both a dense inner layer and a diffuse outer layer. The brush height predicted by our theory is in good agreement with the experimental data for a wide range of ionic strengths. The dramatic height decrease is a result of the electrostatic screening-induced transition from the overlapping state to the isolated state of the coexisting brushes. We also studied the evolution of the scattering and mechanical responses accompanying the morphological change. The oscillation in the reflectivity spectra characterizes the existence and microstructure of the inner condensed layer, whereas the shoulder in the force spectra signifies a swollen morphology.
Collapse
Affiliation(s)
- Takashi J Yokokura
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Chao Duan
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Erika A Ding
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Sanjay Kumar
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Rui Wang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Zhang Q, Fan W, Sun J, Zhang J, Yin Y. Review of Neurofilaments as Biomarkers in Sepsis-Associated Encephalopathy. J Inflamm Res 2023; 16:161-168. [PMID: 36660377 PMCID: PMC9843472 DOI: 10.2147/jir.s391325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/24/2022] [Indexed: 01/12/2023] Open
Abstract
Sepsis is a common and fatal disease, especially in critically ill patients. Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction with acute altered consciousness, permanent cognitive impairment, and even coma, accompanied by sepsis, without direct central nervous system infection. When managing SAE, early identification and quantification of axonal damage facilitate faster and more accurate diagnosis and prognosis. Although no specific markers for SAE have been identified, several biomarkers have been proposed. Neurofilament light chain (NFL) is a highly expressed cytoskeletal component of neurofilament (NF) proteins that can be found in blood and cerebrospinal fluid (CSF) after exposure to axonal injury. NFs can be used as diagnostic and prognostic biomarkers for sepsis-related brain injury. Phosphorylation of NFs contributes to the maturation and stabilization of cytoskeletal structures, especially axons, and facilitates axonal transport, including mitochondrial transport and energy transport. The stability of NF proteins can be assessed by monitoring the expression of NF genes. Furthermore, phosphorylation levels of NFs can be monitored to determine mitochondrial axonal transport associated with cellular energy metabolism at distal axons to assess progression during SAE treatment. This paper provides new insights into the biological characteristics, detection techniques, and scientific achievements of NFs, and discusses the underlying mechanisms and future research directions of NFs in SAE.
Collapse
Affiliation(s)
- Qiulei Zhang
- Department of Emergency and Critical Care, The Second Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Weixuan Fan
- Department of Emergency and Critical Care, The Second Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Jian Sun
- Department of Emergency and Critical Care, The Second Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Jingxiao Zhang
- Department of Emergency and Critical Care, The Second Hospital of Jilin University, Changchun, 130021, People’s Republic of China,Correspondence: Jingxiao Zhang; Yongjie Yin, Tel +86-13756314698; +86-13596103459, Email ;
| | - Yongjie Yin
- Department of Emergency and Critical Care, The Second Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
8
|
Hossain MS, Ji J, Lynch CJ, Guzman M, Nangia S, Mozhdehi D. Adaptive Recombinant Nanoworms from Genetically Encodable Star Amphiphiles. Biomacromolecules 2022; 23:863-876. [PMID: 34942072 PMCID: PMC8924867 DOI: 10.1021/acs.biomac.1c01314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/09/2021] [Indexed: 02/04/2023]
Abstract
Recombinant nanoworms are promising candidates for materials and biomedical applications ranging from the templated synthesis of nanomaterials to multivalent display of bioactive peptides and targeted delivery of theranostic agents. However, molecular design principles to synthesize these assemblies (which are thermodynamically favorable only in a narrow region of the phase diagram) remain unclear. To advance the identification of design principles for the programmable assembly of proteins into well-defined nanoworms and to broaden their stability regimes, we were inspired by the ability of topologically engineered synthetic macromolecules to acess rare mesophases. To test this design principle in biomacromolecular assemblies, we used post-translational modifications (PTMs) to generate lipidated proteins with precise topological and compositional asymmetry. Using an integrated experimental and computational approach, we show that the material properties (thermoresponse and nanoscale assembly) of these hybrid amphiphiles are modulated by their amphiphilic architecture. Importantly, we demonstrate that the judicious choice of amphiphilic architecture can be used to program the assembly of proteins into adaptive nanoworms, which undergo a morphological transition (sphere-to-nanoworms) in response to temperature stimuli.
Collapse
Affiliation(s)
- Md Shahadat Hossain
- Department
of Chemistry, Syracuse University, 1-014 Center for Science and Technology, 111 College Place, Syracuse, New York 13244, United
States
| | - Jingjing Ji
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United
States
| | - Christopher J. Lynch
- Department
of Chemistry, Syracuse University, 1-014 Center for Science and Technology, 111 College Place, Syracuse, New York 13244, United
States
| | - Miguel Guzman
- Department
of Chemistry, Syracuse University, 1-014 Center for Science and Technology, 111 College Place, Syracuse, New York 13244, United
States
| | - Shikha Nangia
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United
States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Davoud Mozhdehi
- Department
of Chemistry, Syracuse University, 1-014 Center for Science and Technology, 111 College Place, Syracuse, New York 13244, United
States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
9
|
Abstract
Phosphorylation is a reversible, enzyme-controlled posttranslational process affecting approximately one-third of all proteins in eukaryotic cells at any given time. Any deviation in the degree and/or site of phosphorylation leads to an abnormal conformation of proteins, resulting in a decline or loss of their function. Knowledge of phosphorylation-related pathways is essential for understanding the understanding of the disease pathogenesis and for the design of new therapeutic strategies. Recent availability of various kinases at an affordable price differs in activity, specificity, and stability and provides the opportunity of studying and modulating this reaction in vitro. We can exploit this knowledge for other applications. There is an enormous potential to produce fully decorated and active recombinant proteins, either for biomedical or cosmetic applications. Closely related is the possibility to exploit current achievements and develop new safe and efficacious vaccines, drugs, and immunomodulators. In this review, we outlined the current enzyme-based possibilities for in vitro phosphorylation of peptides and recombinant proteins and the added value that immobilized kinases provide.
Collapse
|
10
|
Zeng X, Liu C, Fossat MJ, Ren P, Chilkoti A, Pappu RV. Design of intrinsically disordered proteins that undergo phase transitions with lower critical solution temperatures. APL MATERIALS 2021; 9:021119. [PMID: 38362050 PMCID: PMC10868716 DOI: 10.1063/5.0037438] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Many naturally occurring elastomers are intrinsically disordered proteins (IDPs) built up of repeating units and they can demonstrate two types of thermoresponsive phase behavior. Systems characterized by lower critical solution temperatures (LCST) undergo phase separation above the LCST whereas systems characterized by upper critical solution temperatures (UCST) undergo phase separation below the UCST. There is congruence between thermoresponsive coil-globule transitions and phase behavior whereby the theta temperatures above or below which the IDPs transition from coils to globules serve as useful proxies for the LCST / UCST values. This implies that one can design sequences with desired values for the theta temperature with either increasing or decreasing radii of gyration above the theta temperature. Here, we show that the Monte Carlo simulations performed in the so-called intrinsic solvation (IS) limit version of the temperature-dependent the ABSINTH (self-Assembly of Biomolecules Studied by an Implicit, Novel, Tunable Hamiltonian) implicit solvation model, yields a useful heuristic for discriminating between sequences with known LCST versus UCST phase behavior. Accordingly, we use this heuristic in a supervised approach, integrate it with a genetic algorithm, combine this with IS limit simulations, and demonstrate that novel sequences can be designed with LCST phase behavior. These calculations are aided by direct estimates of temperature dependent free energies of solvation for model compounds that are derived using the polarizable AMOEBA (atomic multipole optimized energetics for biomolecular applications) forcefield. To demonstrate the validity of our designs, we calculate coil-globule transition profiles using the full ABSINTH model and combine these with Gaussian Cluster Theory calculations to establish the LCST phase behavior of designed IDPs.
Collapse
Affiliation(s)
- Xiangze Zeng
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Chengwen Liu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Martin J. Fossat
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
11
|
Relevance of Electrostatic Charges in Compactness, Aggregation, and Phase Separation of Intrinsically Disordered Proteins. Int J Mol Sci 2020; 21:ijms21176208. [PMID: 32867340 PMCID: PMC7503639 DOI: 10.3390/ijms21176208] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 12/20/2022] Open
Abstract
The abundance of intrinsic disorder in the protein realm and its role in a variety of physiological and pathological cellular events have strengthened the interest of the scientific community in understanding the structural and dynamical properties of intrinsically disordered proteins (IDPs) and regions (IDRs). Attempts at rationalizing the general principles underlying both conformational properties and transitions of IDPs/IDRs must consider the abundance of charged residues (Asp, Glu, Lys, and Arg) that typifies these proteins, rendering them assimilable to polyampholytes or polyelectrolytes. Their conformation strongly depends on both the charge density and distribution along the sequence (i.e., charge decoration) as highlighted by recent experimental and theoretical studies that have introduced novel descriptors. Published experimental data are revisited herein in the frame of this formalism, in a new and possibly unitary perspective. The physicochemical properties most directly affected by charge density and distribution are compaction and solubility, which can be described in a relatively simplified way by tools of polymer physics. Dissecting factors controlling such properties could contribute to better understanding complex biological phenomena, such as fibrillation and phase separation. Furthermore, this knowledge is expected to have enormous practical implications for the design, synthesis, and exploitation of bio-derived materials and the control of natural biological processes.
Collapse
|
12
|
Liu Y, Qiu N, Geng F, Sun H, Wang H, Meng Y. Quantitative phosphoproteomic analysis of fertilized egg derived from Tibetan and lowland chickens. Int J Biol Macromol 2020; 149:522-531. [DOI: 10.1016/j.ijbiomac.2020.01.211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/09/2020] [Accepted: 01/21/2020] [Indexed: 01/26/2023]
|
13
|
Vickers JC, King AE, McCormack GH, Bindoff AD, Adlard PA. Iron is increased in the brains of ageing mice lacking the neurofilament light gene. PLoS One 2019; 14:e0224169. [PMID: 31644557 PMCID: PMC6808381 DOI: 10.1371/journal.pone.0224169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 10/06/2019] [Indexed: 11/18/2022] Open
Abstract
There has been strong interest in the role of metals in neurodegeneration, and how ageing may predispose the brain to related diseases such as Alzheimer’s disease. Recent work has also highlighted a potential interaction between different metal species and various components of the cytoskeletal network in the brain, which themselves have a reported role in age-related degenerative disease and other neurological disorders. Neurofilaments are one such class of intermediate filament protein that have a demonstrated capacity to bind and utilise cation species. In this study, we investigated the consequences of altering the neurofilamentous network on metal ion homeostasis by examining neurofilament light (NFL) gene knockout mice, relative to wildtype control animals, at adulthood (5 months of age) and advanced age (22 months). Inductively coupled plasma mass spectroscopy demonstrated that the concentrations of iron (Fe), copper (Cu) and zinc (Zn) varied across brain regions and peripheral nerve samples. Zn and Fe showed statistically significant interactions between genotype and age, as well as between genotype and region, and Cu demonstrated a genotype and region interaction. The most substantial difference between genotypes was found in Fe in the older animals, where, across many regions examined, there was elevated Fe in the NFL knockout mice. This data indicates a potential relationship between the neurofilamentous cytoskeleton and the processing and/or storage of Fe through ageing.
Collapse
Affiliation(s)
- James C. Vickers
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
- * E-mail:
| | - Anna E. King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
| | - Graeme H. McCormack
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
| | - Aidan D. Bindoff
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
| | - Paul A. Adlard
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| |
Collapse
|
14
|
Fossat MJ, Pappu RV. q-Canonical Monte Carlo Sampling for Modeling the Linkage between Charge Regulation and Conformational Equilibria of Peptides. J Phys Chem B 2019; 123:6952-6967. [PMID: 31362509 PMCID: PMC10785832 DOI: 10.1021/acs.jpcb.9b05206] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The overall charge content and the patterning of charged residues have a profound impact on the conformational ensembles adopted by intrinsically disordered proteins. These parameters can be altered by charge regulation, which refers to the effects of post-translational modifications, pH-dependent changes to charge, and conformational fluctuations that modify the pKa values of ionizable residues. Although atomistic simulations have played a prominent role in uncovering the major sequence-ensemble relationships of IDPs, most simulations assume fixed charge states for ionizable residues. This may lead to erroneous estimates for conformational equilibria if they are linked to charge regulation. Here, we report the development of a new method we term q-canonical Monte Carlo sampling for modeling the linkage between charge regulation and conformational equilibria. The method, which is designed to be interoperable with the ABSINTH implicit solvation model, operates as follows: For a protein sequence with n ionizable residues, we start with all 2n charge microstates and use a criterion based on model compound pKa values to prune down to a subset of thermodynamically relevant charge microstates. This subset is then grouped into mesostates, where all microstates that belong to a mesostate have the same net charge. Conformational distributions, drawn from a canonical ensemble, are generated for each of the charge microstates that make up a mesostate using a method we designate as proton walk sampling. This method combines Metropolis Monte Carlo sampling in conformational space with an auxiliary Markov process that enables interconversions between charge microstates along a mesostate. Proton walk sampling helps identify the most likely charge microstate per mesostate. We then use thermodynamic integration aided by the multistate Bennett acceptance ratio method to estimate the free energies for converting between mesostates. These free energies are then combined with the per-microstate weights along each mesostate to estimate standard state free energies and pH-dependent free energies for all thermodynamically relevant charge microstates. The results provide quantitative estimates of the probabilities and preferred conformations associated with every thermodynamically accessible charge microstate. We showcase the application of q-canonical sampling using two model systems. The results establish the soundness of the method and the importance of charge regulation in systems characterized by conformational heterogeneity.
Collapse
Affiliation(s)
- Martin J. Fossat
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, MO 63130
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, MO 63130
| |
Collapse
|
15
|
Klass SH, Smith MJ, Fiala TA, Lee JP, Omole AO, Han BG, Downing KH, Kumar S, Francis MB. Self-Assembling Micelles Based on an Intrinsically Disordered Protein Domain. J Am Chem Soc 2019; 141:4291-4299. [DOI: 10.1021/jacs.8b10688] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Sarah H. Klass
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Matthew J. Smith
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Tahoe A. Fiala
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jess P. Lee
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Anthony O. Omole
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | | | | | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Matthew B. Francis
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|