1
|
Bogin BA, Levine ZA. Drugging Disordered Proteins by Conformational Selection to Inform Therapeutic Intervention. J Chem Theory Comput 2025; 21:3204-3215. [PMID: 40029731 DOI: 10.1021/acs.jctc.4c01160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Drugging intrinsically disordered proteins (IDPs) has historically been a major challenge due to their lack of stable binding sites, conformational heterogeneity, and rapid ability to self-associate or bind nonspecific neighbors. Furthermore, it is unclear whether binders of disordered proteins (i) induce entirely new conformations or (ii) target transient prestructured conformations via stabilizing existing states. To distinguish between these two mechanisms, we utilize molecular dynamics simulations to induce structured conformations in islet amyloid polypeptide (IAPP), a disordered endocrine peptide implicated in Type II Diabetes. Using umbrella sampling, we measure conformation-specific affinities of molecules previously shown to bind IAPP to determine if they can discriminate between two distinct IAPP conformations (fixed in either α-helix or β-sheet). We show that our two-state model of IAPP faithfully predicts the experimentally observed selectivity of two classes of IAPP binders while revealing differences in their molecular binding mechanisms. Specifically, the binding preferences of foldamers designed for human IAPP were not fully accounted for by conformational selection, unlike those of β-breaking peptides designed to mimic IAPP self-assembly sequences. Furthermore, the binding of these foldamers, but not β-breaking peptides, was disrupted by changes in the rat IAPP sequence. Taken together, our data quantify the sequence and conformational specificity for IAPP binders and reveal that conformational selection sometimes overrides sequence-level specificity. This work highlights the important role of conformational selection in stabilizing IDPs, and it reveals how fixed conformations can provide a tractable target for developing disordered protein binders.
Collapse
Affiliation(s)
- Bryan A Bogin
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut 06520, United States
- Altos Laboratories, San Diego Institute of Science, San Diego, California 92121, United States
| | - Zachary A Levine
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06510, United States
- Altos Laboratories, San Diego Institute of Science, San Diego, California 92121, United States
| |
Collapse
|
2
|
Esser N, Hogan MF, Templin AT, Akter R, Fountaine BS, Castillo JJ, El-Osta A, Manathunga L, Zhyvoloup A, Raleigh DP, Zraika S, Hull RL, Kahn SE. The islet tissue plasminogen activator/plasmin system is upregulated with human islet amyloid polypeptide aggregation and protects beta cells from aggregation-induced toxicity. Diabetologia 2024; 67:1897-1911. [PMID: 39245780 PMCID: PMC11410534 DOI: 10.1007/s00125-024-06161-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 09/10/2024]
Abstract
AIMS/HYPOTHESIS Apart from its fibrinolytic activity, the tissue plasminogen activator (tPA)/plasmin system has been reported to cleave the peptide amyloid beta, attenuating brain amyloid deposition in Alzheimer's disease. As aggregation of human islet amyloid polypeptide (hIAPP) is toxic to beta cells, we sought to determine whether activation of the fibrinolytic system can also reduce islet amyloid deposition and its cytotoxic effects, which are both observed in type 2 diabetes. METHODS The expression of Plat (encoding tPA) and plasmin activity were measured in isolated islets from amyloid-prone hIAPP transgenic mice or non-transgenic control islets expressing non-amyloidogenic mouse islet amyloid polypeptide cultured in the absence or presence of the amyloid inhibitor Congo Red. Plat expression was also determined in hIAPP-treated primary islet endothelial cells, bone marrow-derived macrophages (BMDM) and INS-1 cells, in order to determine the islet cell type(s) producing tPA in response to hIAPP aggregation. Cell-free thioflavin-T assays and MS were used to respectively monitor hIAPP aggregation kinetics and investigate plasmin cleavage of hIAPP. Cell viability was assessed in INS-1 beta cells treated with hIAPP with or without plasmin. Finally, to confirm the findings in human samples, PLAT expression was measured in freshly isolated islets from donors with and without type 2 diabetes. RESULTS In isolated islets from transgenic mice, islet Plat expression and plasmin activity increased significantly with the process of amyloid deposition (p≤0.01, n=5); these effects were not observed in islets from non-transgenic mice and were blocked by Congo Red (p≤0.01, n=4). In response to hIAPP exposure, Plat expression increased in BMDM and INS-1 cells vs vehicle-treated cells (p≤0.05, n=4), but not in islet endothelial cells. Plasmin reduced hIAPP fibril formation in a dose-dependent manner in a cell-free system, and restored hIAPP-induced loss of cell viability in INS-1 beta cells (p≤0.01, n=5). Plasmin cleaved monomeric hIAPP, inducing a rapid decrease in the abundance of full-length hIAPP and the appearance of hIAPP 1-11 and 12-37 fragments. hIAPP 12-37, which contains the critical amyloidogenic region, was not toxic to INS-1 cells. Finally, PLAT expression was significantly increased by 2.4-fold in islets from donors with type 2 diabetes (n=4) vs islets from donors without type 2 diabetes (n=7) (p≤0.05). CONCLUSIONS/INTERPRETATION The fibrinolytic system is upregulated in islets with hIAPP aggregation. Plasmin rapidly degrades hIAPP, limiting its aggregation into amyloid and thus protecting beta cells from hIAPP-induced toxicity. Thus, increasing islet plasmin activity might be a strategy to limit beta cell loss in type 2 diabetes.
Collapse
Affiliation(s)
- Nathalie Esser
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
- Laboratory of Immunometabolism and Nutrition, GIGA, University of Liège, CHU of Liège, Liège, Belgium
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU of Liège, Liège, Belgium
| | - Meghan F Hogan
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Andrew T Templin
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Endocrinology, Department of Medicine, Roudebush VA Medical Center and Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rehana Akter
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Joseph J Castillo
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Lakshan Manathunga
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Alexander Zhyvoloup
- Research Department of Structural and Molecular Biology, University College London, London, UK
| | - Daniel P Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA.
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA.
- Research Department of Structural and Molecular Biology, University College London, London, UK.
| | - Sakeneh Zraika
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rebecca L Hull
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Steven E Kahn
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Dai Z, Ben-Younis A, Vlachaki A, Raleigh D, Thalassinos K. Understanding the structural dynamics of human islet amyloid polypeptide: Advancements in and applications of ion-mobility mass spectrometry. Biophys Chem 2024; 312:107285. [PMID: 38941872 PMCID: PMC11260546 DOI: 10.1016/j.bpc.2024.107285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/30/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Human islet amyloid polypeptide (hIAPP) forms amyloid deposits that contribute to β-cell death in pancreatic islets and are considered a hallmark of Type II diabetes Mellitus (T2DM). Evidence suggests that the early oligomers of hIAPP formed during the aggregation process are the primary pathological agent in islet amyloid induced β-cell death. The self-assembly mechanism of hIAPP, however, remains elusive, largely due to limitations in conventional biophysical techniques for probing the distribution or capturing detailed structures of the early, structurally dynamic oligomers. The advent of Ion-mobility Mass Spectrometry (IM-MS) has enabled the characterisation of hIAPP early oligomers in the gas phase, paving the way towards a deeper understanding of the oligomerisation mechanism and the correlation of structural information with the cytotoxicity of the oligomers. The sensitivity and the rapid structural characterisation provided by IM-MS also show promise in screening hIAPP inhibitors, categorising their modes of inhibition through "spectral fingerprints". This review delves into the application of IM-MS to the dissection of the complex steps of hIAPP oligomerisation, examining the inhibitory influence of metal ions, and exploring the characterisation of hetero-oligomerisation with different hIAPP variants. We highlight the potential of IM-MS as a tool for the high-throughput screening of hIAPP inhibitors, and for providing insights into their modes of action. Finally, we discuss advances afforded by recent advancements in tandem IM-MS and the combination of gas phase spectroscopy with IM-MS, which promise to deliver a more sensitive and higher-resolution structural portrait of hIAPP oligomers. Such information may help facilitate a new era of targeted therapeutic strategies for islet amyloidosis in T2DM.
Collapse
Affiliation(s)
- Zijie Dai
- Institute of Structural and Molecular Biology, Division of Bioscience, University College London, London WC1E 6BT, UK
| | - Aisha Ben-Younis
- Institute of Structural and Molecular Biology, Division of Bioscience, University College London, London WC1E 6BT, UK
| | - Anna Vlachaki
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Daniel Raleigh
- Institute of Structural and Molecular Biology, Division of Bioscience, University College London, London WC1E 6BT, UK; Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States.
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Bioscience, University College London, London WC1E 6BT, UK; Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK.
| |
Collapse
|
4
|
Suladze S, Sustay Martinez C, Rodriguez Camargo DC, Engler J, Rodina N, Sarkar R, Zacharias M, Reif B. Structural Insights into Seeding Mechanisms of hIAPP Fibril Formation. J Am Chem Soc 2024; 146:13783-13796. [PMID: 38723619 PMCID: PMC11117405 DOI: 10.1021/jacs.3c14233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/23/2024]
Abstract
The deposition of islet amyloid polypeptide (hIAPP) fibrils is a hallmark of β-cell death in type II diabetes. In this study, we employ state-of-the-art MAS solid-state spectroscopy to investigate the previously elusive N-terminal region of hIAPP fibrils, uncovering both rigidity and heterogeneity. Comparative analysis between wild-type hIAPP and a disulfide-deficient variant (hIAPPC2S,C7S) unveils shared fibril core structures yet strikingly distinct dynamics in the N-terminus. Specifically, the variant fibrils exhibit extended β-strand conformations, facilitating surface nucleation. Moreover, our findings illuminate the pivotal roles of specific residues in modulating secondary nucleation rates. These results deepen our understanding of hIAPP fibril assembly and provide critical insights into the molecular mechanisms underpinning type II diabetes, holding promise for future therapeutic strategies.
Collapse
Affiliation(s)
- Saba Suladze
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| | - Christian Sustay Martinez
- Center
for
Functional Protein Assemblies (CPA), Department of Bioscience, TUM
School of Natural Sciences, Technische Universität
München, Ernst-Otto-Fischer-Straße
8, 85747 Garching, Germany
| | - Diana C. Rodriguez Camargo
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| | - Jonas Engler
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| | - Natalia Rodina
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| | - Riddhiman Sarkar
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| | - Martin Zacharias
- Center
for
Functional Protein Assemblies (CPA), Department of Bioscience, TUM
School of Natural Sciences, Technische Universität
München, Ernst-Otto-Fischer-Straße
8, 85747 Garching, Germany
| | - Bernd Reif
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
5
|
Valli D, Ooi SA, Scattolini G, Chaudhary H, Tietze AA, Maj M. Improving cryo-EM grids for amyloid fibrils using interface-active solutions and spectator proteins. Biophys J 2024; 123:718-729. [PMID: 38368506 PMCID: PMC10995402 DOI: 10.1016/j.bpj.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/28/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024] Open
Abstract
Preparation of cryoelectron microscopy (cryo-EM) grids for imaging of amyloid fibrils is notoriously challenging. The human islet amyloid polypeptide (hIAPP) serves as a notable example, as the majority of reported structures have relied on the use of nonphysiological pH buffers, N-terminal tags, and seeding. This highlights the need for more efficient, reproducible methodologies that can elucidate amyloid fibril structures formed under diverse conditions. In this work, we demonstrate that the distribution of fibrils on cryo-EM grids is predominantly determined by the solution composition, which is critical for the stability of thin vitreous ice films. We discover that, among physiological pH buffers, HEPES uniquely enhances the distribution of fibrils on cryo-EM grids and improves the stability of ice layers. This improvement is attributed to direct interactions between HEPES molecules and hIAPP, effectively minimizing the tendency of hIAPP to form dense clusters in solutions and preventing ice nucleation. Furthermore, we provide additional support for the idea that denatured protein monolayers forming at the interface are also capable of eliciting a surfactant-like effect, leading to improved particle coverage. This phenomenon is illustrated by the addition of nonamyloidogenic rat IAPP (rIAPP) to a solution of preaggregated hIAPP just before the freezing process. The resultant grids, supplemented with this "spectator protein", exhibit notably enhanced coverage and improved ice quality. Unlike conventional surfactants, rIAPP is additionally capable of disentangling the dense clusters formed by hIAPP. By applying the proposed strategies, we have resolved the structure of the dominant hIAPP polymorph, formed in vitro at pH 7.4, to a final resolution of 4 Å. The advances in grid preparation presented in this work hold significant promise for enabling structural determination of amyloid proteins which are particularly resistant to conventional grid preparation techniques.
Collapse
Affiliation(s)
- Dylan Valli
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Saik Ann Ooi
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Giorgio Scattolini
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Himanshu Chaudhary
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Alesia A Tietze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Michał Maj
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
6
|
Biswas S, Kaur S, Myers CA, Chen AA, Welch JT. Aggregation in Aqueous Solutions of 2-(Tetrafluoro(trifluoromethyl)-λ 6-sulfanyl-ethan-1-ol (CF 3SF 4-ethanol)): A Comparison with Aqueous Trifluoroethanol and Hexafluoroisopropanol Using Molecular Dynamics Simulations and Dynamic Light Scattering Experiments. ACS OMEGA 2023; 8:30037-30047. [PMID: 37636933 PMCID: PMC10448670 DOI: 10.1021/acsomega.3c02019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/26/2023] [Indexed: 08/29/2023]
Abstract
2-Tetrafluoro(trifluoromethyl)-λ6-sulfanylethan-1-ol (CF3SF4-ethanol) combines the polar hydrophobicity of tetrafluoro(trifluoromethyl)-λ6-sulfanyl (CF3SF4) group with the polarity of simple alcohols. The properties of aqueous solutions of the well-known fluorinated alcohols 2,2,2-trifluoroethanol (TFE) and 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) were compared with those of aqueous solutions of the novel CF3SF4-ethanol. Those properties were computed using all atom molecular dynamics simulations with OPLS-compatible parameters. DFT ab initio calculations were used to accurately describe the nonsymmetrical, hypervalent sulfur in CF3SF4-ethanol. Although the molecular and conformational characteristics of CF3SF4-ethanol are like those of both TFE and HFIP, the greater hydrophobicity and lower polarity of CF3SF4-ethanol resulted in solution phase aggregation at a much lower concentration. The properties computed for TFE and HFIP in this work were consistent with published computational and experimental studies. CF3SF4-ethanol is predicted to be environmentally benign and hence an excellent green solvent candidate while possessing many of the same properties as TFE or HFIP.
Collapse
Affiliation(s)
- Samadrita Biswas
- Department
of Chemistry, University at Albany, State
University of New York, 1400 Washington Ave, Albany, New York 12222, United States
| | - Simi Kaur
- Department
of Chemistry, University at Albany, State
University of New York, 1400 Washington Ave, Albany, New York 12222, United States
- RNA
Institute, University at Albany, State University
of New York, 1400 Washington Ave, Albany, New York 12222, United States
| | - Christopher A. Myers
- RNA
Institute, University at Albany, State University
of New York, 1400 Washington Ave, Albany, New York 12222, United States
- Department
of Physics, University at Albany, State
University of New York, 1400 Washington Ave, Albany, New York 12222, United States
| | - Alan A. Chen
- Department
of Chemistry, University at Albany, State
University of New York, 1400 Washington Ave, Albany, New York 12222, United States
- RNA
Institute, University at Albany, State University
of New York, 1400 Washington Ave, Albany, New York 12222, United States
| | - John T. Welch
- Department
of Chemistry, University at Albany, State
University of New York, 1400 Washington Ave, Albany, New York 12222, United States
| |
Collapse
|
7
|
Wang Y, Liu Y, Zhang Y, Wei G, Ding F, Sun Y. Molecular insights into the oligomerization dynamics and conformations of amyloidogenic and non-amyloidogenic amylin from discrete molecular dynamics simulations. Phys Chem Chem Phys 2022; 24:21773-21785. [PMID: 36098068 PMCID: PMC9623603 DOI: 10.1039/d2cp02851d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The amyloid aggregation of human islet amyloid polypeptide (hIAPP) is associated with pancreatic β-cell death in type 2 diabetes. The S20G substitution of hIAPP (hIAPP(S20G)), found in Japanese and Chinese people, is more amyloidogenic and cytotoxic than wild-type hIAPP. Rat amylin (rIAPP) does not have aggregation propensity or cytotoxicity. Mounting evidence suggests that soluble low-molecular-weight amyloid oligomers formed during early aggregation are more cytotoxic than mature fibrils. The self-assembly dynamics and oligomeric conformations remain unknown because the oligomers are heterogeneous and transient. The molecular mechanism of sequence-variation rendering dramatically different aggregation propensity and cytotoxicity is also elusive. Here, we investigate the oligomerization dynamics and conformations of amyloidogenic hIAPP, hIAPP(S20G), and non-amyloidogenic rIAPP using atomistic discrete molecular dynamics (DMD) simulations. Our simulation results demonstrated that all three monomeric amylin peptides mainly adopted an unstructured formation with partial dynamical helices near the N-terminus. Relatively transient β-hairpins were more abundant in hIAPP and hIAPP(S20G) than in rIAPP. The S20G-substituting mutant of hIAPP altered the turn region of the β-hairpin motif, resulting in more hydrophobic residue-pairwise contacts within the β-hairpin. Oligomerization dynamic investigation revealed that all three peptides spontaneously accumulated into helix-populated oligomers. The conformational conversion to form β-sheet-rich oligomers was only observed in hIAPP and hIAPP(S20G). The population of high-β-sheet-content oligomers was enhanced by S20G substitution. Interestingly, both hIAPP and hIAPP(S20G) could form β-barrel formations, and the β-barrel propensity of hIAPP(S20G) was three times larger than that of hIAPP. No β-sheet-rich or β-barrel formations were observed in rIAPP. Our direct observation of the correlation between β-barrel oligomer formation and cytotoxicity suggests that β-barrels might play a critically important role in the cytotoxicity of amyloidosis.
Collapse
Affiliation(s)
- Ying Wang
- Department of Physics, Ningbo University, Ningbo 315211, China.
| | - Yuying Liu
- Department of Physics, Ningbo University, Ningbo 315211, China.
| | - Yu Zhang
- Department of Physics, Ningbo University, Ningbo 315211, China.
| | - Guanghong Wei
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, P. R. China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Yunxiang Sun
- Department of Physics, Ningbo University, Ningbo 315211, China.
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, P. R. China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
8
|
Sevcuka A, White K, Terry C. Factors That Contribute to hIAPP Amyloidosis in Type 2 Diabetes Mellitus. Life (Basel) 2022; 12:life12040583. [PMID: 35455074 PMCID: PMC9025880 DOI: 10.3390/life12040583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 12/24/2022] Open
Abstract
Cases of Type 2 Diabetes Mellitus (T2DM) are increasing at an alarming rate due to the rise in obesity, sedentary lifestyles, glucose-rich diets and other factors. Numerous studies have increasingly illustrated the pivotal role that human islet amyloid polypeptide (hIAPP) plays in the pathology of T2DM through damage and subsequent loss of pancreatic β-cell mass. HIAPP can misfold and form amyloid fibrils which are preceded by pre-fibrillar oligomers and monomers, all of which have been linked, to a certain extent, to β-cell cytotoxicity through a range of proposed mechanisms. This review provides an up-to-date summary of recent progress in the field, highlighting factors that contribute to hIAPP misfolding and aggregation such as hIAPP protein concentration, cell stress, molecular chaperones, the immune system response and cross-seeding with other amyloidogenic proteins. Understanding the structure of hIAPP and how these factors affect amyloid formation will help us better understand how hIAPP misfolds and aggregates and, importantly, help identify potential therapeutic targets for inhibiting amyloidosis so alternate and more effective treatments for T2DM can be developed.
Collapse
|
9
|
Diaferia C, Rosa E, Balasco N, Sibillano T, Morelli G, Giannini C, Vitagliano L, Accardo A. The Introduction of a Cysteine Residue Modulates The Mechanical Properties of Aromatic-Based Solid Aggregates and Self-Supporting Hydrogels. Chemistry 2021; 27:14886-14898. [PMID: 34498321 PMCID: PMC8596998 DOI: 10.1002/chem.202102007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Indexed: 12/15/2022]
Abstract
Peptide-based hydrogels, originated by multiscale self-assembling phenomenon, have been proposed as multivalent tools in different technological areas. Structural studies and molecular dynamics simulations pointed out the capability of completely aromatic peptides to gelificate if hydrophilic and hydrophobic forces are opportunely balanced. Here, the effect produced by the introduction of a Cys residue in the heteroaromatic sequence of (FY)3 and in its PEGylated variant was evaluated. The physicochemical characterization indicates that both FYFCFYF and PEG8-FYFCFYF are able to self-assemble in supramolecular nanostructures whose basic cross-β motif resembles the one detected in the ancestor (FY)3 assemblies. However, gelification occurs only for FYFCFYF at a concentration of 1.5 wt%. After cross-linking of cysteine residues, the hydrogel undergoes to an improvement of the rigidity compared to the parent (FY)3 assemblies as suggested by the storage modulus (G') that increases from 970 to 3360 Pa. The mechanical properties of FYFCFYF are compatible with its potential application in bone tissue regeneration. Moreover, the avalaibility of a Cys residue in the middle of the peptide sequence could allow the hydrogel derivatization with targeting moieties or with biologically relevant molecules.
Collapse
Affiliation(s)
- Carlo Diaferia
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB)University of Naples “Federico II”Via Mezzocannone 16Naples80134Italy
| | - Elisabetta Rosa
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB)University of Naples “Federico II”Via Mezzocannone 16Naples80134Italy
| | - Nicole Balasco
- Institute of Biostructures and Bioimaging (IBB), CNRVia Mezzocannone 1680134NaplesItaly
| | - Teresa Sibillano
- Institute of Crystallography (IC), CNRVia Amendola 12270126BariItaly
| | - Giancarlo Morelli
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB)University of Naples “Federico II”Via Mezzocannone 16Naples80134Italy
| | - Cinzia Giannini
- Institute of Crystallography (IC), CNRVia Amendola 12270126BariItaly
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB), CNRVia Mezzocannone 1680134NaplesItaly
| | - Antonella Accardo
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB)University of Naples “Federico II”Via Mezzocannone 16Naples80134Italy
| |
Collapse
|
10
|
Abstract
Protein aggregation and amyloid formation are pathogenic events underlying the development of an increasingly large number of human diseases named “proteinopathies”. Abnormal accumulation in affected tissues of amyloid β (Aβ) peptide, islet amyloid polypeptide (IAPP), and the prion protein, to mention a few, are involved in the occurrence of Alzheimer’s (AD), type 2 diabetes mellitus (T2DM) and prion diseases, respectively. Many reports suggest that the toxic properties of amyloid aggregates are correlated with their ability to damage cell membranes. However, the molecular mechanisms causing toxic amyloid/membrane interactions are still far to be completely elucidated. This review aims at describing the mutual relationships linking abnormal protein conformational transition and self-assembly into amyloid aggregates with membrane damage. A cross-correlated analysis of all these closely intertwined factors is thought to provide valuable insights for a comprehensive molecular description of amyloid diseases and, in turn, the design of effective therapies.
Collapse
|
11
|
Milardi D, Gazit E, Radford SE, Xu Y, Gallardo RU, Caflisch A, Westermark GT, Westermark P, Rosa CL, Ramamoorthy A. Proteostasis of Islet Amyloid Polypeptide: A Molecular Perspective of Risk Factors and Protective Strategies for Type II Diabetes. Chem Rev 2021; 121:1845-1893. [PMID: 33427465 PMCID: PMC10317076 DOI: 10.1021/acs.chemrev.0c00981] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The possible link between hIAPP accumulation and β-cell death in diabetic patients has inspired numerous studies focusing on amyloid structures and aggregation pathways of this hormone. Recent studies have reported on the importance of early oligomeric intermediates, the many roles of their interactions with lipid membrane, pH, insulin, and zinc on the mechanism of aggregation of hIAPP. The challenges posed by the transient nature of amyloid oligomers, their structural heterogeneity, and the complex nature of their interaction with lipid membranes have resulted in the development of a wide range of biophysical and chemical approaches to characterize the aggregation process. While the cellular processes and factors activating hIAPP-mediated cytotoxicity are still not clear, it has recently been suggested that its impaired turnover and cellular processing by proteasome and autophagy may contribute significantly toward toxic hIAPP accumulation and, eventually, β-cell death. Therefore, studies focusing on the restoration of hIAPP proteostasis may represent a promising arena for the design of effective therapies. In this review we discuss the current knowledge of the structures and pathology associated with hIAPP self-assembly and point out the opportunities for therapy that a detailed biochemical, biophysical, and cellular understanding of its aggregation may unveil.
Collapse
Affiliation(s)
- Danilo Milardi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, 95126 Catania, Italy
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rodrigo U Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| | - Gunilla T Westermark
- Department of Medical Cell Biology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Per Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Carmelo La Rosa
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 41809-1055, United States
| |
Collapse
|
12
|
Lundqvist M, Rodriguez Camargo DC, Bernfur K, Chia S, Linse S. Expression, purification and characterisation of large quantities of recombinant human IAPP for mechanistic studies. Biophys Chem 2021; 269:106511. [PMID: 33360112 DOI: 10.1016/j.bpc.2020.106511] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 01/09/2023]
Abstract
Malfunction and amyloid formation of the Islet Amyloid Polypeptide (IAPP) are factors contributing to Type 2 diabetes. Unravelling the mechanism of IAPP aggregate formation may forward our understanding of this process and its effect on pancreatic β-islet cell. Such mechanistic studies require access to sequence homogeneous and highly pure IAPP. Here we present a new facile protocol for the production of pure recombinant human IAPP at relatively high yield. The protocol uses a His-tagged version of the Npro mutant EDDIE, which drives expression to inclusion bodies, from which the peptide is purified using sonication, refolding and auto-cleavage, removal of EDDIE using Ni-NTA chromatography and reverse-phase HPLC. The purified material is used at multiple concentrations in aggregation kinetics measurements monitored by thioflavin-T fluorescence. Global analysis of the data implies a double nucleation aggregation mechanism including both primary and secondary nucleation.
Collapse
Affiliation(s)
- Martin Lundqvist
- Department of Biophysical, Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Diana C Rodriguez Camargo
- Department of Biophysical, Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; Wren Therapeutics Limited, UK
| | - Katja Bernfur
- Department of Biophysical, Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | | | - Sara Linse
- Department of Biophysical, Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; Wren Therapeutics Limited, UK.
| |
Collapse
|
13
|
Assessing the role of osmolytes on the conformational harmony of islet amyloid polypeptide. Int J Biol Macromol 2020; 164:2569-2582. [DOI: 10.1016/j.ijbiomac.2020.08.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
|
14
|
Renawala HK, Chandrababu KB, Topp EM. Fibrillation of Human Calcitonin and Its Analogs: Effects of Phosphorylation and Disulfide Reduction. Biophys J 2020; 120:86-100. [PMID: 33220304 DOI: 10.1016/j.bpj.2020.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/24/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022] Open
Abstract
Some therapeutic peptides self-assemble in solution to form ordered, insoluble, β-sheet-rich amyloid fibrils. This physical instability can result in reduced potency, cause immunogenic side effects, and limit options for formulation. Understanding the mechanisms of fibrillation is key to developing rational mitigation strategies. Here, amide hydrogen-deuterium exchange with mass spectrometric analysis (HDX-MS) coupled with proteolytic digestion was used to identify the early stage interactions leading to fibrillation of human calcitonin (hCT), a peptide hormone important in calcium metabolism. hCT fibrillation kinetics was sigmoidal, with lag, growth, and plateau phases as shown by thioflavin T and turbidity measurements. HDX-MS of fibrillating hCT (pH 7.4; 25°C) suggested early involvement of the N-terminal (1-11) and central (12-19) fragments in interactions during the lag phase, whereas C-terminal fragments (20-32 and 26-32) showed limited involvement during this period. The residue-level information was used to develop phosphorylated hCT analogs that showed modified fibrillation that depended on phosphorylation site. Phosphorylation in the central region resulted in complete inhibition of fibrillation for the phospho-Thr-13 hCT analog, whereas phosphorylation in the N-terminal and C-terminal regions inhibited but did not prevent fibrillation. Reduction of the Cys1-Cys7 disulfide bond resulted in faster fibrillation with involvement of different hCT residues as indicated by pulsed HDX-MS. Together, the results demonstrate that small structural changes have significant effects on hCT fibrillation and that understanding these effects can inform the rational development of fibrillation-resistant hCT analogs.
Collapse
Affiliation(s)
- Harshil K Renawala
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana
| | - Karthik B Chandrababu
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana
| | - Elizabeth M Topp
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana; National Institute for Bioprocessing Research and Training, Dublin, Ireland.
| |
Collapse
|
15
|
Amyloid formation of fish β-parvalbumin involves primary nucleation triggered by disulfide-bridged protein dimers. Proc Natl Acad Sci U S A 2020; 117:27997-28004. [PMID: 33093204 PMCID: PMC7668186 DOI: 10.1073/pnas.2015503117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Amyloid fibrils are generally related to neurodegenerative diseases, but they can also be part of normal protein function. Amyloid formation involves numerous steps and intermediate species. In this study, we investigated a fish protein, beta-parvalbumin, which readily forms amyloid on ligand removal. Using biophysical experiments, we provide evidence that the underlying mechanism of amyloid formation includes primary nucleation and elongation processes; we also reveal a key role for a disulfide-bridged dimer in the nucleation step. Little is known about intermolecular disulfides in amyloid formation, but covalent dimers and dimer-induced aggregation may be of clinical relevance, because oxidative stress, which can trigger covalent bond formation, is often a hallmark of human neurodegenerative diseases. Amyloid formation involves the conversion of soluble protein species to an aggregated state. Amyloid fibrils of β-parvalbumin, a protein abundant in fish, act as an allergen but also inhibit the in vitro assembly of the Parkinson protein α-synuclein. However, the intrinsic aggregation mechanism of β-parvalbumin has not yet been elucidated. We performed biophysical experiments in combination with mathematical modeling of aggregation kinetics and discovered that the aggregation of β-parvalbumin is initiated by the formation of dimers stabilized by disulfide bonds and then proceeds via primary nucleation and fibril elongation processes. Dimer formation is accelerated by H2O2 and hindered by reducing agents, resulting in faster and slower aggregation rates, respectively. Purified β-parvalbumin dimers readily assemble into amyloid fibrils with similar morphology as those formed when starting from monomer solutions. Furthermore, addition of preformed dimers accelerates the aggregation reaction of monomers. Aggregation of purified β-parvalbumin dimers follows the same kinetic mechanism as that of monomers, implying that the rate-limiting primary nucleus is larger than a dimer and/or involves structural conversion. Our findings demonstrate a folded protein system in which spontaneously formed intermolecular disulfide bonds initiate amyloid fibril formation by recruitment of monomers. This dimer-induced aggregation mechanism may be of relevance for human amyloid diseases in which oxidative stress is often an associated hallmark.
Collapse
|
16
|
Sheng J, Olrichs NK, Gadella BM, Kaloyanova DV, Helms JB. Regulation of Functional Protein Aggregation by Multiple Factors: Implications for the Amyloidogenic Behavior of the CAP Superfamily Proteins. Int J Mol Sci 2020; 21:E6530. [PMID: 32906672 PMCID: PMC7554809 DOI: 10.3390/ijms21186530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
The idea that amyloid fibrils and other types of protein aggregates are toxic for cells has been challenged by the discovery of a variety of functional aggregates. However, an identification of crucial differences between pathological and functional aggregation remains to be explored. Functional protein aggregation is often reversible by nature in order to respond properly to changing physiological conditions of the cell. In addition, increasing evidence indicates that fast fibril growth is a feature of functional amyloids, providing protection against the long-term existence of potentially toxic oligomeric intermediates. It is becoming clear that functional protein aggregation is a complexly organized process that can be mediated by a multitude of biomolecular factors. In this overview, we discuss the roles of diverse biomolecules, such as lipids/membranes, glycosaminoglycans, nucleic acids and metal ions, in regulating functional protein aggregation. Our studies on the protein GAPR-1 revealed that several of these factors influence the amyloidogenic properties of this protein. These observations suggest that GAPR-1, as well as the cysteine-rich secretory proteins, antigen 5 and pathogenesis-related proteins group 1 (CAP) superfamily of proteins that it belongs to, require the assembly into an amyloid state to exert several of their functions. A better understanding of functional aggregate formation may also help in the prevention and treatment of amyloid-related diseases.
Collapse
Affiliation(s)
| | | | | | | | - J. Bernd Helms
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (J.S.); (N.K.O.); (B.M.G.); (D.V.K.)
| |
Collapse
|
17
|
Abstract
The challenges of diazonium salts stabilization have been overcome by their isolation as metal salts such as tetrachloroaurate(III). The cleavage of molecular nitrogen from diazonium salts even at very low potential or on reducing surfaces by fine tuning the substituents on the phenyl ring expanded their applications as surface modifiers in forensic science, nanomedicine engineering, catalysis and energy. The robustness of the metal–carbon bonding produced from diazonium salts reduction has already opened an era for further applications. The integration of experimental and calculations in this field catalyzed its speedy progress. This review provides a narrative of the progress in this chemistry with stress on our recent contribution, identifies potential applications, and highlights the needs in this emerging field. For these reasons, we hope that this review paper serves as motivation for others to enter this developing field of surface modification originating from diazonium salts.
Collapse
|
18
|
AlBab ND, Hameed MK, Maresova A, Ahmady IM, Arooj M, Han C, Workie B, Chehimi M, Mohamed AA. Inhibition of amyloid fibrillation, enzymatic degradation and cytotoxicity of insulin at carboxyl tailored gold-aryl nanoparticles surface. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Ridgway Z, Lee KH, Zhyvoloup A, Wong A, Eldrid C, Hannaberry E, Thalassinos K, Abedini A, Raleigh DP. Analysis of Baboon IAPP Provides Insight into Amyloidogenicity and Cytotoxicity of Human IAPP. Biophys J 2020; 118:1142-1151. [PMID: 32105649 DOI: 10.1016/j.bpj.2019.12.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/25/2022] Open
Abstract
The polypeptide hormone islet amyloid polypeptide (IAPP) forms islet amyloid in type 2 diabetes, a process which contributes to pancreatic β-cell dysfunction and death. Not all species form islet amyloid, and the ability to do so correlates with the primary sequence. Humans form islet amyloid, but baboon IAPP has not been studied. The baboon peptide differs from human IAPP at three positions containing K1I, H18R, and A25T substitutions. The K1I substitution is a rare example of a replacement in the N-terminal region of amylin. The effect of this mutation on amyloid formation has not been studied, but it reduces the net charge, and amyloid prediction programs suggest that it should increase amyloidogenicity. The A25T replacement involves a nonconservative substitution in a region of IAPP that is believed to be important for aggregation, but the effects of this replacement have not been examined. The H18R point mutant has been previously shown to reduce aggregation in vitro. Baboon amylin forms amyloid on the same timescale as human amylin in vitro and exhibits similar toxicity toward cultured β-cells. The K1I replacement in human amylin slightly reduces toxicity, whereas the A25T substitution accelerates amyloid formation and enhances toxicity. Photochemical cross-linking reveals that the baboon amylin, like human amylin, forms low-order oligomers in the lag phase of amyloid formation. Ion-mobility mass spectrometry reveals broadly similar gas phase collisional cross sections for human and baboon amylin monomers and dimers, with some differences in the arrival time distributions. Preamyloid oligomers formed by baboon amylin, but not baboon amylin fibers, are toxic to cultured β-cells. The toxicity of baboon oligomers and lack of significantly detectable toxicity with exogenously added amyloid fibers is consistent with the hypothesis that preamyloid oligomers are the most toxic species produced during IAPP amyloid formation.
Collapse
Affiliation(s)
- Zachary Ridgway
- Department of Chemistry, Stony Brook University, Stony Brook, New York
| | - Kyung-Hoon Lee
- Department of Biology, Chowan University, Murfreesboro, North Carolina
| | - Alexander Zhyvoloup
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Amy Wong
- Department of Chemistry, Stony Brook University, Stony Brook, New York
| | - Charles Eldrid
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Eleni Hannaberry
- Department of Chemistry, Stony Brook University, Stony Brook, New York
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Andisheh Abedini
- Department of Chemistry, Stony Brook University, Stony Brook, New York.
| | - Daniel P Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, New York; Institute of Structural and Molecular Biology, University College London, London, United Kingdom.
| |
Collapse
|
20
|
Lee KH, Zhyvoloup A, Raleigh D. Amyloidogenicity and cytotoxicity of des-Lys-1 human amylin provides insight into amylin self-assembly and highlights the difficulties of defining amyloidogenicity. Protein Eng Des Sel 2019; 32:87-93. [PMID: 31768548 PMCID: PMC6908818 DOI: 10.1093/protein/gzz036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/11/2019] [Accepted: 07/31/2019] [Indexed: 12/27/2022] Open
Abstract
The polypeptide amylin is responsible for islet amyloid in type 2 diabetes, a process which contributes to β-cell death in the disease. The role of the N-terminal region of amylin in amyloid formation is relatively unexplored, although removal of the disulfide bridged loop between Cys-2 and Cys-7 accelerates amyloid formation. We examine the des Lys-1 variant of human amylin (h-amylin), a variant which is likely produced in vivo. Lys-1 is a region of high charge density in the h-amylin amyloid fiber. The des Lys-1 polypeptide forms amyloid on the same time scale as wild-type amylin in phosphate buffered saline, but does so more rapidly in Tris. The des Lys-1 variant is somewhat less toxic to cultured INS cells than wild type. The implications for the in vitro mechanism of amyloid formation and for comparative analysis of amyloidogenicity are discussed.
Collapse
Affiliation(s)
- Kyung-Hoon Lee
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11790-3400, USA
| | - Alexander Zhyvoloup
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E6BT, UK, and
| | - Daniel Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11790-3400, USA
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E6BT, UK, and
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11790-3400, USA
| |
Collapse
|
21
|
Ilie IM, Caflisch A. Simulation Studies of Amyloidogenic Polypeptides and Their Aggregates. Chem Rev 2019; 119:6956-6993. [DOI: 10.1021/acs.chemrev.8b00731] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ioana M. Ilie
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| |
Collapse
|