1
|
Zhang W, Meng L, Lv X, Wang L, Zhao P, Wang J, Zhang X, Chen J, Wu Z. Enhancing Stability and Antioxidant Activity of Resveratrol-Loaded Emulsions by Ovalbumin-Dextran Conjugates. Foods 2024; 13:1246. [PMID: 38672918 PMCID: PMC11049361 DOI: 10.3390/foods13081246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
A reliable strategy for improving the stability and shelf life of protein-stabilized systems is by covalently attaching the protein onto a polysaccharide. In this study, ovalbumin (OVA) was modified with dextran (DEX) of different molecular weights by the Maillard reaction, and was used to enhance the stability of emulsions loaded with resveratrol. The surface hydrophobicity, thermal stability, and FT-IR spectroscopy of the OVA-DEX conjugates were evaluated. The results showed that the surface hydrophobicity of OVA decreased, while the thermal stability of OVA was significantly improved after DEX covalent modification. The OVA-DEX1k-stabilized emulsion exhibited high encapsulation efficiency of resveratrol, with the value of 89.0%. In addition, OVA-DEX was considerably more effective in droplet stabilization against different environmental stresses (heat, pH, and ionic strength). After 28 days of storage at 25 °C, the OVA-stabilized emulsion showed faster decomposition of resveratrol, whereas the OVA-DEX-conjugate-stabilized emulsion had approximately 73% retention of resveratrol. Moreover, the antioxidant activity of resveratrol-loaded emulsions stabilized by OVA-DEX was higher during storage under different temperatures. These results proved that the OVA-DEX conjugates had the potential to form stable, food-grade emulsion-based delivery systems against environmental stresses, which strongly supports their potential in the field of food and biomedical applications.
Collapse
Affiliation(s)
- Wen Zhang
- Correspondence: (W.Z.); (Z.W.); Tel.: +86-151-2261-5896 (Z.W.)
| | | | | | | | | | | | | | | | - Zijian Wu
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China (J.W.)
| |
Collapse
|
2
|
Recent advances of interfacial and rheological property based techno-functionality of food protein amyloid fibrils. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Housmans JAJ, Houben B, Monge-Morera M, Asvestas D, Nguyen HH, Tsaka G, Louros N, Carpentier S, Delcour JA, Rousseau F, Schymkowitz J. Investigating the Sequence Determinants of the Curling of Amyloid Fibrils Using Ovalbumin as a Case Study. Biomacromolecules 2022; 23:3779-3797. [PMID: 36027608 DOI: 10.1021/acs.biomac.2c00660] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Highly ordered, straight amyloid fibrils readily lend themselves to structure determination techniques and have therefore been extensively characterized. However, the less ordered curly fibrils remain relatively understudied, and the structural organization underlying their specific characteristics remains poorly understood. We found that the exemplary curly fibril-forming protein ovalbumin contains multiple aggregation prone regions (APRs) that form straight fibrils when isolated as peptides or when excised from the full-length protein through hydrolysis. In the context of the intact full-length protein, however, the regions separating the APRs facilitate curly fibril formation. In fact, a meta-analysis of previously reported curly fibril-forming proteins shows that their inter-APRs are significantly longer and more hydrophobic when compared to straight fibril-forming proteins, suggesting that they may cause strain in the amyloid state. Hence, inter-APRs driving curly fibril formation may not only apply to our model protein but rather constitute a more general mechanism.
Collapse
Affiliation(s)
- Joëlle A J Housmans
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, box 802, 3000 Leuven, Belgium
| | - Bert Houben
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, box 802, 3000 Leuven, Belgium
| | - Margarita Monge-Morera
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Diego Asvestas
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, box 802, 3000 Leuven, Belgium
| | - Hung Huy Nguyen
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, box 802, 3000 Leuven, Belgium
| | - Grigoria Tsaka
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, box 802, 3000 Leuven, Belgium
| | - Nikolaos Louros
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, box 802, 3000 Leuven, Belgium
| | - Sebastien Carpentier
- Facility for Systems Biology Based Mass Spectrometry, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, box 802, 3000 Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, box 802, 3000 Leuven, Belgium
| |
Collapse
|
4
|
Supersaturation-Dependent Formation of Amyloid Fibrils. Molecules 2022; 27:molecules27144588. [PMID: 35889461 PMCID: PMC9321232 DOI: 10.3390/molecules27144588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
The supersaturation of a solution refers to a non-equilibrium phase in which the solution is trapped in a soluble state, even though the solute’s concentration is greater than its thermodynamic solubility. Upon breaking supersaturation, crystals form and the concentration of the solute decreases to its thermodynamic solubility. Soon after the discovery of the prion phenomena, it was recognized that prion disease transmission and propagation share some similarities with the process of crystallization. Subsequent studies exploring the structural and functional association between amyloid fibrils and amyloidoses solidified this paradigm. However, recent studies have not necessarily focused on supersaturation, possibly because of marked advancements in structural studies clarifying the atomic structures of amyloid fibrils. On the other hand, there is increasing evidence that supersaturation plays a critical role in the formation of amyloid fibrils and the onset of amyloidosis. Here, we review the recent evidence that supersaturation plays a role in linking unfolding/folding and amyloid fibril formation. We also introduce the HANABI (HANdai Amyloid Burst Inducer) system, which enables high-throughput analysis of amyloid fibril formation by the ultrasonication-triggered breakdown of supersaturation. In addition to structural studies, studies based on solubility and supersaturation are essential both to developing a comprehensive understanding of amyloid fibrils and their roles in amyloidosis, and to developing therapeutic strategies.
Collapse
|
5
|
Singhvi P, Panda AK. Solubilization and Refolding of Inclusion Body Proteins. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2406:371-387. [PMID: 35089569 DOI: 10.1007/978-1-0716-1859-2_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Expression of heterologous proteins in E. coli often leads to the formation of protein aggregates known as inclusion bodies (IBs). Inclusion body aggregates pose a major hurdle in the recovery of bioactive proteins from E. coli. Usage of strong denaturing buffers for solubilization of bacterial IBs results in poor recovery of bioactive protein. Structure-function understanding of IBs in the last two decades have led to the development of several mild solubilization buffers, which improve the recovery of bioactive from IBs. Recently, combinatorial mild solubilization methods have paved the way for solubilization of wide range of inclusion bodies with appreciable refolding yield. Here, we describe a simple protocol for solubilization and refolding of an inclusion body protein with appreciable recovery.
Collapse
Affiliation(s)
- Priyank Singhvi
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Amulya K Panda
- Product Development Cell, National Institute of Immunology, New Delhi, India.
| |
Collapse
|
6
|
Vahedifar A, Wu J. Self-assembling peptides: Structure, function, in silico prediction and applications. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Ansari S, Ray A, Ali MF, Bano S, Jairajpuri MA. Contrasting conformational dynamics of β-sheet A and helix F with implications in neuroserpin inhibition and aggregation. Int J Biol Macromol 2021; 176:117-125. [PMID: 33516851 DOI: 10.1016/j.ijbiomac.2021.01.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 11/25/2022]
Abstract
Neuroserpin (NS) is an inhibitory protein of serpin super family, its shutter region variants have high propensity to aggregate leading to pathological disorders like familial encephalopathy with NS inclusion bodies (FENIB). Helix F and β-sheet A of NS participate in the tissue plasminogen activator (tPA) inhibition but the mechanism is not yet completely understood. A microsecond (μs) molecular dynamics simulation of the helix F and strand 3A variants showed predominant fluctuations in the loop connecting the strands of β-sheet A. Therefore to understand the role of helix F and strand 3A of β-sheet A, cysteine was incorporated at the position N182 in stand 3A (N182C) and position W154 (W154C) in the helix F using site-directed mutagenesis. Purified variants were further labeled with Alexa Fluor488 C5 maleimide dye. Temperature dependent study using non-denaturing PAGE showed the formation of large aggregates of helix F variant W154C but not the strand 3A N182C variant. Interestingly tPA inhibition was found to be decreased in the labeled N182C with decreased tPA-complex formation as compared to labeled W154C NS variant. The fluorescence emission intensity of the labeled helix F variant W154C decreased in the presence of an increasing concentration of tPA, whereas an increase in emission intensity was observed in labeled strand 3A variant N182C, indicating more exposure of strand 3A and shielding of helix F. Taken together the data shows that helix F has a predominant role in the aggregation but a minor role in the inhibition mechanism.
Collapse
Affiliation(s)
- Shoyab Ansari
- Protein Conformation and Enzymology Lab, Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Arjun Ray
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi 110020, India
| | - Mohammad Farhan Ali
- Protein Conformation and Enzymology Lab, Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Shadabi Bano
- Protein Conformation and Enzymology Lab, Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Mohamad Aman Jairajpuri
- Protein Conformation and Enzymology Lab, Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India.
| |
Collapse
|
8
|
Yamaguchi K, So M, Aguirre C, Ikenaka K, Mochizuki H, Kawata Y, Goto Y. Polyphosphates induce amyloid fibril formation of α-synuclein in concentration-dependent distinct manners. J Biol Chem 2021; 296:100510. [PMID: 33676889 PMCID: PMC8059054 DOI: 10.1016/j.jbc.2021.100510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/17/2022] Open
Abstract
Polyphosphates (polyPs), chains of phosphate residues found in species across nature from bacteria to mammals, were recently reported to accelerate the amyloid fibril formation of many proteins. How polyPs facilitate this process, however, remains unknown. To gain insight into their mechanisms, we used various physicochemical approaches to examine the effects of polyPs of varying chain lengths on ultrasonication-dependent α-synuclein (α-syn) amyloid formation. Although orthophosphate and diphosphate exhibited a single optimal concentration of amyloid formation, triphosphate and longer-chain phosphates exhibited two optima, with the second at a concentration lower than that of orthophosphate or diphosphate. The second optimum decreased markedly as the polyP length increased. This suggested that although the optima at lower polyP concentrations were caused by interactions between negatively charged phosphate groups and the positive charges of α-syn, the optima at higher polyP concentrations were caused by the Hofmeister salting-out effects of phosphate groups, where the effects do not depend on the net charge. NMR titration experiments of α-syn with tetraphosphate combined with principal component analysis revealed that, at low tetraphosphate concentrations, negatively charged tetraphosphates interacted with positively charged "KTK" segments in four KTKEGV repeats located at the N-terminal region. At high concentrations, hydrated tetraphosphates affected the surface-exposed hydrophilic groups of compact α-syn. Taken together, our results suggest that long-chain polyPs consisting of 60 to 70 phosphates induce amyloid formation at sub-μM concentrations, which are comparable with the concentrations of polyPs in the blood or tissues. Thus, these findings may identify a role for polyPs in the pathogenesis of amyloid-related diseases.
Collapse
Affiliation(s)
- Keiichi Yamaguchi
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan; Institute for Protein Research, Osaka University, Osaka, Japan
| | - Masatomo So
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - César Aguirre
- Institute for Protein Research, Osaka University, Osaka, Japan; Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kensuke Ikenaka
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasushi Kawata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Yuji Goto
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan; Institute for Protein Research, Osaka University, Osaka, Japan.
| |
Collapse
|
9
|
Breakdown of supersaturation barrier links protein folding to amyloid formation. Commun Biol 2021; 4:120. [PMID: 33500517 PMCID: PMC7838177 DOI: 10.1038/s42003-020-01641-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
The thermodynamic hypothesis of protein folding, known as the "Anfinsen's dogma" states that the native structure of a protein represents a free energy minimum determined by the amino acid sequence. However, inconsistent with the Anfinsen's dogma, globular proteins can misfold to form amyloid fibrils, which are ordered aggregates associated with diseases such as Alzheimer's and Parkinson's diseases. Here, we present a general concept for the link between folding and misfolding. We tested the accessibility of the amyloid state for various proteins upon heating and agitation. Many of them showed Anfinsen-like reversible unfolding upon heating, but formed amyloid fibrils upon agitation at high temperatures. We show that folding and amyloid formation are separated by the supersaturation barrier of a protein. Its breakdown is required to shift the protein to the amyloid pathway. Thus, the breakdown of supersaturation links the Anfinsen's intramolecular folding universe and the intermolecular misfolding universe.
Collapse
|
10
|
Mathew M, T V D, Aravindakumar CT, Aravind UK. Potential involvement of environmental triggers in protein aggregation with mercuric chloride as a model. Int J Biol Macromol 2021; 174:153-161. [PMID: 33484803 DOI: 10.1016/j.ijbiomac.2021.01.134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
Heavy metal based toxicity has a direct relation with the perturbation of protein structure. We have investigated the progressive unfolding of ovalbumin, in the presence of increasing concentration mercury (0-6.25 μM) using different spectroscopic techniques. Formation of amorphous aggregate has been observed at the physiological pH. Initial addition of HgCl2 resulted in the association of monomers to oligomers that proceeded to non-fibrillar aggregates on further addition. The sigmoidal curve obtained from the Stern-Volmer plot clearly divided into three stage transition. A strong lag phase is observed indicating the time dependence for the association of competent monomers. The second stage was resolved into non-cooperative binding. These results match very well with the data from atomic force microscopy and the free energy change observed in the regions. Raman spectroscopic studies indicated toxic antiparallel β-sheets structure. Time dependent atomic force microscopy study revealed the off-pathway nature of amorphous aggregates. At molten globular state, similar quenching behaviour is observed. The atomic force microscopy images clearly indicate at pH 2.2 the initiation of fibril formation occurs at lower concentration of HgCl2 itself. Our results revealed the conformation switch of ovalbumin upon the contact of an environmental toxin and its possible way of toxicity.
Collapse
Affiliation(s)
- Manjumol Mathew
- Advanced Centre of Environmental Studies and Sustainable Development, Mahatma Gandhi University, Kottayam 686 560, India
| | - Divyalakshmi T V
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam 686 560, India
| | | | - Usha K Aravind
- School of Environmental Studies, Cochin University of Science and Technology, Kochi 682022, India.
| |
Collapse
|
11
|
Sawada M, Yamaguchi K, Hirano M, Noji M, So M, Otzen D, Kawata Y, Goto Y. Amyloid Formation of α-Synuclein Based on the Solubility- and Supersaturation-Dependent Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4671-4681. [PMID: 32271585 DOI: 10.1021/acs.langmuir.0c00426] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Amyloid fibrils are formed by denatured proteins when the supersaturation of denatured proteins is broken by agitation, such as ultrasonication, or by seeding, although the detailed mechanism of how solubility and supersaturation regulate amyloid formation remains unclear. To further understand the mechanism of amyloid formation, we examined α-synuclein (α-syn) amyloid formation at varying concentrations of SDS, LPA, heparin, or NaCl at pH 7.5. Amyloid fibrils were formed below or around the critical micelle concentrations (CMCs) of SDS (2.75 mM) and LPA (0.24 mM), although no fibrils were formed above the CMCs. On the other hand, amyloid fibrils were formed with 0.01-2.5 mg/mL of heparin and 0.5-1.0 M NaCl, and amyloid formation was gradually suppressed at higher concentrations of heparin and NaCl. To reproduce these concentration-dependent effects of additives, we constructed two models: (i) the ligand-binding-dependent solubility-modulation model and (ii) the cosolute-dependent direct solubility-modulation model, both of which were used by Tanford and colleagues to analyze the additive-dependent conformational transitions of proteins. The solubility of α-syn was assumed to vary depending on the concentration of additives either by the decreased solubility of the additive-α-syn complex (model i) or by the direct regulation of α-syn solubility (model ii). Both models well reproduced additive-dependent bell-shaped profiles of acceleration and inhibition observed for SDS and LPA. As for heparin and NaCl, participation of amorphous aggregates at high concentrations of additives was suggested. The models confirmed that solubility and supersaturation play major roles in driving amyloid formation in vitro, furthering our understanding of the pathogenesis of amyloidosis in vivo.
Collapse
Affiliation(s)
- Maya Sawada
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keiichi Yamaguchi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Miki Hirano
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahiro Noji
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masatomo So
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daniel Otzen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Yasushi Kawata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama Minami, Tottori 680-8552, Japan
| | - Yuji Goto
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
12
|
Bacterial Inclusion Bodies: A Treasure Trove of Bioactive Proteins. Trends Biotechnol 2020; 38:474-486. [DOI: 10.1016/j.tibtech.2019.12.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/29/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022]
|
13
|
Damaziak K, Kieliszek M, Bucław M. Characterization of structure and protein of vitelline membranes of precocial (ring-necked pheasant, gray partridge) and superaltricial (cockatiel parrot, domestic pigeon) birds. PLoS One 2020; 15:e0228310. [PMID: 31999757 PMCID: PMC6992205 DOI: 10.1371/journal.pone.0228310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 01/03/2020] [Indexed: 01/12/2023] Open
Abstract
Of all the known oviparous taxa, female birds lay the most diverse types of eggs that differ in terms of shape, shell pigmentation, and shell structure. The pigmentation of the shell, the weight of the egg, and the composition of the yolk correlate with environmental conditions and the needs of the developing embryos. In this study, we analyzed the structure and protein composition of the vitelline membrane (VM) of ring-necked pheasant, gray partridge, cockatiel parrot, and domestic pigeon eggs. We found that the VM structure is characteristic of each species and varies depending on whether the species is precocial (ring-necked pheasant and gray partridge) or superaltrical (cockatiel parrot and domestic pigeon). We hypothesize that a multilayer structure of VM is necessary to counteract the aging process of the egg. The multilayer structure of VM is only found in species with a large number of eggs in one clutch and is characterized by a long incubation period. An interesting discovery of this study is the three-layered VM of pheasant and partridge eggs. This shows that the formation of individual layers of VM in specific sections of the hen's reproductive system is not confirmed in other species. The number of protein fractions varied between 19 and 23, with a molecular weight ranging from 15 to 250 kDa, depending on the species. The number of proteins identified in the VM of the study birds' eggs is as follows: chicken-14, ring-necked pheasant-7, gray partridge-10, cockatiel parrot-6, and domestic pigeon-23. The highest number of species-specific proteins (21) was detected in the VM of domestic pigeon. This study is the first to present the structure and protein composition in the VM of ring-necked pheasant, gray partridge, cockatiel parrot, and domestic pigeon eggs. In addition, we analyzed the relationship between the hatching specification of birds and the structure of the VM.
Collapse
Affiliation(s)
- Krzysztof Damaziak
- Department of Animal Breeding, Faculty of Animal Breeding, Bioengineering and Conservation, Institute of Animal Science, University of Life Sciences, Warsaw, Poland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Bucław
- Department of Poultry and Ornamental Bird Breeding, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Szczecin, Poland
| |
Collapse
|
14
|
Noji M, Sasahara K, Yamaguchi K, So M, Sakurai K, Kardos J, Naiki H, Goto Y. Heating during agitation of β 2-microglobulin reveals that supersaturation breakdown is required for amyloid fibril formation at neutral pH. J Biol Chem 2019; 294:15826-15835. [PMID: 31495783 DOI: 10.1074/jbc.ra119.009971] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/19/2019] [Indexed: 12/27/2022] Open
Abstract
Amyloidosis-associated amyloid fibrils are formed by denatured proteins when supersaturation of denatured proteins is broken. β2-Microglobulin (β2m) forms amyloid fibrils and causes dialysis-related amyloidosis in patients receiving long-term hemodialysis. Although amyloid fibrils of β2m in patients are observed at neutral pH, formation of β2m amyloids in vitro has been difficult to discern at neutral pH because of the amyloid-resistant native structure. Here, to further understand the mechanism underlying in vivo amyloid formation, we investigated the relationship between protein folding/unfolding and misfolding leading to amyloid formation. Using thioflavin T assays, CD spectroscopy, and transmission EM analyses, we found that β2m efficiently forms amyloid fibrils even at neutral pH by heating with agitation at high-salt conditions. We constructed temperature- and NaCl concentration-dependent conformational phase diagrams in the presence or absence of agitation, revealing how amyloid formation under neutral pH conditions is related to thermal unfolding and breakdown of supersaturation. Of note, after supersaturation breakdown and following the law of mass action, the β2m monomer equilibrium shifted to the unfolded state, destabilizing the native state and thereby enabling amyloid formation even under physiological conditions with a low amount of unfolded precursor. The amyloid fibrils depolymerized at both lower and higher temperatures, resembling cold- or heat-induced denaturation of globular proteins. Our results suggest an important role for heating in the onset of dialysis-related amyloidosis and related amyloidoses.
Collapse
Affiliation(s)
- Masahiro Noji
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Kenji Sasahara
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Keiichi Yamaguchi
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Masatomo So
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Kazumasa Sakurai
- Institute of Advanced Technology, Kindai University, Wakayama 649-6493, Japan
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. Sétány 1/C, Budapest, 1117, Hungary
| | - Hironobu Naiki
- Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Yuji Goto
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| |
Collapse
|