1
|
Kulkarni AS, Carrara GMP, Jin J, Laro J, Peramuna T, McCall LI, Garg N. Mass spectrometry-based metabolomics approaches to interrogate host-microbiome interactions in mammalian systems. Nat Prod Rep 2025. [PMID: 40521991 PMCID: PMC12169106 DOI: 10.1039/d5np00021a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Indexed: 06/18/2025]
Abstract
Covering: 2015 to 2025Chemical crosstalk is universal to all life, niche-specific, and essential to thrive. This crosstalk is mediated by a large diversity of molecules, including metal ions, small molecules, polysaccharides, nucleic acids, lipids, and proteins. Among these, specialized small molecules referred to as natural products (NPs) play an important role in microbe-drug/environment interactions, microbe-microbe, and microbe-host interactions. Microbial communication using NPs allows microbes to sense quorum, form biofilms, eliminate competition, establish symbiosis, evade immune attack, and respond to stress. In most cases, the elucidation of small molecule mediators and effectors of microbe-host interactions presents a major challenge due to the relatively low abundance of microbial metabolites in a milieu of host, microbe, and environmental metabolites. Advances in analytical instrumentation, such as mass spectrometers, and both experimental as well as computational methods to analyze data, coupled with the use of model organisms, have enabled fundamental discoveries of mechanisms of small molecule-mediated host-microbe interactions. The focus of this review is to detail the approaches applied in the last decade to disentangle microbiome-derived NPs in human and murine model systems. Select recent findings from diverse biological ecosystems are discussed to inform relevant parallels and potential strategies for research in human health.
Collapse
Affiliation(s)
- Atharva S Kulkarni
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Guilherme M P Carrara
- Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, USA.
| | - Jiangpeiyun Jin
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Jarrod Laro
- Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, USA.
- Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Thilini Peramuna
- Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Laura-Isobel McCall
- Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, USA.
- Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Neha Garg
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
2
|
Carlson ES, Haslecker R, Lecchi C, Ramos MA, Vennelakanti V, Honaker L, Stornetta A, Millán ES, Johnson BA, Kulik HJ, Balbo S, Villalta PW, D’Souza V, Balskus EP. The specificity and structure of DNA crosslinking by the gut bacterial genotoxin colibactin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.05.26.655968. [PMID: 40501905 PMCID: PMC12154741 DOI: 10.1101/2025.05.26.655968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/28/2025]
Abstract
Accumulating evidence has connected the chemically unstable, DNA-damaging gut bacterial natural product colibactin to colorectal cancer, including the identification of mutational signatures that are thought to arise from colibactin-DNA interstrand crosslinks (ICLs). However, we currently lack direct information regarding the structure of this lesion. Here, we combine mass spectrometry and nuclear magnetic resonance spectroscopy to elucidate the specificity and structure of the colibactin-DNA ICL. We find that colibactin alkylates within the minor groove of AT-rich DNA, explaining the origins of mutational signatures. Unexpectedly, we discover that the chemically unstable central motif of colibactin mediates the sequence specificity of crosslinking. By directly elucidating colibactin's interactions with DNA, this work enhances our understanding of the structure and genotoxic mechanisms of this unique cancer-linked gut bacterial natural product.
Collapse
Affiliation(s)
- Erik S. Carlson
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Raphael Haslecker
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Chiara Lecchi
- Masonic Cancer Center University of Minnesota, Minneapolis, MN 55455, USA
| | - Miguel Aguilar Ramos
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Vyshnavi Vennelakanti
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Linda Honaker
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alessia Stornetta
- Masonic Cancer Center University of Minnesota, Minneapolis, MN 55455, USA
| | - Estela S. Millán
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Bruce A. Johnson
- Structural Biology Initiative, City University of New York (CUNY) Advanced Science Research Center, New York, NY 10031, USA
| | - Heather J. Kulik
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Silvia Balbo
- Masonic Cancer Center University of Minnesota, Minneapolis, MN 55455, USA
| | - Peter W. Villalta
- Masonic Cancer Center University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Victoria D’Souza
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
3
|
Turocy T, Crawford JM. Bacterial small molecule metabolites implicated in gastrointestinal cancer development. Nat Rev Microbiol 2025; 23:106-121. [PMID: 39375475 DOI: 10.1038/s41579-024-01103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/09/2024]
Abstract
Numerous associations have been identified between cancer and the composition and function of the human microbiome. As cancer remains the second leading global cause of mortality, investigating the carcinogenic contributions of microbiome members could advance our understanding of cancer risk and support potential therapeutic interventions. Although fluctuations in bacterial species have been associated with cancer progression, studying their small molecule metabolites offers one avenue to establish support for causal relationships and the molecular mechanisms governing host-microorganism interactions. In this Review, we explore the expanding repertoire of small molecule metabolites and their mechanisms implicated in the risk of developing gastrointestinal cancers.
Collapse
Affiliation(s)
- Tayah Turocy
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, CT, USA.
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA.
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Lowry E, Mitchell A. Colibactin-induced damage in bacteria is cell contact independent. mBio 2025; 16:e0187524. [PMID: 39576109 PMCID: PMC11708049 DOI: 10.1128/mbio.01875-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Abstract
The bacterial toxin colibactin, produced primarily by the B2 phylogroup of Escherichia coli, underlies some cases of colorectal cancers. Colibactin crosslinks DNA and induces genotoxic damage in both mammalian and bacterial cells. While the mechanisms facilitating colibactin delivery remain unclear, results from multiple studies supported a delivery model that necessitates cell-cell contact. We directly tested this requirement in bacterial cultures by monitoring the spatiotemporal dynamics of the DNA damage response using a fluorescent transcriptional reporter. We found that in mixed-cell populations, DNA damage saturated within 12 hours and was detectable even in reporter cells separated from colibactin producers by hundreds of microns. Experiments with distinctly separated producer and reporter colonies revealed that the intensity of DNA damage decays similarly with distance regardless of colony contact. Our work reveals that cell contact is inconsequential for colibactin delivery in bacteria and suggests that contact dependence needs to be reexamined in mammalian cells as well. IMPORTANCE Colibactin is a bacteria-produced toxin that binds and damages DNA. It has been widely studied in mammalian cells due to its potential role in tumorigenesis. However, fundamental questions about its impact in bacteria remain underexplored. We used Escherichia coli as a model system to study colibactin toxicity in neighboring bacteria and directly tested if cell-cell contact is required for toxicity, as has previously been proposed. We found that colibactin can induce DNA damage in bacteria hundreds of microns away, and the intensity of DNA damage presents similarly regardless of cell-cell contact. Our work further suggests that the requirement for cell-cell contact for colibactin-induced toxicity also needs to be reevaluated in mammalian cells.
Collapse
Affiliation(s)
- Emily Lowry
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Amir Mitchell
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
5
|
Lowry E, Wang Y, Dagan T, Mitchell A. Colibactin leads to a bacteria-specific mutation pattern and self-inflicted DNA damage. Genome Res 2024; 34:1154-1164. [PMID: 39152036 PMCID: PMC11444178 DOI: 10.1101/gr.279517.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Colibactin produced primarily by Escherichia coli strains of the B2 phylogroup cross-links DNA and can promote colon cancer in human hosts. Here, we investigate the toxin's impact on colibactin producers and on bacteria cocultured with producing cells. Using genome-wide genetic screens and mutation accumulation experiments, we uncover the cellular pathways that mitigate colibactin damage and reveal the specific mutations it induces. We discover that although colibactin targets A/T-rich motifs, as observed in human colon cells, it induces a bacteria-unique mutation pattern. Based on this pattern, we predict that long-term colibactin exposure will culminate in a genomic bias in trinucleotide composition. We test this prediction by analyzing thousands of E. coli genomes and find that colibactin-producing strains indeed show the predicted skewness in trinucleotide composition. Our work reveals a bacteria-specific mutation pattern and suggests that the resistance protein encoded on the colibactin pathogenicity island is insufficient in preventing self-inflicted DNA damage.
Collapse
Affiliation(s)
- Emily Lowry
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| | - Yiqing Wang
- Institute of General Microbiology, Kiel University, 24118 Kiel, Germany
| | - Tal Dagan
- Institute of General Microbiology, Kiel University, 24118 Kiel, Germany
| | - Amir Mitchell
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA;
| |
Collapse
|
6
|
Lowry E, Mitchell A. Colibactin-induced damage in bacteria is cell contact independent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600066. [PMID: 38948699 PMCID: PMC11212979 DOI: 10.1101/2024.06.21.600066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The bacterial toxin colibactin, produced primarily by the B2 phylogroup of Escherichia coli, underlies some cases of colorectal cancers. Colibactin crosslinks DNA and induces genotoxic damage in both mammalian and bacterial cells. While the mechanisms facilitating colibactin delivery remain unclear, results from multiple studies supported a delivery model that necessitates cell-cell contact. We directly tested this requirement in bacterial cultures by monitoring the spatiotemporal dynamics of the DNA damage response using a fluorescent transcriptional reporter. We found that in mixed-cell populations, DNA damage saturated within twelve hours and was detectable even in reporter cells separated from colibactin producers by hundreds of microns. Experiments with distinctly separated producer and reporter colonies revealed that the intensity of DNA damage decays similarly with distance regardless of colony contact. Our work reveals that cell contact is inconsequential for colibactin delivery in bacteria and suggests that contact-dependence needs to be reexamined in mammalian cells as well. Importance Colibactin is a bacteria-produced toxin that binds and damages DNA. It has been widely studied in mammalian cells due to its potential role in tumorigenesis. However, fundamental questions about its impact in bacteria remain underexplored. We used E. coli as a model system to study colibactin toxicity in neighboring bacteria and directly tested if cell-cell contact is required for toxicity, as has previously been proposed. We found that colibactin can induce DNA damage in bacteria hundreds of microns away and that the intensity of DNA damage presents similarly regardless of cell-cell contact. Our work further suggests that the requirement for cell-cell contact for colibactin-induced toxicity also needs to be reevaluated in mammalian cells.
Collapse
|
7
|
DiBello M, Healy AR, Nikolayevskiy H, Xu Z, Herzon SB. Structure Elucidation of Secondary Metabolites: Current Frontiers and Lingering Pitfalls. Acc Chem Res 2023; 56:1656-1668. [PMID: 37220079 PMCID: PMC10468810 DOI: 10.1021/acs.accounts.3c00183] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Analytical methods allow for the structure determination of submilligram quantities of complex secondary metabolites. This has been driven in large part by advances in NMR spectroscopic capabilities, including access to high-field magnets equipped with cryogenic probes. Experimental NMR spectroscopy may now be complemented by remarkably accurate carbon-13 NMR calculations using state-of-the-art DFT software packages. Additionally, microED analysis stands to have a profound effect on structure elucidation by providing X-ray-like images of microcrystalline samples of analytes. Nonetheless, lingering pitfalls in structure elucidation remain, particularly for isolates that are unstable or highly oxidized. In this Account, we discuss three projects from our laboratory that highlight nonoverlapping challenges to the field, with implications for chemical, synthetic, and mechanism of action studies. We first discuss the lomaiviticins, complex unsaturated polyketide natural products disclosed in 2001. The original structures were derived from NMR, HRMS, UV-vis, and IR analysis. Owing to the synthetic challenges presented by their structures and the absence of X-ray crystallographic data, the structure assignments remained untested for nearly two decades. In 2021, the Nelson group at Caltech carried out microED analysis of (-)-lomaiviticin C, leading to the startling discovery that the original structure assignment of the lomaiviticins was incorrect. Acquisition of higher-field (800 MHz 1H, cold probe) NMR data as well as DFT calculations provided insights into the basis for the original misassignment and lent further support to the new structure identified by microED. Reanalysis of the 2001 data set reveals that the two structure assignments are nearly indistinguishable, underscoring the limitations of NMR-based characterization. We then discuss the structure elucidation of colibactin, a complex, nonisolable microbiome metabolite implicated in colorectal cancer. The colibactin biosynthetic gene cluster was detected in 2006, but owing to colibactin's instability and low levels of production, it could not be isolated or characterized. We used a combination of chemical synthesis, mechanism of action studies, and biosynthetic analysis to identify the substructures in colibactin. These studies, coupled with isotope labeling and tandem MS analysis of colibactin-derived DNA interstrand cross-links, ultimately led to a structure assignment for the metabolite. We then discuss the ocimicides, plant secondary metabolites that were studied as agents against drug-resistant P. falciparum. We synthesized the core structure of the ocimicides and found significant discrepancies between our experimental NMR spectroscopic data and that reported for the natural products. We determined the theoretical carbon-13 NMR shifts for 32 diastereomers of the ocimicides. These studies indicated that a revision of the connectivity of the metabolites is likely needed. We end with some thoughts on the frontiers of secondary metabolite structure determination. As modern NMR computational methods are straightforward to execute, we advocate for their systematic use in validating the assignments of novel secondary metabolites.
Collapse
Affiliation(s)
- Mikaela DiBello
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Alan R Healy
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Herman Nikolayevskiy
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Zhi Xu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Departments of Pharmacology and Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|
8
|
Abstract
Bacterial genotoxins are peptide or protein virulence factors produced by several pathogens, which make single-strand breaks (SSBs) and/or double-strand DNA breaks (DSBs) in the target host cells. If host DNA inflictions are not resolved on time, host cell apoptosis, cell senescence, and/or even bacterial pathogen-related cancer may occur. Two multi-protein AB toxins, cytolethal distending toxin (CDT) produced by over 30 bacterial pathogens and typhoid toxin from Salmonella Typhi, as well as small polyketide-peptides named colibactin that causes the DNA interstrand cross-linking and subsequent DSBs is the most well-characterized bacterial genotoxins. Using these three examples, this review discusses the mechanisms by which these toxins deliver themselves into the nucleus of the target host cells and exert their genotoxic functions at the structural and functional levels.
Collapse
Affiliation(s)
- Liaoqi Du
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Jeongmin Song
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
9
|
Tang JW, Liu X, Ye W, Li ZR, Qian PY. Biosynthesis and bioactivities of microbial genotoxin colibactins. Nat Prod Rep 2022; 39:991-1014. [PMID: 35288725 DOI: 10.1039/d1np00050k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: up to 2021Colibactin(s), a group of secondary metabolites produced by the pks island (clb cluster) of Escherichia coli, shows genotoxicity relevant to colorectal cancer and thus significantly affects human health. Over the last 15 years, substantial efforts have been exerted to reveal the molecular structure of colibactin, but progress is slow owing to its instability, low titer, and elusive and complex biosynthesis logic. Fortunately, benefiting from the discovery of the prodrug mechanism, over 40 precursors of colibactin have been reported. Some key biosynthesis genes located on the pks island have also been characterised. Using an integrated bioinformatics, metabolomics, and chemical synthesis approach, researchers have recently characterised the structure and possible biosynthesis processes of colibactin, thereby providing new insights into the unique biosynthesis logic and the underlying mechanism of the biological activity of colibactin. Early developments in the study of colibactin have been summarised in several previous reviews covering various study periods, whereas the two most recent reviews have focused primarily on the chemical synthesis of colibactin. The present review aims to provide an update on the biosynthesis and bioactivities of colibactin.
Collapse
Affiliation(s)
- Jian-Wei Tang
- Department of Ocean Science, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China. .,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Xin Liu
- Department of Ocean Science, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China. .,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Wei Ye
- Department of Ocean Science, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China. .,State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zhong-Rui Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Pei-Yuan Qian
- Department of Ocean Science, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China. .,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| |
Collapse
|
10
|
Li S, Liu J, Zheng X, Ren L, Yang Y, Li W, Fu W, Wang J, Du G. Tumorigenic bacteria in colorectal cancer: mechanisms and treatments. Cancer Biol Med 2021; 19:j.issn.2095-3941.2020.0651. [PMID: 34586760 PMCID: PMC8832957 DOI: 10.20892/j.issn.2095-3941.2020.0651] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/29/2021] [Indexed: 11/30/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common and the second most fatal cancer. In recent years, more attention has been directed toward the role of gut microbiota in the initiation and development of CRC. Some bacterial species, such as Fusobacterium nucleatum, Escherichia coli, Bacteroides fragilis, Enterococcus faecalis, and Salmonella sp. have been associated with CRC, based upon sequencing studies in CRC patients and functional studies in cell culture and animal models. These bacteria can cause host DNA damage by genotoxic substances, including colibactin secreted by pks + Escherichia coli, B. fragilis toxin (BFT) produced by Bacteroides fragilis, and typhoid toxin (TT) from Salmonella. These bacteria can also indirectly promote CRC by influencing host-signaling pathways, such as E-cadherin/β-catenin, TLR4/MYD88/NF-κB, and SMO/RAS/p38 MAPK. Moreover, some of these bacteria can contribute to CRC progression by helping tumor cells to evade the immune response by suppressing immune cell function, creating a proinflammatory environment, or influencing the autophagy process. Treatments with the classical antibacterial drugs, metronidazole or erythromycin, the antibacterial active ingredients, M13@ Ag (electrostatically assembled from inorganic silver nanoparticles and the protein capsid of bacteriophage M13), berberine, and zerumbone, were found to inhibit tumorigenic bacteria to different degrees. In this review, we described progress in elucidating the tumorigenic mechanisms of several CRC-associated bacteria, as well as progress in developing effective antibacterial therapies. Specific bacteria have been shown to be active in the oncogenesis and progression of CRC, and some antibacterial compounds have shown therapeutic potential in bacteria-induced CRC. These bacteria may be useful as biomarkers or therapeutic targets for CRC.
Collapse
Affiliation(s)
- Sha Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinyi Liu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Weiqi Fu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
11
|
Sadecki PW, Balboa SJ, Lopez LR, Kedziora KM, Arthur JC, Hicks LM. Evolution of Polymyxin Resistance Regulates Colibactin Production in Escherichia coli. ACS Chem Biol 2021; 16:1243-1254. [PMID: 34232632 PMCID: PMC8601121 DOI: 10.1021/acschembio.1c00322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The complex reservoir of metabolite-producing bacteria in the gastrointestinal tract contributes tremendously to human health and disease. Bacterial composition, and by extension gut metabolomic composition, is undoubtably influenced by the use of modern antibiotics. Herein, we demonstrate that polymyxin B, a last resort antibiotic, influences the production of the genotoxic metabolite colibactin from adherent-invasive Escherichia coli (AIEC) NC101. Colibactin can promote colorectal cancer through DNA double stranded breaks and interstrand cross-links. While the structure and biosynthesis of colibactin have been elucidated, chemical-induced regulation of its biosynthetic gene cluster and subsequent production of the genotoxin by E. coli are largely unexplored. Using a multiomic approach, we identified that polymyxin B stress enhances the abundance of colibactin biosynthesis proteins (Clb's) in multiple pks+ E. coli strains, including pro-carcinogenic AIEC, NC101; the probiotic strain, Nissle 1917; and the antibiotic testing strain, ATCC 25922. Expression analysis via qPCR revealed that increased transcription of clb genes likely contributes to elevated Clb protein levels in NC101. Enhanced production of Clb's by NC101 under polymyxin stress matched an increased production of the colibactin prodrug motif, a proxy for the mature genotoxic metabolite. Furthermore, E. coli with a heightened tolerance for polymyxin induced greater mammalian DNA damage, assessed by quantification of γH2AX staining in cultured intestinal epithelial cells. This study establishes a key link between the polymyxin B stress response and colibactin production in pks+ E. coli. Ultimately, our findings will inform future studies investigating colibactin regulation and the ability of seemingly innocuous commensal microbes to induce host disease.
Collapse
Affiliation(s)
- Patric W. Sadecki
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Samantha J. Balboa
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lacey R. Lopez
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Katarzyna M. Kedziora
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Bioinformatics and Analytics Research Collaborative (BARC), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Janelle C. Arthur
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Leslie M. Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
12
|
Tripathi P, Bruner SD. Structural Basis for the Interactions of the Colibactin Resistance Gene Product ClbS with DNA. Biochemistry 2021; 60:1619-1625. [PMID: 33945270 DOI: 10.1021/acs.biochem.1c00201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The natural product colibactin, along with its associated biosynthetic gene cluster, is an example system for the role microbially derived small molecules play in the human microbiome. This is particularly relevant in the human gut, where host microbiota is involved in various disorders, including colorectal cancer pathogenesis. Bacteria harboring the colibactin gene cluster induce alkylation of nucleobases in host DNA, forming interstrand cross-links both in vivo and in vitro. These lesions can lead to deleterious double-strand breaks and have been identified as the primary mechanism of colibactin-induced cytotoxicity. The gene product ClbS is one of several mechanisms utilized by the producing bacteria to maintain genome integrity. ClbS catalyzes hydrolytic inactivation of colibactin and has been shown to bind DNA, incurring self-resistance. Presented is the molecular basis for ClbS bound to a DNA oligonucleotide. The structure shows the interaction of the protein with the ends of a DNA duplex with terminal nucleotides flipped to the enzyme active site. The structure suggests an additional function for ClbS, the binding to damaged DNA followed by repair. Additionally, our study provides general insight into the function of the widely distributed and largely uncharacterized DUF1706 protein family.
Collapse
Affiliation(s)
- Prabhanshu Tripathi
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Steven D Bruner
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
13
|
Zhou T, Hirayama Y, Tsunematsu Y, Suzuki N, Tanaka S, Uchiyama N, Goda Y, Yoshikawa Y, Iwashita Y, Sato M, Miyoshi N, Mutoh M, Ishikawa H, Sugimura H, Wakabayashi K, Watanabe K. Isolation of New Colibactin Metabolites from Wild-Type Escherichia coli and In Situ Trapping of a Mature Colibactin Derivative. J Am Chem Soc 2021; 143:5526-5533. [PMID: 33787233 DOI: 10.1021/jacs.1c01495] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Colibactin is a polyketide-nonribosomal peptide hybrid secondary metabolite that can form interstrand cross-links in double-stranded DNA. Colibactin-producing Escherichia coli has also been linked to colorectal oncogenesis. Thus, there is a strong interest in understanding the role colibactin may play in oncogenesis. Here, using the high-colibactin-producing wild-type E. coli strain we isolated from a clinical sample with the activity-based fluorescent probe we developed earlier, we were able to identify colibactin 770, which was recently identified and proposed as the complete form of colibactin, along with colibactin 788, 406, 416, 420, and 430 derived from colibactin 770 through structural rearrangements and solvolysis. Furthermore, we were able to trap the degrading mature colibactin species by converting the diketone moiety into quinoxaline in situ in the crude culture extract to form colibactin 860 at milligram scale. This allowed us to determine the stereochemically complex structure of the rearranged form of an intact colibactin, colibactin 788, in detail. Furthermore, our study suggested that we were capturing only a few percent of the actual colibactin produced by the microbe, providing a crude quantitative insight into the inherent instability of this compound. Through the structural assignment of colibactins and their degradative products by the combination of LC-HRMS and NMR spectroscopies, we were able to elucidate further the fate of inherently unstable colibactin, which could help acquire a more complete picture of colibactin metabolism and identify key DNA adducts and biomarkers for diagnosing colorectal cancer.
Collapse
Affiliation(s)
- Tao Zhou
- Adenoprevent Co., Ltd., Shizuoka 422-8526, Japan
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yuichiro Hirayama
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yuta Tsunematsu
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Nanami Suzuki
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Seiji Tanaka
- National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Nahoko Uchiyama
- National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Yukihiro Goda
- National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Yuko Yoshikawa
- School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Yuji Iwashita
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| | - Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Noriyuki Miyoshi
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Michihiro Mutoh
- Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hideki Ishikawa
- Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| | - Keiji Wakabayashi
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Kenji Watanabe
- Adenoprevent Co., Ltd., Shizuoka 422-8526, Japan
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
14
|
Abstract
The human microbiome encodes a second genome that dwarfs the genetic capacity of the host. Microbiota-derived small molecules can directly target human cells and their receptors or indirectly modulate host responses through functional interactions with other microbes in their ecological niche. Their biochemical complexity has profound implications for nutrition, immune system development, disease progression, and drug metabolism, as well as the variation in these processes that exists between individuals. While the species composition of the human microbiome has been deeply explored, detailed mechanistic studies linking specific microbial molecules to host phenotypes are still nascent. In this review, we discuss challenges in decoding these interaction networks, which require interdisciplinary approaches that combine chemical biology, microbiology, immunology, genetics, analytical chemistry, bioinformatics, and synthetic biology. We highlight important classes of microbiota-derived small molecules and notable examples. An understanding of these molecular mechanisms is central to realizing the potential of precision microbiome editing in health, disease, and therapeutic responses.
Collapse
Affiliation(s)
- Emilee E Shine
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06536, USA; .,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA.,Current affiliation: Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Jason M Crawford
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06536, USA; .,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA.,Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
15
|
Iftekhar A, Berger H, Bouznad N, Heuberger J, Boccellato F, Dobrindt U, Hermeking H, Sigal M, Meyer TF. Genomic aberrations after short-term exposure to colibactin-producing E. coli transform primary colon epithelial cells. Nat Commun 2021; 12:1003. [PMID: 33579932 PMCID: PMC7881031 DOI: 10.1038/s41467-021-21162-y] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Genotoxic colibactin-producing pks+ Escherichia coli induce DNA double-strand breaks, mutations, and promote tumor development in mouse models of colorectal cancer (CRC). Colibactin's distinct mutational signature is reflected in human CRC, suggesting a causal link. Here, we investigate its transformation potential using organoids from primary murine colon epithelial cells. Organoids recovered from short-term infection with pks+ E. coli show characteristics of CRC cells, e.g., enhanced proliferation, Wnt-independence, and impaired differentiation. Sequence analysis of Wnt-independent organoids reveals an enhanced mutational burden, including chromosomal aberrations typical of genomic instability. Although we do not find classic Wnt-signaling mutations, we identify several mutations in genes related to p53-signaling, including miR-34a. Knockout of Trp53 or miR-34 in organoids results in Wnt-independence, corroborating a functional interplay between the p53 and Wnt pathways. We propose larger chromosomal alterations and aneuploidy as the basis of transformation in these organoids, consistent with the early appearance of chromosomal instability in CRC.
Collapse
Affiliation(s)
- Amina Iftekhar
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hilmar Berger
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany.,Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel and University Hospital Schleswig Holstein - Campus Kiel, Kiel, Germany.,Department of Internal Medicine, Gastroenterology and Hepatology, Charité University Medicine, Berlin, Germany
| | - Nassim Bouznad
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig Maximilians University, München, Germany
| | - Julian Heuberger
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany.,Department of Internal Medicine, Gastroenterology and Hepatology, Charité University Medicine, Berlin, Germany
| | - Francesco Boccellato
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany.,Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig Maximilians University, München, Germany.,German Cancer Consortium (DKTK), Partner Site München, München, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Sigal
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany. .,Department of Internal Medicine, Gastroenterology and Hepatology, Charité University Medicine, Berlin, Germany. .,Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany. .,Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel and University Hospital Schleswig Holstein - Campus Kiel, Kiel, Germany.
| |
Collapse
|
16
|
Tang-Fichaux M, Chagneau CV, Bossuet-Greif N, Nougayrède JP, Oswald É, Branchu P. The Polyphosphate Kinase of Escherichia coli Is Required for Full Production of the Genotoxin Colibactin. mSphere 2020; 5:e01195-20. [PMID: 33328353 PMCID: PMC7771237 DOI: 10.1128/msphere.01195-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
Colibactin induces DNA damage in mammalian cells and has been linked to the virulence of Escherichia coli and the promotion of colorectal cancer (CRC). By looking for mutants attenuated in the promoter activity of clbB encoding one of the key enzymes for the production of colibactin, we found that a mutant of the gene coding for the polyphosphate kinase (PPK) produced less colibactin than the parental strain. We observed this phenotype in different strains ranging from pathogens responsible for meningitis, urinary tract infection, or mouse colon carcinogenesis to the probiotic Nissle 1917. We confirmed the role of PPK by using an inhibitor of PPK enzymatic activity, mesalamine (also known as 5-aminosalicylic acid). Interestingly, mesalamine has a local anti-inflammatory effect on the epithelial cells of the colon and is used to treat inflammatory bowel disease (IBD). Upon treatment with mesalamine, a decreased genotoxicity of colibactin-producing E. coli was observed both on epithelial cells and directly on purified DNA. This demonstrates the direct effect of mesalamine on bacteria independently from its anti-inflammatory effect on eukaryotic cells. Our results suggest that the mechanisms of action of mesalamine in treating IBD and preventing CRC could also lie in the inhibition of colibactin production. All in all, we demonstrate that PPK is required for the promoter activity of clbB and the production of colibactin, which suggests that PPK is a promising target for the development of anticolibactin and antivirulence strategies.IMPORTANCE Colibactin-producing E. coli induces DNA damage in eukaryotic cells and promotes tumor formation in mouse models of intestinal inflammation. Recent studies have provided strong evidence supporting the causative role of colibactin in human colorectal cancer (CRC) progression. Therefore, it is important to understand the regulation of the production of this genotoxin. Here, we demonstrate that polyphosphate kinase (PPK) is required for the promoter activity of clbB and the production of colibactin. Interestingly, PPK is a multifunctional player in bacterial virulence and stress responses and has been proposed as a new target for developing antimicrobial medicine. We observed inhibition of colibactin production by using a previously identified PPK inhibitor (i.e., mesalamine, an anti-inflammatory drug commonly prescribed for inflammatory bowel diseases). These data brought us a new perspective on the regulatory network of colibactin production and provided us a clue for the development of anticolibactin strategies for CRC treatment/prophylaxis.
Collapse
Affiliation(s)
- Min Tang-Fichaux
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Camille V Chagneau
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | | | | | - Éric Oswald
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
- CHU Toulouse, Service de Bactériologie-Hygiène, Toulouse, France
| | - Priscilla Branchu
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| |
Collapse
|
17
|
Williams PC, Wernke KM, Tirla A, Herzon SB. Employing chemical synthesis to study the structure and function of colibactin, a "dark matter" metabolite. Nat Prod Rep 2020; 37:1532-1548. [PMID: 33174565 PMCID: PMC7700718 DOI: 10.1039/d0np00072h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Covering: 2015 to 2020 The field of natural products is dominated by a discovery paradigm that follows the sequence: isolation, structure elucidation, chemical synthesis, and then elucidation of mechanism of action and structure-activity relationships. Although this discovery paradigm has proven successful in the past, researchers have amassed enough evidence to conclude that the vast majority of nature's secondary metabolites - biosynthetic "dark matter" - cannot be identified and studied by this approach. Many biosynthetic gene clusters (BGCs) are expressed at low levels, or not at all, and in some instances a molecule's instability to fermentation or isolation prevents detection entirely. Here, we discuss an alternative approach to natural product identification that addresses these challenges by enlisting synthetic chemistry to prepare putative natural product fragments and structures as guided by biosynthetic insight. We demonstrate the utility of this approach through our structure elucidation of colibactin, an unisolable genotoxin produced by pathogenic bacteria in the human gut.
Collapse
Affiliation(s)
- Peyton C Williams
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| | - Kevin M Wernke
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| | - Alina Tirla
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA. and Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
18
|
|
19
|
Wernke KM, Xue M, Tirla A, Kim CS, Crawford JM, Herzon SB. Structure and bioactivity of colibactin. Bioorg Med Chem Lett 2020; 30:127280. [PMID: 32527463 DOI: 10.1016/j.bmcl.2020.127280] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/27/2022]
Abstract
Colibactin is a secondary metabolite produced by certain strains of bacteria found in the human gut. The presence of colibactin-producing bacteria has been correlated to colorectal cancer in humans. Colibactin was first discovered in 2006, but because it is produced in small quantities and is unstable, it has yet to be isolated from bacterial cultures. Here we summarize advances in the field since ~2017 that have led to the identification of the structure of colibactin as a heterodimer containing two DNA-reactive electrophilic cyclopropane residues. Colibactin has been shown to form interstrand cross-links by alkylation of adenine residues on opposing strands of DNA. The structure of colibactin contains two thiazole rings separated by a two-carbon linker that is thought to exist as an α-aminoketone following completion of the biosynthetic pathway. However, synthetic studies have now established that this α-aminoketone is unstable toward aerobic oxidation; the resulting oxidation products are in turn unstable toward nucleophilic cleavage under mild conditions. These data provide a simple molecular-level explanation for colibactin's instability and potentially also explain the observation that cell-to-cell contact is required for genotoxic effects.
Collapse
Affiliation(s)
- Kevin M Wernke
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Mengzhao Xue
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Alina Tirla
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Chung Sub Kim
- Department of Chemistry, Yale University, New Haven, CT 06520, United States; Chemical Biology Institute, Yale University, West Haven, CT 06516, United States
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, CT 06520, United States; Chemical Biology Institute, Yale University, West Haven, CT 06516, United States; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, CT 06520, United States; Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, United States.
| |
Collapse
|
20
|
Barrett M, Hand CK, Shanahan F, Murphy T, O'Toole PW. Mutagenesis by Microbe: the Role of the Microbiota in Shaping the Cancer Genome. Trends Cancer 2020; 6:277-287. [PMID: 32209443 DOI: 10.1016/j.trecan.2020.01.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
Cancers arise through the process of somatic evolution fueled by the inception of somatic mutations. We lack a complete understanding of the sources of these somatic mutations. Humans host a vast repertoire of microbes collectively known as the microbiota. The microbiota plays a role in altering the tumor microenvironment and proliferation. In addition, microbes have been shown to elicit DNA damage which provides the driver for somatic mutations. An understanding of microbiota-driven mutational mechanisms would contribute to a more complete understanding of the origins of the cancer genome. Here, we review the modes by which microbes stimulate DNA damage and the effect of these phenomena upon the cancer genomic architecture, specifically in the form of mutational spectra and mutational signatures.
Collapse
Affiliation(s)
- Maurice Barrett
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland; School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | - Collette K Hand
- Department of Pathology, University College Cork, Cork, Ireland
| | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland; Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
| | - Thomas Murphy
- Department of Surgery, Mercy University Hospital, Cork, Ireland
| | - Paul W O'Toole
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland; School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| |
Collapse
|
21
|
Abstract
Colibactin is a genotoxic gut microbiome metabolite long suspected of playing an etiological role in colorectal cancer. Evidence suggests that colibactin forms DNA interstrand cross-links (ICLs) in eukaryotic cells and activates ICL repair pathways, leading to the production of ICL-dependent DNA double-strand breaks (DSBs). Here we show that colibactin ICLs can evolve directly to DNA DSBs. Using the topology of supercoiled plasmid DNA as a proxy for alkylation adduct stability, we find that colibactin-derived ICLs are unstable toward depurination and elimination of the 3' phosphate. This ICL degradation pathway leads progressively to single strand breaks (SSBs) and subsequently DSBs. The spontaneous conversion of ICLs to DSBs is consistent with the finding that nonhomologous end joining repair-deficient cells are sensitized to colibactin-producing bacteria. The results herein refine our understanding of colibactin-derived DNA damage and underscore the complexities underlying the DSB phenotype.
Collapse
Affiliation(s)
- Mengzhao Xue
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States
| | - Kevin M Wernke
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States
| | - Seth B Herzon
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States.,Department of Pharmacology , Yale School of Medicine , New Haven , Connecticut 06520 , United States
| |
Collapse
|
22
|
Thakur BK, Malaisé Y, Martin A. Unveiling the Mutational Mechanism of the Bacterial Genotoxin Colibactin in Colorectal Cancer. Mol Cell 2019; 74:227-229. [PMID: 31002804 DOI: 10.1016/j.molcel.2019.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In a recent issue of Science, Wilson et al. (2019) provide direct evidence that the bacterial-produced colibactin alkylates DNA in vivo, resulting in DNA adducts, which mediates its genotoxic effect. This work reinforces the role of colibactin-producing bacteria in colon cancer pathogenesis.
Collapse
Affiliation(s)
- Bhupesh K Thakur
- Department of Immunology, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Yann Malaisé
- Department of Immunology, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, ON M5B 1W8, Canada.
| |
Collapse
|
23
|
Abstract
Colibactin-producing Escherichia coli strains are associated with cancerous and precancerous colorectal tissues and are suspected of promoting colorectal carcinogenesis. In this study, we describe a new interplay between the synthesis of the genotoxin colibactin and the polyamine spermidine. Polyamines are highly abundant in cancer tissue and are associated with cell proliferation. The need for spermidine in genotoxic activity provides a new perspective on the role of these metabolites in the pathogenicity of colibactin-producing E. coli strains in colorectal cancer. Colibactin is a polyketide/nonribosomal peptide produced by Escherichia coli strains that harbor the pks island. This toxin induces DNA double-strand breaks and DNA interstrand cross-links in infected eukaryotic cells. Colibactin-producing strains are found associated with colorectal cancer biopsy specimens and promote intestinal tumor progression in various murine models. Polyamines are small polycationic molecules produced by both microorganisms and eukaryotic cells. Their levels are increased in malignancies, where they contribute to disease progression and metastasis. In this study, we demonstrated that the endogenous spermidine synthase SpeE is required for full genotoxic activity of colibactin-producing E. coli. Supplying spermidine in a ΔspeE pks+E. coli strain restored genotoxic activity. Spermidine is involved in the autotoxicity linked to colibactin and is required for direct damaging activity on DNA. The production of the colibactin prodrug motif is impaired in ΔspeE mutants. Therefore, we demonstrated that spermidine has a direct impact on colibactin synthesis. IMPORTANCE Colibactin-producing Escherichia coli strains are associated with cancerous and precancerous colorectal tissues and are suspected of promoting colorectal carcinogenesis. In this study, we describe a new interplay between the synthesis of the genotoxin colibactin and the polyamine spermidine. Polyamines are highly abundant in cancer tissue and are associated with cell proliferation. The need for spermidine in genotoxic activity provides a new perspective on the role of these metabolites in the pathogenicity of colibactin-producing E. coli strains in colorectal cancer.
Collapse
|
24
|
|
25
|
Abstract
The clb gene cluster encodes the biosynthesis of metabolites known as precolibactins and colibactins. The clb pathway is found in gut commensal E. coli, and clb metabolites are thought to initiate colorectal cancer via DNA cross-linking. Here we report confirmation of the structural assignment of the complex clb product precolibactin 886 via a biomimetic synthetic pathway. We show that a α-ketoimine linear precursor undergoes spontaneous cyclization to precolibactin 886 upon HPLC purification. Studies of this α-ketoimine and the related α-dicarbonyl revealed that these compounds are unexpectedly susceptible to nucleophilic cleavage under mildly basic conditions. This cleavage pathway forms other known clb metabolites or biosynthetic intermediates and explains the difficulties in isolating fully mature biosynthetic products. This cleavage also accounts for a recently identified colibactin–adenine adduct. The colibactin peptidase ClbP deacylates synthetic precolibactin 886 to form a non-genotoxic pyridone, suggesting precolibactin 886 lies off-path of the major biosynthetic route.
Collapse
|
26
|
Massip C, Branchu P, Bossuet-Greif N, Chagneau CV, Gaillard D, Martin P, Boury M, Sécher T, Dubois D, Nougayrède JP, Oswald E. Deciphering the interplay between the genotoxic and probiotic activities of Escherichia coli Nissle 1917. PLoS Pathog 2019; 15:e1008029. [PMID: 31545853 PMCID: PMC6776366 DOI: 10.1371/journal.ppat.1008029] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 10/03/2019] [Accepted: 08/14/2019] [Indexed: 12/28/2022] Open
Abstract
Although Escherichia coli Nissle 1917 (EcN) has been used therapeutically for over a century, the determinants of its probiotic properties remain elusive. EcN produces two siderophore-microcins (Mcc) responsible for an antagonistic activity against other Enterobacteriaceae. EcN also synthesizes the genotoxin colibactin encoded by the pks island. Colibactin is a virulence factor and a putative pro-carcinogenic compound. Therefore, we aimed to decouple the antagonistic activity of EcN from its genotoxic activity. We demonstrated that the pks-encoded ClbP, the peptidase that activates colibactin, is required for the antagonistic activity of EcN. The analysis of a series of ClbP mutants revealed that this activity is linked to the transmembrane helices of ClbP and not the periplasmic peptidase domain, indicating the transmembrane domain is involved in some aspect of Mcc biosynthesis or secretion. A single amino acid substitution in ClbP inactivates the genotoxic activity but maintains the antagonistic activity. In an in vivo salmonellosis model, this point mutant reduced the clinical signs and the fecal shedding of Salmonella similarly to the wild type strain, whereas the clbP deletion mutant could neither protect nor outcompete the pathogen. The ClbP-dependent antibacterial effect was also observed in vitro with other E. coli strains that carry both a truncated form of the Mcc gene cluster and the pks island. In such strains, siderophore-Mcc synthesis also required the glucosyltransferase IroB involved in salmochelin production. This interplay between colibactin, salmochelin, and siderophore-Mcc biosynthetic pathways suggests that these genomic islands were co-selected and played a role in the evolution of E. coli from phylogroup B2. This co-evolution observed in EcN illustrates the fine margin between pathogenicity and probiotic activity, and the need to address both the effectiveness and safety of probiotics. Decoupling the antagonistic from the genotoxic activity by specifically inactivating ClbP peptidase domain opens the way to the safe use of EcN.
Collapse
Affiliation(s)
- Clémence Massip
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
| | - Priscilla Branchu
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | | | | | - Déborah Gaillard
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Patricia Martin
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Michèle Boury
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Thomas Sécher
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Damien Dubois
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
| | | | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
| |
Collapse
|
27
|
Xue M, Kim CS, Healy AR, Wernke KM, Wang Z, Frischling MC, Shine EE, Wang W, Herzon SB, Crawford JM. Structure elucidation of colibactin and its DNA cross-links. Science 2019; 365:science.aax2685. [PMID: 31395743 DOI: 10.1126/science.aax2685] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/24/2019] [Indexed: 12/18/2022]
Abstract
Colibactin is a complex secondary metabolite produced by some genotoxic gut Escherichia coli strains. The presence of colibactin-producing bacteria correlates with the frequency and severity of colorectal cancer in humans. However, because colibactin has not been isolated or structurally characterized, studying the physiological effects of colibactin-producing bacteria in the human gut has been difficult. We used a combination of genetics, isotope labeling, tandem mass spectrometry, and chemical synthesis to deduce the structure of colibactin. Our structural assignment accounts for all known biosynthetic and cell biology data and suggests roles for the final unaccounted enzymes in the colibactin gene cluster.
Collapse
Affiliation(s)
- Mengzhao Xue
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Chung Sub Kim
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.,Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Alan R Healy
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.,Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Kevin M Wernke
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Zhixun Wang
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | | | - Emilee E Shine
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA.,Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
| | - Weiwei Wang
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT 06520, USA.,W. M. Keck Biotechnology Resource Laboratory, Yale School of Medicine, New Haven, CT 06510, USA
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, CT 06520, USA. .,Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, CT 06520, USA. .,Chemical Biology Institute, Yale University, West Haven, CT 06516, USA.,Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
28
|
Wilson MR, Jiang Y, Villalta PW, Stornetta A, Boudreau PD, Carrá A, Brennan CA, Chun E, Ngo L, Samson LD, Engelward BP, Garrett WS, Balbo S, Balskus EP. The human gut bacterial genotoxin colibactin alkylates DNA. Science 2019; 363:363/6428/eaar7785. [PMID: 30765538 DOI: 10.1126/science.aar7785] [Citation(s) in RCA: 408] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 10/16/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022]
Abstract
Certain Escherichia coli strains residing in the human gut produce colibactin, a small-molecule genotoxin implicated in colorectal cancer pathogenesis. However, colibactin's chemical structure and the molecular mechanism underlying its genotoxic effects have remained unknown for more than a decade. Here we combine an untargeted DNA adductomics approach with chemical synthesis to identify and characterize a covalent DNA modification from human cell lines treated with colibactin-producing E. coli Our data establish that colibactin alkylates DNA with an unusual electrophilic cyclopropane. We show that this metabolite is formed in mice colonized by colibactin-producing E. coli and is likely derived from an initially formed, unstable colibactin-DNA adduct. Our findings reveal a potential biomarker for colibactin exposure and provide mechanistic insights into how a gut microbe may contribute to colorectal carcinogenesis.
Collapse
Affiliation(s)
- Matthew R Wilson
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Yindi Jiang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Peter W Villalta
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street Southeast, Minneapolis, MN 55455, USA
| | - Alessia Stornetta
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street Southeast, Minneapolis, MN 55455, USA
| | - Paul D Boudreau
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Andrea Carrá
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street Southeast, Minneapolis, MN 55455, USA
| | - Caitlin A Brennan
- Department of Immunology and Infectious Diseases and Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Eunyoung Chun
- Department of Immunology and Infectious Diseases and Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Lizzie Ngo
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | - Leona D Samson
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | | | - Wendy S Garrett
- Department of Immunology and Infectious Diseases and Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Department of Medical Oncology, Dana-Farber Institute, Boston, MA 02115, USA
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street Southeast, Minneapolis, MN 55455, USA.
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
29
|
Jiang Y, Stornetta A, Villalta PW, Wilson MR, Boudreau PD, Zha L, Balbo S, Balskus EP. Reactivity of an Unusual Amidase May Explain Colibactin's DNA Cross-Linking Activity. J Am Chem Soc 2019; 141:11489-11496. [PMID: 31251062 PMCID: PMC6728428 DOI: 10.1021/jacs.9b02453] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Certain commensal and pathogenic bacteria produce colibactin, a small-molecule genotoxin that causes interstrand cross-links in host cell DNA. Although colibactin alkylates DNA, the molecular basis for cross-link formation is unclear. Here, we report that the colibactin biosynthetic enzyme ClbL is an amide bond-forming enzyme that links aminoketone and β-keto thioester substrates in vitro and in vivo. The substrate specificity of ClbL strongly supports a role for this enzyme in terminating the colibactin NRPS-PKS assembly line and incorporating two electrophilic cyclopropane warheads into the final natural product scaffold. This proposed transformation was supported by the detection of a colibactin-derived cross-linked DNA adduct. Overall, this work provides a biosynthetic explanation for colibactin's DNA cross-linking activity and paves the way for further study of its chemical structure and biological roles.
Collapse
Affiliation(s)
- Yindi Jiang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, United States
| | - Alessia Stornetta
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street Southeast, Minneapolis, MN 55455, United States
| | - Peter W. Villalta
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street Southeast, Minneapolis, MN 55455, United States
| | - Matthew R. Wilson
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, United States
| | - Paul D. Boudreau
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, United States
| | - Li Zha
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, United States
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street Southeast, Minneapolis, MN 55455, United States
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, United States
| |
Collapse
|
30
|
Volpe MR, Wilson MR, Brotherton CA, Winter ES, Johnson SE, Balskus EP. In Vitro Characterization of the Colibactin-Activating Peptidase ClbP Enables Development of a Fluorogenic Activity Probe. ACS Chem Biol 2019; 14:1097-1101. [PMID: 31059217 DOI: 10.1021/acschembio.9b00069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The gut bacterial genotoxin colibactin is linked to the development of colorectal cancer. In the final stages of colibactin's biosynthesis, an inactive precursor (precolibactin) undergoes proteolytic cleavage by ClbP, an unusual inner-membrane-bound periplasmic peptidase, to generate the active genotoxin. This enzyme presents an opportunity to monitor and modulate colibactin biosynthesis, but its active form has not been studied in vitro and limited tools exist to measure its activity. Here, we describe the in vitro biochemical characterization of catalytically active, full-length ClbP. We elucidate its substrate preferences and use this information to develop a fluorogenic activity probe. This tool will enable the discovery of ClbP inhibitors and streamline identification of colibactin-producing bacteria.
Collapse
Affiliation(s)
- Matthew R. Volpe
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Matthew R. Wilson
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Carolyn A. Brotherton
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Ethan S. Winter
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Sheila E. Johnson
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Emily P. Balskus
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
31
|
McErlean M, Overbay J, Van Lanen S. Refining and expanding nonribosomal peptide synthetase function and mechanism. J Ind Microbiol Biotechnol 2019; 46:493-513. [PMID: 30673909 PMCID: PMC6460464 DOI: 10.1007/s10295-018-02130-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) are involved in the biosynthesis of numerous peptide and peptide-like natural products that have been exploited in medicine, agriculture, and biotechnology, among other fields. As a consequence, there have been considerable efforts aimed at understanding how NRPSs orchestrate the assembly of these natural products. This review highlights several recent examples that continue to expand upon the fundamental knowledge of NRPS mechanism and includes (1) the discovery of new NRPS substrates and the mechanism by which these sometimes structurally complex substrates are made, (2) the characterization of new NRPS activities and domains that function during the process of peptide assembly, and (3) the various catalytic strategies that are utilized to release the NRPS product. These findings continue to strengthen the predictive power for connecting genes to products, thereby facilitating natural product discovery and development in the Genomics Era.
Collapse
Affiliation(s)
- Matt McErlean
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Jonathan Overbay
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Steven Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
32
|
Abstract
An
E. coli
–derived colibactin-DNA adduct is detected in intestinal tissues
Collapse
Affiliation(s)
- Rachel M Bleich
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Janelle C Arthur
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
33
|
Moodie LWK, Hubert M, Zhou X, Albers MF, Lundmark R, Wanrooij S, Hedberg C. Photoactivated Colibactin Probes Induce Cellular DNA Damage. Angew Chem Int Ed Engl 2018; 58:1417-1421. [DOI: 10.1002/anie.201812326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Indexed: 12/15/2022]
Affiliation(s)
| | - Madlen Hubert
- Integrative Medical Biology; Umeå University; 90187 Umeå Sweden
| | - Xin Zhou
- Medical Biochemistry and Biophysics; Umeå University; 90187 Umeå Sweden
| | | | - Richard Lundmark
- Integrative Medical Biology; Umeå University; 90187 Umeå Sweden
- Medical Biochemistry and Biophysics; Umeå University; 90187 Umeå Sweden
| | - Sjoerd Wanrooij
- Medical Biochemistry and Biophysics; Umeå University; 90187 Umeå Sweden
| | | |
Collapse
|
34
|
Moodie LWK, Hubert M, Zhou X, Albers MF, Lundmark R, Wanrooij S, Hedberg C. Photoactivated Colibactin Probes Induce Cellular DNA Damage. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - Madlen Hubert
- Integrative Medical Biology; Umeå University; 90187 Umeå Sweden
| | - Xin Zhou
- Medical Biochemistry and Biophysics; Umeå University; 90187 Umeå Sweden
| | | | - Richard Lundmark
- Integrative Medical Biology; Umeå University; 90187 Umeå Sweden
- Medical Biochemistry and Biophysics; Umeå University; 90187 Umeå Sweden
| | - Sjoerd Wanrooij
- Medical Biochemistry and Biophysics; Umeå University; 90187 Umeå Sweden
| | | |
Collapse
|