1
|
Hu Y, Wen T, Tuo B. The role of ICG NIRL fluorescence imaging in the surgical treatment of digestive system tumors (Review). Mol Med Rep 2025; 32:181. [PMID: 40280113 PMCID: PMC12059463 DOI: 10.3892/mmr.2025.13546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Indocyanine green (ICG) is a relatively non‑toxic fluorescent dye with a history of safe use, which has fueled the development of new applications for ICG. Research on the use of ICG near‑infrared light (NIRL) fluorescence imaging during oncologic surgery has increased, revealing its role in tumor identification and localization, lymph node navigational resection and blood perfusion assessment. The purpose of the present review was to provide a comprehensive overview of advances in the clinical application of ICG NIRL fluorescence imaging during gastrointestinal tumor surgery. The present review discusses the techniques, outcomes, limitations and key considerations necessary for clinical practice, aiming to provide a valuable resource for professionals in the field.
Collapse
Affiliation(s)
- Yanxia Hu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Tingyuan Wen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
2
|
Oh JY, Villaseñor KE, Kian AC, Cormode DP. Advances in Ultrasmall Inorganic Nanoparticles for Nanomedicine: From Diagnosis to Therapeutics. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40343711 DOI: 10.1021/acsami.5c02810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Inorganic nanoparticles possess unique physicochemical properties that make them attractive candidates for diverse applications in nanomedicine, including as contrast agents and as therapeutics. However, many inorganic nanoparticles are composed of high-atomic-number elements, raising safety concerns due to potential long-term retention in the body. However, ultrasmall inorganic nanoparticles (UINPs), i.e., those that are less than ∼5 nm in diameter, can offer the advantage of rapid renal clearance from the body, reducing toxicity risks associated with prolonged exposure and thereby creating a path toward clinical translation. In this review, we discuss current knowledge on the design and functionalization of UINPs, exploring their capabilities from diagnosis to therapeutics, with examples including radiosensitization, photothermal, and anti-inflammatory catalytic therapies. In addition, we discuss their limitations, the approaches taken to solve their limitations, and progress of UINPs toward clinical translation. Through this discussion, we aim to provide a comprehensive perspective on how UINPs are advancing the field of nanomedicine, underscoring their potential to significantly improve bioimaging and therapeutic outcomes.
Collapse
Affiliation(s)
- Jun Yong Oh
- Radiology Department, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kathleen E Villaseñor
- Radiology Department, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Andrea C Kian
- Radiology Department, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David P Cormode
- Radiology Department, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Xiao F, Zhu Y, Chen Y, Li Q, Qi J, Qin Z, Zhao X, Pang Z, Tang H, Xie J, Jiang X. Inhibition of Post-Surgical Tumor Recurrence by 3-Bromopyruvate-Conjugated Gold Nanoclusters via MAPK and PI3K-Akt Pathways. NANO LETTERS 2025. [PMID: 40325508 DOI: 10.1021/acs.nanolett.5c01159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
The multitargeted strategy demonstrates significant potential in modern medical treatment, enhancing efficacy and reducing the risk of drug resistance. The rational combination design of nanomaterials and small molecules expands the new prospects of multitargeted therapies. Here, we have covalently linked ligands of atomic gold nanoclusters with 3-bromopyruvate and strategically designed a multitargeted approach to prevent postsurgical melanoma recurrence by activating the mitogen-activated protein kinase pathway and downregulating the phosphatidylinositol 3-kinase pathway. In vitro and in vivo validations confirm safety and outstanding efficacy, with recurrence rates reduced to 0% in completely resected mouse tumor models from 100%. The surface ligand modifiability of gold nanoclusters enables the precise engineering of nanodrugs with a molecule-like structure, providing a novel template that aligns with the clinical translation criteria set by the FDA. These findings identify an effective multitargeted strategy to develop structurally well-defined gold nanocluster-modified drug molecules in preventing postsurgical tumor recurrence.
Collapse
Affiliation(s)
- Feng Xiao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Yihang Zhu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Yao Chen
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Qizhen Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Jie Qi
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Zhiliang Qin
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Xiaomeng Zhao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Zeyang Pang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Hao Tang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117585, Singapore
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| |
Collapse
|
4
|
Liu Y, Wang T, Wang W. Photopharmacology and photoresponsive drug delivery. Chem Soc Rev 2025. [PMID: 40309857 DOI: 10.1039/d5cs00125k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Light serves as an excellent external stimulus due to its high spatial and temporal resolution. The use of light to regulate biological processes has evolved into a vibrant field over the past decade. Employing light on chemical substances such as bioactive molecules and drug delivery systems offers a promising therapeutic approach to achieve precise control over biological processes. In this review, we provide an overview of the advancements in optochemical technologies for controlling bioactive molecules (photopharmacology) and drug delivery systems (photoresponsive drug delivery), with an emphasis on their relationship and biomedical applications. Gaining a deeper understanding of the underlying mechanisms and emerging research will facilitate the development of optochemically controlled bioactive molecules and photoresponsive drug delivery systems, further enhancing light technologies in biomedical applications.
Collapse
Affiliation(s)
- Yuwei Liu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Tianyi Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Weiping Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Yang Z, Lyu J, Qian J, Wang Y, Liu Z, Yao Q, Chen T, Cao Y, Xie J. Glutathione: a naturally occurring tripeptide for functional metal nanomaterials. Chem Sci 2025; 16:6542-6572. [PMID: 40134663 PMCID: PMC11931393 DOI: 10.1039/d4sc08599j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/08/2025] [Indexed: 03/27/2025] Open
Abstract
Glutathione (GSH), a naturally occurring tripeptide, plays an important role as an intracellular antioxidant in the physiological microenvironment and participates in redox balance, detoxification, and cellular and disease regulation. The unique structural features of GSH, including the reductive thiol and multiple coordination sites (carboxyl and amino group), make it a significant molecule not only in the physiological context but also as a ligand in the development of functional metal nanomaterials. In this context, GSH's role as a protective ligand and reducing agent in surface etching and ligand exchange reactions has been explored at the molecular level, expanding the diversity of GSH-protected metal nanomaterials. With photoluminescence (PL) as one of its most intriguing properties, investigations into GSH's influence on PL properties emphasize its multifaceted coordination capabilities in surface coating, charge transfer from electron-rich functional groups, chirality arising from its unique structure, and available conjugation sites. Moreover, the biocompatibility of GSH, combined with the synergistic effect of metal components, renders GSH-protected nanomaterials an "Inseparable Duo" highly suited for applications in bio-sensing, bio-imaging via PL radiative decay and anti-cancer bio-therapies through photothermal therapy, photodynamic therapy, and radiotherapy. By exploring the multifaceted roles of GSH, this Perspective aims to highlight pathways including the encouragement of deeper synthetic exploration, innovative design at the bio-nano interface, and expanded nanobiomedical applications.
Collapse
Affiliation(s)
- Zhucheng Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Fuzhou 350207 P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore Singapore 117585 Singapore
| | - Jingkuan Lyu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Fuzhou 350207 P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore Singapore 117585 Singapore
| | - Jing Qian
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Fuzhou 350207 P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore Singapore 117585 Singapore
| | - Yifan Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Fuzhou 350207 P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore Singapore 117585 Singapore
| | - Zhenghan Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Fuzhou 350207 P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore Singapore 117585 Singapore
| | - Qiaofeng Yao
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University Tianjin 300072 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China
| | - Tiankai Chen
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen) Shenzhen 518172 P. R. China
| | - Yitao Cao
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG (GHEI), South China Normal University Guangzhou 510006 P. R. China
| | - Jianping Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Fuzhou 350207 P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore Singapore 117585 Singapore
| |
Collapse
|
6
|
Jin S, Chen Y, Li F, Yan P, Guo G, Xu G, Song W, Zhong W. Photodynamic and Photothermal Co-Induced Efficient Anti-Tumor Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20833-20848. [PMID: 40152855 DOI: 10.1021/acsami.5c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Currently, immunotherapy based on photothermal and the application of photodynamic therapy in anti-tumor treatment is showing great potential. Its uniqueness lies in the critical role of small molecule immunomodulators in promoting effective immune responses against tumors, and the use of laser-activated biophysical mechanisms to precisely trigger the swift demise of cancer cells, avoiding damage to surrounding normal tissues. However, the use of photodynamic therapy (PDT) alone is hampered by the tumors' hypoxic environment, resulting in poor antitumor effects, while photothermal therapy (PTT) alone cannot arouse enough antigen presentation. It is of great significance to design photosensitizers (PSs) that possess both PDT and PTT effects. Herein, a series of PSs with both PDT and PTT efficacy are reported, ultimately selecting Cy7-Naph as the star molecule due to its best overall phototherapeutic effect. Upon reactive oxygen species (ROS) production and thermogenesis in tumor cells, Cy7-Naph induced significant apoptosis and eventually boosted the release of damage-associated molecular patterns (DAMPs) under near-infrared (NIR) light irradiation. By combining Cy7-Naph with the Toll-like receptor agonist Resiquimod (R848), a synergistic treatment for bilateral tumor-bearing mice is achieved. This combination promotes dendritic cell (DC) maturation and increases the infiltration of cytotoxic T lymphocytes (CTLs), leading to significant inhibition of both primary and distant tumors.
Collapse
Affiliation(s)
- Shanshan Jin
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, People's Republic of China
| | - Yongkang Chen
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, People's Republic of China
| | - Fahui Li
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, People's Republic of China
| | - Ping Yan
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, People's Republic of China
| | - Guanhong Guo
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, People's Republic of China
| | - Guangzhao Xu
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, People's Republic of China
| | - Weiguo Song
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, People's Republic of China
| | - Wenda Zhong
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, People's Republic of China
| |
Collapse
|
7
|
Sharma P, Yuan H, Verma R, Mehla N, Hemant H, Sagar P, Comby-Zerbino C, Russier-Antoine I, Moulin C, Brevet PF, Singhal N, Neelakandan PP, Vaidya S, Fu C, Ali ME, Srivastava R, Whittaker A, Antoine R, Shanavas A. Intrinsically Pro-Apoptotic Gold Nanoclusters for Optical Tracing and Inhibition of Solid Tumors. Adv Healthc Mater 2025:e2405005. [PMID: 40109221 DOI: 10.1002/adhm.202405005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/22/2025] [Indexed: 03/22/2025]
Abstract
Intrinsically theranostic metal nanoclusters are rare unless the stabilizing ligands exhibit therapeutic properties. A promising class of quasi-molecular, near-infrared (NIR) emitting, cytotoxic gold nanoclusters, coined as AXE (Au eXcitable and Eliminable) stabilized through terminal thioester groups on fluorinated, and crosslinked polymers, is presented for simultaneous bioimaging & therapy. Nano Variable Temperature-Electrospray ionization mass spectrometry analysis of these aqueous stable nanoclusters revealed 5 to 7 core gold atoms, with SAXS measurement confirming average size to be under 1 nm, consistent with the theoretical maximum for few atom planar gold clusters. Despite its small size, AXE exhibits a remarkable Stoke shift of ≈470 nm and emission range spanning 700 to 1100 nm. Fluorination notably enhanced the quantum yield by up to twofold, attributed to charge transfer from the fluorinated monomer to the gold core, as indicated by Löwdin charge distribution analysis. The AXE nanocluster demonstrated dose-dependent pro-apoptotic effects on cancer cells while sparing normal cells at lower concentrations. Preclinical evaluation in a breast tumor model confirmed its anticancer efficacy, with intravenous and intraperitoneal administrations significantly inhibiting tumor growth and controlling lung metastasis, surpassing the clinical standard, doxorubicin.
Collapse
Affiliation(s)
- Priyanka Sharma
- Inorganic & Organic Nanomedicine (ION) Lab, Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| | - Hao Yuan
- Institut Lumière Matière (ILM) UMR 5306, Université Claude Bernard Lyon 1, CNRS, Univ Lyon, Villeurbanne, F-69100, France
| | - Ruchi Verma
- Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| | - Nisha Mehla
- Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| | - Hemant Hemant
- Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, Punjab, 140306, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Poonam Sagar
- National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar, Punjab, 140308, India
| | - Clothilde Comby-Zerbino
- Institut Lumière Matière (ILM) UMR 5306, Université Claude Bernard Lyon 1, CNRS, Univ Lyon, Villeurbanne, F-69100, France
| | - Isabelle Russier-Antoine
- Institut Lumière Matière (ILM) UMR 5306, Université Claude Bernard Lyon 1, CNRS, Univ Lyon, Villeurbanne, F-69100, France
| | - Christophe Moulin
- Institut Lumière Matière (ILM) UMR 5306, Université Claude Bernard Lyon 1, CNRS, Univ Lyon, Villeurbanne, F-69100, France
| | - Pierre-François Brevet
- Institut Lumière Matière (ILM) UMR 5306, Université Claude Bernard Lyon 1, CNRS, Univ Lyon, Villeurbanne, F-69100, France
| | - Nitin Singhal
- National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar, Punjab, 140308, India
| | - Prakash P Neelakandan
- Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, Punjab, 140306, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sonalika Vaidya
- Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| | - Changkui Fu
- Australian Institute of Bioengineering and Nanotechnology (AIBN) and Australian Research Council Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Andrew Whittaker
- Australian Institute of Bioengineering and Nanotechnology (AIBN) and Australian Research Council Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Rodolphe Antoine
- Institut Lumière Matière (ILM) UMR 5306, Université Claude Bernard Lyon 1, CNRS, Univ Lyon, Villeurbanne, F-69100, France
| | - Asifkhan Shanavas
- Inorganic & Organic Nanomedicine (ION) Lab, Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| |
Collapse
|
8
|
Hu D, Zha M, Zheng H, Gao D, Sheng Z. Recent Advances in Indocyanine Green-Based Probes for Second Near-Infrared Fluorescence Imaging and Therapy. RESEARCH (WASHINGTON, D.C.) 2025; 8:0583. [PMID: 39830366 PMCID: PMC11739436 DOI: 10.34133/research.0583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/11/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025]
Abstract
Fluorescence imaging, a highly sensitive molecular imaging modality, is being increasingly integrated into clinical practice. Imaging within the second near-infrared biological window (NIR-II; 1,000 to 1,700 nm), also referred to as shortwave infrared, has received substantial attention because of its markedly reduced autofluorescence, deeper tissue penetration, and enhanced spatiotemporal resolution as compared to traditional near-infrared (NIR) imaging. Indocyanine green (ICG), a US Food and Drug Administration-approved NIR fluorophore, has long been used in clinical applications, including blood vessel angiography, vascular perfusion monitoring, and tumor detection. Recent advancements in NIR-II imaging technology have revitalized interest in ICG, revealing its extended tail fluorescence beyond 1,000 nm and reaffirming its potential as a clinically translatable NIR-II fluorophore for in vivo imaging and theranostic applications for diagnosing various diseases. This review emphasizes the notable advances in the use of ICG and its derivatives for NIR-II imaging and image-guided therapy from both fundamental and clinical perspectives. We also provide a concise conclusion and discuss the challenges and future opportunities with NIR-II imaging using clinically approved fluorophores.
Collapse
Affiliation(s)
- Dehong Hu
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- State Key Laboratory of Biomedical lmaging Science and System, Shenzhen 518055, P. R. China
| | - Menglei Zha
- Dongguan Key Laboratory of Chronic Inflammatory Diseases, the First Dongguan Affiliated Hospital,
Guangdong Medical University, Dongguan 523710, P. R. China
| | - Hairong Zheng
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- State Key Laboratory of Biomedical lmaging Science and System, Shenzhen 518055, P. R. China
| | - Duyang Gao
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- State Key Laboratory of Biomedical lmaging Science and System, Shenzhen 518055, P. R. China
| | - Zonghai Sheng
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- State Key Laboratory of Biomedical lmaging Science and System, Shenzhen 518055, P. R. China
| |
Collapse
|
9
|
Wong WK, Ren Y, Leung FKC. Photothermal-chemotherapy: the emerging supramolecular photothermal molecules and the recent advances. NANOPHOTOTHERAPY 2025:463-499. [DOI: 10.1016/b978-0-443-13937-6.00007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
10
|
Lockwood ZA, Jirousek MR, Basilion JP, Burda C. Applications of Au 25 Nanoclusters in Photon-Based Cancer Therapies. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 15:39. [PMID: 39791798 PMCID: PMC11722186 DOI: 10.3390/nano15010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
Atomically precise gold nanoclusters (AuNCs) exhibit unique physical and optical properties, making them highly promising for targeted cancer therapy. Their small size enhances cellular uptake, facilitates rapid distribution to tumor tissues, and minimizes accumulation in non-target organs compared to larger gold nanoparticles. AuNCs, particularly Au25, show significant potential in phototherapy, including photothermal (PTT), photodynamic (PDT), and radiation therapies. These therapies benefit with minimal damage to surrounding healthy tissue. AuNCs also demonstrate excellent stability and biocompatibility, crucial for their effective use in clinical applications. Recent advances in the synthesis and functionalization of AuNCs have further improved their therapeutic efficacy, making them versatile agents for enhancing cancer treatment outcomes. Ongoing research aims to better understand their pharmacokinetics, biodistribution, and long-term safety, paving the way for their broader application in advanced cancer therapies.
Collapse
Affiliation(s)
- Zoey A. Lockwood
- Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Michael R. Jirousek
- Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - James P. Basilion
- Department of Radiology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Clemens Burda
- Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
11
|
Savchuk V, Wang R, Small L, Pinchuk A. Synergistic Effect in Hybrid Plasmonic Conjugates for Photothermal Applications. ACS OMEGA 2024; 9:47436-47441. [PMID: 39651100 PMCID: PMC11618431 DOI: 10.1021/acsomega.4c05068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/22/2024] [Accepted: 11/13/2024] [Indexed: 12/11/2024]
Abstract
Photothermal conversion efficiency (η) plays a crucial role in selecting suitable gold nanoparticles for photothermal therapeutic applications. The photothermal efficiency depends on the material used for the nanoparticles as well as their various parameters, such as size and shape. By maximizing the light-to-heat conversion efficiency (η), one can reduce the concentration of nanoparticle drugs for photothermal cancer treatment and apply lower laser power to irradiate the tumor. In our study, we explored a new hybrid plasmonic conjugate for theranostic (therapy + diagnostic) applications. We conjugated PEG-functionalized 20 nm gold nanospheres with cyanine IR dyes via a PEG linker. The resulting conjugates exhibited significantly enhanced photothermal properties compared with bare nanoparticles. We experimentally showed that a proposed new hybrid plasmonic conjugate can achieve almost four times larger conversion efficiency (47.7%) than 20 nm gold nanospheres (12%). The enhanced photothermal properties of these gold conjugates can provide the required temperature for the photothermal treatment of cancer cells with lower concentrations of gold nanoparticles injected in the body as well as with lower applied incident laser power density. Moreover, the improved photothermal properties of the conjugates can be explained by a synergistic effect that has not been observed in the past. This effect results from the coupling between the metal nanosphere and the organic dye.
Collapse
Affiliation(s)
- Viktoriia Savchuk
- Department
of Physics and Energy Science, University
of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, Colorado 80918, United States
- Biofrontiers
Institute and Department of Physics and Energy Science, University of Colorado Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, Colorado 80918, United States
- School
of Applied and Engineering Physics, Cornell
University, Ithaca, New York 14853, United States
| | - Ruizheng Wang
- CTI—Chromatic
Technologies, Inc., 1096
Elkton Dr., Colorado Springs, Colorado 80907, United States
| | - Lyle Small
- CTI—Chromatic
Technologies, Inc., 1096
Elkton Dr., Colorado Springs, Colorado 80907, United States
| | - Anatoliy Pinchuk
- Department
of Physics and Energy Science, University
of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, Colorado 80918, United States
- Biofrontiers
Institute and Department of Physics and Energy Science, University of Colorado Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, Colorado 80918, United States
| |
Collapse
|
12
|
Chen G, He P, Ma C, Xu J, Su T, Wen J, Kuo HC, Jing L, Chen SL, Tu CC. Biodegradable ICG-Conjugated Germanium Nanoparticles for In Vivo Near-Infrared Dual-Modality Imaging and Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59752-59764. [PMID: 39446048 PMCID: PMC11551961 DOI: 10.1021/acsami.4c10800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Theranostics, by integrating diagnosis and therapy on a single platform, enables real-time monitoring of tumors during treatment. To improve the accuracy of tumor diagnosis, the fluorescence and photoacoustic imaging modalities can complement each other to achieve high resolution and a deep penetration depth. Despite the superior performance, the biodegradability of theranostic agents plays a critical role in enhancing nanoparticle excretion and reducing chronic toxicity, which is essential for clinical applications. Herein, we synthesize biocompatible and biodegradable indocyanine green (ICG)-conjugated germanium nanoparticles (GeNPs) and investigate their biodistributions in nude mice and 4T1 tumor models after intravenous injections using near-infrared (NIR) dual-modality fluorescence and photoacoustic imaging. The ICG-conjugated GeNPs have strong NIR absorption due to the NIR-absorbing ICG and Ge in combination, emit strong NIR fluorescence due to the multilayered ICG coatings, and exhibit very low in vitro and in vivo toxicity. After tail vein injections, the ICG-conjugated GeNPs mainly accumulate in the liver and spleen as well as the tumor with the help of the enhanced permeability and retention effect. The tumor's fluorescence signal is much stronger than that of the control group injected with pure ICG solution, as the GeNPs can function as biodegradable carriers for efficiently delivering the ICG molecules to the tumor. Lastly, the ICG-conjugated GeNPs accumulated in the tumor can also be utilized for photothermal treatment under NIR laser irradiation, after which the tumor volume almost diminishes after 14 days. The experimental findings in this work demonstrate that the ICG-conjugated GeNPs are promising theranostic agents with exceptional biodegradability for in vivo NIR dual-modality imaging and photothermal therapy.
Collapse
Affiliation(s)
- Guo Chen
- University
of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengbo He
- University
of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cui Ma
- Engineering
Research Center of Cell & Therapeutic Antibody, Ministry of Education,
and School of Pharmacy, Shanghai Jiao Tong
University, Shanghai 200240, China
| | - Jie Xu
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, Shanghai 200240, China
| | - Taiyu Su
- University
of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingfei Wen
- University
of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao-Chung Kuo
- Semiconductor
Research Center, Foxconn Research, Shenzhen 518109, China
| | - Lili Jing
- Engineering
Research Center of Cell & Therapeutic Antibody, Ministry of Education,
and School of Pharmacy, Shanghai Jiao Tong
University, Shanghai 200240, China
| | - Sung-Liang Chen
- University
of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute
of Medical Robotics, Shanghai Jiao Tong
University, Shanghai 200240, China
- Engineering
Research Center of Digital Medicine and Clinical Translation, Ministry
of Education, Shanghai 200030, China
- State
Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chang-Ching Tu
- University
of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- Semiconductor
Research Center, Foxconn Research, Shenzhen 518109, China
- Department
of Electrical Engineering, National Central
University, Taoyuan 320317, Taiwan
| |
Collapse
|
13
|
Kang Z, Xue M, Miao H, Wang W, Ding X, Yin MM, Hu YJ. Structure-activity relationship between gold nanoclusters and human serum albumin: Effects of ligand isomerization. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124598. [PMID: 38850819 DOI: 10.1016/j.saa.2024.124598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The interactions between gold nanoclusters (AuNCs) and proteins have been extensively investigated. Nevertheless, the structure-activity relationship between gold nanoclusters and proteins in terms of ligand isomerization remained unclear. Here, interactions between Au25NCs modified with para-, inter- and ortho-mercaptobenzoic acid (p/m/o-MBA-Au25NCs) and human serum albumin (HSA) were analyzed. The results of the multispectral approach showed that all three gold nanoclusters bound to the site I in dynamic modes to increase the stability of HSA. There were significant differences in the binding intensity, thermodynamic parameters, main driving forces, and binding ratios between these three gold nanoclusters and HSA, which might be related to the existence forms of the three ligands on the surface of AuNCs. Due to the different polarities of AuNCs themselves, the impact of three AuNCs on the microenvironment of amino acid residues in HSA was also different. It could be seen that ligand isomerization significantly affected the interactions between gold nanoclusters and proteins. This work will provide theoretical guidance for ligand selection and biological applications of metal nanoclusters.
Collapse
Affiliation(s)
- Zhuo Kang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Meng Xue
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Hu Miao
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Wen Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Xin Ding
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Miao-Miao Yin
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| | - Yan-Jun Hu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| |
Collapse
|
14
|
Moglia I, Santiago M, Arellano A, Salazar Sandoval S, Olivera-Nappa Á, Kogan MJ, Soler M. Synthesis of dumbbell-like heteronanostructures encapsulated in ferritin protein: Towards multifunctional protein based opto-magnetic nanomaterials for biomedical theranostic. Colloids Surf B Biointerfaces 2024; 245:114332. [PMID: 39486373 DOI: 10.1016/j.colsurfb.2024.114332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Dumbbell-like hetero nanostructures based on gold and iron oxides is a promising material for biomedical applications, useful as versatile theranostic agents due the synergistic effect of their optical and magnetic properties. However, achieving precise control on their morphology, size dispersion, colloidal stability, biocompatibility and cell targeting remains as a current challenge. In this study, we address this challenge by employing biomimetic routes, using ferritin protein nanocages as template for these nanoparticles' synthesis. We present the development of an opto-magnetic nanostructures using the ferritin protein, wherein gold and iron oxide nanostructures were produced within its cavity. Initially, we investigated the synthesis of gold nanostructures within the protein, generating clusters and plasmonic nanoparticles. Subsequently, we optimized the conditions for the superparamagnetic nanoparticles synthesis through controlled iron oxidation, thereby enhancing the magnetic properties of the resulting system. Finally, we produce magnetic nanoparticles in the protein with gold clusters, achieving the coexistence of both nanostructures within a single protein molecule, a novel material unprecedented to date. We observed that factors such as temperature, metal/protein ratios, pH, dialysis, and purification processes all have an impact on protein recovery, loading efficiency, morphology, and nanoparticle size. Our findings highlight the development of ferritin-based nanomaterials as versatile platforms for potential biomedical use as multifunctional theranostic agents.
Collapse
Affiliation(s)
- Italo Moglia
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medioambiente, Universidad Tecnológica Metropolitana-UTEM, Chile.
| | | | - Andreas Arellano
- Instituto Universitario de Investigación y Desarrollo Tecnológico-IDT, Universidad Tecnológica Metropolitana-UTEM, Chile; Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile; Millennium Nucleus in NanoBioPhysics-N2BP, Chile
| | | | - Álvaro Olivera-Nappa
- Centre for Biotechnology and Bioengineering-CEBiB, Chile; Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Chile
| | - Marcelo J Kogan
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile; Advanced Center for Chronic Diseases-ACCDiS, Chile
| | - Mónica Soler
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Chile
| |
Collapse
|
15
|
Lu H, Ren Y, Qi Y, Xu M, Liang F, Wang Z, Liu J, Du B, Jiang X. Overcoming Hepatic Biotransformation Barrier of Gold Nanoparticles via Au-Se Bond for Enhanced In Vivo Active Targeting. ACS NANO 2024; 18:29178-29188. [PMID: 39382330 DOI: 10.1021/acsnano.4c10700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
As a key metabolic function of the liver, the hepatic biotransformation process can alter the predesigned surface chemistry of nanoparticles in vivo, leading to hampered functionality and targeting ability. However, strategies to modulate the hepatic biotransformation of nanoparticles have been rarely explored. Herein, using indocyanine green (ICG)-conjugated gold nanoparticles that target liver hepatocytes as a model, we showed that merely changing the metal-ligand bond from gold-sulfur (Au-S) to gold-selenium (Au-Se) completely reshaped the hepatic biotransformation profiles of the nanoparticle as well as its targeting and transport behaviors in vivo. Compared with those of Au-S bond, Au-Se bond markedly slowed down nanoparticle biotransformation in liver sinusoids, enhanced ICG-mediated nanoparticle targeting to hepatocytes by 15-fold, and also altered nanoparticle intrahepatic transport, distribution, and clearance pathways. Moreover, we demonstrated that Au-Se bond could improve the active targeting of gold nanoparticles to hepatic tumors by reducing liver biotransformation-induced dissociation of targeting ligands. These discoveries not only deepen our understanding of nanoparticle biotransformation in the liver but also offer a strategy to overcome the biochemical barrier of hepatic biotransformation, providing guidance for the design and engineering of related nanomedicines by tuning their in vivo biotransformation profiles.
Collapse
Affiliation(s)
- Huixu Lu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Yunfeng Ren
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Yuming Qi
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Mingze Xu
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Fengying Liang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Ziyuan Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Jieman Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Bujie Du
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Xingya Jiang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, PR China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
16
|
Stern NB, Shrestha B, Porter T. A Facile Approach to Producing Liposomal J-Aggregates of Indocyanine Green with Diagnostic and Therapeutic Potential. ADVANCED THERAPEUTICS 2024; 7:2400042. [PMID: 39132131 PMCID: PMC11308451 DOI: 10.1002/adtp.202400042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Indexed: 08/13/2024]
Abstract
Liposomal J-Aggregates of Indocyanine Green (L-JA) can serve as a biocompatible and biodegradable nanoparticle for photoacoustic imaging and photothermal therapy. When compared to monomeric IcG, L-JA are characterized by longer circulation, improved photostability, elevated absorption at longer wavelengths, and increased photoacoustic signal generation. However, the documented methods for production of L-JA vary widely. We developed an approach to efficiently form IcG J-aggregates (IcG-JA) directly in liposomes at elevated temperatures. Aggregating within fully formed liposomes ensures particle uniformity and allows for control of J-aggregate size. L-JA have unique properties compared to IcG. L-JA provide significant contrast enhancement in photoacoustic images for up to 24 hours after injection, while IcG and unencapsulated IcG-JA are cleared within an hour. L-JA allow for more accurate photoacoustic-based sO2 estimation and particle tracking compared to IcG. Furthermore, photothermal heating of L-JA with an 852nm laser is demonstrated to be more effective at lower laser powers than conventional 808nm lasers for the first time. The presented technique offers an avenue for formulating a multi-faceted contrast agent for photoacoustic imaging and photothermal therapy that offers significant advantages over other conventional agents.
Collapse
|
17
|
Matus MF, Häkkinen H. Rational Design of Targeted Gold Nanoclusters with High Affinity to Integrin αvβ3 for Combination Cancer Therapy. Bioconjug Chem 2024. [PMID: 39008847 DOI: 10.1021/acs.bioconjchem.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The unique attributes of targeted nano-drug delivery systems (TNDDSs) over conventional cancer therapies in suppressing off-target effects make them one of the most promising options for cancer treatment. There is evidence that the density of surface-conjugated ligands is a crucial factor in achieving the desired therapeutic efficacy of TNDDSs, but this is hardly manageable in conventional nanomaterials. In this context, ligand-protected gold nanoclusters (AuNCs) are excellent candidates for developing new TNDDSs with a unique control on their surface functionalities, thus helping to achieve enhanced delivery performance. Here, we study the interactions and binding free energies between ten different functionalized Au144(SR)60 (SR = thiolate ligand) nanoclusters and integrin αvβ3 using molecular dynamics simulations and the umbrella sampling method to obtain the optimal formulations. The AuNCs were functionalized with anticancer drugs (5-fluorouracil or signaling pathways inhibitors, such as capivasertib, linifanib, tanespimycin, and taselisib) and integrin-targeting peptides (RGD4C or QS13), and we identified the optimal mixed ligand layer to enhance their binding affinity to the cancer cell receptor. The results showed that changing the proportions of the same type of ligands on the surface of AuNCs led to differences of up to 38 kcal/mol in computed binding free energies. RGD4C as the targeting peptide resulted in greater affinity for αvβ3, and in most formulations studied, a higher amount of drug than peptide was needed. Polar and charged residues, such as Ser123, Asp150, Tyr178, Arg214, and Asp251 were found to play a significant role in AuNC binding. Our simulations also revealed that Mn2+ cations are crucial for stabilizing the αvβ3-AuNC complex. These findings demonstrate the potential of carefully designing the surface composition of TNDDSs to optimize their target affinity and specificity.
Collapse
Affiliation(s)
| | - Hannu Häkkinen
- Department of Physics, University of Jyväskylä, FI-40014 Jyväskylä, Finland
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| |
Collapse
|
18
|
Liang C, Meng F, Zhang Y, Chen Y, Luo L, Li H, Tu X, He F, Luo Z, Wang Q, Zhang J. In vivo quantitative characterization of nano adjuvant transport in the tracheal layer by photoacoustic imaging. BIOMEDICAL OPTICS EXPRESS 2024; 15:3962-3974. [PMID: 38867767 PMCID: PMC11166438 DOI: 10.1364/boe.527912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024]
Abstract
Adjuvants are indispensable ingredients in vaccine formulations. Evaluating the in vivo transport processes of adjuvants, particularly for inhalation formulations, presents substantial challenges. In this study, a nanosized adjuvant aluminum hydroxide (AlOOH) was synthesized and labeled with indocyanine green (ICG) and bovine serum albumin (BSA) to achieve strong optical absorption ability and high biocompatibility. The adjuvant nanomaterials (BSA@ICG@AlOOH, BIA) were delivered as an aerosol into the airways of mice, its distribution was monitored using photoacoustic imaging (PAI) in vivo. PAI results illustrated the gradual cross-layer transmission process of BIA in the tracheal layer, traversing approximately 250 µm from the inner layer of the trachea to the outer layer. The results were consistent with pathology. While the intensity of the BIA reduced by approximately 46.8% throughout the transport process. The ability of PAI for quantitatively characterized the dynamic transport process of adjuvant within the tracheal layer may be widely used in new vaccine development.
Collapse
Affiliation(s)
- Chaohao Liang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Fan Meng
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Yiqing Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Yuxiang Chen
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Li Luo
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Hongyan Li
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Xinbo Tu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Fengbing He
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Zhijia Luo
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Qian Wang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
- State Key Laboratory of Respiratory Diseases, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Jian Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
- State Key Laboratory of Respiratory Diseases, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| |
Collapse
|
19
|
Ma J, Yang M, Zhang B, Niu M. The roles of templates consisting of amino acids in the synthesis and application of gold nanoclusters. NANOSCALE 2024; 16:7287-7306. [PMID: 38529817 DOI: 10.1039/d3nr06042j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Gold nanoclusters (AuNCs) with low toxicity, high photostability, and facile synthesis have attracted great attention. The ligand is of great significance in stabilizing AuNCs and regulating their properties. Ligands consisting of amino acids (proteins and peptides) are an ideal template for synthesizing applicative AuNCs due to their inherent bioactivity, biocompatibility, and accessibility. In this review, we summarize the correlation of the template consisting of amino acids with the properties of AuNCs by analyzing different peptide sequences. The selection of amino acids can regulate the fluorescence excitation/emission and intensity, size, cell uptake, and light absorption. By analyzing the role played by AuNCs stabilized by proteins and peptides in the application, universal rules and detailed performances of sensors, antibacterial agents, therapeutic reagents, and light absorbers are reviewed. This review can guide the template design and application of AuNCs when selecting proteins and peptides as ligands.
Collapse
Affiliation(s)
- Jinliang Ma
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Mengmeng Yang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Bin Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Mingfu Niu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| |
Collapse
|
20
|
He S, Chen J, Zhao Y, Wang R, He Y, Chen S, Yang Y, Zhu C, Zhao J, Fang J. Fabrication of hyaluronic acid-altered gold complex delivery for head and neck squamous cell carcinoma therapy with high antitumor efficacy and low in vivo toxicity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 253:112877. [PMID: 38484648 DOI: 10.1016/j.jphotobiol.2024.112877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024]
Abstract
The use of multifunctional nanomedicines in the treatment of tumors is gaining popularity. Here, we constructed a nanodrug delivery system (HA/Au-PDA@CZT) that targets tumors and responds to pH and near-infrared (NIR) dual stimuli. By precisely interacting with an overexpressed CD44 receptor in specific cancer cells, hyaluronic acid (HA) is coated on the Au-PDA NP surface for tumor-targeting abilities. When exposed to NIR radiation, polydopamine (PDA) and gold nanoshells exhibit exceptional photothermal performance that has the potential to both accelerate and kill HLAC 78 head and neck squamous cell carcinoma cells. Antitumor investigations conducted in vivo and in vitro demonstrated that nanomedicine had remarkable synergistic benefits with chemotherapy and photothermal treatment. Only 25.2% of the cells in the HA/Au-PDA@CZT with a NIR irradiation group were viable. Any group's lowest tumor volume was shown in the tumor mice subjected to HA/Au-PDA@CZT with NIR at 0.3 ± 0.1. Consequently, for synergistic chemo-photothermal therapy, our logically designed nanoplatform would be the potential for a head and neck squamous tumor-targeting drug delivery system.
Collapse
Affiliation(s)
- Shizhi He
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Jiaming Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yanming Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Ru Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yurong He
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Shaoshi Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yifan Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Changyu Zhu
- Department of Oncology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Jingyang Zhao
- Department of Oncology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| |
Collapse
|
21
|
Yang L, Hou P, Wei J, Li B, Gao A, Yuan Z. Recent Advances in Gold Nanocluster-Based Biosensing and Therapy: A Review. Molecules 2024; 29:1574. [PMID: 38611853 PMCID: PMC11013830 DOI: 10.3390/molecules29071574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Gold nanoclusters (Au NCs) with bright emission and unique chemical reactivity characters have been widely applied for optical sensing and imaging. With a combination of surface modifications, effective therapeutic treatments of tumors are realized. In this review, we summarize the recently adopted biosensing and therapy events based on Au NCs. Homogeneous and fluorometric biosensing systems toward various targets, including ions, small molecules, reactive oxygen species, biomacromolecules, cancer cells, and bacteria, in vitro and in vivo, are presented by turn-off, turn-on, and ratiometric tactics. The therapy applications are concluded in three aspects: photodynamic therapy, photothermal therapy, and as a drug carrier. The basic mechanisms and performances of these systems are introduced. Finally, this review highlights the challenges and future trend of Au NC-based biosensing and therapy systems.
Collapse
Affiliation(s)
| | | | | | | | - Aijun Gao
- College of Chemistry, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiqin Yuan
- College of Chemistry, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
22
|
Shen H, Xu J, Fu Z, Wei X, Kang X, Shi W, Zhu M. Photoluminescence Quenching of Hydrophobic Ag 29 Nanoclusters Caused by Molecular Decoupling during Aqueous Phase Transfer and EmissionRecovery through Supramolecular Recoupling. Angew Chem Int Ed Engl 2024; 63:e202317995. [PMID: 38191987 DOI: 10.1002/anie.202317995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
Exploiting emissive hydrophobic nanoclusters for hydrophilic applications remains a challenge because of photoluminescence (PL) quenching during phase transfer. In addition, the mechanism underlying PL quenching remains unclear. In this study, the PL-quenching mechanism was examined by analyzing the atomically precise structures and optical properties of a surface-engineered Ag29 nanocluster with an all-around-carboxyl-functionalized surface. Specifically, phase-transfer-triggered PL quenching was justified as molecular decoupling, which directed an unfixed cluster surface and weakened the radiative transition. Furthermore, emission recovery of the quenched nanoclusters was accomplished by using a supramolecular recoupling approach through the glutathione-addition-induced aggregation of cluster molecules, wherein the restriction of intracluster motion and intercluster rotation strengthened the radiative transition of the clusters. The results of this work offer a new perspective on structure-emission correlations for atomically precise nanoclusters and hopefully provide insight into the fabrication of highly emissive cluster-based nanomaterials for downstream hydrophilic applications.
Collapse
Affiliation(s)
- Honglei Shen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Jiawei Xu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Ziwei Fu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| |
Collapse
|
23
|
Wu C, Chen W, Yan S, Zhong J, Du L, Yang C, Pu Y, Li Y, Lin J, Zeng M, Zhang X. MRI-guided photothermal/photodynamic immune activation combined with PD-1 inhibitor for the multimodal combination therapy of melanoma and metastases. Regen Biomater 2024; 11:rbae019. [PMID: 38525327 PMCID: PMC10960927 DOI: 10.1093/rb/rbae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 03/26/2024] Open
Abstract
Non-invasive image-guided precise photothermal/photodynamic therapy (PTT/PDT) has been proven to be an effective local treatment modality but incompetent against metastases. Hence, the combination of local PTT/PDT and systemic immunotherapy would be a promising strategy for tumor eradication. Herein, a magnetic resonance imaging (MRI)-visualized PTT/PDT agent (SIDP NMs) was constructed, and the efficacy of its multimodal combination with a programmed cell death 1 (PD-1) inhibitor in the treatment of melanoma and metastases was studied. Due to the hydrophobic encapsulation of indocyanine green within the micellar core, SIDP NMs exhibited excellent photothermal/photodynamic properties and stability under an 808 nm near-infrared laser. In vitro cell experiments showed that SIDP NMs had a good killing effect. After incubating with B16-F10 cells for 24 h and irradiating with an 808-nm laser for 10 min, cell viability decreased significantly. Magnetic resonance imaging experiments in melanoma-bearing mice have shown that the dynamic distribution of SIDP NMs in tumor tissue could be monitored by T2WI and T2-MAP non-invasively due to the presence of superparamagnetic iron oxide nanocrystal in SIDP NMs. When the 808 nm laser was irradiated at the maximum focusing time point shown by MRI, the temperature of the tumor area rapidly increased from 32°C to 60.7°C in 5 min. In mouse melanoma ablation and distant tumor immunotherapy studies, SIDP NMs provided excellent MRI-guided PTT/PDT results and, when combined with PD-1 inhibitor, have great potential to cure primary tumors and eradicate metastases.
Collapse
Affiliation(s)
- Changqiang Wu
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Wei Chen
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Shuang Yan
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jie Zhong
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Liang Du
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Chenwu Yang
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Yu Pu
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Yang Li
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jiafu Lin
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Mei Zeng
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Xiaoming Zhang
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, P. R. China
| |
Collapse
|
24
|
Soeiro JF, Sousa FL, Monteiro MV, Gaspar VM, Silva NJO, Mano JF. Advances in screening hyperthermic nanomedicines in 3D tumor models. NANOSCALE HORIZONS 2024; 9:334-364. [PMID: 38204336 PMCID: PMC10896258 DOI: 10.1039/d3nh00305a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Hyperthermic nanomedicines are particularly relevant for tackling human cancer, providing a valuable alternative to conventional therapeutics. The early-stage preclinical performance evaluation of such anti-cancer treatments is conventionally performed in flat 2D cell cultures that do not mimic the volumetric heat transfer occurring in human tumors. Recently, improvements in bioengineered 3D in vitro models have unlocked the opportunity to recapitulate major tumor microenvironment hallmarks and generate highly informative readouts that can contribute to accelerating the discovery and validation of efficient hyperthermic treatments. Leveraging on this, herein we aim to showcase the potential of engineered physiomimetic 3D tumor models for evaluating the preclinical efficacy of hyperthermic nanomedicines, featuring the main advantages and design considerations under diverse testing scenarios. The most recent applications of 3D tumor models for screening photo- and/or magnetic nanomedicines will be discussed, either as standalone systems or in combinatorial approaches with other anti-cancer therapeutics. We envision that breakthroughs toward developing multi-functional 3D platforms for hyperthermia onset and follow-up will contribute to a more expedited discovery of top-performing hyperthermic therapies in a preclinical setting before their in vivo screening.
Collapse
Affiliation(s)
- Joana F Soeiro
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Filipa L Sousa
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Maria V Monteiro
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Nuno J O Silva
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
25
|
Baghdasaryan A, Liu H, Ren F, Hsu R, Jiang Y, Wang F, Zhang M, Grigoryan L, Dai H. Intratumor injected gold molecular clusters for NIR-II imaging and cancer therapy. Proc Natl Acad Sci U S A 2024; 121:e2318265121. [PMID: 38261618 PMCID: PMC10835035 DOI: 10.1073/pnas.2318265121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Surgical resections of solid tumors guided by visual inspection of tumor margins have been performed for over a century to treat cancer. Near-infrared (NIR) fluorescence labeling/imaging of tumor in the NIR-I (800 to 900 nm) range with systemically administrated fluorophore/tumor-targeting antibody conjugates have been introduced to improve tumor margin delineation, tumor removal accuracy, and patient survival. Here, we show Au25 molecular clusters functionalized with phosphorylcholine ligands (AuPC, ~2 nm in size) as a preclinical intratumorally injectable agent for NIR-II/SWIR (1,000 to 3,000 nm) fluorescence imaging-guided tumor resection. The AuPC clusters were found to be uniformly distributed in the 4T1 murine breast cancer tumor upon intratumor (i.t.) injection. The phosphocholine coating afforded highly stealth clusters, allowing a high percentage of AuPC to fill the tumor interstitial fluid space homogeneously. Intra-operative surgical navigation guided by imaging of the NIR-II fluorescence of AuPC allowed for complete and non-excessive tumor resection. The AuPC in tumors were also employed as a photothermal therapy (PTT) agent to uniformly heat up and eradicate tumors. Further, we performed in vivo NIR-IIb (1,500 to 1,700 nm) molecular imaging of the treated tumor using a quantum dot-Annexin V (QD-P3-Anx V) conjugate, revealing cancer cell apoptosis following PTT. The therapeutic functionalities of AuPC clusters combined with rapid renal excretion, high biocompatibility, and safety make them promising for clinical translation.
Collapse
Affiliation(s)
- Ani Baghdasaryan
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| | - Haoran Liu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| | - Fuqiang Ren
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| | - RuSiou Hsu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| | - Yingying Jiang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| | - Feifei Wang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| | - Mengzhen Zhang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| | - Lilit Grigoryan
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA94305
| | - Hongjie Dai
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| |
Collapse
|
26
|
Shi Y, Wu Z, Qi M, Liu C, Dong W, Sun W, Wang X, Jiang F, Zhong Y, Nan D, Zhang Y, Li C, Wang L, Bai X. Multiscale Bioresponses of Metal Nanoclusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310529. [PMID: 38145555 DOI: 10.1002/adma.202310529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/21/2023] [Indexed: 12/27/2023]
Abstract
Metal nanoclusters (NCs) are well-recognized novel nano-agents that hold great promise for applications in nanomedicine because of their ultrafine size, low toxicity, and high renal clearance. As foreign substances, however, an in-depth understanding of the bioresponses to metal NCs is necessary but is still far from being realized. Herein, this review is deployed to summarize the biofates of metal NCs at various biological levels, emphasizing their multiscale bioresponses at the molecular, cellular, and organismal levels. In the parts-to-whole schema, the interactions between biomolecules and metal NCs are discussed, presenting typical protein-dictated nano-bio interfaces, hierarchical structures, and in vivo trajectories. Then, the accumulation, internalization, and metabolic evolution of metal NCs in the cellular environment and as-imparted theranostic functionalization are demonstrated. The organismal metabolism and transportation processes of the metal NCs are subsequently distilled. Finally, this review ends with the conclusions and perspectives on the outstanding issues of metal NC-mediated bioresponses in the near future. This review is expected to provide inspiration for tailoring the customization of metal NC-based nano-agents to meet practical requirements in different sectors of nanomedicine.
Collapse
Affiliation(s)
- Yujia Shi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Manlin Qi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Chengyu Liu
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Weinan Dong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Wenyue Sun
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Feng Jiang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yuan Zhong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Di Nan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Chunyan Li
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Lin Wang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| |
Collapse
|
27
|
Yang Z, Yang X, Guo Y, Kawasaki H. A Review on Gold Nanoclusters for Cancer Phototherapy. ACS APPLIED BIO MATERIALS 2023; 6:4504-4517. [PMID: 37828759 DOI: 10.1021/acsabm.3c00518] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Cancer phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), has been extensively studied in recent years because of its noninvasive properties, high efficiency, improved selectivity, and reduced side effects. Gold nanoclusters (AuNCs) have the advantages of high biocompatibility, high biosafety, excellent photoresponse, and high tumor penetration ability. This review analyzes the use of AuNCs in tumor phototherapy in recent years from three aspects, namely, AuNCs in PDT, AuNCs in PTT, and AuNCs in combination therapy, and presents the high potential of AuNCs in cancer phototherapy. This review aims to provide readers with the unique advantages, diversified application approaches, and bright application prospects of AuNCs in phototherapy and to provide insights into strategies for applying AuNCs to tumor phototherapy.
Collapse
Affiliation(s)
- Zhuoren Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Xiebingqing Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita 564-8680, Japan
| | - Hideya Kawasaki
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita 564-8680, Japan
| |
Collapse
|
28
|
Fluksman A, Lafuente A, Braunstein R, Steinberg E, Friedman N, Yekhin Z, Roca AG, Nogues J, Hazan R, Sepulveda B, Benny O. Modular Drug-Loaded Nanocapsules with Metal Dome Layers as a Platform for Obtaining Synergistic Therapeutic Biological Activities. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50330-50343. [PMID: 37861446 PMCID: PMC10623511 DOI: 10.1021/acsami.3c07188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023]
Abstract
Multifunctional drug-loaded polymer-metal nanocapsules have attracted increasing attention in drug delivery due to their multifunctional potential endowed by drug activity and response to physicochemical stimuli. Current chemical synthesis methods of polymer/metal capsules require specific optimization of the different components to produce particles with precise properties, being particularly complex for Janus structures combining polymers and ferromagnetic and highly reactive metals. With the aim to generate tunable synergistic nanotherapeutic actuation with enhanced drug effects, here we demonstrate a versatile hybrid chemical/physical fabrication strategy to incorporate different functional metals with tailored magnetic, optical, or chemical properties on solid drug-loaded polymer nanoparticles. As archetypical examples, we present poly(lactic-co-glycolic acid) (PLGA) nanoparticles (diameters 100-150 nm) loaded with paclitaxel, indocyanine green, or erythromycin that are half-capped by either Fe, Au, or Cu layers, respectively, with application in three biomedical models. The Fe coating on paclitaxel-loaded nanocapsules permitted efficient magnetic enhancement of the cancer spheroid assembly, with 40% reduction of the cross-section area after 24 h, as well as a higher paclitaxel effect. In addition, the Fe-PLGA nanocapsules enabled external contactless manipulation of multicellular cancer spheroids with a speed of 150 μm/s. The Au-coated and indocyanine green-loaded nanocapsules demonstrated theranostic potential and enhanced anticancer activity in vitro and in vivo due to noninvasive fluorescence imaging with long penetration near-infrared (NIR) light and simultaneous photothermal-photodynamic actuation, showing a 3.5-fold reduction in the tumor volume growth with only 5 min of NIR illumination. Finally, the Cu-coated erythromycin-loaded nanocapsules exhibited enhanced antibacterial activity with a 2.5-fold reduction in the MIC50 concentration with respect to the free or encapsulated drug. Altogether, this technology can extend a nearly unlimited combination of metals, polymers, and drugs, thus enabling the integration of magnetic, optical, and electrochemical properties in drug-loaded nanoparticles to externally control and improve a wide range of biomedical applications.
Collapse
Affiliation(s)
- Arnon Fluksman
- Institute
for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Aritz Lafuente
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Universitat
Autònoma de Barcelona, Campus UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Ron Braunstein
- Institute
of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Eliana Steinberg
- Institute
for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Nethanel Friedman
- Institute
for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Zhanna Yekhin
- Department
of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah
Medical Center, The Faculty of Medicine, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Alejandro G. Roca
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Josep Nogues
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Ronen Hazan
- Institute
of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Borja Sepulveda
- Instituto
de Microelectronica de Barcelona (IMB-CNM, CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Ofra Benny
- Institute
for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| |
Collapse
|
29
|
Cheng W, He L, Ren W, Yue T, Xie X, Sun J, Chen X, Wu Z, Li F, Piao JG. Bacteria-nanodrug cancer treatment system: The combination of dual swords and the confrontation of needle tips. NANO TRANSMED 2023; 2:100008. [DOI: 10.1016/j.ntm.2023.100008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2023]
|
30
|
Cheng W, He L, Ren W, Yue T, Xie X, Sun J, Chen X, Wu Z, Li F, Piao JG. Bacteria-nanodrug cancer treatment system: The combination of dual swords and the confrontation of needle tips. NANO TRANSMED 2023; 2:100008. [DOI: 10.1016/j.ntm.2023.100008 received in revised form 24 august 2023; acce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2023]
|
31
|
Cao X, Liu Q, Adu-Frimpong M, Shi W, Liu K, Deng T, Yuan H, Weng X, Gao Y, Yu Q, Deng W, Yu J, Wang Q, Xiao G, Xu X. Microfluidic Generation of Near-Infrared Photothermal Vitexin/ICG Liposome with Amplified Photodynamic Therapy. AAPS PharmSciTech 2023; 24:82. [PMID: 36949351 DOI: 10.1208/s12249-023-02539-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/12/2023] [Indexed: 03/24/2023] Open
Abstract
Glioma, in which a malignant tumor cell occurs in neural mesenchymal cells, has a rapid progression and poor prognosis, which is still far from desirable in clinical treatments. We developed a lab-on-a-chip (LOC) device for the rapid and efficient preparation of vitexin/indocyanine green (ICG) liposomes. Vitexin could be released from liposome to kill cancer cell, which can potentially improve the glioma therapeutic effect and reduce the treatment time through synergistic photodynamic/photothermal therapies (PDT/PTT). The vitexin/ICG liposome was fabricated via LOC and its physicochemical property and release in vitro were evaluated. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method and live/dead staining were used to examine the enhanced antitumor effect of vitexin/ICG liposome in cooperation with PDT/PTT, while the related mechanism was explored by flow cytometry and western blot. The results were as follows: (1) The prepared vitexin/ICG liposome was smaller in size, homogenous in particle size distribution with significant low polydispersity index (PDI), and enhanced cumulative release in vitro. (2) We found that the formulated liposome presented strong cancer cell inhibition and suppression of its migration in a dose-dependent manner. (3) Further mechanistic studies showed that liposome combined with near-infrared irradiation could significantly upregulate levels of B cell lymphoma 2-associated X (Bax) protein and decrease B cell lymphoma 2 (Bcl-2) at protein levels. The vitexin/ICG liposomes prepared based on a simple LOC platform can effectively enhance the solubility of insoluble drugs, and the combined effect of PTT/PDT can effectively increase their antitumor effect, which provides a simple and valid method for the clinical translation of liposomes.
Collapse
Affiliation(s)
- Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Qi Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Michael Adu-Frimpong
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, UK-0215-5321, Ghana
| | - Wenwan Shi
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Kai Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Tianwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Hui Yuan
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Xuedi Weng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Yihong Gao
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Qingtong Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China.
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China.
| | - Gao Xiao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China.
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, Fujian, People's Republic of China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China.
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China.
| |
Collapse
|
32
|
Guo H, Cao Z, Li J, Fu Z, Lin S, Wang L, Liu J. Integrating Bacteria with a Ternary Combination of Photosensitizers for Monochromatic Irradiation-Mediated Photoacoustic Imaging-Guided Synergistic Photothermal Therapy. ACS NANO 2023; 17:5059-5071. [PMID: 36847803 DOI: 10.1021/acsnano.3c00032] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Photosensitizer-based therapy often suffers from unitary and easily attenuated photosensitive effects, limited tumor penetration and retention, and requirement of multiple irradiation for combination therapy, which largely restrict its application. Here, bacteria are integrated with a monochromatic irradiation-mediated ternary combination of photosensitizers for photoacoustic imaging-guided synergistic photothermal therapy. Bacteria that are bioengineered to express natural melanin are decorated with dual synthetic photosensitizers by nanodeposition with indocyanine green and polydopamine under a cytocompatible condition. The combined photosensitizers, which share an adequate excitation at 808 nm, endow integrated bacteria with a stable triple photoacoustic and photothermal effect under a monochromatic irradiation. Due to their living characteristics, these bacteria preferentially colonize hypoxic tumor tissue with homogeneous distribution and durable retention and generate uniform imaging signals and a sufficient heating of tumor upon laser irradiation. Supported by significantly inhibited tumor growth and extended survival of animals in different tumor-bearing murine models, our work proposes the development of bacteria-based innovative photosensitizers for imaging-guided therapy.
Collapse
Affiliation(s)
- Haiyan Guo
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Juanjuan Li
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhenzhen Fu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Sisi Lin
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
33
|
Zhang Q, Yang Y, Xue H, Zhang H, Yuan Z, Shen Y, Guo X, Fan Z, Wu X, Zhang D, Tu J. Intensified and controllable vaporization of phase-changeable nanodroplets induced by simultaneous exposure of laser and ultrasound. ULTRASONICS SONOCHEMISTRY 2023; 94:106312. [PMID: 36731283 PMCID: PMC9926226 DOI: 10.1016/j.ultsonch.2023.106312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Phase-changeable contrast agents have been proposed as a next-generation ultrasound contrast agent over conventional microbubbles given its stability, longer circulation time and ability to extravasate. Safe vaporization of nanodroplets (NDs) plays an essential role in the practical translation of ND applications in industry and medical therapy. In particular, the exposure parameters for initializing phase change as well as the site of phase change are concerned to be controlled. Compared to the traditional optical vaporization or acoustic droplet vaporization, this study exhibited the potential of using simultaneous, single burst laser and ultrasound incidence as a means of activating phase change of NDs to generate cavitation nuclei with reduced fluence and sound pressure. A theoretical model considering the laser heating, vapor cavity nucleation and growth was established, where qualitative agreement with experiment findings were found in terms of the trend of combined exposure parameters in order to achieve the same level of vaporization outcome. The results indicate that using single burst laser pulse and 10-cycle ultrasound might be sufficient to lower the exposure levels under FDA limit for laser skin exposure and ultrasound imaging. The combination of laser and ultrasound also provides temporal and spatial control of ND vaporization and cavitation nucleation without altering the sound field, which is beneficial for further safe and effective applications of phase-changeable NDs in medical, environmental, food processing and other industrial areas.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Yanye Yang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Honghui Xue
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China; Wuxi Vocational Institute of Commerce, Wuxi 214153, Jiangsu, China
| | - Haijun Zhang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China; National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Dezhou 251100, Shandong, China
| | - Ziyan Yuan
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Yuchen Shen
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Zheng Fan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xiaoge Wu
- Environment Science and Engineering College, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
34
|
Zheng Y, Zhu Y, Dai J, Lei J, You J, Chen N, Wang L, Luo M, Wu J. Atomically precise Au nanocluster-embedded carrageenan for single near-infrared light-triggered photothermal and photodynamic antibacterial therapy. Int J Biol Macromol 2023; 230:123452. [PMID: 36708904 DOI: 10.1016/j.ijbiomac.2023.123452] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/10/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
In this study, we report atomically precise gold nanoclusters-embedded natural polysaccharide carrageenan as a novel hydrogel platform for single near-infrared light-triggered photothermal (PTT) and photodynamic (PDT) antibacterial therapy. Briefly, atomically precise captopril-capped Au nanoclusters (Au25Capt18) prepared by an alkaline NaBH4 reduction method and then embedded them into the biosafe carrageenan to achieve superior PTT and PDT dual-mode antibacterial effect. In this platform, the embedded Au25Capt18, as simple-component phototherapeutic agents, exhibit superior thermal effects and singlet oxygen generation under a single near-infrared (NIR, 808 nm) light irradiation, which enables rapid elimination of bacteria. Carrageenan endows the hydrogel platform with superior gelation characteristics and wound microenvironmental regulation. The Au25Capt18-embedded hydrogels exhibited good water retention, hemostasis, and breathability, providing a favorable niche environment for promoting wound healing. In vitro experiments confirmed the excellent antibacterial activity of the Au25Capt18 hydrogels against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. The antibacterial effect and promoting wound healing function were further validated in a S. aureus-infected wound model. Biosafety evaluation showed that the Au25Capt18 hydrogel has excellent biocompatibility. This PTT/PDT dual-mode therapy offers an alternative strategy for battling bacterial infections without antibiotics. More importantly, this hydrogel is facile to prepare which is helpful for expanding applications.
Collapse
Affiliation(s)
- Youkun Zheng
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China; Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yuxin Zhu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China; Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jianghong Dai
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China; Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jiaojiao Lei
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China; Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jingcan You
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China
| | - Ni Chen
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China
| | - Liqun Wang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China; Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Mao Luo
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China; Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jianbo Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China; Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
35
|
Cetin Ersen B, Goncu B, Dag A, Birlik Demirel G. GLUT-Targeting Phototherapeutic Nanoparticles for Synergistic Triple Combination Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9080-9098. [PMID: 36780418 DOI: 10.1021/acsami.2c21180] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The combination of multimodal therapies into one nanocarrier system is promising for its potential to enhance treatment performance by overcoming the efficacy problems encountered in conventional monomodal therapy. In this study, targeted and multimodal therapeutic hybrid nanocarriers are fabricated for breast cancer treatments. In this context, the synthesized gold nanorods (AuNRd), photothermal therapy (PTT) agent, are coated with doxorubicin (DOX) conjugated, targeted, and biocompatible tetrablock glycopeptide (P(DMAEMA-b-HMBAMA-b-FrucMA)-b-P(Lys)/DOX, P-DOX) polymer. Here, fructose-based (Fruc) glycopeptide polymer enhances cellular uptake into breast cancer through GLUT5. A photosensitizer molecule, indocyanine green (ICG), was loaded into the particles to provide photodynamic therapy (PDT) upon NIR light at 808 nm. In the final step of the fabrication, the polymer-coated nanoparticles are integrated with antisense ISIS5132 oligonucleotides to prevent apoptotic resistance of cells against drug molecules. The biocompatibility and therapeutic efficacy of the nanoparticles are evaluated on both human normal skin fibroblast cell (CCD-1079Sk) and human breast cancer cell (MCF7) lines. These multimodal therapeutic AuNRd@P-DOX/ICG/ISIS5132 nanoparticles demonstrate an efficient triple synergistic effect of chemo-/PTT/PDT, which is desired for breast cancer treatment. We believe that this promising multimodal therapeutic nanoparticle system can promote the further clinical application in the treatment of breast cancer and can also be adapted to other types of cancer.
Collapse
Affiliation(s)
- Busra Cetin Ersen
- Institute of Graduate Programs and Department of Chemistry, Polatlı Faculty of Arts and Sciences, Ankara Hacı Bayram Veli University, Ankara 06900, Turkey
| | - Beyza Goncu
- Experimental Research Center, Bezmialem Vakif University, İstanbul 34093, Turkey
- Department of Medical Services and Techniques, Vocational School of Health Sciences, Bezmialem Vakif University, İstanbul 34093, Turkey
| | - Aydan Dag
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul 34093, Turkey
| | - Gokcen Birlik Demirel
- Institute of Graduate Programs and Department of Chemistry, Polatlı Faculty of Arts and Sciences, Ankara Hacı Bayram Veli University, Ankara 06900, Turkey
| |
Collapse
|
36
|
Park JS, Park S, Park SJ, Kim SK. Synergistic effects of concurrent photodynamic therapy with indocyanine green and chemotherapy in hepatocellular carcinoma cell lines and mouse models. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 239:112642. [PMID: 36623346 DOI: 10.1016/j.jphotobiol.2022.112642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) using an 808 nm laser irradiation with indocyanine green (ICG) has shown tumoricidal effects in a hepatocellular (HCC) orthotopic xenograft model. Recently, combining PDT with concurrent chemotherapy has shown synergistic outcomes and a better therapeutic effect for cancer treatment. In the present study, we utilized a combination of chemotherapy drugs and PDT using ICG in vitro and in vivo in a patient-derived orthotopic xenograft (PDoX) model. METHOD We independently performed PDT and chemotherapy with sorafenib or doxorubicin in the Huh-7 and Hep3b cell lines by increasing the sorafenib or doxorubicin concentration and increasing the total energy of 808 nm light. Subsequently, we combined the two treatments to confirm the effects on cell viability. The combination index (CI) was evaluated in vitro, and thereafter, in the HCC PDoX mouse model, 808 nm laser irradiation with intravenously injected ICG and chemotherapy using doxorubicin were performed for twelve days. RESULT The viability of the Huh-7 and Hep3B cell lines decreased rapidly as the concentration of sorafenib or doxorubicin increased and as the total energy of 808 nm light increased. The cell viability of the Huh-7 and Hep3b cell lines with combined PDT and chemotherapy was less than that with PDT or chemotherapy alone. The CI was <1 in the sorafenib- or doxorubicin-treated Huh-7 and Hep3b cell lines. In the HCC PDoX mouse model, tumor size was markedly decreased, and complete remission achieved compared to that of the single chemotherapy or PDT and control groups. CONCLUSION The synergistic effect of concurrent PDT and chemotherapy in the HCC cell line and PDoX model was confirmed with no definite adverse effect. Concurrent PDT and chemotherapy could be applied in further preclinical studies.
Collapse
Affiliation(s)
- Jae Sun Park
- Division of Convergence Technology, Research Institute, National Cancer Center, Goyang-si 10408, Republic of Korea
| | - Sohyun Park
- Division of Convergence Technology, Research Institute, National Cancer Center, Goyang-si 10408, Republic of Korea; Department of Nuclear Medicine, Hospital, National Cancer Center, Goyang-si 10408, Republic of Korea
| | - Sang-Jae Park
- Division of Precision Medicine, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Seok-Ki Kim
- Division of Convergence Technology, Research Institute, National Cancer Center, Goyang-si 10408, Republic of Korea; Department of Nuclear Medicine, Hospital, National Cancer Center, Goyang-si 10408, Republic of Korea.
| |
Collapse
|
37
|
Jia D, Liu H, Zheng S, Yuan D, Sun R, Wang F, Li Y, Li H, Yuan F, Fan Q, Zhao Z. ICG-Dimeric Her2-Specific Affibody Conjugates for Tumor Imaging and Photothermal Therapy for Her2-Positive Tumors. Mol Pharm 2023; 20:427-437. [PMID: 36315025 DOI: 10.1021/acs.molpharmaceut.2c00708] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human epidermal growth factor receptor 2 (Her2) is abundantly expressed in various solid tumors. The Her2-specific Affibody (ZHer2:2891) has been clinically tested in patients with Her2-positive breast cancer and is regarded as an ideal drug carrier for tumor diagnosis and targeted treatment. Indocyanine green (ICG) can be used as a photosensitizer for photothermal therapy (PTT), in addition to fluorescent dyes for tumor imaging. In this study, a dimeric Her2-specific Affibody (ZHer2) based on ZHer2:2891 was prepared using the E. coli expression system and then coupled to ICG through an N-hydroxysuccinimide (NHS) ester reactive group to construct a novel bifunctional protein drug (named ICG-ZHer2) for tumor diagnosis and PTT. In vitro, ICG-ZHer2-mediated PTT selectively and efficiently killed Her2-positive BT-474 and SKOV-3 tumor cells rather than Her2-negative HeLa tumor cells. In vivo, ICG-ZHer2 specifically accumulated in Her2-positive SKOV-3 tumor grafts rather than Her2-negative HeLa tumor grafts; high-contrast tumor optical images were obtained. However, Her2-negative HeLa tumor grafts were not detected. More importantly, ICG-ZHer2-mediated PTT exhibited a significantly enhanced antitumor effect in mice bearing SKOV-3 tumor grafts owing to the good photothermal properties of ICG-ZHer2. Of note, ICG-ZHer2 did not exhibit acute toxicity in mice during short-term treatment. Overall, our findings indicate that ICG-ZHer2 is a promising bifunctional drug for Her2-positive tumor diagnosis and PTT.
Collapse
Affiliation(s)
- Dianlong Jia
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Huimin Liu
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Shuhui Zheng
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Dandan Yuan
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Ruohan Sun
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Fei Wang
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yang Li
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Hui Li
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Fengjiao Yuan
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Qing Fan
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Zhenxiong Zhao
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 317700, China
| |
Collapse
|
38
|
Ma R, Tang X, Wang M, Du Z, Chen S, Heng Y, Zhu L, Alifu N, Zhang X, Ma C. Clinical indocyanine green-based silk fibroin theranostic nanoprobes for in vivo NIR-I/II fluorescence imaging of cervical diseases. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 47:102615. [PMID: 36265558 DOI: 10.1016/j.nano.2022.102615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Cervical diseases such as lymph node disease and tubal obstruction have threatened women's health. However, the traditional diagnostic methods still have shortcomings. NIR-II fluorescence imaging with advantages of low scattering, negligible autofluorescence, and high spatial resolution could be an ideal option. To obtain high quality NIR-II fluorescence imaging, selecting appropriate nanoprobes becomes the important issue. As a small molecular photothermal agent, extensive applications of ICG are rather limited because of its drawbacks. Herein, natural silk fibroin (SF) was synthesized and encapsulated ICG molecules to form SF@ICG nanoparticles (NPs). After detailed analysis, SF@ICG NPs showed excellent stability and long circulation time, as well as strong NIR-II fluorescence emission, well photo-stability, biocompatibility and well photothermal property under 808 nm laser irradiation. Furthermore, SF@ICG NPs were utilized for NIR-II fluorescence imaging of lymph node/lymphangiography and angiography of fallopian tubes. The process of fallopian tubes could be detected with high resolution and high sensitivity.
Collapse
Affiliation(s)
- Rong Ma
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, People's Republic of China
| | - Xiaohui Tang
- School of Pharmacy, Xinjiang Medical University, Urumqi, People's Republic of China
| | - Mei Wang
- School of Pharmacy, Xinjiang Medical University, Urumqi, People's Republic of China
| | - Zhong Du
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, People's Republic of China
| | - Shuang Chen
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, People's Republic of China
| | - Youqiang Heng
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, People's Republic of China
| | - Lijun Zhu
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, People's Republic of China
| | - Nuernisha Alifu
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, People's Republic of China.
| | - Xueliang Zhang
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, People's Republic of China.
| | - Cailing Ma
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, People's Republic of China.
| |
Collapse
|
39
|
Shi W, Diao S, Liang T, Zhang X, Guo Z, Liu Y, Zhou W, Xie C, Fan Q. A Renal-Clearable PEGylated Semiconducting Oligomer for the NIR-II Fluorescence Imaging of Tumor. ACS APPLIED BIO MATERIALS 2022; 5:4965-4971. [PMID: 36167499 DOI: 10.1021/acsabm.2c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Second near-infrared window fluorescence imaging (NIR-II FI) has attracted tremendous attention in bioimaging. Until now, most probes for NIR-II FI are nanomaterials that are metabolized via hepatobiliary metabolism. Such a metabolic pathway may take several months, causing long-term toxicity. Herein, we design and synthesize a renal-clearable PEGylated semiconducting oligomer (PSO) for the NIR-II FI of tumor. PSO is composed of a semiconducting oligomer (SO) backbone as an NIR-II fluorescence reporter and four poly(ethylene glycol) (PEG) side chains as water-soluble enhancers. PSO can emit an NIR-II fluorescence signal with the maximum emission at 1000 nm under the excitation of 808 nm light. PSO shows good biocompatibility and can be partially cleared out of body via renal clearance. PSO can be utilized for the NIR-II FI of tumor as it can effectively accumulate into tumor.
Collapse
Affiliation(s)
- Wenheng Shi
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Shanchao Diao
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Tingting Liang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xuheng Zhang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Zixin Guo
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yaxin Liu
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Wen Zhou
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Chen Xie
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| |
Collapse
|
40
|
Lira AL, Mina N, Bonturi CR, Nogueira RS, Torquato RJS, Oliva MLV, Sousa AA. Anionic Ultrasmall Gold Nanoparticles Bind to Coagulation Factors and Disturb Normal Hemostatic Balance. Chem Res Toxicol 2022; 35:1558-1569. [PMID: 36018252 DOI: 10.1021/acs.chemrestox.2c00190] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ultrasmall gold nanoparticles (usNPs) and nanoclusters are an emerging class of nanomaterials exhibiting distinctive physicochemical properties and in vivo behaviors. Although understanding the interactions of usNPs with blood components is of fundamental importance to advance their clinical translation, currently, little is known about the way that usNPs interact with the hemostatic system. This study describes the effects of a model anionic p-mercaptobenzoic acid-coated usNP on the coagulation cascade, with particular emphasis on the contact pathway. It is found that in a purified system, the anionic usNPs bind to and activate factor XII (FXII). The formed usNP-FXII complexes are short-lived (residence time of ∼10 s) and characterized by an affinity constant of ∼200 nM. In human plasma, the anionic usNPs activate the contact pathway and promote coagulation. The usNPs also exhibit anticoagulant activity in plasma by interfering with the thrombin-mediated cleavage of fibrinogen. Taken together, these findings establish that anionic usNPs can disturb the normal hemostatic balance, which in turn may hinder their clinical translation. Finally, it is shown that usNPs can be designed to be nearly inert in plasma by surface coating with the natural peptide glutathione.
Collapse
Affiliation(s)
- André L Lira
- Department of Biochemistry, Federal University of São Paulo, São Paulo, São Paulo 04044-020, Brazil
| | - Natasha Mina
- Department of Biochemistry, Federal University of São Paulo, São Paulo, São Paulo 04044-020, Brazil
| | - Camila R Bonturi
- Department of Biochemistry, Federal University of São Paulo, São Paulo, São Paulo 04044-020, Brazil
| | - Ruben S Nogueira
- Department of Biochemistry, Federal University of São Paulo, São Paulo, São Paulo 04044-020, Brazil
| | - Ricardo J S Torquato
- Department of Biochemistry, Federal University of São Paulo, São Paulo, São Paulo 04044-020, Brazil
| | - Maria Luiza V Oliva
- Department of Biochemistry, Federal University of São Paulo, São Paulo, São Paulo 04044-020, Brazil
| | - Alioscka A Sousa
- Department of Biochemistry, Federal University of São Paulo, São Paulo, São Paulo 04044-020, Brazil
| |
Collapse
|
41
|
Sivasubramanian M, Lin LJ, Wang YC, Yang CS, Lo LW. Industrialization’s eye view on theranostic nanomedicine. Front Chem 2022; 10:918715. [PMID: 36059870 PMCID: PMC9437266 DOI: 10.3389/fchem.2022.918715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
The emergence of nanomedicines (NMs) in the healthcare industry will bring about groundbreaking improvements to the current therapeutic and diagnostic scenario. However, only a few NMs have been developed into clinical applications due to a lack of regulatory experience with them. In this article, we introduce the types of NM that have the potential for clinical translation, including theranostics, multistep NMs, multitherapy NMs, and nanoclusters. We then present the clinical translational challenges associated with NM from the pharmaceutical industry’s perspective, such as NMs’ intrinsic physiochemical properties, safety, scale-up, lack of regulatory experience and standard characterization methods, and cost-effectiveness compared with their traditional counterparts. Overall, NMs face a difficult task to overcome these challenges for their transition from bench to clinical use.
Collapse
|
42
|
Li C, Li Y, Li G, Wu S. Functional Nanoparticles for Enhanced Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14081682. [PMID: 36015307 PMCID: PMC9412412 DOI: 10.3390/pharmaceutics14081682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer is the leading cause of death in people worldwide. The conventional therapeutic approach is mainly based on chemotherapy, which has a series of side effects. Compared with traditional chemotherapy drugs, nanoparticle-based delivery of anti-cancer drugs possesses a few attractive features. The application of nanotechnology in an interdisciplinary manner in the biomedical field has led to functional nanoparticles achieving much progress in cancer therapy. Nanoparticles have been involved in the diagnosis and targeted and personalized treatment of cancer. For example, different nano-drug strategies, including endogenous and exogenous stimuli-responsive, surface conjugation, and macromolecular encapsulation for nano-drug systems, have successfully prevented tumor procession. The future for functional nanoparticles is bright and promising due to the fast development of nanotechnology. However, there are still some challenges and limitations that need to be considered. Based on the above contents, the present article analyzes the progress in developing functional nanoparticles in cancer therapy. Research gaps and promising strategies for the clinical application are discussed.
Collapse
Affiliation(s)
- Chenchen Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| | - Yuqing Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Correspondence: (G.L.); (S.W.)
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
- Correspondence: (G.L.); (S.W.)
| |
Collapse
|
43
|
Zhu L, Yang Y, Li X, Zheng Y, Li Z, Chen H, Gao Y. Facile preparation of indocyanine green and tiny gold nanoclusters co-loaded nanocapsules for targeted synergistic sono-/photo-therapy. J Colloid Interface Sci 2022; 627:596-609. [PMID: 35872417 DOI: 10.1016/j.jcis.2022.07.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 10/17/2022]
Abstract
Photothermal therapy (PTT) and sono-photodynamic therapy (SPDT) are fast growing local treatment modalities with minimal invasiveness and high safety. Gold nanoparticles and indocyanine green (ICG) have been used as sensitizers for PTT and SPDT. However, long resident time of gold nanoparticles in tissues and fast elimination of ICG hampered their further clinical applications. Herein, we developed nanocapsules formed by hyaluronic acid and chitosan loading with ICG and tiny gold nanoclusters (TAuNCs) to overcome the shortcomings of gold nanoparticles and ICG for combined PTT and SPDT. The nanocapsules exhibited good biological stability, favorable photothermal effects, and ultrasound/near-infrared light (NIR)-responsive release behaviors. The hyaluronic acid could mediate the specific delivery of cargos to CD44 protein over-expressing cancer cells. The in vitro and in vivo results showed that TAuNCs and ICG could act synergistically to obtain satisfactory anticancer effects under NIR laser and/or ultrasound exposure induced by thermal ablation and reactive oxygen species (ROS) generation. Biodistribution and excretion studies showed that the nanocapsules had longer ICG retention time in tumor and most of the TAuNCs could be effectively excreted from the body within one month. This study thus provides a facile strategy for the development of a safe and high-performance nanoplatform for synergistic PTT/SPDT.
Collapse
Affiliation(s)
- Lisheng Zhu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ya Yang
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Xudong Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yilin Zheng
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ziying Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Haijun Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
44
|
Gold nanomaterials and their potential use as cryo-electron tomography labels. J Struct Biol 2022; 214:107880. [PMID: 35809758 DOI: 10.1016/j.jsb.2022.107880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 12/14/2022]
Abstract
Rapid advances in cryo-electron tomography (cryo-ET) are driving a revolution in cellular structural biology. However, unambiguous identification of specific biomolecules within cellular tomograms remains challenging. Overcoming this obstacle and reliably identifying targets in the crowded cellular environment is of major importance for the understanding of cellular function and is a pre-requisite for high-resolution structural analysis. The use of highly-specific, readily visualised and adjustable labels would help mitigate this issue, improving both data quality and sample throughput. While progress has been made in cryo-CLEM and in the development of cloneable high-density tags, technical issues persist and a robust 'cryo-GFP' remains elusive. Readily-synthesized gold nanomaterials conjugated to small 'affinity modules' may represent a solution. The synthesis of materials including gold nanoclusters (AuNCs) and gold nanoparticles (AuNPs) is increasingly well understood and is now within the capabilities of non-specialist laboratories. The remarkable chemical and photophysical properties of <3nm diameter nanomaterials and their emergence as tools with widespread biomedical application presents significant opportunities to the cryo-microscopy community. In this review, we will outline developments in the synthesis, functionalisation and labelling uses of both AuNPs and AuNCs in cryo-ET, while discussing their potential as multi-modal probes for cryo-CLEM.
Collapse
|
45
|
Li Y, Song Y, Zhang X, Liu T, Xu T, Wang H, Jiang DE, Jin R. Atomically Precise Au 42 Nanorods with Longitudinal Excitons for an Intense Photothermal Effect. J Am Chem Soc 2022; 144:12381-12389. [PMID: 35767839 DOI: 10.1021/jacs.2c03948] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Metallic-state gold nanorods are well known to exhibit strong longitudinal plasmon excitations in the near-infrared region (NIR) suitable for photothermal conversion. However, when the size decreases below ∼2 nm, Au nanostructures become nonmetallic, and whether the longitudinal excitation in plasmonic nanorods can be inherited is unknown. Here, we report atomically precise rod-shaped Au42(SCH2Ph)32 with a hexagonal-close-packed Au20 kernel of aspect ratio as high as 6.2, which exhibits an intense absorption at 815 nm with a high molar absorption coefficient of 1.4 × 105 M-1 cm-1. Compared to other rod-shaped nanoclusters, Au42 possesses a much more effective photothermal conversion with a large temperature increase of ∼27 °C within 5 min (λex = 808 nm, 1 W cm-2) at an ultralow concentration of 50 μg mL-1 in toluene. Density functional theory calculations show that the NIR transition is mainly along the long axis of the Au20 kernel in Au42, i.e., a longitudinal excitonic oscillation, akin to the longitudinal plasmon in metallic-state nanorods. Transient absorption spectroscopy reveals that the fast decay in Au42 is similar to that of shorter-aspect-ratio nanorods but is followed by an additional slow decay with a long lifetime of 2400 ns for the Au42 nanorod. This work provides the first case that an intense longitudinal excitation is obtained in molecular-like nanorods, which can be used as photothermal converters and hold potential in biomedical therapy, photoacoustic imaging, and photocatalysis.
Collapse
Affiliation(s)
- Yingwei Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yongbo Song
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, Anhui 230601, China
| | - Xinwen Zhang
- Department of Physics, University of Miami, Coral Gables, Florida 33146, United States
| | - Tongyu Liu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Tingting Xu
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, Anhui 230601, China
| | - He Wang
- Department of Physics, University of Miami, Coral Gables, Florida 33146, United States
| | - De-En Jiang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
46
|
Jo YJ, Gulfam M, Jo SH, Gal YS, Oh CW, Park SH, Lim KT. Multi-stimuli responsive hydrogels derived from hyaluronic acid for cancer therapy application. Carbohydr Polym 2022; 286:119303. [DOI: 10.1016/j.carbpol.2022.119303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 12/13/2022]
|
47
|
Engineering Gold Nanostructures for Cancer Treatment: Spherical Nanoparticles, Nanorods, and Atomically Precise Nanoclusters. NANOMATERIALS 2022; 12:nano12101738. [PMID: 35630959 PMCID: PMC9146553 DOI: 10.3390/nano12101738] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022]
Abstract
Cancer is a major global health issue and is a leading cause of mortality. It has been documented that various conventional treatments can be enhanced by incorporation with nanomaterials. Thanks to their rich optical properties, excellent biocompatibility, and tunable chemical reactivities, gold nanostructures have been gaining more and more research attention for cancer treatment in recent decades. In this review, we first summarize the recent progress in employing three typical gold nanostructures, namely spherical Au nanoparticles, Au nanorods, and atomically precise Au nanoclusters, for cancer diagnostics and therapeutics. Following that, the challenges and the future perspectives of this field are discussed. Finally, a brief conclusion is summarized at the end.
Collapse
|
48
|
Glycol chitosan stabilized bimolecular nanoparticles for chemo photothermal killing of breast cancer cells. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
49
|
Monaco H, Yokomizo S, Choi HS, Kashiwagi S. Quickly evolving near‐infrared photoimmunotherapy provides multifaceted approach to modern cancer treatment. VIEW 2022. [DOI: 10.1002/viw.20200110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Hailey Monaco
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston Massachusetts USA
| | - Shinya Yokomizo
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston Massachusetts USA
- Department of Radiological Sciences Tokyo Metropolitan University Arakawa Tokyo Japan
| | - Hak Soo Choi
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston Massachusetts USA
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston Massachusetts USA
| |
Collapse
|
50
|
Jarockyte G, Poderys V, Barzda V, Karabanovas V, Rotomskis R. Blood Plasma Stabilized Gold Nanoclusters for Personalized Tumor Theranostics. Cancers (Basel) 2022; 14:cancers14081887. [PMID: 35454798 PMCID: PMC9030650 DOI: 10.3390/cancers14081887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Cancer is a disease that has a high fatality rate over the world. Nanotechnology is one of the most promising current approaches for developing novel diagnostic and treatment methods in accomplishing more personalized medicine. Personalized gold nanoclusters have potential to be used in cancer theranostics. We demonstrate that biocompatible gold nanoclusters could be synthesized directly in human blood plasma. Such gold nanoclusters have a wide photoluminescence band in the optical tissue window and generate reactive oxygen species under irradiation with visible light, thus are suitable for cancer theranostics. Abstract Personalized cancer theranostics has a potential to increase efficiency of early cancer diagnostics and treatment, and to reduce negative side-effects. Protein-stabilized gold nanoclusters may serve as theranostic agents. To make gold nanoclusters personalized and highly biocompatible, the clusters were stabilized with human plasma proteins. Optical properties of synthesized nanoclusters were investigated spectroscopically, and possible biomedical application was evaluated using standard cell biology methods. The spectroscopic investigations of human plasma proteins stabilized gold nanoclusters revealed that a wide photoluminescence band in the optical tissue window is suitable for cancer diagnostics. High-capacity generation of singlet oxygen and other reactive oxygen species was also observed. Furthermore, the cluster accumulation in cancer cells and the photodynamic effect were evaluated. The results demonstrate that plasma proteins stabilized gold nanoclusters that accumulate in breast cancer cells and are non-toxic in the dark, while appear phototoxic under irradiation with visible light. The results positively confirm the utility of plasma protein stabilized gold nanoclusters for the use in cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Greta Jarockyte
- Biomedical Physics Laboratory, National Cancer Institute, LT-08406 Vilnius, Lithuania; (G.J.); (V.P.); (R.R.)
- Life Science Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Laser Research Center, Faculty of Physics, Vilnius University, LT-10223 Vilnius, Lithuania;
| | - Vilius Poderys
- Biomedical Physics Laboratory, National Cancer Institute, LT-08406 Vilnius, Lithuania; (G.J.); (V.P.); (R.R.)
| | - Virginijus Barzda
- Laser Research Center, Faculty of Physics, Vilnius University, LT-10223 Vilnius, Lithuania;
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Toronto, ON L5L 1C6, Canada
- Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada
| | - Vitalijus Karabanovas
- Biomedical Physics Laboratory, National Cancer Institute, LT-08406 Vilnius, Lithuania; (G.J.); (V.P.); (R.R.)
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
- Correspondence:
| | - Ricardas Rotomskis
- Biomedical Physics Laboratory, National Cancer Institute, LT-08406 Vilnius, Lithuania; (G.J.); (V.P.); (R.R.)
- Laser Research Center, Faculty of Physics, Vilnius University, LT-10223 Vilnius, Lithuania;
| |
Collapse
|