1
|
Sung Y, Choi Y, Kim ES, Ryu JH, Kwon IC. Receptor-ligand interactions for optimized endocytosis in targeted therapies. J Control Release 2025; 380:524-538. [PMID: 39875075 DOI: 10.1016/j.jconrel.2025.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
Receptor-mediated endocytosis plays a crucial role in the success of numerous therapies and remains central to advancing drug development. This process begins with ligand binding to specific receptors, triggering the internalization and intracellular trafficking of receptor-ligand complexes. These complexes are subsequently directed into distinct routes, either toward lysosomal degradation or recycling to the cell surface, with implications for therapeutic outcomes. This review examines receptor-ligand interactions as key modulators of endocytosis, emphasizing their role in shaping therapeutic design and efficacy. Advances in selecting receptor-ligand pairs and engineering ligands with optimized properties have enabled precise control over internalization, endosomal sorting, and trafficking, providing tailored solutions for diverse therapeutic applications. Leveraging these insights, strategies such as RNA-based therapies, antibody-drug conjugates (ADCs), and targeted protein degradation (TPD) platforms have been refined to selectively avoid or promote lysosomal degradation, thereby enhancing therapeutic efficacy. By bridging fundamental mechanisms of receptor-mediated endocytosis with innovative therapeutic approaches, this review offers a framework for advancing precision medicine.
Collapse
Affiliation(s)
- Yejin Sung
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Youngjin Choi
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Eun Sun Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul 20841, Republic of Korea
| | - Ju Hee Ryu
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
| | - Ick Chan Kwon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
2
|
Hofmeister A, Jahn-Hofmann K, Brunner B, Helms M, Metz-Weidmann C, Poeverlein C, Zech G, Li Z, Hessler G, Schreuder H, Elshorst B, Krack A, Kurz M, Heubel C, Scheidler S. Trivalent siRNA-Conjugates with Guanosine as ASGPR-Binder Show Potent Knock-Down In Vivo. J Med Chem 2025; 68:6193-6209. [PMID: 40052708 DOI: 10.1021/acs.jmedchem.4c02275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
To increase the chemical space around the well-known GalNAc-ligand as ASGPR-binder, a high-throughput screening campaign was performed, testing approximately 550,000 compounds. After evaluation of the potential screening hits, only one compound, which showed high similarity with guanosine nucleosides, was chosen for further profiling. Crystal structure analysis revealed the coordination of the Ca2+-ion within the ASGPR-binding site by the cis-diol motif of the ribose unit as well as an additional π-π-interaction of the purine heterocycle to tryptophan-243. Based on these findings, guanosine was attached via the 5'-OH group to a recently described morpholino-based nucleotide using two different linker units. The resulting morpholino-guanosine building blocks were conjugated to the 5'-end of a literature-known transthyretin targeting small interfering RNA (siRNA), leading to trivalent siRNA-guanosine conjugates, which were tested for their TTR knockdown and exhibited similar potencies as the analogous GalNAc-conjugates in vitro and in vivo.
Collapse
Affiliation(s)
- Armin Hofmeister
- Sanofi R&D, Industrial Park Hoechst, 65926 Frankfurt am Main, Germany
| | | | - Bodo Brunner
- Sanofi R&D, Industrial Park Hoechst, 65926 Frankfurt am Main, Germany
| | - Mike Helms
- Sanofi R&D, Industrial Park Hoechst, 65926 Frankfurt am Main, Germany
| | | | | | - Gernot Zech
- Sanofi R&D, Industrial Park Hoechst, 65926 Frankfurt am Main, Germany
| | - Ziyu Li
- Sanofi R&D, Industrial Park Hoechst, 65926 Frankfurt am Main, Germany
| | - Gerhard Hessler
- Sanofi R&D, Industrial Park Hoechst, 65926 Frankfurt am Main, Germany
| | - Herman Schreuder
- Sanofi R&D, Industrial Park Hoechst, 65926 Frankfurt am Main, Germany
| | - Bettina Elshorst
- Sanofi R&D, Industrial Park Hoechst, 65926 Frankfurt am Main, Germany
| | - Arne Krack
- Sanofi R&D, Industrial Park Hoechst, 65926 Frankfurt am Main, Germany
| | - Michael Kurz
- Sanofi R&D, Industrial Park Hoechst, 65926 Frankfurt am Main, Germany
| | - Christoph Heubel
- Sanofi R&D, Industrial Park Hoechst, 65926 Frankfurt am Main, Germany
| | - Sabine Scheidler
- Sanofi R&D, Industrial Park Hoechst, 65926 Frankfurt am Main, Germany
| |
Collapse
|
3
|
Li Q, Dong M, Chen P. Novel diamine-scaffold based N-acetylgalactosamine (GalNAc)-siRNA conjugate: synthesis and in vivo activities. RSC Adv 2024; 14:17461-17466. [PMID: 38818366 PMCID: PMC11137494 DOI: 10.1039/d4ra03023k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
GalNAc-conjugated siRNA has shown remarkable potential in liver-targeted delivery in recent years. In general, tetrahydroxymethylmethane or other branching clusters constitute the basis of GalNAc's structure, which yields trivalent or tetravalent ligands. A novel diamine-scaffold GalNAc conjugate was synthesized and evaluated for its efficiency in siRNA administration. It exhibits comparable siRNA delivery effectiveness to a GalNAc NAG37 phase II clinical drug candidate targeting ANGPTL3. In addition, it exhibits more powerful silencing activity when connected to the 3'-end of the sense strand with an additional PS-linkage instead of a PO linkage between the ligand and the oligomer compared to a GalNAc L96 standard targeting TTR. Taken together, the incorporation of a diamine-scaffold into the GalNAc conjugate structure has potential in the field of gene therapy.
Collapse
Affiliation(s)
- Qiang Li
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Qingdao 266021 China
- Research and Development Department, NanoPeptide (Qingdao) Biotechnology Ltd Qingdao China
| | - Mingxin Dong
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Qingdao 266021 China
| | - Pu Chen
- Research and Development Department, NanoPeptide (Qingdao) Biotechnology Ltd Qingdao China
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo ON Canada
| |
Collapse
|
4
|
Ferguson CM, Godinho BMDC, Echeverria D, Hassler M, Vangjeli L, Sousa J, McHugh N, Alterman J, Hariharan V, Krishnamurthy P, Watts J, Rogaev E, Khvorova A. A combinatorial approach for achieving CNS-selective RNAi. Nucleic Acids Res 2024; 52:5273-5284. [PMID: 38348876 PMCID: PMC11109952 DOI: 10.1093/nar/gkae100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 12/30/2023] [Accepted: 02/12/2024] [Indexed: 05/23/2024] Open
Abstract
RNA interference (RNAi) is an endogenous process that can be harnessed using chemically modified small interfering RNAs (siRNAs) to potently modulate gene expression in many tissues. The route of administration and chemical architecture are the primary drivers of oligonucleotide tissue distribution, including siRNAs. Independently of the nature and type, oligonucleotides are eliminated from the body through clearance tissues, where their unintended accumulation may result in undesired gene modulation. Divalent siRNAs (di-siRNAs) administered into the CSF induce robust gene silencing throughout the central nervous system (CNS). Upon clearance from the CSF, they are mainly filtered by the kidneys and liver, with the most functionally significant accumulation occurring in the liver. siRNA- and miRNA-induced silencing can be blocked through substrate inhibition using single-stranded, stabilized oligonucleotides called antagomirs or anti-siRNAs. Using APOE as a model target, we show that undesired di-siRNA-induced silencing in the liver can be mitigated through administration of liver targeting GalNAc-conjugated anti-siRNAs, without impacting CNS activity. Blocking unwanted hepatic APOE silencing achieves fully CNS-selective silencing, essential for potential clinical translation. While we focus on CNS/liver selectivity, coadministration of differentially targeting siRNA and anti-siRNAs can be adapted as a strategy to achieve tissue selectivity in different organ combinations.
Collapse
Affiliation(s)
- Chantal M Ferguson
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Bruno M D C Godinho
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Matthew Hassler
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Lorenc Vangjeli
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Jacquelyn Sousa
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Nicholas McHugh
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Julia Alterman
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Vignesh Hariharan
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | | | - Jonathan Watts
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Eveny Rogaev
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
5
|
Pottenger AE, Roy D, Srinivasan S, Chavas TEJ, Vlaskin V, Ho DK, Livingston VC, Maktabi M, Lin H, Zhang J, Pybus B, Kudyba K, Roth A, Senter P, Tyson G, Huber HE, Wesche D, Rochford R, Burke PA, Stayton PS. Liver-targeted polymeric prodrugs delivered subcutaneously improve tafenoquine therapeutic window for malaria radical cure. SCIENCE ADVANCES 2024; 10:eadk4492. [PMID: 38640243 PMCID: PMC11029812 DOI: 10.1126/sciadv.adk4492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
Approximately 3.3 billion people live with the threat of Plasmodium vivax malaria. Infection can result in liver-localized hypnozoites, which when reactivated cause relapsing malaria. This work demonstrates that an enzyme-cleavable polymeric prodrug of tafenoquine addresses key requirements for a mass administration, eradication campaign: excellent subcutaneous bioavailability, complete parasite control after a single dose, improved therapeutic window compared to the parent oral drug, and low cost of goods sold (COGS) at less than $1.50 per dose. Liver targeting and subcutaneous dosing resulted in improved liver:plasma exposure profiles, with increased efficacy and reduced glucose 6-phosphate dehydrogenase-dependent hemotoxicity in validated preclinical models. A COGS and manufacturability analysis demonstrated global scalability, affordability, and the ability to redesign this fully synthetic polymeric prodrug specifically to increase global equity and access. Together, this polymer prodrug platform is a candidate for evaluation in human patients and shows potential for P. vivax eradication campaigns.
Collapse
Affiliation(s)
- Ayumi E. Pottenger
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Debashish Roy
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Selvi Srinivasan
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Thomas E. J. Chavas
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Vladmir Vlaskin
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Duy-Khiet Ho
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | - Mahdi Maktabi
- Department of Immunology and Microbiology, University of Colorado Anschutz School of Medicine, Aurora, CO 80045, USA
| | - Hsiuling Lin
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Jing Zhang
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Brandon Pybus
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Karl Kudyba
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Alison Roth
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | - George Tyson
- George Tyson Consulting, Los Altos Hills, CA 94022, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hans E. Huber
- BioTD Strategies LLC, 213 Abbey Ln., Lansdale, PA 19446, USA
| | | | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado Anschutz School of Medicine, Aurora, CO 80045, USA
| | - Paul A. Burke
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Burke Bioventures LLC, 1 Broadway 14th Floor, Cambridge, MA 02142, USA
| | - Patrick S. Stayton
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Ferguson CM, Hildebrand S, Godinho BMDC, Buchwald J, Echeverria D, Coles A, Grigorenko A, Vangjeli L, Sousa J, McHugh N, Hassler M, Santarelli F, Heneka MT, Rogaev E, Khvorova A. Silencing Apoe with divalent-siRNAs improves amyloid burden and activates immune response pathways in Alzheimer's disease. Alzheimers Dement 2024; 20:2632-2652. [PMID: 38375983 PMCID: PMC11032532 DOI: 10.1002/alz.13703] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 02/21/2024]
Abstract
INTRODUCTION The most significant genetic risk factor for late-onset Alzheimer's disease (AD) is APOE4, with evidence for gain- and loss-of-function mechanisms. A clinical need remains for therapeutically relevant tools that potently modulate APOE expression. METHODS We optimized small interfering RNAs (di-siRNA, GalNAc) to potently silence brain or liver Apoe and evaluated the impact of each pool of Apoe on pathology. RESULTS In adult 5xFAD mice, siRNAs targeting CNS Apoe efficiently silenced Apoe expression and reduced amyloid burden without affecting systemic cholesterol, confirming that potent silencing of brain Apoe is sufficient to slow disease progression. Mechanistically, silencing Apoe reduced APOE-rich amyloid cores and activated immune system responses. DISCUSSION These results establish siRNA-based modulation of Apoe as a viable therapeutic approach, highlight immune activation as a key pathway affected by Apoe modulation, and provide the technology to further evaluate the impact of APOE silencing on neurodegeneration.
Collapse
Affiliation(s)
- Chantal M. Ferguson
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Samuel Hildebrand
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Bruno M. D. C. Godinho
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Julianna Buchwald
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Andrew Coles
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Anastasia Grigorenko
- Department of PsychiatryUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Lorenc Vangjeli
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Jacquelyn Sousa
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Nicholas McHugh
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Matthew Hassler
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | | | - Michael T. Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB)Esch‐sur‐AlzetteLuxembourg
| | - Evgeny Rogaev
- Department of PsychiatryUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| |
Collapse
|
7
|
Zhang H, Kelly K, Lee J, Echeverria D, Cooper D, Panwala R, Amrani N, Chen Z, Gaston N, Wagh A, Newby G, Xie J, Liu DR, Gao G, Wolfe S, Khvorova A, Watts J, Sontheimer E. Self-delivering, chemically modified CRISPR RNAs for AAV co-delivery and genome editing in vivo. Nucleic Acids Res 2024; 52:977-997. [PMID: 38033325 PMCID: PMC10810193 DOI: 10.1093/nar/gkad1125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Guide RNAs offer programmability for CRISPR-Cas9 genome editing but also add challenges for delivery. Chemical modification, which has been key to the success of oligonucleotide therapeutics, can enhance the stability, distribution, cellular uptake, and safety of nucleic acids. Previously, we engineered heavily and fully modified SpyCas9 crRNA and tracrRNA, which showed enhanced stability and retained activity when delivered to cultured cells in the form of the ribonucleoprotein complex. In this study, we report that a short, fully stabilized oligonucleotide (a 'protecting oligo'), which can be displaced by tracrRNA annealing, can significantly enhance the potency and stability of a heavily modified crRNA. Furthermore, protecting oligos allow various bioconjugates to be appended, thereby improving cellular uptake and biodistribution of crRNA in vivo. Finally, we achieved in vivo genome editing in adult mouse liver and central nervous system via co-delivery of unformulated, chemically modified crRNAs with protecting oligos and AAV vectors that express tracrRNA and either SpyCas9 or a base editor derivative. Our proof-of-concept establishment of AAV/crRNA co-delivery offers a route towards transient editing activity, target multiplexing, guide redosing, and vector inactivation.
Collapse
Affiliation(s)
- Han Zhang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Karen Kelly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jonathan Lee
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - David Cooper
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Rebecca Panwala
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nadia Amrani
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Zexiang Chen
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nicholas Gaston
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Atish Wagh
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02139, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02139, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Scot A Wolfe
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jonathan K Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
8
|
Sharma VK, Mangla P, Singh SK, Prasad AK. Triazole-linked Nucleic Acids: Synthesis, Therapeutics and Synthetic Biology Applications. Curr Org Synth 2024; 21:436-455. [PMID: 37138439 DOI: 10.2174/1570179420666230502123950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/27/2023] [Accepted: 03/10/2023] [Indexed: 05/05/2023]
Abstract
This article covers the triazole-linked nucleic acids where the triazole linkage (TL) replaces the natural phosphate backbone. The replacement is done at either a few selected linkages or all the phosphate linkages. Two triazole linkages, the four-atom TL1 and the six-atom TL2, have been discussed in detail. These triazole-modified oligonucleotides have found a wide range of applications, from therapeutics to synthetic biology. For example, the triazole-linked oligonucleotides have been used in the antisense oligonucleotide (ASO), small interfering RNA (siRNA) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology as therapeutic agents. Due to the ease of the synthesis and a wide range of biocompatibility, the triazole linkage TL2 has been used to assemble a functional 300-mer DNA from alkyne- and azide-functionalized 100-mer oligonucleotides as well as an epigenetically modified variant of a 335 base-pair gene from ten short oligonucleotides. These outcomes highlight the potential of triazole-linked nucleic acids and open the doors for other TL designs and artificial backbones to fully exploit the vast potential of artificial nucleic acids in therapeutics, synthetic biology and biotechnology.
Collapse
Affiliation(s)
- Vivek K Sharma
- Department of Medicine, University of Massachusetts Chan Medical School, Mattapan, MA 02126, USA
- MassBiologics of the University of Massachusetts Chan Medical School, Mattapan, MA 02126, USA
| | - Priyanka Mangla
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Sunil K Singh
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, 110 007, India
| | - Ashok K Prasad
- Department of Chemistry, Bioorganic Laboratory, University of Delhi, Delhi, 110 007, India
| |
Collapse
|
9
|
Xiao H, Amarsaikhan O, Zhao Y, Yu X, Hu X, Han S, Chaolumen, Baigude H. Astrocyte-targeted siRNA delivery by adenosine-functionalized LNP in mouse TBI model. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102065. [PMID: 38028196 PMCID: PMC10661454 DOI: 10.1016/j.omtn.2023.102065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Traumatic brain injury (TBI) induces pro-inflammatory polarization of astrocytes and causes secondary disruption of the blood-brain barrier (BBB) and brain damage. Herein, we report a successful astrocyte-targeted delivery of small interfering RNA (siRNA) by ligand functionalized lipid nanoparticles (LNPs) formulated from adenosine-conjugated lipids and a novel ionizable lipid (denoted by Ad4 LNPs). Systemic administration of Ad4 LNPs carrying siRNA against TLR4 to the mice TBI model resulted in the specific internalization of the LNPs by astrocytes in the vicinity of damaged brain tissue. A substantial knockdown of TLR4 at both mRNA and protein levels in the brain was observed, which led to a significant decrease of key pro-inflammatory cytokines and an increase of key anti-inflammatory cytokines in serum. Dye leakage measurement suggested that the Ad4-LNP-mediated knockdown of TLR4 attenuated the TBI-induced BBB disruption. Together, our data suggest that Ad4 LNP is a promising vehicle for astrocyte-specific delivery of nucleic acid therapeutics.
Collapse
Affiliation(s)
- Hai Xiao
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, P.R. China
| | - Odmaa Amarsaikhan
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, P.R. China
| | - Yunwang Zhao
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, P.R. China
| | - Xiang Yu
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, P.R. China
| | - Xin Hu
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, P.R. China
| | - Shuqin Han
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, P.R. China
| | - Chaolumen
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, P.R. China
| | - Huricha Baigude
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, P.R. China
| |
Collapse
|
10
|
Rocamora F, Peralta AG, Shin S, Sorrentino J, Wu MYM, Toth EA, Fuerst TR, Lewis NE. Glycosylation shapes the efficacy and safety of diverse protein, gene and cell therapies. Biotechnol Adv 2023; 67:108206. [PMID: 37354999 PMCID: PMC11168894 DOI: 10.1016/j.biotechadv.2023.108206] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/26/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
Over recent decades, therapeutic proteins have had widespread success in treating a myriad of diseases. Glycosylation, a near universal feature of this class of drugs, is a critical quality attribute that significantly influences the physical properties, safety profile and biological activity of therapeutic proteins. Optimizing protein glycosylation, therefore, offers an important avenue to developing more efficacious therapies. In this review, we discuss specific examples of how variations in glycan structure and glycoengineering impacts the stability, safety, and clinical efficacy of protein-based drugs that are already in the market as well as those that are still in preclinical development. We also highlight the impact of glycosylation on next generation biologics such as T cell-based cancer therapy and gene therapy.
Collapse
Affiliation(s)
- Frances Rocamora
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Angelo G Peralta
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Seunghyeon Shin
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - James Sorrentino
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mina Ying Min Wu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric A Toth
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Thomas R Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
11
|
Abstract
Many RNA delivery strategies require efficient endosomal uptake and release. To monitor this process, we developed a 2'-OMe RNA-based ratiometric pH probe with a pH-invariant 3'-Cy5 and 5'-FAM whose pH sensitivity is enhanced by proximal guanines. The probe, in duplex with a DNA complement, exhibits a 48.9-fold FAM fluorescence enhancement going from pH 4.5 to pH 8.0 and reports on both endosomal entrapment and release when delivered to HeLa cells. In complex with an antisense RNA complement, the probe constitutes an siRNA mimic capable of protein knockdown in HEK293T cells. This illustrates a general approach for measuring the localization and pH microenvironment of any oligonucleotide.
Collapse
Affiliation(s)
- Madison R. Herling
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104-6323, U.S.A
| | - Ivan J. Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104-6323, U.S.A
| |
Collapse
|
12
|
Anwar S, Mir F, Yokota T. Enhancing the Effectiveness of Oligonucleotide Therapeutics Using Cell-Penetrating Peptide Conjugation, Chemical Modification, and Carrier-Based Delivery Strategies. Pharmaceutics 2023; 15:pharmaceutics15041130. [PMID: 37111616 PMCID: PMC10140998 DOI: 10.3390/pharmaceutics15041130] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Oligonucleotide-based therapies are a promising approach for treating a wide range of hard-to-treat diseases, particularly genetic and rare diseases. These therapies involve the use of short synthetic sequences of DNA or RNA that can modulate gene expression or inhibit proteins through various mechanisms. Despite the potential of these therapies, a significant barrier to their widespread use is the difficulty in ensuring their uptake by target cells/tissues. Strategies to overcome this challenge include cell-penetrating peptide conjugation, chemical modification, nanoparticle formulation, and the use of endogenous vesicles, spherical nucleic acids, and smart material-based delivery vehicles. This article provides an overview of these strategies and their potential for the efficient delivery of oligonucleotide drugs, as well as the safety and toxicity considerations, regulatory requirements, and challenges in translating these therapies from the laboratory to the clinic.
Collapse
Affiliation(s)
- Saeed Anwar
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Farin Mir
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
13
|
Zhang H, Kelly K, Lee J, Echeverria D, Cooper D, Panwala R, Chen Z, Gaston N, Newby GA, Xie J, Liu DR, Gao G, Wolfe SA, Khvorova A, Watts JK, Sontheimer EJ. Self-delivering CRISPR RNAs for AAV Co-delivery and Genome Editing in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533459. [PMID: 36993169 PMCID: PMC10055305 DOI: 10.1101/2023.03.20.533459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Guide RNAs offer programmability for CRISPR-Cas9 genome editing but also add challenges for delivery. Chemical modification, which has been key to the success of oligonucleotide therapeutics, can enhance the stability, distribution, cellular uptake, and safety of nucleic acids. Previously, we engineered heavily and fully modified SpyCas9 crRNA and tracrRNA, which showed enhanced stability and retained activity when delivered to cultured cells in the form of the ribonucleoprotein complex. In this study, we report that a short, fully stabilized oligonucleotide (a "protecting oligo"), which can be displaced by tracrRNA annealing, can significantly enhance the potency and stability of a heavily modified crRNA. Furthermore, protecting oligos allow various bioconjugates to be appended, thereby improving cellular uptake and biodistribution of crRNA in vivo. Finally, we achieved in vivo genome editing in adult mouse liver and central nervous system via co-delivery of unformulated, chemically modified crRNAs with protecting oligos and AAV vectors that express tracrRNA and either SpyCas9 or a base editor derivative. Our proof-of-concept establishment of AAV/crRNA co-delivery offers a route towards transient editing activity, target multiplexing, guide redosing, and vector inactivation.
Collapse
Affiliation(s)
- Han Zhang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Karen Kelly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Jonathan Lee
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - David Cooper
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Rebecca Panwala
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Zexiang Chen
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Nicholas Gaston
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Gregory A. Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, 02139, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, 02139, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, 02139, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, 02139, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Scot A. Wolfe
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Jonathan K. Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Erik J. Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| |
Collapse
|
14
|
Kandasamy P, Mori S, Matsuda S, Erande N, Datta D, Willoughby JLS, Taneja N, O'Shea J, Bisbe A, Manoharan RM, Yucius K, Nguyen T, Indrakanti R, Gupta S, Gilbert JA, Racie T, Chan A, Liu J, Hutabarat R, Nair JK, Charisse K, Maier MA, Rajeev KG, Egli M, Manoharan M. Metabolically Stable Anomeric Linkages Containing GalNAc-siRNA Conjugates: An Interplay among ASGPR, Glycosidase, and RISC Pathways. J Med Chem 2023; 66:2506-2523. [PMID: 36757090 DOI: 10.1021/acs.jmedchem.2c01337] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Conjugation of synthetic triantennary N-acetyl-d-galactosamine (GalNAc) to small interfering RNA (siRNA) mediates binding to the asialoglycoprotein receptor (ASGPR) on the surface of hepatocytes, facilitating liver-specific uptake and siRNA-mediated gene silencing. The natural β-glycosidic bond of the GalNAc ligand is rapidly cleaved by glycosidases in vivo. Novel GalNAc ligands with S-, and C-glycosides with both α- and β-anomeric linkages, N-glycosides with β-anomeric linkage, and the O-glycoside with α-anomeric linkage were synthesized and conjugated to siRNA either on-column during siRNA synthesis or through a high-throughput, post-synthetic method. Unlike natural GalNAc, modified ligands were resistant to glycosidase activity. The siRNAs conjugated to newly designed ligands had similar affinities for ASGPR and similar silencing activity in mice as the parent GalNAc-siRNA conjugate. These data suggest that other factors, such as protein-nucleic acid interactions and loading of the antisense strand into the RNA-induced silencing complex (RISC), are more critical to the duration of action than the stereochemistry and stability of the anomeric linkage between the GalNAc moiety of the ligand conjugated to the sense strand of the siRNA.
Collapse
Affiliation(s)
| | - Shohei Mori
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Shigeo Matsuda
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Namrata Erande
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Dhrubajyoti Datta
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | | | - Nate Taneja
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Jonathan O'Shea
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Anna Bisbe
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Rajar M Manoharan
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Kristina Yucius
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Tuyen Nguyen
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Ramesh Indrakanti
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Swati Gupta
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Jason A Gilbert
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Tim Racie
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Amy Chan
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Ju Liu
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Renta Hutabarat
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Jayaprakash K Nair
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Klaus Charisse
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Martin A Maier
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | | | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| |
Collapse
|
15
|
Godinho BMDC, Knox EG, Hildebrand S, Gilbert JW, Echeverria D, Kennedy Z, Haraszti RA, Ferguson CM, Coles AH, Biscans A, Caiazzi J, Alterman JF, Hassler MR, Khvorova A. PK-modifying anchors significantly alter clearance kinetics, tissue distribution, and efficacy of therapeutics siRNAs. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:116-132. [PMID: 35795486 PMCID: PMC9240963 DOI: 10.1016/j.omtn.2022.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/05/2022] [Indexed: 11/21/2022]
Abstract
Effective systemic delivery of small interfering RNAs (siRNAs) to tissues other than liver remains a challenge. siRNAs are small (∼15 kDa) and therefore rapidly cleared by the kidneys, resulting in limited blood residence times and tissue exposure. Current strategies to improve the unfavorable pharmacokinetic (PK) properties of siRNAs rely on enhancing binding to serum proteins through extensive phosphorothioate modifications or by conjugation of targeting ligands. Here, we describe an alternative strategy for enhancing blood and tissue PK based on dynamic modulation of the overall size of the siRNA. We engineered a high-affinity universal oligonucleotide anchor conjugated to a high-molecular-weight moiety, which binds to the 3' end of the guide strand of an asymmetric siRNA. Data showed a strong correlation between the size of the PK-modifying anchor and clearance kinetics. Large 40-kDa PK-modifying anchors reduced renal clearance by ∼23-fold and improved tissue exposure area under the curve (AUC) by ∼26-fold, resulting in increased extrahepatic tissue retention (∼3- to 5-fold). Furthermore, PK-modifying oligonucleotide anchors allowed for straightforward and versatile modulation of blood residence times and biodistribution of a panel of chemically distinct ligands. The effects were more pronounced for conjugates with low lipophilicity (e.g., N-Acetylgalactosamine [GalNAc]), where significant improvement in uptake by hepatocytes and dose-dependent silencing in the liver was observed.
Collapse
Affiliation(s)
- Bruno M D C Godinho
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Emily G Knox
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Samuel Hildebrand
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - James W Gilbert
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Zachary Kennedy
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Reka A Haraszti
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Chantal M Ferguson
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andrew H Coles
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Annabelle Biscans
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jillian Caiazzi
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Julia F Alterman
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Matthew R Hassler
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
16
|
Uehara K, Harumoto T, Makino A, Koda Y, Iwano J, Suzuki Y, Tanigawa M, Iwai H, Asano K, Kurihara K, Hamaguchi A, Kodaira H, Atsumi T, Yamada Y, Tomizuka K. Targeted delivery to macrophages and dendritic cells by chemically modified mannose ligand-conjugated siRNA. Nucleic Acids Res 2022; 50:4840-4859. [PMID: 35524566 PMCID: PMC9122583 DOI: 10.1093/nar/gkac308] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 12/19/2022] Open
Abstract
Extrahepatic delivery of small interfering RNAs (siRNAs) may have applications in the development of novel therapeutic approaches. However, reports on such approaches are limited, and the scarcity of reports concerning the systemically targeted delivery of siRNAs with effective gene silencing activity presents a challenge. We herein report for the first time the targeted delivery of CD206-targetable chemically modified mannose–siRNA (CMM–siRNA) conjugates to macrophages and dendritic cells (DCs). CMM–siRNA exhibited a strong binding ability to CD206 and selectively delivered contents to CD206-expressing macrophages and DCs. Furthermore, the conjugates demonstrated strong gene silencing ability with long-lasting effects and protein downregulation in CD206-expressing cells in vivo. These findings could broaden the use of siRNA technology, provide additional therapeutic opportunities, and establish a basis for further innovative approaches for the targeted delivery of siRNAs to not only macrophages and DCs but also other cell types.
Collapse
Affiliation(s)
- Keiji Uehara
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 3-6-6, Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Toshimasa Harumoto
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 3-6-6, Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Asana Makino
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 3-6-6, Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Yasuo Koda
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 3-6-6, Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Junko Iwano
- Translational Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Yasuhiro Suzuki
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 3-6-6, Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Mari Tanigawa
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 3-6-6, Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Hiroto Iwai
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 3-6-6, Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Kana Asano
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 3-6-6, Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Kana Kurihara
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 3-6-6, Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Akinori Hamaguchi
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 3-6-6, Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Hiroshi Kodaira
- Translational Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Toshiyuki Atsumi
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 3-6-6, Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Yoji Yamada
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 3-6-6, Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Kazuma Tomizuka
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 3-6-6, Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
17
|
Bakowski K, Vogel S. Evolution of complexity in non-viral oligonucleotide delivery systems: from gymnotic delivery through bioconjugates to biomimetic nanoparticles. RNA Biol 2022; 19:1256-1275. [PMID: 36411594 PMCID: PMC9683052 DOI: 10.1080/15476286.2022.2147278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
From the early days of research on RNA biology and biochemistry, there was an interest to utilize this knowledge and RNA itself for therapeutic applications. Today, we have a series of oligonucleotide therapeutics on the market and many more in clinical trials. These drugs - exploit different chemistries of oligonucleotides, such as modified DNAs and RNAs, peptide nucleic acids (PNAs) or phosphorodiamidate morpholino oligomers (PMOs), and different mechanisms of action, such as RNA interference (RNAi), targeted RNA degradation, splicing modulation, gene expression and modification. Despite major successes e.g. mRNA vaccines developed against SARS-CoV-2 to control COVID-19 pandemic, development of therapies for other diseases is still limited by inefficient delivery of oligonucleotides to specific tissues and organs and often prohibitive costs for the final drug. This is even more critical when targeting multifactorial disorders and patient-specific biological variations. In this review, we will present the evolution of complexity of oligonucleotide delivery methods with focus on increasing complexity of formulations from gymnotic delivery to bioconjugates and to lipid nanoparticles in respect to developments that will enable application of therapeutic oligonucleotides as drugs in personalized therapies.
Collapse
Affiliation(s)
- Kamil Bakowski
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Stefan Vogel
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark,CONTACT Stefan Vogel Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230Odense, Denmark
| |
Collapse
|
18
|
Terada C, Wada F, Uchida M, Yasutomi Y, Oh K, Kawamoto S, Kayaba Y, Yamayoshi A, Harada-Shiba M, Obika S, Yamamoto T. Programmed Instability of Ligand Conjugation Manifold for Efficient Hepatocyte Delivery of Therapeutic Oligonucleotides. Nucleic Acid Ther 2021; 31:404-416. [PMID: 34468210 DOI: 10.1089/nat.2021.0036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ligand-targeted drug delivery (LTDD) has gained more attention in the field of nucleic acid therapeutics. To further elicit the potential of therapeutic oligonucleotides by means of LTDD, we newly developed (R)- and (S)-3-amino-1,2-propanediol (APD) manifold for ligand conjugation. N-acetylgalactosamine (GalNAc)/asialoglycoprotein receptor (ASGPr) system has been shown to be a powerful and robust paradigm of LTDD. Our novel APD-based GalNAc (GalNAcAPD) was shown to have intrinsic chemical instability that could play a role in better manipulation of active drug release. The APD manifold also enables facile production of conjugates through an on-support ligand cluster synthesis. We showed in a series of in vivo studies that while the knockdown activity of antisense oligonucleotides (ASOs) bearing 5'-GalNAcAPD was comparable to the conventional hydroxy-L-prolinol-linked GalNAc (GalNAcHP), 3'-GalNAcAPD elicited ASO activity by more than twice as much as the conventional 3'-GalNAcHP. This was ascribed partly to the GalNAcAPD's ideal susceptibility to nucleolytic digestion, which is expected to facilitate cytosolic internalization of ASO drugs. Moreover, an in vivo/ex vivo imaging study visualized the enhancement effect of monoantennary GalNAcAPD on liver localization of ASOs. This versatile manifold with chemical and biological instability would benefit therapeutic oligonucleotides that target both the liver and extrahepatic tissues.
Collapse
Affiliation(s)
- Chisato Terada
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Fumito Wada
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Mei Uchida
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yukari Yasutomi
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kaho Oh
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Seiya Kawamoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yukina Kayaba
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Asako Yamayoshi
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mariko Harada-Shiba
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Tsuyoshi Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
19
|
Cui H, Zhu X, Li S, Wang P, Fang J. Liver-Targeted Delivery of Oligonucleotides with N-Acetylgalactosamine Conjugation. ACS OMEGA 2021; 6:16259-16265. [PMID: 34235295 PMCID: PMC8246477 DOI: 10.1021/acsomega.1c01755] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/27/2021] [Indexed: 05/15/2023]
Abstract
The potential therapeutic application of oligonucleotides (ONs) that selectively suppress target genes through antisense and RNA interference mechanisms has attracted great attention. The clinical applications of ONs have overcome multiple obstacles and become one of the most active areas for the development of novel therapeutics. To achieve efficient and specific cellular internalization, conjugation of a variety of functional groups to ONs has been the subject of intensive investigations over the past decade. Among them, a promising liver-targeted N-acetylgalactosamine (GalNAc) ligand has been evaluated in multiple preclinical and clinical trials for improving the cellular uptake and tissue specific delivery of ONs. GalNAc-based delivery relies on the fact that liver hepatocytes abundantly and specifically express the asialoglycoprotein receptor that binds and uptakes circulating glycoproteins via receptor-mediated endocytosis. In recent years, encouraging progress has been made in the field of GalNAc conjugates. This review aims to provide an overview of GalNAc-mediated liver-targeted delivery of small interfering RNA and antisense oligonucleotides, and the immense effort as well as recent advances in the development of GalNAc-conjugated agents are described.
Collapse
Affiliation(s)
- Hao Cui
- College
of Life Science, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Xinying Zhu
- College
of Life Science, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Shuyue Li
- College
of Life Science, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Peipei Wang
- Department
of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People’s Republic of China
- Key
Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Jianping Fang
- GlycoNovo
Technologies Co., Ltd., Shanghai 201203, People’s Republic
of China
- Tel: +86-21-58010060.
| |
Collapse
|
20
|
Ulashchik EA, Martynenko-Makaev YV, Akhlamionok TP, Melnik DM, Shmanai VV, Zatsepin TS. Synthesis of GalNAc-Oligonucleotide Conjugates Using GalNAc Phosphoramidite and Triple-GalNAc CPG Solid Support. Methods Mol Biol 2021; 2282:101-118. [PMID: 33928572 DOI: 10.1007/978-1-0716-1298-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
GalNAc oligonucleotide conjugates demonstrate improved potency in vivo due to selective and efficient delivery to hepatocytes in the liver via receptor-mediated endocytosis. GalNAc-siRNA and GalNAc-antisense oligonucleotides are at various stages of clinical trials, while the first two drugs were already approved by FDA. Also, GalNAc conjugates are excellent tools for functional genomics and target validation in vivo. The number of GalNAc residues in a conjugate is crucial for delivery as cooperative interaction of several GalNAc residues with asialoglycoprotein receptor enhances delivery in vitro and in vivo. Here we provide a robust protocol for the synthesis of triple GalNAc CPG solid support and GalNAc phosphoramidite, synthesis and purification of RNA conjugates with multiple GalNAc residues either to 5'-end or 3'-end and siRNA duplex formation.
Collapse
Affiliation(s)
- Egor A Ulashchik
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Yury V Martynenko-Makaev
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Tatsiana P Akhlamionok
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Denis M Melnik
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Vadim V Shmanai
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Timofei S Zatsepin
- Skolkovo Institute of Science and Technology, Moscow, Russia. .,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
21
|
Fumoto S, Yamamoto T, Okami K, Maemura Y, Terada C, Yamayoshi A, Nishida K. Understanding In Vivo Fate of Nucleic Acid and Gene Medicines for the Rational Design of Drugs. Pharmaceutics 2021; 13:159. [PMID: 33530309 PMCID: PMC7911509 DOI: 10.3390/pharmaceutics13020159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid and genetic medicines are increasingly being developed, owing to their potential to treat a variety of intractable diseases. A comprehensive understanding of the in vivo fate of these agents is vital for the rational design, discovery, and fast and straightforward development of the drugs. In case of intravascular administration of nucleic acids and genetic medicines, interaction with blood components, especially plasma proteins, is unavoidable. However, on the flip side, such interaction can be utilized wisely to manipulate the pharmacokinetics of the agents. In other words, plasma protein binding can help in suppressing the elimination of nucleic acids from the blood stream and deliver naked oligonucleotides and gene carriers into target cells. To control the distribution of these agents in the body, the ligand conjugation method is widely applied. It is also important to understand intracellular localization. In this context, endocytosis pathway, endosomal escape, and nuclear transport should be considered and discussed. Encapsulated nucleic acids and genes must be dissociated from the carriers to exert their activity. In this review, we summarize the in vivo fate of nucleic acid and gene medicines and provide guidelines for the rational design of drugs.
Collapse
Affiliation(s)
- Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (T.Y.); (K.O.); (Y.M.); (C.T.); (A.Y.); (K.N.)
| | | | | | | | | | | | | |
Collapse
|
22
|
Hawner M, Ducho C. Cellular Targeting of Oligonucleotides by Conjugation with Small Molecules. Molecules 2020; 25:E5963. [PMID: 33339365 PMCID: PMC7766908 DOI: 10.3390/molecules25245963] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Drug candidates derived from oligonucleotides (ON) are receiving increased attention that is supported by the clinical approval of several ON drugs. Such therapeutic ON are designed to alter the expression levels of specific disease-related proteins, e.g., by displaying antigene, antisense, and RNA interference mechanisms. However, the high polarity of the polyanionic ON and their relatively rapid nuclease-mediated cleavage represent two major pharmacokinetic hurdles for their application in vivo. This has led to a range of non-natural modifications of ON structures that are routinely applied in the design of therapeutic ON. The polyanionic architecture of ON often hampers their penetration of target cells or tissues, and ON usually show no inherent specificity for certain cell types. These limitations can be overcome by conjugation of ON with molecular entities mediating cellular 'targeting', i.e., enhanced accumulation at and/or penetration of a specific cell type. In this context, the use of small molecules as targeting units appears particularly attractive and promising. This review provides an overview of advances in the emerging field of cellular targeting of ON via their conjugation with small-molecule targeting structures.
Collapse
Affiliation(s)
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66 123 Saarbrücken, Germany;
| |
Collapse
|
23
|
Deprey K, Batistatou N, Kritzer JA. A critical analysis of methods used to investigate the cellular uptake and subcellular localization of RNA therapeutics. Nucleic Acids Res 2020; 48:7623-7639. [PMID: 32644123 PMCID: PMC7430645 DOI: 10.1093/nar/gkaa576] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/21/2022] Open
Abstract
RNA therapeutics are a promising strategy to treat genetic diseases caused by the overexpression or aberrant splicing of a specific protein. The field has seen major strides in the clinical efficacy of this class of molecules, largely due to chemical modifications and delivery strategies that improve nuclease resistance and enhance cell penetration. However, a major obstacle in the development of RNA therapeutics continues to be the imprecise, difficult, and often problematic nature of most methods used to measure cell penetration. Here, we review these methods and clearly distinguish between those that measure total cellular uptake of RNA therapeutics, which includes both productive and non-productive uptake, and those that measure cytosolic/nuclear penetration, which represents only productive uptake. We critically analyze the benefits and drawbacks of each method. Finally, we use key examples to illustrate how, despite rigorous experimentation and proper controls, our understanding of the mechanism of gymnotic uptake of RNA therapeutics remains limited by the methods commonly used to analyze RNA delivery.
Collapse
Affiliation(s)
- Kirsten Deprey
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, MA 02155, USA
| | - Nefeli Batistatou
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, MA 02155, USA
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, MA 02155, USA
| |
Collapse
|
24
|
Weingärtner A, Bethge L, Weiss L, Sternberger M, Lindholm MW. Less Is More: Novel Hepatocyte-Targeted siRNA Conjugates for Treatment of Liver-Related Disorders. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:242-250. [PMID: 32590173 PMCID: PMC7321783 DOI: 10.1016/j.omtn.2020.05.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/30/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
N-acetyl-galactosamine (GalNAc) conjugation enhances liver specificity for therapeutic oligonucleotides. Here we report on a novel design with improved activity and stability compared with a triantennary design. We applied a versatile monovalent serinol-GalNAc conjugation strategy. First, 1-4 serial serinol-linked GalNAc units were conjugated to terminal positions of small interfering RNA (siRNA) molecules. In primary hepatocytes, 5' antisense GalNAc conjugates were inactive, whereas 3' antisense and 3' or 5' sense conjugates displayed low activity for single GalNAc units, while 2-4 serial GalNAc conjugates were all equally potent. In mice, 5' sense conjugates with 2-4 serial GalNAc units were all as potent as a triantennary GalNAc control (1 mg/kg). Second, increased spacing between two serial 5' sense-conjugated GalNAc units did not affect in vitro activity. Finally, two single GalNAc units were positioned at opposite ends of the sense strand. A single dose (0.3 mg/kg) of this novel conjugate in mice showed a 3-fold reduction of serum target protein level at day 7 and 4-fold lower serum level at day 27, relative to an equimolar dose of a triantennary GalNAc conjugate of the same siRNA. Improved tritosome stability (by liquid chromatography-mass spectrometry [LC-MS] analysis) can at least partially explain the increased activity and duration of action for the novel GalNAc conjugate.
Collapse
Affiliation(s)
- Adrien Weingärtner
- Silence Therapeutics GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| | - Lucas Bethge
- Silence Therapeutics GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Lisa Weiss
- Silence Therapeutics GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Maria Sternberger
- Silence Therapeutics GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | | |
Collapse
|
25
|
Debacker AJ, Voutila J, Catley M, Blakey D, Habib N. Delivery of Oligonucleotides to the Liver with GalNAc: From Research to Registered Therapeutic Drug. Mol Ther 2020; 28:1759-1771. [PMID: 32592692 PMCID: PMC7403466 DOI: 10.1016/j.ymthe.2020.06.015] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Targeted delivery of oligonucleotides to liver hepatocytes using N-acetylgalactosamine (GalNAc) conjugates that bind to the asialoglycoprotein receptor has become a breakthrough approach in the therapeutic oligonucleotide field. This technology has led to the approval of givosiran for the treatment of acute hepatic porphyria, and there are another seven conjugates in registrational review or phase 3 trials and at least another 21 conjugates at earlier stages of clinical development. This review highlights some of the recent chemical and preclinical advances in this space, leading to a large number of clinical candidates against a diverse range of targets in liver hepatocytes. The review focuses on the use of this delivery system for small interfering RNAs (siRNAs) and antisense molecules that cause downregulation of target mRNA and protein. A number of other approaches such as anti-microRNAs and small activating RNAs are starting to exploit the technology, broadening the potential of this approach for therapeutic oligonucleotide intervention.
Collapse
Affiliation(s)
- Alexandre J Debacker
- MiNA Therapeutics, Translation & Innovation Hub, 80 Wood Lane, London W12 0BZ, UK
| | - Jon Voutila
- MiNA Therapeutics, Translation & Innovation Hub, 80 Wood Lane, London W12 0BZ, UK
| | - Matthew Catley
- MiNA Therapeutics, Translation & Innovation Hub, 80 Wood Lane, London W12 0BZ, UK
| | - David Blakey
- MiNA Therapeutics, Translation & Innovation Hub, 80 Wood Lane, London W12 0BZ, UK.
| | - Nagy Habib
- MiNA Therapeutics, Translation & Innovation Hub, 80 Wood Lane, London W12 0BZ, UK; Department of Surgery & Cancer, Hammersmith Hospital, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
26
|
Bhingardeve P, Madhanagopal BR, Naick H, Jain P, Manoharan M, Ganesh K. Receptor-Specific Delivery of Peptide Nucleic Acids Conjugated to Three Sequentially Linked N-Acetyl Galactosamine Moieties into Hepatocytes. J Org Chem 2020; 85:8812-8824. [PMID: 32529829 DOI: 10.1021/acs.joc.0c00601] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peptide nucleic acids (PNAs) are DNA analogs that bind with high affinity to DNA and RNA in a sequence-specific manner but have poor cell permeability, limiting use as therapeutic agents. The work described here is motivated by recent reports of efficient gene silencing specifically in hepatocytes by small interfering RNAs conjugated to triantennary N-acetyl galactosamine (GalNAc), the ligand recognized by the asialoglycoprotein receptor (ASGPR). PNAs conjugated to either triantennary GalNAc at the N-terminus (the branched architecture) or monomeric GalNAc moieties anchored at Cγ of three consecutive PNA monomers of N-(2-aminoethyl)glycine (aeg) scaffolds (the sequential architecture) were synthesized on the solid phase. These formed duplexes with complementary DNA and RNA as shown by UV and circular dichroism spectroscopy. The fluorescently labeled analogs of GalNAc-conjugated PNAs were internalized by HepG2 cells that express the ASGPR but were not taken up by HEK-293 cells that lack this receptor. The sequential conjugate was internalized about 13-fold more efficiently than the branched conjugate into HepG2 cells, as demonstrated by confocal microscopy. The results presented here highlight the potential significance of the architecture of GalNAc conjugation for efficient uptake by target liver cells and indicate that GalNAc-conjugated PNAs have possible therapeutic applications.
Collapse
Affiliation(s)
- Pramod Bhingardeve
- Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Bharath Raj Madhanagopal
- Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Tirupati 517507, Andhra Pradesh, India
| | - Hemanth Naick
- Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Tirupati 517507, Andhra Pradesh, India
| | - Prashant Jain
- Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals, Cambridge, Massachusetts 02142, United States
| | - Krishna Ganesh
- Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India.,Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Tirupati 517507, Andhra Pradesh, India
| |
Collapse
|
27
|
Lacroix A, Fakih HH, Sleiman HF. Detailed cellular assessment of albumin-bound oligonucleotides: Increased stability and lower non-specific cell uptake. J Control Release 2020; 324:34-46. [PMID: 32330572 DOI: 10.1016/j.jconrel.2020.04.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/11/2020] [Indexed: 01/04/2023]
Abstract
Conjugation of lipid moieties to nucleic-acid therapeutics increases their interaction with cellular membranes, enhances their uptake and influences in vivo distribution. Once injected in biological fluids, such modifications trigger the binding of various serum proteins, which in turn play a major role in determining the fate of oligonucleotides. Yet, the role played by each of these proteins, more than 300 in serum, remains to be elucidated. Albumin, the most abundant circulating protein is an attractive candidate to study, as it was previously used to enhance the therapeutic effect of various drugs. Herein, we present a thorough fluorescent-based methodology to study the effect of strong and specific albumin-binding on the fate and cellular uptake of DNA oligonucleotides. We synthesized a library of molecules that exhibit non-covalent binding to albumin, with affinities ranging from high (nanomolar) to none. Our results revealed that strong albumin binding can be used as a strategy to reduce degradation of oligonucleotides in physiological conditions caused by enzymes (nucleases), to reduce uptake and degradation by immune cells (macrophages) and to prevent non-specific uptake by cells. We believe that introducing protein-binding domains in oligonucleotides can be used as a strategy to control the fate of oligonucleotides in physiological environments. While our study focuses on albumin, we believe that such systematic studies, which elucidate the role of serum proteins systematically, will ultimately provide a toolbox to engineer the next-generation of therapeutic oligonucleotides, overcoming many of the barriers encountered by these therapeutics, such as stability, immunogenicity and off-target effects.
Collapse
Affiliation(s)
- Aurélie Lacroix
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montréal, Québec H3A 0B8, Canada
| | - Hassan H Fakih
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montréal, Québec H3A 0B8, Canada
| | - Hanadi F Sleiman
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montréal, Québec H3A 0B8, Canada.
| |
Collapse
|
28
|
Yamamoto T, Terada C, Kashiwada K, Yamayoshi A, Harada-Shiba M, Obika S. Synthesis of Monovalent N-Acetylgalactosamine Phosphoramidite for Liver-Targeting Oligonucleotides. ACTA ACUST UNITED AC 2020; 78:e99. [PMID: 31529782 DOI: 10.1002/cpnc.99] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ligand-targeted drug delivery (LTDD) has emerged as an attractive option in the field of oligonucleotide drugs following the great success of N-acetylgalactosamine (GalNAc)-conjugated siRNA and antisense oligonucleotides. GalNAc is a well-known ligand of the asialoglycoprotein receptor (ASGPR), and is classified as a C-type lectin associated with the metabolism of desialylated glycoproteins. This article describes the synthesis of a non-nucleosidic monovalent GalNAc phosphoramidite-a useful reagent for facilitating the conjugation of GalNAc epitopes into oligonucleotides using DNA synthesizers-together with some important caveats. The monomeric GalNAc consists of three parts: (1) a GalNAc moiety, (2) a linker moiety, and (3) a trans-4-hydroxyprolinol (tHP) branch point. The GalNAc moiety and the tHP moiety are coupled via a condensation reaction to prepare the monovalent GalNAc phosphoramidite. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Synthesis of N-acetylgalactosamine ligand Basic Protocol 2: Preparation of trans-4-hydroxyprolinol building block Basic Protocol 3: Preparation of GalNAc phosphoramidite.
Collapse
Affiliation(s)
- Tsuyoshi Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Chisato Terada
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Koki Kashiwada
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Asako Yamayoshi
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mariko Harada-Shiba
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
29
|
Sakamuri S, Eltepu L, Liu D, Lam S, Meade BR, Liu B, Dello Iacono G, Kabakibi A, Luukkonen L, Leedom T, Foster M, Bradshaw CW. Impact of Phosphorothioate Chirality on Double-Stranded siRNAs: A Systematic Evaluation of Stereopure siRNA Designs. Chembiochem 2020; 21:1304-1308. [PMID: 31863714 DOI: 10.1002/cbic.201900630] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/19/2019] [Indexed: 12/16/2022]
Abstract
Oligonucleotides are important therapeutic approaches, as evidenced by recent clinical successes with antisense oligonucleotides (ASOs) and double-stranded short interfering RNAs (siRNAs). Phosphorothioate (PS) modifications are a standard feature in the current generation of oligonucleotide therapeutics, but generate isomeric mixtures, leading to 2n isomers. All currently marketed therapeutic oligonucleotides (ASOs and siRNAs) are complex isomeric mixtures. Recent chemical methodologies for stereopure PS insertions have resulted in preliminary rules for ASOs, with multiple stereopure ASOs moving into clinical development. Although siRNAs have comparatively fewer PSs, the field has yet to embrace the idea of stereopure siRNAs. Herein, it has been investigated whether the individual isomers contribute equally to the in vivo activity of a representative siRNA. The results of a systematic evaluation of stereopure PS incorporation into antithrombin-3 (AT3) siRNA are reported and demonstrate that individual PS isomers dramatically affect in vivo activity. A standard siRNA design with six PS insertions was investigated and it was found that only about 10 % of the 64 possible isomers were as efficacious as the stereorandom control. Based on this data, it can be concluded that G1R stereochemistry is critical, G2R is important, G21S is preferable, and G22 and P1/P2 tolerate both isomers. Surprisingly, the disproportionate loss of efficacy for most isomers does not translate into significant gain for the productive isomers, and thus, warrants further mechanistic studies.
Collapse
Affiliation(s)
- Sukumar Sakamuri
- Solstice Biologics, 9535 Waples Street, San Diego, CA, 92121, USA
| | - Laxman Eltepu
- Solstice Biologics, 9535 Waples Street, San Diego, CA, 92121, USA
| | - Dingguo Liu
- Solstice Biologics, 9535 Waples Street, San Diego, CA, 92121, USA
| | - Son Lam
- Solstice Biologics, 9535 Waples Street, San Diego, CA, 92121, USA
| | - Bryan R Meade
- Solstice Biologics, 9535 Waples Street, San Diego, CA, 92121, USA
| | - Bin Liu
- Solstice Biologics, 9535 Waples Street, San Diego, CA, 92121, USA
| | | | - Ayman Kabakibi
- Solstice Biologics, 9535 Waples Street, San Diego, CA, 92121, USA
| | - Lena Luukkonen
- Solstice Biologics, 9535 Waples Street, San Diego, CA, 92121, USA
| | - Tom Leedom
- Solstice Biologics, 9535 Waples Street, San Diego, CA, 92121, USA
| | - Mark Foster
- Solstice Biologics, 9535 Waples Street, San Diego, CA, 92121, USA
| | - Curt W Bradshaw
- Solstice Biologics, 9535 Waples Street, San Diego, CA, 92121, USA
| |
Collapse
|
30
|
Watts JK, Ockene IS. RNA Interference for the Masses? siRNA Targeting PCSK9 Promises Prevention of Cardiovascular Disease. Nucleic Acid Ther 2020; 30:1-3. [PMID: 31928497 DOI: 10.1089/nat.2019.0835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jonathan K Watts
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Ira S Ockene
- Department of Cardiology, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
31
|
Osborn MF, Coles AH, Biscans A, Haraszti RA, Roux L, Davis S, Ly S, Echeverria D, Hassler MR, Godinho BMDC, Nikan M, Khvorova A. Hydrophobicity drives the systemic distribution of lipid-conjugated siRNAs via lipid transport pathways. Nucleic Acids Res 2019; 47:1070-1081. [PMID: 30535404 PMCID: PMC6379714 DOI: 10.1093/nar/gky1232] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/26/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022] Open
Abstract
Efficient delivery of therapeutic RNA beyond the liver is the fundamental obstacle preventing its clinical utility. Lipid conjugation increases plasma half-life and enhances tissue accumulation and cellular uptake of small interfering RNAs (siRNAs). However, the mechanism relating lipid hydrophobicity, structure, and siRNA pharmacokinetics is unclear. Here, using a diverse panel of biologically occurring lipids, we show that lipid conjugation directly modulates siRNA hydrophobicity. When administered in vivo, highly hydrophobic lipid-siRNAs preferentially and spontaneously associate with circulating low-density lipoprotein (LDL), while less lipophilic lipid-siRNAs bind to high-density lipoprotein (HDL). Lipid-siRNAs are targeted to lipoprotein receptor-enriched tissues, eliciting significant mRNA silencing in liver (65%), adrenal gland (37%), ovary (35%), and kidney (78%). Interestingly, siRNA internalization may not be completely driven by lipoprotein endocytosis, but the extent of siRNA phosphorothioate modifications may also be a factor. Although biomimetic lipoprotein nanoparticles have been explored for the enhancement of siRNA delivery, our findings suggest that hydrophobic modifications can be leveraged to incorporate therapeutic siRNA into endogenous lipid transport pathways without the requirement for synthetic formulation.
Collapse
Affiliation(s)
- Maire F Osborn
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andrew H Coles
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Annabelle Biscans
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Reka A Haraszti
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Loic Roux
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sarah Davis
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Socheata Ly
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Matthew R Hassler
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Bruno M D C Godinho
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mehran Nikan
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|