1
|
Long X, Cheng S, Lan X, Wei W, Jiang D. Trends in nanobody radiotheranostics. Eur J Nucl Med Mol Imaging 2025; 52:2225-2238. [PMID: 39800806 DOI: 10.1007/s00259-025-07077-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/04/2025] [Indexed: 04/23/2025]
Abstract
As the smallest antibody fragment with specific binding affinity, nanobody-based nuclear medicine has demonstrated significant potential to revolutionize the field of precision medicine, supported by burgeoning preclinical investigations and accumulating clinical evidence. However, the visualization of nanobodies has also exposed their suboptimal biodistribution patterns, which has spurred collaborative efforts to refine their pharmacokinetic and pharmacodynamic profiles for improved therapeutic efficacy. In this review, we present clinical results that exemplify the benefits of nanobody-based molecular imaging in cancer diagnosis. Moreover, we emphasize the indispensable role of molecular imaging as a tool for evaluating and optimizing nanobodies, thereby expanding their therapeutic potential in cancer treatment in the foreseeable future.
Collapse
Affiliation(s)
- Xingru Long
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Molecular Imaging, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
| | - Sixuan Cheng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Molecular Imaging, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
- Hubei Key Laboratory of Molecular Imaging, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200233, China.
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
- Hubei Key Laboratory of Molecular Imaging, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
| |
Collapse
|
2
|
Hai W, Bao X, Sun K, Li B, Peng J, Xu Y. In situ labeling of pretargeted hyaluronan for PET/MR imaging of CD44+ tumors. Bioorg Chem 2025; 155:108110. [PMID: 39756203 DOI: 10.1016/j.bioorg.2024.108110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/13/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Tumor-specific molecular probe-based imaging strategies have shown great potential for tumor diagnosis. However, the sensitivity and contrast of imaging may interfere with the complex labeling process and degradation of tumor-specific imaging probes. We sought to adapt a pretargeting strategy and an in vivo bioorthogonal reaction to improve hyaluronan (HA)-based tumor multimodal imaging diagnosis. METHODS Transcyclooctene-labeled HA (HA-TCO) and tetrazine-labeled NODA (NODA-Tz) were synthesized and purified. Probes Gd-NODA-Tz and [18F]AlF-NODA-Tz for magnetic resonance imaging (MRI) and positron emission tomography (PET) imaging were prepared. The bioorthogonal reaction of HA-TCO with NODA-Tz and the stability of the products were confirmed and analyzed. CD44 + A549 tumor-bearing mice were injected with HA-TCO via the tail vein, followed by Gd-NODA-Tz or [18F]AlF-NODA-Tz administration half an hour later, and subsequently imaged by MR or PET. The images were analyzed and tumor uptake was quantified. RESULTS HA-TCO efficiently bound to CD44-overexpressing A549 cells and selectively reacted with the Tz-imaging group. In vivo MR and PET images were obtained after probe injection and subsequent bioorthogonal labeling. The images showed a tumor mass with a high target background ratio (TBR) and clear boundaries. CONCLUSION In situ labeling of pretargeted HA-TCO enabled MRI and PET imaging of tumor tissues in mice with high sensitivity and improved TBR.
Collapse
Affiliation(s)
- Wangxi Hai
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China; School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiao Bao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Kang Sun
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China.
| | - Jinliang Peng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Yuhong Xu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China; College of Pharmacy, Dali University, Xia Guan, Dali, Yunnan 6710000, PR China.
| |
Collapse
|
3
|
Liu X, Song Y, Cheng P, Liang B, Xing D. Targeting HER2 in solid tumors: Unveiling the structure and novel epitopes. Cancer Treat Rev 2024; 130:102826. [PMID: 39270365 DOI: 10.1016/j.ctrv.2024.102826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Human epidermal growth factor receptor-2 (HER2) is overexpressed in various solid tumor types, acting as an established therapeutic target. Over the last three decades, the fast-paced development of diverse HER2-targeted agents, notably marked by the introduction of the antibody-drug conjugate (ADC), yielding substantial improvements in survival rates. However, resistance to anti-HER2 treatments continues to pose formidable challenges. The complex structure and dynamic dimerization properties of HER2 create significant hurdles in the development of novel targeted therapeutics. In this review, we synthesize the latest insights into the structural intricacies of HER2 and present an unprecedented overview of the epitope characteristics of HER2-targeted antibodies and their derivatives. Furthermore, we delve into the correlation between anti-HER2 antibody binding epitopes and their respective functions, with a particular focus on their efficacy against resistant tumors. In addition, we highlight the potential of emerging anti-HER2 agents that target specific sites or non-overlapping epitopes, poised to transform the therapeutic landscape for HER2-positive tumors in the foreseeable future.
Collapse
Affiliation(s)
- Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Qingdao Cancer Institute, Qingdao 266071, China
| | - Yunlong Song
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao Institute of Preventive Medicine, Qingdao 266033, China
| | - Panpan Cheng
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao Institute of Preventive Medicine, Qingdao 266033, China
| | - Bing Liang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Qingdao Cancer Institute, Qingdao 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Qingdao Cancer Institute, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Steffann M, Bluet G, Roy S, Aubert C, Fouquet E, Hermange P. 18 F-Fluorination of a supported 2-(aryl-di-tert-butylsilyl)-N-methyl-imidazole for indirect 18 F-labeling of a V H H single-variable domain. J Labelled Comp Radiopharm 2024; 67:104-110. [PMID: 38224624 DOI: 10.1002/jlcr.4082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/15/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024]
Abstract
Anchoring an imidazole-di-tert-butyl-arylsilane possessing an azido group to a polystyrene resin provided a heterogeneous precursor that was radiolabeled easily using aqueous [18 F]fluoride. After optimizing the conditions (i.e., using DMSO as solvent and heating at 160°C for 15 min), the desired [18 F]fluorosilane was obtained in 24% radiochemical yield (RCY) and 78% radiochemical purity (RCP) using solid-phase extraction as sole purification. Then, this compound was conjugated by strain-promoted alkyne-azide cycloaddition to a model single-variable domain possessing a cyclooctyne tag, yielding to the desired 18 F-labeled bioconjugate in 2% RCY and >95% RCP after purification by a size exclusion chromatography.
Collapse
Affiliation(s)
- Marine Steffann
- Institut des Sciences Moléculaires (ISM), UMR 5255, Univ. Bordeaux, CNRS, Bordeaux INP, Talence Cedex, France
- Sanofi, Integrated Drug Discovery (IDD) Isotope Chemistry (IC), Vitry-sur-Seine, France
| | - Guillaume Bluet
- Sanofi, Integrated Drug Discovery (IDD) Isotope Chemistry (IC), Vitry-sur-Seine, France
| | - Sébastien Roy
- Sanofi, Integrated Drug Discovery (IDD) Isotope Chemistry (IC), Vitry-sur-Seine, France
| | - Catherine Aubert
- Sanofi, Integrated Drug Discovery (IDD) Isotope Chemistry (IC), Vitry-sur-Seine, France
| | - Eric Fouquet
- Institut des Sciences Moléculaires (ISM), UMR 5255, Univ. Bordeaux, CNRS, Bordeaux INP, Talence Cedex, France
| | - Philippe Hermange
- Institut des Sciences Moléculaires (ISM), UMR 5255, Univ. Bordeaux, CNRS, Bordeaux INP, Talence Cedex, France
| |
Collapse
|
5
|
de Roode KE, Joosten L, Behe M. Towards the Magic Radioactive Bullet: Improving Targeted Radionuclide Therapy by Reducing the Renal Retention of Radioligands. Pharmaceuticals (Basel) 2024; 17:256. [PMID: 38399470 PMCID: PMC10892921 DOI: 10.3390/ph17020256] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Targeted radionuclide therapy (TRT) is an emerging field and has the potential to become a major pillar in effective cancer treatment. Several pharmaceuticals are already in routine use for treating cancer, and there is still a high potential for new compounds for this application. But, a major issue for many radiolabeled low-to-moderate-molecular-weight molecules is their clearance via the kidneys and their subsequent reuptake. High renal accumulation of radioactive compounds may lead to nephrotoxicity, and therefore, the kidneys are often the dose-limiting organs in TRT with these radioligands. Over the years, different strategies have been developed aiming for reduced kidney retention and enhanced therapeutic efficacy of radioligands. In this review, we will give an overview of the efforts and achievements of the used strategies, with focus on the therapeutic potential of low-to-moderate-molecular-weight molecules. Among the strategies discussed here is coadministration of compounds that compete for binding to the endocytic receptors in the proximal tubuli. In addition, the influence of altering the molecular design of radiolabeled ligands on pharmacokinetics is discussed, which includes changes in their physicochemical properties and implementation of cleavable linkers or albumin-binding moieties. Furthermore, we discuss the influence of chelator and radionuclide choice on reabsorption of radioligands by the kidneys.
Collapse
Affiliation(s)
- Kim E. de Roode
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands;
- Tagworks Pharmaceuticals, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | - Lieke Joosten
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands;
| | - Martin Behe
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, 5232 Villigen, Switzerland
| |
Collapse
|
6
|
Huang W, Liang C, Zhang Y, Zhang D, An S, Wu Q, Li J, Zhao H, Wang C, Cui J, Bao Z, Huang G, Wei W, Liu J. ImmunoPET imaging of Trop2 expression in solid tumors with nanobody tracers. Eur J Nucl Med Mol Imaging 2024; 51:380-394. [PMID: 37792026 DOI: 10.1007/s00259-023-06454-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
PURPOSE The high expression of the transmembrane glycoprotein trophoblast cell-surface antigen 2 (Trop2) was strongly associated with the progression of solid tumors, including pancreatic and gastric cancers. Our study aimed to construct Trop2-specific immuno-positron emission tomography (immunoPET) probes and assess the diagnostic abilities in preclinical pancreatic and gastric cancer models. METHODS The expression of Trop2 in pancreatic cancer was determined by single-cell sequencing and immunohistochemistry on tissue microarray (TMA). Flow cytometry was used to screen the expression of Trop2 in pancreatic cancer cell lines. Two nanobodies (i.e., RTD98 and RTD01) targeting Trop2 were developed and labeled with gallium-68 (68Ga, T1/2 = 1.1 h) to construct immunoPET imaging probes. The agents were researched in cell-derived pancreatic and patient-derived gastric cancer models expressing varying Trop2. RESULTS Single-cell sequencing results showed high expression of Trop2 in pancreatic ductal cells as well as acinar cells and immunohistochemical staining of TMA from pancreatic cancers showed significantly higher expression of Trop2 in cancerous than in paracancerous tissues. ImmunoPET utilizing [68Ga]Ga-NOTA-RTD98 could clearly delineate subcutaneous tumors, both in cell-derived pancreatic cancer models and patient-derived gastric cancer models, superior to imaging using [18F]-FDG or a non-specific probe [68Ga]Ga-NOTA-RTD161. Another probe with improved pharmacokinetics targeting Trop2, [68Ga]Ga-NOTA-RTD01, was further prepared and showed advantageous diagnostic capabilities in preclinical pancreatic cancer models. CONCLUSION In the work, we reported two nanobody tracers targeting human Trop2 which may facilitate better use of Trop2-targeted therapeutics by noninvasively displaying expression dynamics of the target.
Collapse
Affiliation(s)
- Wei Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Chenyi Liang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - You Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Di Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Shuxian An
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Qianyun Wu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Jiajin Li
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Haitao Zhao
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Cheng Wang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Jiujie Cui
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Zhouzhou Bao
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China.
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China.
| |
Collapse
|
7
|
Xu M, Ma X, Pigga JE, Zhang H, Wang S, Zhao W, Deng H, Wu AM, Liu R, Wu Z, Fox JM, Li Z. Development of 18F-Labeled hydrophilic trans-cyclooctene as a bioorthogonal tool for PET probe construction. Chem Commun (Camb) 2023; 59:14387-14390. [PMID: 37877355 PMCID: PMC10785124 DOI: 10.1039/d3cc04212j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
We report the development of a hydrophilic 18F-labeled a-TCO derivative [18F]3 (log P = 0.28) through a readily available precursor and a single-step radiofluorination reaction (RCY up to 52%). We demonstrated that [18F]3 can be used to construct not only multiple small molecule/peptide-based PET agents, but protein/diabody-based imaging probes in parallel.
Collapse
Affiliation(s)
- Muyun Xu
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Xinrui Ma
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Jessica E Pigga
- Department of Chemistry, the University of Delaware, Newark, Delaware, 19716, USA.
| | - He Zhang
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Shuli Wang
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Weiling Zhao
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Huaifu Deng
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Anna M Wu
- Department of Molecular Imaging and Therapy, Beckman Research Institute, City of Hope, Duarte, California, 91010, USA
| | - Rihe Liu
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Zhanhong Wu
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Joseph M Fox
- Department of Chemistry, the University of Delaware, Newark, Delaware, 19716, USA.
| | - Zibo Li
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| |
Collapse
|
8
|
Bauer D, Cornejo MA, Hoang TT, Lewis JS, Zeglis BM. Click Chemistry and Radiochemistry: An Update. Bioconjug Chem 2023; 34:1925-1950. [PMID: 37737084 PMCID: PMC10655046 DOI: 10.1021/acs.bioconjchem.3c00286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/16/2023] [Indexed: 09/23/2023]
Abstract
The term "click chemistry" describes a class of organic transformations that were developed to make chemical synthesis simpler and easier, in essence allowing chemists to combine molecular subunits as if they were puzzle pieces. Over the last 25 years, the click chemistry toolbox has swelled from the canonical copper-catalyzed azide-alkyne cycloaddition to encompass an array of ligations, including bioorthogonal variants, such as the strain-promoted azide-alkyne cycloaddition and the inverse electron-demand Diels-Alder reaction. Without question, the rise of click chemistry has impacted all areas of chemical and biological science. Yet the unique traits of radiopharmaceutical chemistry have made it particularly fertile ground for this technology. In this update, we seek to provide a comprehensive guide to recent developments at the intersection of click chemistry and radiopharmaceutical chemistry and to illuminate several exciting trends in the field, including the use of emergent click transformations in radiosynthesis, the clinical translation of novel probes synthesized using click chemistry, and the advent of click-based in vivo pretargeting.
Collapse
Affiliation(s)
- David Bauer
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
| | - Mike A. Cornejo
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Chemistry, Hunter College, City University
of New York, New York, New York 10065, United States
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York, New York 10016, United States
| | - Tran T. Hoang
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Pharmacology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Jason S. Lewis
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Radiology, Weill Cornell Medical College, New York 10021, New York United States
| | - Brian M. Zeglis
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Chemistry, Hunter College, City University
of New York, New York, New York 10065, United States
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York, New York 10016, United States
- Department
of Pharmacology, Weill Cornell Medical College, New York, New York 10065, United States
- Department
of Radiology, Weill Cornell Medical College, New York 10021, New York United States
- Ph.D.
Program
in Biochemistry, Graduate Center of the
City University of New York, New
York, New York 10016, United States
| |
Collapse
|
9
|
Zhou S, Fang X, Lv J, Yang Y, Zeng Y, Liu Y, Wei W, Huang G, Zhang B, Wu C. Site-Specific Modification of Single Domain Antibodies by Enzyme-Immobilized Magnetic Beads. Bioconjug Chem 2023; 34:1914-1922. [PMID: 37804224 DOI: 10.1021/acs.bioconjchem.3c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2023]
Abstract
Nanobodies as imaging agents and drug conjugates have shown great potential for cancer diagnostics and therapeutics. However, site-specific modification of a nanobody with microbial transglutaminase (mTGase) encounters problems in protein separation and purification. Here, we describe a facile yet reliable strategy of immobilizing mTGase onto magnetic beads for site-specific nanobody modification. The mTGase immobilized on magnetic beads (MB-mTGase) exhibits catalytic activity nearly equivalent to that of the free mTGase, with good reusability and universality. Magnetic separation simplifies the protein purification step and reduces the loss of nanobody bioconjugates more effectively than size exclusion chromatography. Using MB-mTGase, we demonstrate site-specific conjugation of nanobodies with fluorescent dyes and polyethylene glycol molecules, enabling targeted immunofluorescence imaging and improved circulation dynamics and tumor accumulation in vivo. The combined advantages of MB-mTGase method, including high conjugation efficiency, quick purification, less protein loss, and recycling use, are promising for site-specific nanobody functionalization and biomedical applications.
Collapse
Affiliation(s)
- Siyu Zhou
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Xiaofeng Fang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Jiahui Lv
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Yicheng Yang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Yiqi Zeng
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Ying Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Bo Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Changfeng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| |
Collapse
|
10
|
Li L, Lin X, Wang L, Ma X, Zeng Z, Liu F, Jia B, Zhu H, Wu A, Yang Z. Immuno-PET of colorectal cancer with a CEA-targeted [68 Ga]Ga-nanobody: from bench to bedside. Eur J Nucl Med Mol Imaging 2023; 50:3735-3749. [PMID: 37382662 DOI: 10.1007/s00259-023-06313-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
PURPOSE An accurate diagnosis of colorectal carcinoma (CRC) can assist physicians in developing reasonable therapeutic regimens, thereby significantly improving the patient's prognosis. Carcinoembryonic antigen (CEA)-targeted PET imaging shows great potential for this purpose. Despite showing remarkable abilities to detect primary and metastatic CRC, previously reported CEA-specific antibody radiotracers or pretargeted imaging are not suitable for clinical use due to poor pharmacokinetics and complicated imaging procedures. In contrast, radiolabeled nanobodies exhibit ideal characteristics for PET imaging, for instance, rapid clearance rates and excellent distribution profiles, allowing same-day imaging with sufficient contrast. In this study, we developed a novel CEA-targeted nanobody radiotracer, [68 Ga]Ga-HNI01, and assessed its tumor imaging ability and biodistribution profile in preclinical xenografts and patients with primary and metastatic CRC. METHODS The novel nanobody HNI01 was acquired by immunizing the llama with CEA proteins. [68 Ga]Ga-HNI01 was synthesized by site-specifically conjugating [68 Ga]Ga with tris(hydroxypyridinone) (THP). Small-animal PET imaging and biodistribution studies were performed in CEA-overexpressed LS174T and CEA-low-expressed HT-29 tumor models. Following successful preclinical assessment, a phase I study was conducted on 9 patients with primary and metastatic CRC. Study participants received 151.21 ± 25.25 MBq of intravenous [68 Ga]Ga-HNI01 and underwent PET/CT scans at 1 h and 2 h post injection. Patients 01-03 also underwent whole-body dynamic PET imaging within 0-40 min p.i. All patients underwent [18F]F-FDG PET/CT imaging within 1 week after [68 Ga]Ga-HNI01 imaging. Tracer distribution, pharmacokinetics, and radiation dosimetry were calculated. RESULTS [68 Ga]Ga-HNI01 was successfully synthesized within 10 min under mild conditions, and the radiochemical purity was more than 98% without purification. Micro-PET imaging with [68 Ga]Ga-HNI01 revealed clear visualization of LS174T tumors, while signals from HT-29 tumors were significantly lower. Biodistribution studies indicated that uptake of [68 Ga]Ga-HNI01 in LS174T and HT-29 was 8.83 ± 3.02%ID/g and 1.81 ± 0.87%ID/g, respectively, at 2 h p.i. No adverse events occurred in all clinical participants after the injection of [68 Ga]Ga-HNI01. A fast blood clearance and low background uptake were observed, and CRC lesions could be visualized with high contrast as early as 30 min after injection. [68 Ga]Ga-HNI01 PET could clearly detect metastatic lesions in the liver, lung, and pancreas and showed superior ability in detecting small metastases. A significant accumulation of radioactivity was observed in the kidney, and normal tissues physiologically expressing CEA receptors showed slight uptakes of [68 Ga]Ga-HNI01. An interesting finding was that strong uptake of [68 Ga]Ga-HNI01 was found in non-malignant colorectal tissues adjacent to the primary tumor in some patients, suggesting abnormal CEA expression in these healthy tissues. CONCLUSION [68 Ga]Ga-HNI01 is a novel CEA-targeted PET imaging radiotracer with excellent pharmacokinetics and favorable dosimetry profiles. [68 Ga]Ga-HNI01 PET is an effective and convenient imaging tool for detecting CRC lesions, particularly for identifying small metastases. Furthermore, its high specificity for CEA in vivo makes it an ideal tool for selecting patients for anti-CEA therapy.
Collapse
Affiliation(s)
- Liqiang Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing, 100142, China
| | - Xinfeng Lin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing, 100142, China
| | - Lin Wang
- Department of Gastrointestinal Cancer Centre, Unit III, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing, China
| | - Xiaopan Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing, 100142, China
| | - Ziqing Zeng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing, 100142, China
| | - Futao Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing, 100142, China
| | - Bing Jia
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing, 100142, China.
| | - Aiwen Wu
- Department of Gastrointestinal Cancer Centre, Unit III, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing, China.
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing, 100142, China.
| |
Collapse
|
11
|
Radiochemistry with {Al18F}2+: Current status and optimization perspectives for efficient radiofluorination by complexation. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
Rodak M, Dekempeneer Y, Wojewódzka M, Caveliers V, Covens P, Miller BW, Sevenois MB, Bruchertseifer F, Morgenstern A, Lahoutte T, D'Huyvetter M, Pruszyński M. Preclinical Evaluation of 225Ac-Labeled Single-Domain Antibody for the Treatment of HER2pos Cancer. Mol Cancer Ther 2022; 21:1835-1845. [PMID: 36129807 PMCID: PMC9716241 DOI: 10.1158/1535-7163.mct-21-1021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/25/2022] [Accepted: 09/16/2022] [Indexed: 01/12/2023]
Abstract
Human epidermal growth factor receptor type 2 (HER2) is overexpressed in various cancers; thus, HER2-targeting single-domain antibodies (sdAb) could offer a useful platform for radioimmunotherapy. In this study, we optimized the labeling of an anti-HER2-sdAb with the α-particle-emitter 225Ac through a DOTA-derivative. The formed radioconjugate was tested for binding affinity, specificity and internalization properties, whereas cytotoxicity was evaluated by clonogenic and DNA double-strand-breaks assays. Biodistribution studies were performed in mice bearing subcutaneous HER2pos tumors to estimate absorbed doses delivered to organs and tissues. Therapeutic efficacy and potential toxicity were assessed in HER2pos intraperitoneal ovarian cancer model and in healthy C57Bl/6 mice. [225Ac]Ac-DOTA-2Rs15d exhibited specific cell uptake and cell-killing capacity in HER2pos cells (EC50 = 3.9 ± 1.1 kBq/mL). Uptake in HER2pos lesions peaked at 3 hours (9.64 ± 1.69% IA/g), with very low accumulation in other organs (<1% IA/g) except for kidneys (11.69 ± 1.10% IA/g). α-camera imaging presented homogeneous uptake of radioactivity in tumors, although heterogeneous in kidneys, with a higher signal density in cortex versus medulla. In mice with HER2pos disseminated tumors, repeated administration of [225Ac]Ac-DOTA-2Rs15d significantly prolonged survival (143 days) compared to control groups (56 and 61 days) and to the group treated with HER2-targeting mAb trastuzumab (100 days). Histopathologic evaluation revealed signs of kidney toxicity after repeated administration of [225Ac]Ac-DOTA-2Rs15d. [225Ac]Ac-DOTA-2Rs15d efficiently targeted HER2pos cells and was effective in treatment of intraperitoneal disseminated tumors, both alone and as an add-on combination with trastuzumab, albeit with substantial signs of inflammation in kidneys. This study warrants further development of [225Ac]Ac-DOTA-2Rs15d.
Collapse
Affiliation(s)
- Magdalena Rodak
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | - Yana Dekempeneer
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Vicky Caveliers
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
- Nuclear Medicine Department, UZ Brussel, Brussels, Belgium
| | - Peter Covens
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Brian W. Miller
- Department of Medical Imaging, University of Arizona, Tucson, Arizona
| | - Matthijs B. Sevenois
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | - Tony Lahoutte
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
- Nuclear Medicine Department, UZ Brussel, Brussels, Belgium
| | - Matthias D'Huyvetter
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marek Pruszyński
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
- NOMATEN Centre of Excellence, National Centre for Nuclear Research, Otwock, Poland
| |
Collapse
|
13
|
Mulero F. ImmunoPET in oncology. Rev Esp Med Nucl Imagen Mol 2022; 41:332-339. [PMID: 35961857 DOI: 10.1016/j.remnie.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 01/14/2023]
Abstract
Due to increase of immunotherapy in oncology, it is essential to have a biological characterization of tumors. Knowing which antigens are expressed both on the surface of the tumor cell and at tumor microenvironment in order to predict the tretment response different therapeutic antibodies, has become a need. ImmunoPET is a non-invasive diagnostic imaging tool that combines the high specificity of antibodies against antigens with the high sensitivity, resolution and quantification capacity of PET imaging. With ImmunoPET we obtain a virtual biopsy of tumors, it has a big present and future in preclinical-clinical research, being already a reality in predicting and monitoring the response to treatments with monoclonal antibodies, allowing a selection of patients and therapies reaching a personalized medicine contributing to improve clinical decisions.
Collapse
Affiliation(s)
- Francisca Mulero
- Unidad de Imagen Molecular, Centro Nacional de Investigaciones Oncológicas, Melchor Fernández Almagro, 3, Madrid, Spain.
| |
Collapse
|
14
|
InmunoPET en oncología. Rev Esp Med Nucl Imagen Mol 2022. [DOI: 10.1016/j.remn.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Lau J, Lee H, Rousseau J, Bénard F, Lin KS. Application of Cleavable Linkers to Improve Therapeutic Index of Radioligand Therapies. Molecules 2022; 27:molecules27154959. [PMID: 35956909 PMCID: PMC9370263 DOI: 10.3390/molecules27154959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 01/11/2023] Open
Abstract
Radioligand therapy (RLT) is an emergent drug class for cancer treatment. The dose administered to cancer patients is constrained by the radiation exposure to normal tissues to maintain an appropriate therapeutic index. When a radiopharmaceutical or its radiometabolite is retained in the kidneys, radiation dose deposition in the kidneys can become a dose-limiting factor. A good exemplar is [177Lu]Lu-DOTATATE, where patients receive a co-infusion of basic amino acids for nephroprotection. Besides peptides, there are other classes of targeting vectors like antibody fragments, antibody mimetics, peptidomimetics, and small molecules that clear through the renal pathway. In this review, we will review established and emerging strategies that can be used to mitigate radiation-induced nephrotoxicity, with a focus on the development and incorporation of cleavable linkers for radiopharmaceutical designs. Finally, we offer our perspectives on cleavable linkers for RLT, highlighting future areas of research that will help advance the technology.
Collapse
Affiliation(s)
- Joseph Lau
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Hwan Lee
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Julie Rousseau
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Correspondence: ; Tel.: +1-604-675-8208
| |
Collapse
|
16
|
Andersen IV, García-Vázquez R, Battisti UM, Herth MM. Optimization of Direct Aromatic 18F-Labeling of Tetrazines. Molecules 2022; 27:molecules27134022. [PMID: 35807267 PMCID: PMC9268649 DOI: 10.3390/molecules27134022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Radiolabeling of tetrazines has gained increasing attention due to their important role in pretargeted imaging or therapy. The most commonly used radionuclide in PET imaging is fluorine-18. For this reason, we have recently developed a method which enables the direct aromatic 18F-fluorination of tetrazines using stannane precursors through copper-mediated fluorinations. Herein, we further optimized this labeling procedure. 3-(3-fluorophenyl)-1,2,4,5-tetrazine was chosen for this purpose because of its high reactivity and respective limited stability during the labeling process. By optimizing parameters such as elution conditions, precursor amount, catalyst, time or temperature, the radiochemical yield (RCY) could be increased by approximately 30%. These conditions were then applied to optimize the RCY of a recently successfully developed and promising pretargeting imaging agent. This agent could be isolated in a decay corrected RCY of 14 ± 3% and Am of 201 ± 30 GBq/µmol in a synthesis time of 70 min. Consequently, the RCY increased by 27%.
Collapse
Affiliation(s)
- Ida Vang Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark; (I.V.A.); (R.G.-V.); (U.M.B.)
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Rocío García-Vázquez
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark; (I.V.A.); (R.G.-V.); (U.M.B.)
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Umberto Maria Battisti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark; (I.V.A.); (R.G.-V.); (U.M.B.)
| | - Matthias M. Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark; (I.V.A.); (R.G.-V.); (U.M.B.)
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
17
|
Shoari A, Tahmasebi M, Khodabakhsh F, Cohan RA, Oghalaie A, Behdani M. Angiogenic biomolecules specific nanobodies application in cancer imaging and therapy; review and updates. Int Immunopharmacol 2022; 105:108585. [DOI: 10.1016/j.intimp.2022.108585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/05/2022]
|
18
|
Yang E, Liu Q, Huang G, Liu J, Wei W. Engineering nanobodies for next-generation molecular imaging. Drug Discov Today 2022; 27:1622-1638. [PMID: 35331925 DOI: 10.1016/j.drudis.2022.03.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/04/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022]
Abstract
In recent years, nanobodies have emerged as ideal imaging agents for molecular imaging. Molecular nanobody imaging combines the specificity of nanobodies with the sensitivity of state-of-the-art molecular imaging modalities, such as positron emission tomography (PET). Given that modifications of nanobodies alter their pharmacokinetics (PK), the engineering strategies that combine nanobodies with radionuclides determine the effectiveness, reliability, and safety of the molecular imaging probes. In this review, we introduce conjugation strategies that have been applied to nanobodies, including random conjugation, 99mTc tricarbonyl chemistry, sortase A-mediated site-specific conjugation, maleimide-cysteine chemistry, and click chemistries. We also summarize the latest advances in nanobody tracers, emphasizing their preclinical and clinical use. In addition, we elaborate on nanobody-based near-infrared fluorescence (NIRF) imaging and image-guided surgery.
Collapse
Affiliation(s)
- Erpeng Yang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Qiufang Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China.
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China.
| |
Collapse
|
19
|
Zhou Z, Meshaw R, Zalutsky MR, Vaidyanathan G. Site-Specific and Residualizing Linker for 18F Labeling with Enhanced Renal Clearance: Application to an Anti-HER2 Single-Domain Antibody Fragment. J Nucl Med 2021; 62:1624-1630. [PMID: 33637584 PMCID: PMC8612331 DOI: 10.2967/jnumed.120.261446] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/01/2021] [Indexed: 11/16/2022] Open
Abstract
Single-domain antibody fragments (sdAbs) are promising vectors for immuno-PET; however, better methods for labeling sdAbs with 18F are needed. Herein, we evaluate a site-specific strategy using an 18F residualizing motif and the anti-epidermal growth factor receptor 2 (HER2) sdAb 5F7 bearing an engineered C-terminal GGC tail (5F7GGC). Methods: 5F7GGC was site-specifically attached with a tetrazine-bearing agent via thiol-maleimide reaction. The resultant conjugate was labeled with 18F by inverse electron demand Diels-Alder cycloaddition with a trans-cyclooctene attached to 6-18F-fluoronicotinoyl moiety via a renal brush border enzyme-cleavable linker and a PEG4 chain (18F-5F7GGC). For comparisons, 5F7 sdAb was labeled using the prototypical residualizing agent, N-succinimidyl 3-(guanidinomethyl)-5-125I-iodobenzoate (iso-125I-SGMIB). The 2 labeled sdAbs were compared in paired-label studies performed in the HER2-expressing BT474M1 breast carcinoma cell line and athymic mice bearing BT474M1 subcutaneous xenografts. Small-animal PET/CT imaging after administration of 18F-5F7GGC in the above mouse model was also performed. Results:18F-5F7GGC was synthesized in an overall radiochemical yield of 8.9% ± 3.2% with retention of HER2 binding affinity and immunoreactivity. The total cell-associated and intracellular activity for 18F-5F7GGC was similar to that for coincubated iso-125I-SGMIB-5F7. Likewise, the uptake of 18F-5F7GGC in BT474M1 xenografts in mice was similar to that for iso-125I-SGMIB-5F7; however, 18F-5F7GGC exhibited significantly more rapid clearance from the kidney. Small-animal PET/CT imaging confirmed high uptake and retention in the tumor with very little background activity at 3 h except in the bladder. Conclusion: This site-specific and residualizing 18F-labeling strategy could facilitate clinical translation of 5F7 anti-HER2 sdAb as well as other sdAbs for immuno-PET.
Collapse
Affiliation(s)
- Zhengyuan Zhou
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Rebecca Meshaw
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | | |
Collapse
|
20
|
Zhou Z, McDougald D, Meshaw R, Balyasnikova I, Zalutsky MR, Vaidyanathan G. Labeling single domain antibody fragments with 18F using a novel residualizing prosthetic agent - N-succinimidyl 3-(1-(2-(2-(2-(2-[ 18F]fluoroethoxy)ethoxy)ethoxy)ethyl)-1H-1,2,3-triazol-4-yl)-5-(guanidinomethyl)benzoate. Nucl Med Biol 2021; 100-101:24-35. [PMID: 34146837 PMCID: PMC8448961 DOI: 10.1016/j.nucmedbio.2021.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Labeling single domain antibody fragments (sdAbs) with 18F is an attractive strategy for immunoPET. Earlier, we developed a residualizing label, N-succinimidyl 3-((4-(4-fluorobutyl)-1H-1,2,3-triazol-1-yl)methyl)-5-(guanidinomethyl)benzoate ([18F]RL-I), synthesized via a click reaction for labeling sdAbs with 18F, that has attractive features but suffered from modest radiochemical yields and suboptimal hydrophobicity. Herein, we have evaluated the potential utility of an analogous agent, N-succinimidyl 3-(1-(2-(2-(2-(2-[18F]fluoroethoxy)ethoxy)ethoxy)ethyl)-1H-1,2,3-triazol-4-yl)-5-(guanidinomethyl)benzoate ([18F]SFETGMB; [18F]RL-III) designed to address these limitations. METHODS [18F]RL-III was synthesized by the click reaction between 3-((2,3-bis(tert-butoxycarbonyl)guanidino)methyl)-5-ethynylbenzoate and 1-azido-2-(2-(2-(2-[18F]fluoroethoxy)ethoxy)ethoxy)ethane and subsequent deprotection. The anti-HER2 sdAbs 5F7 and 2Rs15d were labeled by conjugation with [18F]RL-III and compared in a paired-label fashion to the sdAbs labeled using N-succinimidyl 4-guanidinomethyl-3-[125I]iodobenzoate ([125I]SGMIB) or N-succinimidyl 3-guanidinomethyl-5-[125I]iodobenzoate (iso-[125I]SGMIB). The 18F-labeled sdAbs were evaluated in vitro using HER2-expressing breast and ovarian carcinoma cells (BT474/BT474M1 and SKOV-3) and in vivo in athymic mice bearing subcutaneous SKOV-3 or BT474 xenografts. PET imaging of athymic mice bearing either subcutaneous BT474 or intracranial BT474M1Br-Fluc xenografts after administration of [18F]RL-III-5F7 also was performed. RESULTS Radiochemical yields for the synthesis of Boc2-[18F]RL-III (21.5 ± 3.4%) were significantly higher than reported for Boc2-[18F]RL-I. The overall radiochemical yields for the synthesis of [18F]RL-III-2Rs15d and [18F]RL-III-5F7 from aqueous [18F]fluoride were 1.7 ± 0.7% and 3.8 ± 2.3%, respectively. Both sdAbs, labeled using [18F]RL-III, retained affinity and immunoreactivity to HER2. Uptake and internalization of [18F]RL-III-5F7 in HER2-expressing cells was higher than that seen for [18F]RL-III-2Rs15d. Although different xenograft models were used, [18F]RL-III-2Rs15d showed relatively high uptake in a number of normal tissues, while uptake of [18F]RL-III-5F7 was mainly in tumor and kidneys with minimal background activity. Concordant with the necropsy experiments, microPET imaging with [18F]RL-III-5F7 in the BT474 subcutaneous model demonstrated clear delineation of the tumor (12.2 ± 5.1% ID/g) with minimal background activity except in kidneys. A tumor uptake (max) of 0.98%ID/g and a tumor-to-normal brain ratio of 9.8:1 were observed for [18F]RL-III-5F7 in the intracranial model. CONCLUSIONS Although higher radiochemical yields than that reported for [18F]RL-I were obtained, considerable improvements are needed for this method to be of practical utility. Despite clear tumor delineation with [18F]RL-III-5F7 as early as 1 h, high activity levels in the kidneys remain a concern.
Collapse
Affiliation(s)
- Zhengyuan Zhou
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Darryl McDougald
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Rebecca Meshaw
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Irina Balyasnikova
- The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
21
|
Küppers J, Kürpig S, Bundschuh RA, Essler M, Lütje S. Radiolabeling Strategies of Nanobodies for Imaging Applications. Diagnostics (Basel) 2021; 11:1530. [PMID: 34573872 PMCID: PMC8471529 DOI: 10.3390/diagnostics11091530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
Nanobodies are small recombinant antigen-binding fragments derived from camelid heavy-chain only antibodies. Due to their compact structure, pharmacokinetics of nanobodies are favorable compared to full-size antibodies, allowing rapid accumulation to their targets after intravenous administration, while unbound molecules are quickly cleared from the circulation. In consequence, high signal-to-background ratios can be achieved, rendering radiolabeled nanobodies high-potential candidates for imaging applications in oncology, immunology and specific diseases, for instance in the cardiovascular system. In this review, a comprehensive overview of central aspects of nanobody functionalization and radiolabeling strategies is provided.
Collapse
Affiliation(s)
- Jim Küppers
- Department of Nuclear Medicine, University Hospital Bonn, 53127 Bonn, Germany; (S.K.); (R.A.B.); (M.E.); (S.L.)
| | | | | | | | | |
Collapse
|
22
|
Chigoho DM, Bridoux J, Hernot S. Reducing the renal retention of low- to moderate-molecular-weight radiopharmaceuticals. Curr Opin Chem Biol 2021; 63:219-228. [PMID: 34325089 DOI: 10.1016/j.cbpa.2021.06.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
The field of nuclear imaging and therapy is rapidly progressing with the development of targeted radiopharmaceuticals that show rapid targeting and rapid clearance with minimal background. Unfortunately, they are often reabsorbed in the kidneys, leading to possible nephrotoxicity, limiting the therapeutic dose, and/or reducing imaging quality. The blocking of endocytic receptors has been extensively used as a strategy to reduce kidney radiation. Alternatively, the physicochemical properties of radiotracers can be modulated to either prevent their reuptake or promote the excretion of radiometabolites. Other interesting strategies focus on the insertion of a cleavable linker between the radiolabel and the targeting moiety or pretargeting approaches in which the targeting moiety and radiolabel are administered separately. In the context of this review, we will discuss the latest advances and insights on strategies used to reduce renal retention of low- to moderate-molecular-weight radiopharmaceuticals.
Collapse
Affiliation(s)
- Dora Mugoli Chigoho
- Laboratory for in Vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Jessica Bridoux
- Laboratory for in Vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Sophie Hernot
- Laboratory for in Vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
23
|
Sarrett SM, Keinänen O, Dayts EJ, Dewaele-Le Roi G, Rodriguez C, Carnazza KE, Zeglis BM. Inverse electron demand Diels-Alder click chemistry for pretargeted PET imaging and radioimmunotherapy. Nat Protoc 2021; 16:3348-3381. [PMID: 34127865 PMCID: PMC8917728 DOI: 10.1038/s41596-021-00540-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/22/2021] [Indexed: 11/08/2022]
Abstract
Radiolabeled antibodies have shown promise as tools for both the nuclear imaging and endoradiotherapy of cancer, but the protracted circulation time of radioimmunoconjugates can lead to high radiation doses to healthy tissues. To circumvent this issue, we have developed an approach to positron emission tomography (PET) imaging and radioimmunotherapy (RIT) predicated on radiolabeling the antibody after it has reached its target within the body. This in vivo pretargeting strategy is based on the rapid and bio-orthogonal inverse electron demand Diels-Alder reaction between tetrazine (Tz) and trans-cyclooctene (TCO). Pretargeted PET imaging and RIT using TCO-modified antibodies in conjunction with Tz-bearing radioligands produce high activity concentrations in target tissues as well as reduced radiation doses to healthy organs compared to directly labeled radioimmunoconjugates. Herein, we describe how to prepare a TCO-modified antibody (humanized A33-TCO) as well as how to synthesize two Tz-bearing radioligands: one labeled with the positron-emitting radiometal copper-64 ([64Cu]Cu-SarAr-Tz) and one labeled with the β-emitting radiolanthanide lutetium-177 ([177Lu]Lu-DOTA-PEG7-Tz). We also provide a detailed description of pretargeted PET and pretargeted RIT experiments in a murine model of human colorectal carcinoma. Proper training in both radiation safety and the handling of laboratory mice is required for the successful execution of this protocol.
Collapse
Affiliation(s)
- Samantha M Sarrett
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Outi Keinänen
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki, Finland
| | - Eric J Dayts
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
| | - Guillaume Dewaele-Le Roi
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Cindy Rodriguez
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Kathryn E Carnazza
- Brain and Mind Research Institute & Appel Institute for Alzheimer's Disease Research, Weill Cornell Medical College, New York, NY, USA
| | - Brian M Zeglis
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA.
- PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA.
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
24
|
Scroggie KR, Perkins MV, Chalker JM. Reaction of [ 18F]Fluoride at Heteroatoms and Metals for Imaging of Peptides and Proteins by Positron Emission Tomography. Front Chem 2021; 9:687678. [PMID: 34249861 PMCID: PMC8262615 DOI: 10.3389/fchem.2021.687678] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
The ability to radiolabel proteins with [18F]fluoride enables the use of positron emission tomography (PET) for the early detection, staging and diagnosis of disease. The direct fluorination of native proteins through C-F bond formation is, however, a difficult task. The aqueous environments required by proteins severely hampers fluorination yields while the dry, organic solvents that promote nucleophilic fluorination can denature proteins. To circumvent these issues, indirect fluorination methods making use of prosthetic groups that are first fluorinated and then conjugated to a protein have become commonplace. But, when it comes to the radiofluorination of proteins, these indirect methods are not always suited to the short half-life of the fluorine-18 radionuclide (110 min). This review explores radiofluorination through bond formation with fluoride at boron, metal complexes, silicon, phosphorus and sulfur. The potential for these techniques to be used for the direct, aqueous radiolabeling of proteins with [18F]fluoride is discussed.
Collapse
Affiliation(s)
| | | | - Justin M. Chalker
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
25
|
Altunay B, Morgenroth A, Beheshti M, Vogg A, Wong NCL, Ting HH, Biersack HJ, Stickeler E, Mottaghy FM. HER2-directed antibodies, affibodies and nanobodies as drug-delivery vehicles in breast cancer with a specific focus on radioimmunotherapy and radioimmunoimaging. Eur J Nucl Med Mol Imaging 2021; 48:1371-1389. [PMID: 33179151 PMCID: PMC8113197 DOI: 10.1007/s00259-020-05094-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE The aim of the present paper is to review the role of HER2 antibodies, affibodies and nanobodies as vehicles for imaging and therapy approaches in breast cancer, including a detailed look at recent clinical data from antibody drug conjugates and nanobodies as well as affibodies that are currently under development. RESULTS Clinical and preclinical studies have shown that the use of monoclonal antibodies in molecular imaging is impaired by slow blood clearance, associated with slow and low tumor uptake and with limited tumor penetration potential. Antibody fragments, such as nanobodies, on the other hand, can be radiolabelled with short-lived radioisotopes and provide high-contrast images within a few hours after injection, allowing early diagnosis and reduced radiation exposure of patients. Even in therapy, the small radioactively labeled nanobodies prove to be superior to radioactively labeled monoclonal antibodies due to their higher specificity and their ability to penetrate the tumor. CONCLUSION While monoclonal antibodies are well established drug delivery vehicles, the current literature on molecular imaging supports the notion that antibody fragments, such as affibodies or nanobodies, might be superior in this approach.
Collapse
Affiliation(s)
- Betül Altunay
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
| | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
| | - Mohsen Beheshti
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Düsseldorf, Kerpener Str. 62, 50937, Cologne, Germany
- Division of Molecular PET-Imaging and Theranostics , Paracelsus Medical University , Salzburg, 5020, Austria
| | - Andreas Vogg
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
| | | | - Hong Hoi Ting
- Nanomab Technology Limited, Shanghai, People's Republic of China
| | | | - Elmar Stickeler
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Düsseldorf, Kerpener Str. 62, 50937, Cologne, Germany
- Department of Gynecology and Obstetrics, RWTH Aachen, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany.
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Düsseldorf, Kerpener Str. 62, 50937, Cologne, Germany.
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), 6202, Maastricht, The Netherlands.
| |
Collapse
|
26
|
Piramoon M, Khodadust F, Hosseinimehr SJ. Radiolabeled nanobodies for tumor targeting: From bioengineering to imaging and therapy. Biochim Biophys Acta Rev Cancer 2021; 1875:188529. [PMID: 33647388 DOI: 10.1016/j.bbcan.2021.188529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 02/08/2023]
Abstract
So far, numerous molecules and biomolecules have been evaluated for tumor targeting purposes for radionuclide-based imaging and therapy modalities. Due to the high affinity and specificity against tumor antigens, monoclonal antibodies are appropriate candidates for tumor targeting. However, their large size prevents their comprehensive application in radionuclide-based tumor imaging or therapy, since it leads to their low tumor penetration, low blood clearance, and thus inappropriate tumor-to-background ratio. Nowadays, the variable domain of heavy-chain antibodies from the Camelidae family, known as nanobodies (Nbs), turn into exciting candidates for medical research. Considering several innate advantages of these new tumor-targeting agents, including excellent affinity and specificity toward antigen, high solubility, high stability, fast washout from blood, convenient production, ease of selection, and low immunogenicity, it assumes that they may overcome generic problems of monoclonal antibodies, their fragments, and other vectors used for tumor imaging/therapy. After three decades of Nbs discovery, the increasing number of their preclinical and clinical investigations, which have led to outstanding results, confirm their application for tumor targeting purposes. This review describes Nbs characteristics, the diagnostic and therapeutic application of their radioconjugates, and their recent advances.
Collapse
Affiliation(s)
- Majid Piramoon
- Department of Medicinal Chemistry and Radiopharmacy, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran; Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fatemeh Khodadust
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
27
|
|
28
|
Feng Y, Zhou Z, McDougald D, Meshaw RL, Vaidyanathan G, Zalutsky MR. Site-specific radioiodination of an anti-HER2 single domain antibody fragment with a residualizing prosthetic agent. Nucl Med Biol 2021; 92:171-183. [PMID: 32448731 PMCID: PMC7657985 DOI: 10.1016/j.nucmedbio.2020.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 11/28/2022]
Abstract
INTRODUCTION As a consequence of their small size, high stability and high affinity, single domain antibody fragments (sdAbs) are appealing targeting vectors for radiopharmaceutical development. With sdAbs binding to internalizing receptors like HER2, residualizing prosthetic agents can enhance tumor retention of radioiodine, which until now has been done with random labeling approaches. Herein we evaluate a site-specific strategy utilizing a radioiodinated, residualizing maleimido moiety and the anti-HER2 sdAb 5F7 bearing a GGC tail for conjugation. METHODS Maleimidoethyl 3-(guanidinomethyl)-5-iodobenzoate ([131I]MEGMB) and its N-succinimidyl ester analogue, iso-[125I]SGMIB, were labeled by halodestannylation and conjugated with 5F7GGC and 5F7, respectively. Radiochemical purity, immunoreactivity and binding affinity were determined. Paired-label experiments directly compared iso-[125I]SGMIB-5F7 and [131I]MEGMIB-5F7GGC with regard to internalization/residualization and affinity on HER2-expressing SKOV-3 ovarian carcinoma cells as well as biodistribution and metabolite distribution in athymic mice with subcutaneous SKOV-3 xenografts. RESULTS [131I]MEGMIB-5F7GGC had an immunoreactivity of 81.3% and Kd = 0.94 ± 0.27 nM. Internalization assays demonstrated high intracellular trapping for both conjugates, For example, at 1 h, intracellular retention was 50.30 ± 3.36% for [131I]MEGMIB-5F7GGC and 55.95 ± 3.27% for iso-[125I]SGMIB-5F7, while higher retention was seen for iso-[125I]SGMIB-5F7 at later time points. Peak tumor uptake was similar for both conjugates (8.35 ± 2.66%ID/g and 8.43 ± 2.84%ID/g for iso-[125I]SGMIB-5F7 and [131I]MEGMIB-5F7GGC at 1 h, respectively); however, more rapid normal tissue clearance was seen for [131I]MEGMIB-5F7GGC, with a 2-fold higher tumor-to-kidney ratio and a 3-fold higher tumor-to-liver ratio compared with co-injected iso-[125I]SGMIB-5F7. Consisted with this, generation of labeled catabolites in the kidneys was higher for [131I]MEGMIB-5F7GGC. CONCLUSION [131I]MEGMIB-5F7GGC offers similar tumor targeting as iso-[125I]SGMIB-5F7 but with generally lower normal tissue uptake. ADVANCES IN KNOWLEDGE AND IMPLICATION FOR PATIENT CARE The site specific nature of the [131I]MEGMIB reagent may facilitate clinical translation, particularly for sdAb with compromised affinity after random labeling.
Collapse
Affiliation(s)
- Yutian Feng
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Zhengyuan Zhou
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Darryl McDougald
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Rebecca L Meshaw
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
29
|
Verhaar ER, Woodham AW, Ploegh HL. Nanobodies in cancer. Semin Immunol 2020; 52:101425. [PMID: 33272897 DOI: 10.1016/j.smim.2020.101425] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/24/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
For treatment and diagnosis of cancer, antibodies have proven their value and now serve as a first line of therapy for certain cancers. A unique class of antibody fragments called nanobodies, derived from camelid heavy chain-only antibodies, are gaining increasing acceptance as diagnostic tools and are considered also as building blocks for chimeric antigen receptors as well as for targeted drug delivery. The small size of nanobodies (∼15 kDa), their stability, ease of manufacture and modification for diverse formats, short circulatory half-life, and high tissue penetration, coupled with excellent specificity and affinity, account for their attractiveness. Here we review applications of nanobodies in the sphere of tumor biology.
Collapse
Affiliation(s)
- Elisha R Verhaar
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States
| | - Andrew W Woodham
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
30
|
Zhou Z, Zalutsky MR, Vaidyanathan G. Labeling a TCO-functionalized single domain antibody fragment with 18F via inverse electron demand Diels Alder cycloaddition using a fluoronicotinyl moiety-bearing tetrazine derivative. Bioorg Med Chem 2020; 28:115634. [PMID: 32773089 DOI: 10.1016/j.bmc.2020.115634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023]
Abstract
Single domain antibody fragments (sdAbs) exhibit a rapid tumor uptake and fast blood clearance amenable for labeling with 18F (t½ = 110 min) but suffer from high kidney accumulation. Previously, we developed a method for 18F-labeling of sdAbs via trans-cyclooctene (TCO)-tetrazine (Tz) inverse electron demand Diel's Alder cycloaddition reaction (IEDDAR) that incorporated a renal brush border enzyme (RBBE)-cleavable linker. Although >15 fold reduction in kidney activity levels was achieved, tumor uptake was compromised. Here we investigate whether replacing the [18F]AlF-NOTA moiety with [18F]fluoronicotinyl would rectify this problem. Anti-HER2 sdAb 5F7 was first derivatized with a TCO-containing agent that included the RBBE-cleavable linker GlyLys (GK) and a PEG chain, and then subjected to IEDDAR with 6-[18F]fluoronicotinyl-PEG4-methyltetrazine to provide [18F]FN-PEG4-Tz-TCO-GK-PEG4-5F7 ([18F]FN-GK-5F7). For comparisons, a control lacking GK linker and 5F7 labeled using residualizing N-succinimidyl 3-guanidinomethyl-5-[125I]iodobenzoate (iso-[125I]SGMIB) also were synthesized. Radiochemical purity, affinity (KD) and immunoreactive fraction of [18F]FN-GK-5F7 were 99%, 5.4 ± 0.7 nM and 72.5 ± 4.3%, respectively. Tumor uptake of [18F]FN-GK-5F7 in athymic mice bearing subcutaneous SKOV3 xenografts (3.7 ± 1.2% ID/g and 3.4 ± 1.0% ID/g at 1 h and 3 h, respectively) was 2- to 3-fold lower than for co-injected iso-[125I]SGMIB-5F7 (6.9 ± 1.9 %ID/g and 8.7 ± 3.0 %ID/g). However, due to its 6-fold lower kidney activity levels, tumor-to-kidney ratios for [18F]FN-GK-5F7 were 3-4 times higher than those for co-injected iso-[125I]SGMIB-5F7 as well as those observed for the 18F conjugate lacking the RBBE-cleavable linker. Micro-PET/CT imaging of [18F]FN-GK-5F7 in mice with SKOV-3 subcutaneous xenografts clearly delineated tumor as early as 1 h with minimal activity in the kidneys; however, there was considerable activity in gallbladder and intestines. Although the tumor uptake of [18F]FN-GK-5F7 was unexpectedly disappointing, incorporating an alternative RBBE-cleavable linker into this labeling strategy may ameliorate this problem.
Collapse
Affiliation(s)
- Zhengyuan Zhou
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
31
|
Dekempeneer Y, Caveliers V, Ooms M, Maertens D, Gysemans M, Lahoutte T, Xavier C, Lecocq Q, Maes K, Covens P, Miller BW, Bruchertseifer F, Morgenstern A, Cardinaels T, D’Huyvetter M. Therapeutic Efficacy of 213Bi-labeled sdAbs in a Preclinical Model of Ovarian Cancer. Mol Pharm 2020; 17:3553-3566. [DOI: 10.1021/acs.molpharmaceut.0c00580] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yana Dekempeneer
- Institute for Nuclear Materials Science, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Vicky Caveliers
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
- Department of Nuclear Medicine, UZ Brussel, 1090 Brussels, Belgium
| | - Maarten Ooms
- Institute for Nuclear Materials Science, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium
| | - Dominic Maertens
- Institute for Nuclear Materials Science, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium
| | - Mireille Gysemans
- Institute for Nuclear Materials Science, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium
| | - Tony Lahoutte
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
- Department of Nuclear Medicine, UZ Brussel, 1090 Brussels, Belgium
| | - Catarina Xavier
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Quentin Lecocq
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Ken Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Peter Covens
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Brian W. Miller
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Frank Bruchertseifer
- Directorate for Nuclear Safety and Security, European Commission−Joint Research Centre, Karlsruhe 76344, Germany
| | - Alfred Morgenstern
- Directorate for Nuclear Safety and Security, European Commission−Joint Research Centre, Karlsruhe 76344, Germany
| | - Thomas Cardinaels
- Institute for Nuclear Materials Science, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium
- Department of Chemistry, KU Leuven, Heverlee, 3000 Leuven, Belgium
| | - Matthias D’Huyvetter
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| |
Collapse
|
32
|
Abstract
Immuno-positron emission tomography (immunoPET) is a paradigm-shifting molecular imaging modality combining the superior targeting specificity of monoclonal antibody (mAb) and the inherent sensitivity of PET technique. A variety of radionuclides and mAbs have been exploited to develop immunoPET probes, which has been driven by the development and optimization of radiochemistry and conjugation strategies. In addition, tumor-targeting vectors with a short circulation time (e.g., Nanobody) or with an enhanced binding affinity (e.g., bispecific antibody) are being used to design novel immunoPET probes. Accordingly, several immunoPET probes, such as 89Zr-Df-pertuzumab and 89Zr-atezolizumab, have been successfully translated for clinical use. By noninvasively and dynamically revealing the expression of heterogeneous tumor antigens, immunoPET imaging is gradually changing the theranostic landscape of several types of malignancies. ImmunoPET is the method of choice for imaging specific tumor markers, immune cells, immune checkpoints, and inflammatory processes. Furthermore, the integration of immunoPET imaging in antibody drug development is of substantial significance because it provides pivotal information regarding antibody targeting abilities and distribution profiles. Herein, we present the latest immunoPET imaging strategies and their preclinical and clinical applications. We also emphasize current conjugation strategies that can be leveraged to develop next-generation immunoPET probes. Lastly, we discuss practical considerations to tune the development and translation of immunoPET imaging strategies.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
| | - Zachary T Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
33
|
Rondon A, Degoul F. Antibody Pretargeting Based on Bioorthogonal Click Chemistry for Cancer Imaging and Targeted Radionuclide Therapy. Bioconjug Chem 2020; 31:159-173. [PMID: 31855602 DOI: 10.1021/acs.bioconjchem.9b00761] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bioorthogonal click chemistry-employing antibody-conjugated trans-cyclooctenes (TCO) and tetrazine (Tz)-based radioligands able to covalently bind in vivo-appeared recently as a potential alternative to circumvent the hematotoxicity induced by radioimmunotherapy of solid tumors. This Review focuses on the recent advances concerning TCO/Tz pretargeting in both cancer imaging and targeted-radionuclide therapy for prospective clinical transfer. We exhaustively identified 25 PubMed publications reporting preclinical imaging and 5 therapy studies with full mAbs as targeting vectors, since its first application in 2010. The fast, safe, modulable, and specific TCO/Tz pretargeting showed high potential as a theranostic tool to get more personalized and precise cancer care. The recent optimizations reported here highlighted a possible first clinical evaluation of IEDDA pretargeting in the coming years.
Collapse
Affiliation(s)
- Aurélie Rondon
- Université Clermont Auvergne , Imagerie Moléculaire et Stratégies Théranostiques , BP 184, F-63005 Clermont-Ferrand , France.,Inserm, U 1240 , F-63000 Clermont-Ferrand , France.,Centre Jean Perrin , F-63011 Clermont-Ferrand , France
| | - Françoise Degoul
- Université Clermont Auvergne , Imagerie Moléculaire et Stratégies Théranostiques , BP 184, F-63005 Clermont-Ferrand , France.,Inserm, U 1240 , F-63000 Clermont-Ferrand , France.,Centre Jean Perrin , F-63011 Clermont-Ferrand , France
| |
Collapse
|
34
|
Fersing C, Bouhlel A, Cantelli C, Garrigue P, Lisowski V, Guillet B. A Comprehensive Review of Non-Covalent Radiofluorination Approaches Using Aluminum [ 18F]fluoride: Will [ 18F]AlF Replace 68Ga for Metal Chelate Labeling? Molecules 2019; 24:E2866. [PMID: 31394799 PMCID: PMC6719958 DOI: 10.3390/molecules24162866] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022] Open
Abstract
Due to its ideal physical properties, fluorine-18 turns out to be a key radionuclide for positron emission tomography (PET) imaging, for both preclinical and clinical applications. However, usual biomolecules radiofluorination procedures require the formation of covalent bonds with fluorinated prosthetic groups. This drawback makes radiofluorination impractical for routine radiolabeling, gallium-68 appearing to be much more convenient for the labeling of chelator-bearing PET probes. In response to this limitation, a recent expansion of the 18F chemical toolbox gave aluminum [18F]fluoride chemistry a real prominence since the late 2000s. This approach is based on the formation of an [18F][AlF]2+ cation, complexed with a 9-membered cyclic chelator such as NOTA, NODA or their analogs. Allowing a one-step radiofluorination in an aqueous medium, this technique combines fluorine-18 and non-covalent radiolabeling with the advantage of being very easy to implement. Since its first reports, [18F]AlF radiolabeling approach has been applied to a wide variety of potential PET imaging vectors, whether of peptidic, proteic, or small molecule structure. Most of these [18F]AlF-labeled tracers showed promising preclinical results and have reached the clinical evaluation stage for some of them. The aim of this report is to provide a comprehensive overview of [18F]AlF labeling applications through a description of the various [18F]AlF-labeled conjugates, from their radiosynthesis to their evaluation as PET imaging agents.
Collapse
Affiliation(s)
- Cyril Fersing
- Institut de Recherche en Cancérologie de Montpellier (IRCM), University of Montpellier, INSERM U1194, Montpellier Cancer Institute (ICM), 34298 Montpellier, France.
- Nuclear Medicine Department, Montpellier Cancer Institute (ICM), University of Montpellier, 208 Avenue des Apothicaires, 34298 Montpellier CEDEX 5, France.
| | - Ahlem Bouhlel
- CERIMED, Aix-Marseille University, 13005 Marseille, France
- Centre de recherche en CardioVasculaire et Nutrition (C2VN), Aix-Marseille University, INSERM 1263, INRA 1260, 13385 Marseille, France
| | - Christophe Cantelli
- Institut de Recherche en Cancérologie de Montpellier (IRCM), University of Montpellier, INSERM U1194, Montpellier Cancer Institute (ICM), 34298 Montpellier, France
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques, 34093 Montpellier CEDEX, France
| | - Philippe Garrigue
- CERIMED, Aix-Marseille University, 13005 Marseille, France
- Centre de recherche en CardioVasculaire et Nutrition (C2VN), Aix-Marseille University, INSERM 1263, INRA 1260, 13385 Marseille, France
- Department of Nuclear Medicine, Aix-Marseille University, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13385 Marseille, France
| | - Vincent Lisowski
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques, 34093 Montpellier CEDEX, France
| | - Benjamin Guillet
- CERIMED, Aix-Marseille University, 13005 Marseille, France
- Centre de recherche en CardioVasculaire et Nutrition (C2VN), Aix-Marseille University, INSERM 1263, INRA 1260, 13385 Marseille, France
- Department of Nuclear Medicine, Aix-Marseille University, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13385 Marseille, France
| |
Collapse
|
35
|
Dekempeneer Y, Bäck T, Aneheim E, Jensen H, Puttemans J, Xavier C, Keyaerts M, Palm S, Albertsson P, Lahoutte T, Caveliers V, Lindegren S, D'Huyvetter M. Labeling of Anti-HER2 Nanobodies with Astatine-211: Optimization and the Effect of Different Coupling Reagents on Their in Vivo Behavior. Mol Pharm 2019; 16:3524-3533. [PMID: 31268724 DOI: 10.1021/acs.molpharmaceut.9b00354] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The use of nanobodies (Nbs) as vehicles in targeted alpha therapy (TAT) has gained great interest because of their excellent properties. They combine high in vivo affinity and specificity of binding with fast kinetics. This research investigates a novel targeted therapy that combines the α-particle emitter astatine-211 (211At) and the anti-HER2 Nb 2Rs15d to selectively target HER2+ cancer cells. Two distinctive radiochemical methodologies are investigated using three different coupling reagents. The first method uses the coupling reagents, N-succinimidyl 4-(1,2-bis-tert-butoxycarbonyl)guanidinomethyl-3-(trimethylstannyl)benzoate (Boc2-SGMTB) and N-succinimidyl-3-(trimethylstannyl)benzoate (m-MeATE), which are both directed to amino groups on the Nb, resulting in random conjugation. The second method aims at obtaining a homogeneous tracer population, via a site-specific conjugation of the N-[2-(maleimido)ethyl]-3-(trimethylstannyl)benzamide (MSB) reagent onto the carboxyl-terminal cysteine of the Nb. The resulting radioconjugates are evaluated in vitro and in vivo. 2Rs15d is labeled with 211At using Boc2-SGMTB, m-MeATE, and MSB. After astatination and purification, the binding specificity of the radioconjugates is validated on HER2+ cells, followed by an in vivo biodistribution assessment in SKOV-3 xenografted mice. α-camera imaging is performed to determine uptake and activity distribution in kidneys/tumors. 2Rs15d astatination resulted in a high radiochemical purity >95% for all radioconjugates. The biodistribution studies of all radioconjugates revealed comparable tumor uptake (higher than 8% ID/g at 1 h). [211At]SAGMB-2Rs15d showed minor uptake in normal tissues. Only in the kidneys, a higher uptake was measured after 1 h, but decreased rapidly after 3 h. Astatinated Nbs consisting of m-MeATE or MSB reagents revealed elevated uptake in lungs and stomach, indicating the presence of released 211At. α-Camera imaging of tumors revealed a homogeneous activity distribution. The radioactivity in the kidneys was initially concentrated in the renal cortex, while after 3 h most radioactivity was measured in the medulla, confirming the fast washout into urine. Changing the reagents for Nb astatination resulted in different in vivo biodistribution profiles, while keeping the targeting moiety identical. Boc2-SGMTB is the preferred reagent for Nb astatination because of its high tumor uptake, its low background signals, and its fast renal excretion. We envision [211At]SAGMB-2Rs15d to be a promising therapeutic agent for TAT and aim toward efficacy evaluation.
Collapse
Affiliation(s)
- Yana Dekempeneer
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI) , Vrije Universiteit Brussel , Brussels 1090 , Belgium.,Institute for Nuclear Materials Science , Belgian Nuclear Research Center (SCK·CEN) , Mol 2400 , Belgium
| | - Tom Bäck
- Department of Radiation Physics, Sahlgrenska Academy , University of Gothenburg , Gothenburg SE-413 45 , Sweden
| | - Emma Aneheim
- Department of Radiation Physics, Sahlgrenska Academy , University of Gothenburg , Gothenburg SE-413 45 , Sweden
| | - Holger Jensen
- The PET and Cyclotron Unit, KF3982 , Copenhagen University Hospital , Copenhagen 2100 , Denmark
| | - Janik Puttemans
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI) , Vrije Universiteit Brussel , Brussels 1090 , Belgium
| | - Catarina Xavier
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI) , Vrije Universiteit Brussel , Brussels 1090 , Belgium
| | - Marleen Keyaerts
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI) , Vrije Universiteit Brussel , Brussels 1090 , Belgium.,Nuclear Medicine Department , Universitair Ziekenhuis Brussel (UZ Brussel) , Brussels 1090 , Belgium
| | - Stig Palm
- Department of Radiation Physics, Sahlgrenska Academy , University of Gothenburg , Gothenburg SE-413 45 , Sweden
| | - Per Albertsson
- Department of Radiation Physics, Sahlgrenska Academy , University of Gothenburg , Gothenburg SE-413 45 , Sweden
| | - Tony Lahoutte
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI) , Vrije Universiteit Brussel , Brussels 1090 , Belgium.,Nuclear Medicine Department , Universitair Ziekenhuis Brussel (UZ Brussel) , Brussels 1090 , Belgium
| | - Vicky Caveliers
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI) , Vrije Universiteit Brussel , Brussels 1090 , Belgium.,Nuclear Medicine Department , Universitair Ziekenhuis Brussel (UZ Brussel) , Brussels 1090 , Belgium
| | - Sture Lindegren
- Department of Radiation Physics, Sahlgrenska Academy , University of Gothenburg , Gothenburg SE-413 45 , Sweden
| | - Matthias D'Huyvetter
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI) , Vrije Universiteit Brussel , Brussels 1090 , Belgium
| |
Collapse
|