1
|
Wang Q, Huang W, Sun Q, Le M, Cai L, Jia YG. Facially amphiphilic skeleton-derived antibacterial crown ether/silver ion complexes. SOFT MATTER 2025; 21:2152-2159. [PMID: 39989433 DOI: 10.1039/d4sm01192a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Silver and its derivatives have been widely explored for their antibacterial properties in the treatment of bacterial infections. However, the biological toxicity of silver limits its further development and application. In this study, we designed a facially amphiphilic skeleton incorporating crown ether moieties based on the dendrimer D-CA6-CE. The high-density crown ether units within this structure enable the chelation of silver ions, forming facially amphiphilic skeleton-derived D-CA6-CE/Ag+ complexes. These results indicate that D-CA6-CE/Ag+ can self-assemble into nano-micelles in aqueous solution. D-CA6-CE/Ag+ exhibited high antibacterial activity against Escherichia coli and Staphylococcus aureus, significantly reducing the minimum inhibitory concentrations (MICs) of Ag+ to 6.13 ± 0.19 and 7.33 ± 0.13 μg mL-1, respectively. This antibacterial efficacy surpassed that of silver sulfadiazine, primarily attributed to the enhanced ability to disturb and destroy bacterial membranes by introducing the amphiphilic structure of the cholic acid units. In addition, D-CA6-CE/Ag+ also exhibited lower hemolysis (approximately four times lower) and reduced cytotoxicity compared to silver sulfadiazine. This was likely due to the micellar structure formed by D-CA6-CE/Ag+, which further decreases the direct contact between Ag+ and cells. In summary, the D-CA6-CE/Ag+ complex, with its facially amphiphilic skeletons, exhibited superior antibacterial performance and lower biological toxicity than silver sulfadiazine does. These properties highlight its potential as a promising candidate for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Qingsheng Wang
- Orthopedics Department, General Hospital of Pingmei Shenma Group, Pingdingshan 467000, China
| | - Wen Huang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Qian Sun
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Mengqi Le
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Lili Cai
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519040, China.
| | - Yong-Guang Jia
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China.
| |
Collapse
|
2
|
Safwan SM, Mehta D, Arora A, Khatol S, Singh M, Rana K, Gupta SK, Kumar Y, Verma V, Saini V, Bajaj A. Niacin-Cholic Acid-Peptide Conjugate Act as a Potential Antibiotic Adjuvant to Mitigate Polymicrobial Infections Caused by Gram-Negative Pathogens. ACS Infect Dis 2024; 10:4146-4155. [PMID: 39564818 DOI: 10.1021/acsinfecdis.4c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Polymicrobial wound infections caused by Gram-negative bacteria and associated inflammation are challenging to manage, as many antibiotics do not work against these infections. Utilizing adjuvants to repurpose the existing antibiotics for mitigating microbial infections presents an alternative therapeutic strategy. We designed and developed a niacin-cholic acid-peptide conjugate (1) to rejuvenate the therapeutic efficacy of macrolide antibiotics against Gram-negative pathogens. We conjugated niacin with anti-inflammatory properties at the carboxyl terminal of the cholic acid and dipeptide (glycine-valine) at the three hydroxyl terminals of cholic acid to obtain the amphiphile 1. Our findings demonstrated that amphiphile 1 serves as a microbial membrane disruptor that facilitates the entry of erythromycin (ERY) in bacterial cells. The combination of amphiphile 1 and ERY is bactericidal and can effectively eliminate monomicrobial and polymicrobial Gram-negative bacterial biofilms. We further demonstrated the antibacterial effectiveness of combining 1 and ERY against monomicrobial and polymicrobial wound infections. Together, these findings indicate that amphiphile 1 revitalizes the remedial efficacy of ERY against Gram-negative bacteria.
Collapse
Affiliation(s)
- Sayed M Safwan
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Devashish Mehta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Amit Arora
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Steffi Khatol
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Mohit Singh
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Kajal Rana
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Sonu K Gupta
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Yashwant Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Vikas Verma
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Varsha Saini
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| |
Collapse
|
3
|
Safwan SM, Kumar N, Mehta D, Singh M, Saini V, Pandey N, Khatol S, Batheja S, Singh J, Walia P, Bajaj A. Xanthone Derivatives Enhance the Therapeutic Potential of Neomycin against Polymicrobial Gram-Negative Bacterial Infections. ACS Infect Dis 2024; 10:527-540. [PMID: 38294409 DOI: 10.1021/acsinfecdis.3c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Gram-negative bacterial infections are difficult to manage as many antibiotics are ineffective owing to the presence of impermeable bacterial membranes. Polymicrobial infections pose a serious threat due to the inadequate efficacy of available antibiotics, thereby necessitating the administration of antibiotics at higher doses. Antibiotic adjuvants have emerged as a boon as they can augment the therapeutic potential of available antibiotics. However, the toxicity profile of antibiotic adjuvants is a major hurdle in clinical translation. Here, we report the design, synthesis, and biological activities of xanthone-derived molecules as potential antibiotic adjuvants. Our SAR studies witnessed that the p-dimethylamino pyridine-derivative of xanthone (X8) enhances the efficacy of neomycin (NEO) against Escherichia coli and Pseudomonas aeruginosa and causes a synergistic antimicrobial effect without any toxicity against mammalian cells. Biochemical studies suggest that the combination of X8 and NEO, apart from inhibiting protein synthesis, enhances the membrane permeability by binding to lipopolysaccharide. Notably, the combination of X8 and NEO can disrupt the monomicrobial and polymicrobial biofilms and show promising therapeutic potential against a murine wound infection model. Collectively, our results unveil the combination of X8 and NEO as a suitable adjuvant therapy for the inhibition of the Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Sayed Mohamad Safwan
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Neeraj Kumar
- Lord Shiva College of Pharmacy, Near Civil Hospital, Sirsa 125055, Haryana, India
| | - Devashish Mehta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Mohit Singh
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Varsha Saini
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Nishant Pandey
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Steffi Khatol
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Shalini Batheja
- Lord Shiva College of Pharmacy, Near Civil Hospital, Sirsa 125055, Haryana, India
| | - Jitender Singh
- Lord Shiva College of Pharmacy, Near Civil Hospital, Sirsa 125055, Haryana, India
| | - Preeti Walia
- Lord Shiva College of Pharmacy, Near Civil Hospital, Sirsa 125055, Haryana, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| |
Collapse
|
4
|
Arora A, Singh M, Saini V, Mehta D, Safwan SM, Pandey N, Verma V, Bajaj A. Cholic Acid-Derived Gemini Amphiphile Can Eradicate Interkingdom Polymicrobial Biofilms and Wound Infections. ACS Infect Dis 2024; 10:138-154. [PMID: 38146853 DOI: 10.1021/acsinfecdis.3c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Biofilm infections are mainly caused by Gram-positive bacteria (GPB) like Staphylococcus aureus, Gram-negative bacteria (GNB) like Pseudomonas aeruginosa, and fungi like Candida albicans. These infections are responsible for antimicrobial tolerance, and commensal interactions of these microbes pose a severe threat to chronic infections. Treatment therapies against biofilm infections are limited to eradicating only 20-30% of infections. Here, we present the synthesis of a series of bile acid-derived molecules using lithocholic acid, deoxycholic acid, and cholic acid where two bile acid molecules are tethered through 3'-hydroxyl or 24'-carboxyl terminals with varying spacer length (trimethylene, pentamethylene, octamethylene, and dodecamethylene). Our structure-activity relationship investigations revealed that G21, a cholic acid-derived gemini amphiphile having trimethylene spacer tethered through the C24 position, is a broad-spectrum antimicrobial agent. Biochemical studies witnessed that G21 interacts with negatively charged lipoteichoic acid, lipopolysaccharide, and phosphatidylcholine moieties of GPB, GNB, and fungi and disrupts the microbial cell membranes. We further demonstrated that G21 can eradicate polymicrobial biofilms and wound infections and prevent bacteria and fungi from developing drug resistance. Therefore, our findings revealed the potential of G21 as a versatile antimicrobial agent capable of effectively targeting polymicrobial biofilms and wound infections, suggesting that it is a promising antimicrobial agent for future applications.
Collapse
Affiliation(s)
- Amit Arora
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana, India
| | - Mohit Singh
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Varsha Saini
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Devashish Mehta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Sayed M Safwan
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Nishant Pandey
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Vikas Verma
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| |
Collapse
|
5
|
Yuan J, Wang J, Li X, Zhang Y, Xian J, Wang C, Zhang J, Wu C. Amphiphilic small molecule antimicrobials: From cationic antimicrobial peptides (CAMPs) to mechanism-related, structurally-diverse antimicrobials. Eur J Med Chem 2023; 262:115896. [PMID: 39491431 DOI: 10.1016/j.ejmech.2023.115896] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
Bacterial infections are characterized by their rapid and widespread proliferation, leading to significant morbidity. Despite the availability of a variety of antimicrobial drugs, the resistance exhibited by pathogenic microorganisms towards these drugs demonstrates a consistent upward trajectory year after year. This trend can be attributed to the abuse or misuse of antibiotics. Although antimicrobial peptides can avoid the emergence of drug resistance to a certain extent, their clinical application has been hindered by factors such as their high production cost, poor in vivo stability, and potential cytotoxicity. Consequently, there arises an urgent need for the development of novel antimicrobial drugs. Small-molecule amphiphatic antimicrobials have a good prospect for research and development. These peptides hold the potential to address several issues, including the high cost of antimicrobial peptide production, poor in vivo stability, and cytotoxicity. Moreover, they exhibit the capability to overcome bacterial resistance, thereby considerably satisfying market demands and clinical needs. This paper reviews recent research pertaining to small molecule host-defending amphiphatic antimicrobials with cationic amphiphilic structures. It focuses on the design concepts, inherent relationships, drug-like properties, antimicrobial activities, application prospects, and emerging screening methods for novel antimicrobial. This review assumes paramount importance in mitigating the current shortcomings of antimicrobial agents. It also provides potential new ideas and methodologies for the research and development of antimicrobial agents.
Collapse
Affiliation(s)
- Jiani Yuan
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Xiaoxue Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ya Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jinghong Xian
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Chengyong Wu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
6
|
Mehta D, Saini V, Bajaj A. Recent developments in membrane targeting antifungal agents to mitigate antifungal resistance. RSC Med Chem 2023; 14:1603-1628. [PMID: 37731690 PMCID: PMC10507810 DOI: 10.1039/d3md00151b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/22/2023] [Indexed: 09/22/2023] Open
Abstract
Fungal infections cause severe and life-threatening complications especially in immunocompromised individuals. Antifungals targeting cellular machinery and cell membranes including azoles are used in clinical practice to manage topical to systemic fungal infections. However, continuous exposure to clinically used antifungal agents in managing the fungal infections results in the development of multi-drug resistance via adapting different kinds of intrinsic and extrinsic mechanisms. The unique chemical composition of fungal membranes presents attractive targets for antifungal drug discovery as it is difficult for fungal cells to modify the membrane targets for emergence of drug resistance. Here, we discussed available antifungal drugs with their detailed mechanism of action and described different antifungal resistance mechanisms. We further emphasized structure-activity relationship studies of membrane-targeting antifungal agents, and classified membrane-targeting antifungal agents on the basis of their core scaffold with detailed pharmacological properties. This review aims to pique the interest of potential researchers who could explore this interesting and intricate fungal realm.
Collapse
Affiliation(s)
- Devashish Mehta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology Faridabad-121001 Haryana India
| | - Varsha Saini
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology Faridabad-121001 Haryana India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology Faridabad-121001 Haryana India
| |
Collapse
|
7
|
Zhang L, Fan Y, Galantini L, Schillén K, Del Giudice A, Du G, Wang Y. Noncovalent Bile Acid Oligomers as Facial Amphiphilic Antimicrobials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:495-506. [PMID: 36529944 DOI: 10.1021/acs.langmuir.2c02787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
New antimicrobial agents are needed to address the ever-growing risk of bacterial resistance, particularly for methicillin- and vancomycin-resistant Staphylococcus aureus (S. aureus). Here, we report a class of bile acid oligomers as facial amphiphilic antimicrobials, which are noncovalently fabricated by cholic acid (CA) and deoxycholic acid (DCA) with polyamines (e.g., diamines, diethylenetriamine, spermidine, and spermine). The antibacterial activities of these bile acid oligomers (CA/polyamines and DCA/polyamines) against S. aureus become stronger with increasing the amine group numbers of polyamines without obviously enhanced cytotoxicity and skin irritation. DCA/spermine, entirely composed of natural products, exhibits the best antibacterial activity but the lowest cytotoxicity and the weakest skin irritation. All CA/polyamines and DCA/polyamines form well-ordered ribbon-like aggregates, collecting numerous facial amphiphilic structures to significantly enhance the interactions with bacterial membranes. In particular, the biogenic polyamines with more than two amine groups provide extra positively charged sites, hence facilitating the binding of bile acid oligomers to the negatively charged outer membrane of the bacteria via electrostatic interaction. This in turn promotes more oligomeric bile acid units that can be inserted into the membrane through hydrophobic interaction between bile acids and lipid domains. The noncovalently constructed and separable amphiphilic antimicrobials can avoid the long-term coexistence of microorganisms and antibacterial molecules in different acting modes. Therefore, the noncovalent bile acid oligomers, especially those with higher oligomerization degrees, can be a potential approach to effectively enhance antibacterial activity, improve environmental friendliness, and reduce bacterial drug resistance.
Collapse
Affiliation(s)
- Liangchen Zhang
- Chinese Academy of Sciences Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yaxun Fan
- Chinese Academy of Sciences Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Luciano Galantini
- Department of Chemistry, Sapienza University of Rome, P.O. Box 34-Roma 62, Piazzale A. Moro 5, I-00185 Roma, Italy
| | - Karin Schillén
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Alessandra Del Giudice
- Department of Chemistry, Sapienza University of Rome, P.O. Box 34-Roma 62, Piazzale A. Moro 5, I-00185 Roma, Italy
| | - Guanqun Du
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Yilin Wang
- Chinese Academy of Sciences Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
8
|
Shim JH, Gwak S, Ahn BK, Han H, Hong Y, Shin OS. Investigation of d-Amino Acid-Based Surfactants and Nanocomposites with Gold and Silica Nanoparticles as against Multidrug-Resistant Bacteria Agents. ACS OMEGA 2022; 7:46146-46155. [PMID: 36570237 PMCID: PMC9773340 DOI: 10.1021/acsomega.2c04220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
d-amino acid-based surfactants (d-AASs) were synthesized and their antimicrobial activity was evaluated. N-α-lauroyl-d-arginine ethyl ester hydrochloride (d-LAE), d-proline dodecyl ester (d-PD), and d-alanine dodecyl ester (d-AD) were found to have antibacterial activity against both Gram-positive and -negative bacteria, but less efficacy against Gram-negative bacteria. For these reasons, combining antimicrobial agents with nanoparticles is a promising technique for improving their antibacterial properties to eliminate drug-resistant pathogens. d-LAE coated on gold (AuNP) and silica (SiNP) nanoparticles has more efficient antibacterial activity than that of d-LAE alone. However, unlike d-LAE, d-PD has enhanced antibacterial activity upon being coated on AuNP. The antibacterial d-AASs and their nanocomposites with nanoparticles were synthesized in an environmentally friendly manner and are expected to be valuable new antimicrobial agents against multidrug-resistant (MDR) pathogens.
Collapse
Affiliation(s)
- Jae Ho Shim
- Department
of Anatomy, Korea University College of
Medicine, Seoul 02842, Korea
| | - Sungduk Gwak
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Byung Kook Ahn
- Department
of Anatomy, Korea University College of
Medicine, Seoul 02842, Korea
| | - Hogyu Han
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Yeonsun Hong
- Department
of Microbiology and Immunology, David H. Smith Center for Vaccine
Biology and Immunology, University of Rochester, Rochester, New York 14642, United States
| | - Ok Sarah Shin
- BK21
Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea
| |
Collapse
|
9
|
Gautier T, Olivieiro N, Ferron S, Le Pogam P, David-Le Gall S, Sauvager A, Leroyer P, Cannie I, Dion S, Sweidan A, Loréal O, Tomasi S, Bousarghin L. Bacteroides fragilis derived metabolites, identified by molecular networking, decrease Salmonella virulence in mice model. Front Microbiol 2022; 13:1023315. [DOI: 10.3389/fmicb.2022.1023315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022] Open
Abstract
In the gut microbiota, resident bacteria prevent pathogens infection by producing specific metabolites. Among bacteria belonging to phylum Bacteroidota, we have previously shown that Bacteroides fragilis or its cell-free supernatant inhibited in vitro Salmonella Heidelberg translocation. In the present study, we have analyzed this supernatant to identify bioactive molecules after extraction and subsequent fractionation using a semi-preparative reversed-phase Liquid Chromatography High-Resolution Tandem Mass Spectrometry (LC-HRMS/MS). The results indicated that only two fractions (F3 and F4) strongly inhibited S. Heidelberg translocation in a model mimicking the intestinal epithelium. The efficiency of the bioactive fractions was evaluated in BALB/c mice, and the results showed a decrease of S. Heidelberg in Peyer’s patches and spleen, associated with a decrease in inflammatory cytokines and neutrophils infiltration. The reduction of the genus Alistipes in mice receiving the fractions could be related to the anti-inflammatory effects of bioactive fractions. Furthermore, these bioactive fractions did not alter the gut microbiota diversity in mice. To further characterize the compounds present in these bioactive fractions, Liquid Chromatography High-Resolution Tandem Mass Spectrometry (LC-HRMS/MS) data were analyzed through molecular networking, highlighting cholic acid (CA) and deoxycholic acid. In vitro, CA had inhibitory activity against the translocation of S. Heidelberg by significantly decreasing the expression of Salmonella virulence genes such as sipA. The bioactive fractions also significantly downregulated the flagellar gene fliC, suggesting the involvement of other active molecules. This study showed the interest to characterize better the metabolites produced by B. fragilis to make them means of fighting pathogenic bacteria by targeting their virulence factor without modifying the gut microbiota.
Collapse
|
10
|
Saini V, Mehta D, Gupta S, Kumar S, Rani P, Rana K, Rajput K, Jain D, Pal G, Aggarwal B, Pal S, Gupta SK, Kumar Y, Ramu VS, Bajaj A. Targeting Vancomycin-Resistant Enterococci (VRE) Infections and Van Operon-Mediated Drug Resistance Using Dimeric Cholic Acid–Peptide Conjugates. J Med Chem 2022; 65:15312-15326. [DOI: 10.1021/acs.jmedchem.2c01293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Varsha Saini
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Devashish Mehta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Siddhi Gupta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Sandeep Kumar
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Parul Rani
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Kajal Rana
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Kajal Rajput
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Dolly Jain
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Garima Pal
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Bharti Aggarwal
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Sanjay Pal
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Sonu K. Gupta
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Yashwant Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Vemanna S. Ramu
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| |
Collapse
|
11
|
Gupta S, Arora A, Saini V, Mehta D, Khan MZ, Mishra DK, Yavvari PS, Singh A, Gupta SK, Srivastava A, Kumar Y, Verma V, Nandicoori VK, Bajaj A. Hydrophobicity of Cholic Acid-Derived Amphiphiles Dictates the Antimicrobial Specificity. ACS Biomater Sci Eng 2022; 8:4996-5007. [DOI: 10.1021/acsbiomaterials.2c00924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Siddhi Gupta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Amit Arora
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana, India
| | - Varsha Saini
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Devashish Mehta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Mehak Zahoor Khan
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Deepak K. Mishra
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Prabhu Srinivas Yavvari
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Archana Singh
- Institute of Genomics and Integrative Biology, South Campus, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sonu Kumar Gupta
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Aasheesh Srivastava
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Yashwant Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Vikas Verma
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana, India
| | - Vinay K. Nandicoori
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| |
Collapse
|
12
|
Rasras AJ, El-Naggar M, Safwat NA, Al-Qawasmeh RA. Cholyl 1,3,4-oxadiazole hybrid compounds: design, synthesis and antimicrobial assessment. Beilstein J Org Chem 2022; 18:631-638. [PMID: 35706993 PMCID: PMC9174839 DOI: 10.3762/bjoc.18.63] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 01/18/2023] Open
Abstract
A new chemical library based on the hybridization of cholic acid with the heterocyclic moiety 1,3,4-oxadizole was synthesized, and tested for antimicrobial activity against Gram-positive, Gram-negative bacteria, and fungi. Among the synthesized compounds, the most potent derivatives against S. aureus were 4t, 4i, 4p, and 4c with MIC values between 31 and 70 µg/mL, while compound 4p was the most active one against Bacillus subtilis with a MIC value of 70 µg/mL. Interestingly, compounds 4a and 4u exerted selective activity against Gram-positive bacteria. The synthesized compounds showed good activity against A. fumigatus and C. albicans and compound 4v exhibited selective activity against fungi only.
Collapse
Affiliation(s)
- Anas J Rasras
- Faculty of Science, Department of Chemistry, Al-Balqa Applied University, PO Box 19117, Al-Salt, Jordan
| | - Mohamed El-Naggar
- College of Sciences, Department of Chemistry, University of Sharjah, Pure and Applied, Chemistry Research Group, PO Box 27272, Sharjah, United Arab Emirates
| | - Nesreen A Safwat
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Nasr City, Cairo, 11371, Egypt
| | - Raed A Al-Qawasmeh
- College of Sciences, Department of Chemistry, University of Sharjah, Pure and Applied, Chemistry Research Group, PO Box 27272, Sharjah, United Arab Emirates
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
13
|
N-methyl Benzimidazole Tethered Cholic Acid Amphiphiles Can Eradicate S. aureus-Mediated Biofilms and Wound Infections. Molecules 2022; 27:molecules27113501. [PMID: 35684439 PMCID: PMC9182351 DOI: 10.3390/molecules27113501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 01/16/2023] Open
Abstract
Infections associated with Gram-positive bacteria like S. aureus pose a major threat as these bacteria can develop resistance and thereby limit the applications of antibiotics. Therefore, there is a need for new antibacterials to mitigate these infections. Bacterial membranes present an attractive therapeutic target as these membranes are anionic in nature and have a low chance of developing modifications in their physicochemical features. Antimicrobial peptides (AMPs) can disrupt the microbial membranes via electrostatic interactions, but the poor stability of AMPs halts their clinical translation. Here, we present the synthesis of eight N-methyl benzimidazole substituted cholic acid amphiphiles as antibacterial agents. We screened these novel heterocyclic cholic acid amphiphiles against different pathogens. Among the series, CABI-6 outperformed the other amphiphiles in terms of bactericidal activity against S. aureus. The membrane disruptive property of CABI-6 using a fluorescence-based assay has also been investigated, and it was inferred that CABI-6 can enhance the production of reactive oxygen species. We further demonstrated that CABI-6 can clear the pre-formed biofilms and can mitigate wound infection in murine models.
Collapse
|
14
|
Chauhan S, Verma V, Kumar D, Gupta R, Gupta S, Bajaj A, Kumar A, Parshad M. N-Heterocycles hybrids: Synthesis, antifungal and antibiofilm evaluation. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2056852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sunil Chauhan
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Vikas Verma
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Devinder Kumar
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Ragini Gupta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Faridabad, India
| | - Siddhi Gupta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Faridabad, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Faridabad, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Mahavir Parshad
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, India
| |
Collapse
|
15
|
Kumar S, Pal S, Thakur J, Rani P, Rana K, Kar A, Kar R, Mehta D, Jha SK, Pradhan MK, Jain D, Rajput K, Mishra S, Ganguli M, Srivastava A, Dasgupta U, Patil VS, Bajaj A. Nonimmunogenic Hydrogel-Mediated Delivery of Antibiotics Outperforms Clinically Used Formulations in Mitigating Wound Infections. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44041-44053. [PMID: 34491724 DOI: 10.1021/acsami.1c12265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Treatment of chronic wound infections caused by Gram-positive bacteria such as Staphylococcus aureus is highly challenging due to the low efficacy of existing formulations, thereby leading to drug resistance. Herein, we present the synthesis of a nonimmunogenic cholic acid-glycine-glycine conjugate (A6) that self-assembles into a supramolecular viscoelastic hydrogel (A6 gel) suitable for topical applications. The A6 hydrogel can entrap different antibiotics with high efficacy without compromising its viscoelastic behavior. Activities against different bacterial species using a disc diffusion assay demonstrated the antimicrobial effect of the ciprofloxacin-loaded A6 hydrogel (CPF-Gel). Immune profiling and gene expression studies after the application of the A6 gel to mice confirmed its nonimmunogenic nature to host tissues. We further demonstrated that topical application of CPF-Gel clears S. aureus-mediated wound infections more effectively than clinically used formulations. Therefore, cholic acid-derived hydrogels are an efficacious matrix for topical delivery of antibiotics and should be explored further.
Collapse
Affiliation(s)
- Sandeep Kumar
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Sanjay Pal
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Jyoti Thakur
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal By-pass Road, Bhauri, Bhopal 462030, India
| | - Parul Rani
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Kajal Rana
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Animesh Kar
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Raunak Kar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Devashish Mehta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Somesh Kumar Jha
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Manas Kumar Pradhan
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal By-pass Road, Bhauri, Bhopal 462030, India
| | - Dolly Jain
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Kajal Rajput
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Panchgaon, Manesar, Gurgaon 122413, Haryana, India
| | - Sarita Mishra
- CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Munia Ganguli
- CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aasheesh Srivastava
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Panchgaon, Manesar, Gurgaon 122413, Haryana, India
| | - Ujjaini Dasgupta
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Panchgaon, Manesar, Gurgaon 122413, Haryana, India
| | - Veena S Patil
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| |
Collapse
|
16
|
Unlocking the bacterial membrane as a therapeutic target for next-generation antimicrobial amphiphiles. Mol Aspects Med 2021; 81:100999. [PMID: 34325929 DOI: 10.1016/j.mam.2021.100999] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/21/2021] [Accepted: 07/16/2021] [Indexed: 11/21/2022]
Abstract
Gram-positive bacteria like Enterococcus faecium and Staphylococcus aureus, and Gram-negative bacteria like Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter Spp. are responsible for most of fatal bacterial infections. Bacteria present a handful of targets like ribosome, RNA polymerase, cell wall biosynthesis, and dihydrofolate reductase. Antibiotics targeting the protein synthesis like aminoglycosides and tetracyclines, inhibitors of RNA/DNA synthesis like fluoroquinolones, inhibitors of cell wall biosynthesis like glycopeptides and β-lactams, and membrane-targeting polymyxins and lipopeptides have shown very good success in combating the bacterial infections. Ability of the bacteria to develop drug resistance is a serious public health challenge as bacteria can develop antimicrobial resistance against newly introduced antibiotics that enhances the challenge for antibiotic drug discovery. Therefore, bacterial membranes present a suitable therapeutic target for development of antimicrobials as bacteria can find it difficult to develop resistance against membrane-targeting antimicrobials. In this review, we present the recent advances in engineering of membrane-targeting antimicrobial amphiphiles that can be effective alternatives to existing antibiotics in combating bacterial infections.
Collapse
|
17
|
Molecular determinants of peaceful coexistence versus invasiveness of non-Typhoidal Salmonella: Implications in long-term side-effects. Mol Aspects Med 2021; 81:100997. [PMID: 34311996 DOI: 10.1016/j.mam.2021.100997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/02/2021] [Accepted: 07/16/2021] [Indexed: 01/28/2023]
Abstract
The genus Salmonella represents a wide range of strains including Typhoidal and Non-Typhoidal Salmonella (NTS) isolates that exhibit illnesses of varied pathophysiologies. The more frequent NTS ensues a self-limiting enterocolitis with rare occasions of bacteremia or systemic infections. These self-limiting Salmonella strains are capable of subverting and dampening the host immune system to achieve a more prolonged survival inside the host system thus leading to chronic manifestations. Notably, emergence of new invasive NTS isolates known as invasive Non-Typhoidal Salmonella (iNTS) have worsened the disease burden significantly in some parts of the world. NTS strains adapt to attain persister phenotype intracellularly and cause relapsing infections. These chronic infections, in susceptible hosts, are also capable of causing diseases like IBS, IBD, reactive arthritis, gallbladder cancer and colorectal cancer. The present understanding of molecular mechanism of how these chronic infections are manifested is quite limited. The current work is an effort to review the prevailing knowledge emanating from a large volume of research focusing on various forms of NTS infections including those that cause localized, systemic and persistent disease. The review will further dwell into the understanding of how this pathogen contributes to the associated long term sequelae.
Collapse
|
18
|
Lin C, Wang Y, Le M, Chen KF, Jia YG. Recent Progress in Bile Acid-Based Antimicrobials. Bioconjug Chem 2021; 32:395-410. [PMID: 33683873 DOI: 10.1021/acs.bioconjchem.0c00642] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With the emergence of drug-resistant bacteria and the formation of biofilms by bacteria and fungi, microbial infections gradually threaten global health. Natural antimicrobial peptides (AMPs) have low susceptibility for developing resistance due to the membrane targeted mechanism, but instability and high manufacturing cost limit their applications in clinic. Bile acids, a group of steroids in the human body, with high stability, biocompatibility, and inherent facial amphiphilic structure similar to the characteristics of AMPs, have been applied to the biological field, such as drug delivery systems, self-healing hydrogels, antimicrobials, and so on. In this review, we mainly focus on the different classes of bile acid-based antimicrobials in recent years. Various designs and methods for the preparation of unimolecular antimicrobials with bile acid skeletons are first introduced, including coupling of primary amine, quaternary ammonium, and amino acid units with bile acid skeletons. Some representative oligomeric antimicrobials, including dimers of bile acids, are summarized. Finally, macromolecular antimicrobials bearing some positive charges at the main chain or side chain and interaction mechanisms of these bile acid-based antimicrobials are discussed.
Collapse
Affiliation(s)
- Caihong Lin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Yushi Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Mengqi Le
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Kai-Feng Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
19
|
Pal G, Mehta D, Singh S, Magal K, Gupta S, Jha G, Bajaj A, Ramu VS. Foliar Application or Seed Priming of Cholic Acid-Glycine Conjugates can Mitigate/Prevent the Rice Bacterial Leaf Blight Disease via Activating Plant Defense Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:746912. [PMID: 34630495 PMCID: PMC8497891 DOI: 10.3389/fpls.2021.746912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/25/2021] [Indexed: 05/06/2023]
Abstract
Xanthomonas Oryzae pv. oryzae (Xoo) causes bacterial blight and Rhizoctonia solani (R. solani) causes sheath blight in rice accounting for >75% of crop losses. Therefore, there is an urgent need to develop strategies for the mitigation of these pathogen infections. In this study, we report the antimicrobial efficacy of Cholic Acid-Glycine Conjugates (CAGCs) against Xoo and R. solani. We show that CAGC C6 is a broad-spectrum antimicrobial and is also able to degrade biofilms. The application of C6 did not hamper plant growth and showed minimal effect on the plant cell membranes. Exogenous application of C6 on pre-infection or post-infection of Xoo on rice susceptible genotype Taichung native (TN1) can mitigate the bacterial load and improve resistance through upregulation of plant defense genes. We further demonstrate that C6 can induce plant defense responses when seeds were primed with C6 CAGC. Therefore, this study demonstrates the potential of CAGCs as effective antimicrobials for crop protection that can be further explored for field applications.
Collapse
Affiliation(s)
- Garima Pal
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Devashish Mehta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Saurabh Singh
- Laboratory of Plant Microbe Interactions, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Kalai Magal
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Siddhi Gupta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Gopaljee Jha
- Laboratory of Plant Microbe Interactions, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
- *Correspondence: Avinash Bajaj
| | - Vemanna S. Ramu
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
- Vemanna S. Ramu
| |
Collapse
|
20
|
Gupta R, Thakur J, Pal S, Mishra D, Rani P, Kumar S, Saini A, Singh A, Yadav K, Srivastava A, Prasad R, Gupta S, Bajaj A. Cholic-Acid-Derived Amphiphiles Can Prevent and Degrade Fungal Biofilms. ACS APPLIED BIO MATERIALS 2020; 4:7332-7341. [DOI: 10.1021/acsabm.9b01221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ragini Gupta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Jyoti Thakur
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal 462066, Madhya Pradesh, India
| | - Sanjay Pal
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
- Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India
| | - Deepakkumar Mishra
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Parul Rani
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Sandeep Kumar
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Amandeep Saini
- Amity Institute of Biotechnology and Integrative Sciences and Health, Amity University Haryana, Amity Education Valley, Gurgaon 122413, India
| | - Archana Singh
- CSIR-Institute of Genomics and Integrative Biology,
South Campus, Mathura Road, New Delhi 110029, India
| | - Kavita Yadav
- School of Physical Sciences, Jawahar Lal Nehru University, New Delhi 110067, India
| | - Aasheesh Srivastava
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal 462066, Madhya Pradesh, India
| | - Rajendra Prasad
- Amity Institute of Biotechnology and Integrative Sciences and Health, Amity University Haryana, Amity Education Valley, Gurgaon 122413, India
| | - Siddhi Gupta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| |
Collapse
|
21
|
Singla P, Kaur M, Kumari A, Kumari L, Pawar SV, Singh R, Salunke DB. Facially Amphiphilic Cholic Acid-Lysine Conjugates as Promising Antimicrobials. ACS OMEGA 2020; 5:3952-3963. [PMID: 32149222 PMCID: PMC7057326 DOI: 10.1021/acsomega.9b03425] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
The emergence of multidrug-resistant microbes is a significant health concern posing a constant need for new antimicrobials. Membrane-targeting antibiotics are promising candidates with reduced ability of microbes to develop resistance. In the present investigation, the principal reason behind choosing cholic acid as the crucial scaffold lies in the fact that it has a facially amphiphilic nature, which provides ample opportunity to refine the amphiphilicity by linking the amino acid lysine. A total of 16 novel amphipathic cholic acid derivatives were synthesized by sequentially linking lysine to C3-β-amino cholic acid methyl ester to maintain the hydrophobic/hydrophilic balance, which could be the essential requirement for the antimicrobial activity. Among the synthesized conjugates, a series with fluorenyl-9-methoxycarbonyl moiety attached to cholic acid via lysine linker showed promising antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans. A pronounced effect of increase in lysine residues was noted on the observed activity. The lead compounds were found to be active against drug-resistant bacterial and fungal clinical isolates and also improved the efficacy of antifungal agents amphotericin B and voriconazole. Membrane-permeability studies demonstrated the ability of these compounds to induce membrane damage in the tested microbes. The active conjugates did not show any hemolytic activity and were also found to be nontoxic to the normal cells as well as the examined cancer cell lines. The observed antimicrobial activity was attributed to the facial amphiphilic conformations, hydrophobic/hydrophilic balance, and the overall charge on the molecules.
Collapse
Affiliation(s)
- Poonam Singla
- Department
of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Mahaldeep Kaur
- Department
of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| | - Anjna Kumari
- Department
of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| | - Laxmi Kumari
- University
Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Sandip V. Pawar
- University
Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Rachna Singh
- Department
of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| | - Deepak B. Salunke
- Department
of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
- National
Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh 160014, India
| |
Collapse
|
22
|
Singla P, Salunke DB. Recent advances in steroid amino acid conjugates: Old scaffolds with new dimensions. Eur J Med Chem 2020; 187:111909. [PMID: 31830636 DOI: 10.1016/j.ejmech.2019.111909] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022]
|
23
|
Suhail A, Rizvi ZA, Mujagond P, Ali SA, Gaur P, Singh M, Ahuja V, Awasthi A, Srikanth CV. DeSUMOylase SENP7-Mediated Epithelial Signaling Triggers Intestinal Inflammation via Expansion of Gamma-Delta T Cells. Cell Rep 2019; 29:3522-3538.e7. [PMID: 31825833 PMCID: PMC7617169 DOI: 10.1016/j.celrep.2019.11.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/20/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a complex autoimmune disorder recently shown to be associated with SUMOylation, a post-translational modification mechanism. Here, we have identified a link between epithelial deSUMOylases and inflammation in IBD. DeSUMOylase SENP7 was seen to be upregulated specifically in intestinal epithelial cells in both human IBD and a mouse model. In steady state, but not IBD, SENP7 expression was negatively regulated by a direct interaction and ubiquitination by SIAH2. Upregulated SENP7 in inflamed tissue displayed a distinct interactome. These changes led to an expansion of localized proinflammatory γδ T cells. Furthermore, in vivo knockdown of SENP7 or depletion of γδ T cells abrogated dextran sulfate sodium (DSS)-induced gut inflammation. Strong statistical correlations between upregulated SENP7 and high clinical disease indices were observed in IBD patients. Overall, our data reveal that epithelial SENP7 is necessary and sufficient for controlling gut inflammation, thus highlighting its importance as a potential drug target.
Collapse
Affiliation(s)
- Aamir Suhail
- Regional Centre for Biotechnology, 3(rd) milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India; Kalinga Institute of Industrial Technology, Bhubaneshwar, 751016 Orissa, India
| | - Zaigham Abbas Rizvi
- Translational Health Science and Technology Institute, 3(rd) Milestone Gurgaon-Faridabad expressway, Faridabad 121001, India
| | - Prabhakar Mujagond
- Regional Centre for Biotechnology, 3(rd) milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India
| | - Syed Azmal Ali
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Preksha Gaur
- Regional Centre for Biotechnology, 3(rd) milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India
| | - Mukesh Singh
- All India Institute of Medical Sciences, Ansari Nagar East, New Delhi 110023, India
| | - Vineet Ahuja
- All India Institute of Medical Sciences, Ansari Nagar East, New Delhi 110023, India.
| | - Amit Awasthi
- Kalinga Institute of Industrial Technology, Bhubaneshwar, 751016 Orissa, India.
| | | |
Collapse
|
24
|
Cholic Acid-Peptide Conjugates as Potent Antimicrobials against Interkingdom Polymicrobial Biofilms. Antimicrob Agents Chemother 2019; 63:AAC.00520-19. [PMID: 31427303 DOI: 10.1128/aac.00520-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/10/2019] [Indexed: 12/14/2022] Open
Abstract
Interkingdom polymicrobial biofilms formed by Gram-positive Staphylococcus aureus and Candida albicans pose serious threats of chronic systemic infections due to the absence of any common therapeutic target for their elimination. Herein, we present the structure-activity relationship (SAR) of membrane-targeting cholic acid-peptide conjugates (CAPs) against Gram-positive bacterial and fungal strains. Structure-activity investigations validated by mechanistic studies revealed that valine-glycine dipeptide-derived CAP 3 was the most effective broad-spectrum antimicrobial against S. aureus and C. albicans CAP 3 was able to degrade the preformed single-species and polymicrobial biofilms formed by S. aureus and C. albicans, and CAP 3-coated materials prevented the formation of biofilms. Murine wound and catheter infection models further confirmed the equally potent bactericidal and fungicidal effect of CAP 3 against bacterial, fungal, and polymicrobial infections. Taken together, these results demonstrate that CAPs, as potential broad-spectrum antimicrobials, can effectively clear the frequently encountered polymicrobial infections and can be fine-tuned further for future applications.
Collapse
|
25
|
Kumar S, Thakur J, Yadav K, Mitra M, Pal S, Ray A, Gupta S, Medatwal N, Gupta R, Mishra D, Rani P, Padhi S, Sharma P, Kapil A, Srivastava A, Priyakumar UD, Dasgupta U, Thukral L, Bajaj A. Cholic Acid-Derived Amphiphile which Combats Gram-Positive Bacteria-Mediated Infections via Disintegration of Lipid Clusters. ACS Biomater Sci Eng 2019; 5:4764-4775. [PMID: 33448819 DOI: 10.1021/acsbiomaterials.9b00706] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inappropriate and uncontrolled use of antibiotics results in the emergence of antibiotic resistance, thereby threatening the present clinical regimens to treat infectious diseases. Therefore, new antimicrobial agents that can prevent bacteria from developing drug resistance are urgently needed. Selective disruption of bacterial membranes is the most effective strategy for combating microbial infections as accumulation of genetic mutations will not allow for the emergence of drug resistance against these antimicrobials. In this work, we tested cholic acid (CA) derived amphiphiles tethered with different alkyl chains for their ability to combat Gram-positive bacterial infections. In-depth biophysical and biomolecular simulation studies suggested that the amphiphile with a hexyl chain (6) executes more effective interactions with Gram-positive bacterial membranes as compared to other hydrophobic counterparts. Amphiphile 6 is effective against multidrug resistant Gram-positive bacterial strains as well and does not allow the adherence of S. aureus on amphiphile 6 coated catheters implanted in mice. Further, treatment of wound infections with amphiphile 6 clears the bacterial infections. Therefore, the current study presents strategic guidelines in design and development of CA-derived membrane-targeting antimicrobials for Gram-positive bacterial infections.
Collapse
Affiliation(s)
- Sandeep Kumar
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.,Manipal Academy of Higher Education, Tiger Circle Road, Madhav Nagar, Manipal-576104, Karnataka, India
| | - Jyoti Thakur
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India
| | - Kavita Yadav
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.,Manipal Academy of Higher Education, Tiger Circle Road, Madhav Nagar, Manipal-576104, Karnataka, India
| | - Madhurima Mitra
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Sanjay Pal
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.,Kalinga Institute of Industrial Technology, KIIT Road, Patia, Bhubaneswar-751024, Odisha, India
| | - Arjun Ray
- CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, Opp: Sukhdev Vihar Bus Depot, New Delhi-110025, India
| | - Siddhi Gupta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Nihal Medatwal
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Ragini Gupta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Deepakkumar Mishra
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Parul Rani
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Siladitya Padhi
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Professor CR Rao Road, Gachibowli, Hyderabad-500032, India
| | - Priyanka Sharma
- Department of Microbiology, All India Institute of Medical Sciences, Sri Aurobindo Marg, Ansari Nagar, New Delhi-110029, India
| | - Arti Kapil
- Department of Microbiology, All India Institute of Medical Sciences, Sri Aurobindo Marg, Ansari Nagar, New Delhi-110029, India
| | - Aasheesh Srivastava
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India
| | - U Deva Priyakumar
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Professor CR Rao Road, Gachibowli, Hyderabad-500032, India
| | - Ujjaini Dasgupta
- Amity Institute of Integrative Sciences and Health, Amity University, Amity Education Valley Gurugram, Panchgaon, Manesar, Gurugram-122413, Haryana, India
| | - Lipi Thukral
- CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, Opp: Sukhdev Vihar Bus Depot, New Delhi-110025, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| |
Collapse
|
26
|
Mitra M, Asad M, Kumar S, Yadav K, Chaudhary S, Bhavesh NS, Khalid S, Thukral L, Bajaj A. Distinct Intramolecular Hydrogen Bonding Dictates Antimicrobial Action of Membrane-Targeting Amphiphiles. J Phys Chem Lett 2019; 10:754-760. [PMID: 30694679 DOI: 10.1021/acs.jpclett.8b03508] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
As mechanisms underpinning the molecular interactions between membrane-targeting antimicrobials and Gram-negative bacterial membranes at atomistic scale remain elusive, we used cholic acid (CA)-derived amphiphiles with different hydrophobicities as model antimicrobials and assessed the effect of their conformational flexibility on antimicrobial activity. Relative to other hydrophobic counterparts, a compound with a hexyl chain (6) showed the strongest binding with the lipopolysaccharide (LPS) of Gram-negative bacterial membranes and acted as an effective antimicrobial. Biomolecular simulations, validated by complementary approaches, revealed that specific intramolecular hydrogen bonding imparts conformationally rigid character to compound 6. This conformational stability of compound 6 allows minimum but specific interactions of the amphiphile with LPS that are a sum of exothermic processes like electrostatic interactions, membrane insertion, and endothermic contributions from disaggregation of LPS. Therefore, our study reveals that a membrane-targeting mechanism with the help of conformationally selective molecules offers a roadmap for developing future therapeutics against bacterial infections.
Collapse
Affiliation(s)
- Madhurima Mitra
- Laboratory of Nanotechnology and Chemical Biology , Regional Centre for Biotechnology , NCR Biotech Science Cluster, third Milestone, Faridabad-Gurgaon Expressway , Faridabad 121001 , Haryana , India
| | - Mohammad Asad
- Laboratory of Nanotechnology and Chemical Biology , Regional Centre for Biotechnology , NCR Biotech Science Cluster, third Milestone, Faridabad-Gurgaon Expressway , Faridabad 121001 , Haryana , India
| | - Sandeep Kumar
- Laboratory of Nanotechnology and Chemical Biology , Regional Centre for Biotechnology , NCR Biotech Science Cluster, third Milestone, Faridabad-Gurgaon Expressway , Faridabad 121001 , Haryana , India
- Manipal Academy of Higher Education , Manipal 576104 , Karnataka , India
| | - Kavita Yadav
- Laboratory of Nanotechnology and Chemical Biology , Regional Centre for Biotechnology , NCR Biotech Science Cluster, third Milestone, Faridabad-Gurgaon Expressway , Faridabad 121001 , Haryana , India
- Manipal Academy of Higher Education , Manipal 576104 , Karnataka , India
| | - Sarika Chaudhary
- CSIR-Institute of Genomics and Integrative Biology , Mathura Road , New Delhi 110025 , India
| | - Neel Sarovar Bhavesh
- International Centre for Genetic Engineering and Biotechnology , Aruna Asaf Ali Marg , New Delhi 110067 , India
| | - Syma Khalid
- School of Chemistry , University of Southampton , Highfield, Southampton SO17 1BJ , United Kingdom
| | - Lipi Thukral
- CSIR-Institute of Genomics and Integrative Biology , Mathura Road , New Delhi 110025 , India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology , Regional Centre for Biotechnology , NCR Biotech Science Cluster, third Milestone, Faridabad-Gurgaon Expressway , Faridabad 121001 , Haryana , India
| |
Collapse
|