1
|
Li Z, Xiao C, Yang X, Li Z. Progress in the mechanical properties of nanoparticles for tumor-targeting delivery. Chem Soc Rev 2025. [PMID: 40341776 DOI: 10.1039/d3cs00912b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Cancer nanomedicines have attracted significant attention in the past several decades, and the physicochemical properties, such as the size, shape, composition, surface charge, hydrophobicity, and mechanical properties, of nanoparticles have been optimized for potent cancer therapy. Since publishing our 2020 tutorial review "Influence of nanomedicine mechanical properties on tumor targeting delivery" in Chemical Society Reviews, substantial advancements have been made in understanding the role of mechanical properties in cancer nanomedicine. Notably, in vivo transport processes that are dependent on the mechanical properties of nanomedicine, including long circulation, tumor accumulation, and deep penetration, have been extensively studied using various nano-drug delivery systems. These studies have demonstrated that leveraging these mechanical properties can significantly enhance the antitumor efficacy of nanomedicine. In this review, we categorize the advancements in the mechanical properties of cancer nanomedicine into three distinct themes: the interactions between nanoparticles with varied mechanical properties and cells (2002 - present), the impact of these properties on in vivo delivery processes (2007 - present), and the strategic use of mechanical properties to boost cancer therapy (2023 - present). We analyze how different mechanical properties of organic, inorganic, hybrid, and biological nanoparticles affect their delivery processes at the macroscopic level, i.e., in tissues, organs and cells. At the microscopic level, their biological and physical interactions with biological barriers, physiological structures, cell membranes, organelles, and other structures reveal the potential mechanism of nanoparticles' mechanical properties in determining their antitumor efficacy. Furthermore, we address the current challenges and future prospects in the mechanical properties of cancer nanomedicine, as well as the clinical translation potential of nanoparticles with diverse mechanical characteristics.
Collapse
Affiliation(s)
- Zheng Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Chen Xiao
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Xiangliang Yang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zifu Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
2
|
Rath G, Mazzali D, Zarbakhsh A, Resmini M. NIPAm Microgels Synthesised in Water: Tailored Control of Particles' Size and Thermoresponsive Properties. Polymers (Basel) 2024; 16:3532. [PMID: 39771384 PMCID: PMC11679721 DOI: 10.3390/polym16243532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Microgels, combining the properties of hydrogels and microparticles, are emerging as versatile materials for varied applications such as drug delivery and sensing, although the precise control of particle size remains a challenge. Advances in synthetic methodologies have provided new tools for tailoring of properties, however costs and scalability of the processes remains a limitation. We report here the water-based synthesis of a library of N-isopropylacrylamide-based microgels covalently crosslinked with varying contents of N,N'-methylenebisacrylamide. The results highlight the versatility of water as a synthetic medium, which yields large and monodisperse microgels, with excellent control over size. Dynamic light scattering data demonstrate that by increasing the total monomer concentration from 1 to 3 wt%, the particle size is increased by up to 4.9-fold. Crosslinker content allows fine-tuning of microgel size, with greater relevance for functionalised microgels. Functional co-monomers such as N-(3-aminopropyl)methacrylamide hydrochloride and N-(hydroxymethyl)acrylamide are shown to influence size and thermoresponsive behaviour, with hydrogen-bonding monomers reducing particle size and increasing the volume phase transition temperature by 2 °C. Positively charged monomers show a size reduction upon heating but provide colloidal stability at temperatures up to 60 °C. These findings emphasize the importance of tailoring synthetic conditions and formulations to optimize microgel properties for specific applications.
Collapse
Affiliation(s)
| | | | | | - Marina Resmini
- School of Physical & Chemical Sciences, Queen Mary University of London, Joseph Priestley Building, Mile End Road, London E1 4NS, UK; (G.R.); (D.M.); (A.Z.)
| |
Collapse
|
3
|
Sorokina AS, Gumerov RA, Noguchi H, Potemkin II. Computer Simulations of Responsive Nanogels at Lipid Membrane. Macromol Rapid Commun 2024; 45:e2400406. [PMID: 39150327 DOI: 10.1002/marc.202400406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/05/2024] [Indexed: 08/17/2024]
Abstract
The swelling and collapse of responsive nanogels on a planar lipid bilayer are studied by means of mesoscopic computer simulations. The effects of molecular weight, cross-linking density, and adhesion strength are examined. The conditions for collapse-mediated engulfing by the bilayer are found. In particular, the results show that at low hydrophobicity level the increase in the nanogel softness decreases the engulfing rate. On the contrary, for stronger hydrophobicity level the trend changes to the opposite one. At the same time, when the cross-linking density is too low or the adhesion strength is too high the nanogel deformation at the membrane suppresses the engulfing regardless of the network swelling ratio. Finally, for comparative reasons, the behavior of the nanogels is also studied at the solid surface. These results may be useful in the design of soft particles capable of tuning of their elasticity and porosity for successful intracellular drug delivery.
Collapse
Affiliation(s)
- Anastasia S Sorokina
- Physics Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Rustam A Gumerov
- Physics Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba, 277-8581, Japan
| | - Igor I Potemkin
- Physics Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| |
Collapse
|
4
|
Rabiee H, Li M, Yan P, Wu Y, Zhang X, Dorosti F, Zhang X, Ma B, Hu S, Wang H, Zhu Z, Ge L. Rational Designing Microenvironment of Gas-Diffusion Electrodes via Microgel-Augmented CO 2 Availability for High-Rate and Selective CO 2 Electroreduction to Ethylene. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402964. [PMID: 39206751 PMCID: PMC11515925 DOI: 10.1002/advs.202402964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Indexed: 09/04/2024]
Abstract
Efficient electrochemical CO2 reduction reaction (CO2RR) requires advanced gas-diffusion electrodes (GDEs) with tunned microenvironment to overcome low CO2 availability in the vicinity of catalyst layer. Herein, for the first time, pyridine-containing microgels-augmented CO2 availability is presented in Cu2O-based GDE for high-rate CO2 reduction to ethylene, owing to the presence of CO2-phil microgels with amine moieties. Microgels as three-dimensional polymer networks act as CO2 micro-reservoirs to engineer the GDE microenvironment and boost local CO2 availability. The superior ethylene production performance of the GDE modified by 4-vinyl pyridine microgels, as compared with the GDE with diethylaminoethyl methacrylate microgels, indicates the bifunctional effect of pyridine-based microgels to enhance CO2 availability, and electrocatalytic CO2 reduction. While the Faradaic efficiency (FE) of ethylene without microgels was capped at 43% at 300 mA cm-2, GDE with the pyridine microgels showed 56% FE of ethylene at 700 mA cm-2. A similar trend was observed in zero-gap design, and GDEs showed 58% FE of ethylene at -4.0 cell voltage (>350 mA cm-2 current density), resulting in over 2-fold improvement in ethylene production. This study showcases the use of CO2-phil microgels for a higher rate of CO2RR-to-C2+, opening an avenue for several other microgels for more selective and efficient CO2 electrolysis.
Collapse
Affiliation(s)
- Hesamoddin Rabiee
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLD4072Australia
- Centre for Future MaterialsUniversity of Southern QueenslandSpringfieldQLD4300Australia
| | - Mengran Li
- Department of Chemical EngineeringThe University of MelbourneMelbourneVIC3052Australia
| | - Penghui Yan
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLD4072Australia
| | - Yuming Wu
- School of EngineeringMacquarie UniversitySydneyNSW2109Australia
| | - Xueqin Zhang
- Australian Centre for Water and Environmental Biotechnology (ACWEB)The University of QueenslandSt. LuciaQLD4072Australia
| | - Fatereh Dorosti
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLD4072Australia
| | - Xi Zhang
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLD4072Australia
| | - Beibei Ma
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLD4072Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB)The University of QueenslandSt. LuciaQLD4072Australia
| | - Hao Wang
- Centre for Future MaterialsUniversity of Southern QueenslandSpringfieldQLD4300Australia
| | - Zhonghua Zhu
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLD4072Australia
| | - Lei Ge
- Centre for Future MaterialsUniversity of Southern QueenslandSpringfieldQLD4300Australia
- School of EngineeringUniversity of Southern QueenslandSpringfieldQLD4300Australia
| |
Collapse
|
5
|
Höfken T, Gasser U, Schneider S, Petrunin AV, Scotti A. Real and In Silico Microgels Show Comparable Bulk Moduli Below and Above the Volume Phase Transition. Macromol Rapid Commun 2024; 45:e2400043. [PMID: 38613338 DOI: 10.1002/marc.202400043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/02/2024] [Indexed: 04/14/2024]
Abstract
The compressibility of soft colloids influences their phase behavior and flow properties, especially in concentrated suspensions. Particle compressibility, which is proportional to the reciprocal of the bulk modulus K, is a key parameter for soft polymer-based particles that can be compressed in crowded environments. Here, microgels with different degrees of cross-linking, i.e., softness, are investigated below and above their volume phase transition temperature (VPTT). By combining molecular dynamics simulations with small-angle neutron scattering with contrast variation, a change in the particle bulk moduli of two orders of magnitude is observed. The degree of cross-linking has a significant impact on the bulk modulus of the swollen microgel, while above the VPTT the values of K are almost independent of the cross-linking density. The excellent agreement between experimental results and simulations also highlight that the model microgels from computer simulations possess both the internal architecture and the elastic properties of real polymeric networks. This paves the way to a systematic use of simulations to investigate the behavior of dense microgel suspensions below and above their VPTT.
Collapse
Affiliation(s)
- Tom Höfken
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Urs Gasser
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, Villigen, 5232, Switzerland
| | - Stefanie Schneider
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Alexander V Petrunin
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Andrea Scotti
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, SE-205 06, Sweden
- Biofilms-Research Center for Biointerfaces, Malmö University, Malmö, SE-205 06, Sweden
| |
Collapse
|
6
|
Lee S, Yoo J, Bae G, Thangam R, Heo J, Park JY, Choi H, Kim C, An J, Kim J, Mun KR, Shin S, Zhang K, Zhao P, Kim Y, Kang N, Han SB, Kim D, Yoon J, Kang M, Kim J, Yang L, Karamikamkar S, Kim J, Zhu Y, Najafabadi AH, Song G, Kim DH, Lee KB, Oh SJ, Jung HD, Song HC, Jang WY, Bian L, Chu Z, Yoon J, Kim JS, Zhang YS, Kim Y, Jang HS, Kim S, Kang H. Photonic control of ligand nanospacing in self-assembly regulates stem cell fate. Bioact Mater 2024; 34:164-180. [PMID: 38343773 PMCID: PMC10859239 DOI: 10.1016/j.bioactmat.2023.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 10/28/2024] Open
Abstract
Extracellular matrix (ECM) undergoes dynamic inflation that dynamically changes ligand nanospacing but has not been explored. Here we utilize ECM-mimicking photocontrolled supramolecular ligand-tunable Azo+ self-assembly composed of azobenzene derivatives (Azo+) stacked via cation-π interactions and stabilized with RGD ligand-bearing poly(acrylic acid). Near-infrared-upconverted-ultraviolet light induces cis-Azo+-mediated inflation that suppresses cation-π interactions, thereby inflating liganded self-assembly. This inflation increases nanospacing of "closely nanospaced" ligands from 1.8 nm to 2.6 nm and the surface area of liganded self-assembly that facilitate stem cell adhesion, mechanosensing, and differentiation both in vitro and in vivo, including the release of loaded molecules by destabilizing water bridges and hydrogen bonds between the Azo+ molecules and loaded molecules. Conversely, visible light induces trans-Azo+ formation that facilitates cation-π interactions, thereby deflating self-assembly with "closely nanospaced" ligands that inhibits stem cell adhesion, mechanosensing, and differentiation. In stark contrast, when ligand nanospacing increases from 8.7 nm to 12.2 nm via the inflation of self-assembly, the surface area of "distantly nanospaced" ligands increases, thereby suppressing stem cell adhesion, mechanosensing, and differentiation. Long-term in vivo stability of self-assembly via real-time tracking and upconversion are verified. This tuning of ligand nanospacing can unravel dynamic ligand-cell interactions for stem cell-regulated tissue regeneration.
Collapse
Affiliation(s)
- Sungkyu Lee
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jounghyun Yoo
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Gunhyu Bae
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jeongyun Heo
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jung Yeon Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Honghwan Choi
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Chowon Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jusung An
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Jungryun Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Kwang Rok Mun
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Seungyong Shin
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Kunyu Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Pengchao Zhao
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Yuri Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Nayeon Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seong-Beom Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Dahee Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jiwon Yoon
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Misun Kang
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jihwan Kim
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | | | - Jinjoo Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | | | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Soong Ju Oh
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyun-Do Jung
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Gyeonggi-do, 14662, Republic of Korea
- Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyun-Cheol Song
- Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Woo Young Jang
- Department of Orthopedic Surgery, Korea University Anam Hospital, Seoul, 02841, Republic of Korea
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering and Joint Appointment with School of Biomedical Sciences, The University of Hong Kong, Hong Kong, 518057, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Cambridge, MA, 02139, USA
| | - Yongju Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Ho Seong Jang
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Nano & Information Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Sehoon Kim
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
7
|
Zhang Z, Ou L, Yang K, Yuan B. Energy and Speed Landscapes of the Membrane Internalization Behavior of Soft Nanoparticles. J Phys Chem B 2024; 128:2632-2639. [PMID: 38467492 DOI: 10.1021/acs.jpcb.3c07177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The cellular endocytosis of nanoparticles (NPs) is a fundamental biological process with significant potential in biomedical applications. However, a comprehensive understanding of the mechanistic aspects of endocytosis and the impact of particle properties on this process remains elusive. In this study, we investigated the membrane-wrapping behavior of soft NPs (SNPs) with varying rigidities using theoretical calculations. Our findings reveal that the membrane-wrapping process of SNPs involves a complex energy change including the possible existence of an energy barrier; moreover, it is found that the location and height of this barrier strongly depend on the mechanistic properties of the NPs and membranes. Additionally, by considering force balance in the membrane-wrapping process, we calculated the speed at which NP is internalized by the membrane, showing a nonmonotonic dependence on particle rigidity and/or wrapping degree. These phenomena can be attributed to competition between different energy components associated with NP-membrane binding, membrane tension, and deformations occurring during SNP-membrane interaction processes. Our results contribute to a deeper understanding of cellular-level endocytosis mechanisms and offer potential applications for soft NPs in biomedicine.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu,China
| | - Luping Ou
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu,China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu,China
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong,China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong,China
| |
Collapse
|
8
|
Simons J, Hazra N, Petrunin AV, Crassous JJ, Richtering W, Hohenschutz M. Nonionic Microgels Adapt to Ionic Guest Molecules: Superchaotropic Nanoions. ACS NANO 2024; 18:7546-7557. [PMID: 38417118 DOI: 10.1021/acsnano.3c12357] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Microgels are commonly applied as solute carriers, where the size, density, and functionality of the microgels depend on solute binding. As representatives for ionic solutes with high affinity for the microgel, we study here the effect of superchaotropic Keggin polyoxometalates (POMs) PW12O403- (PW) and SiW12O404- (SiW) on the aqueous swelling and internal structure of nonionic poly(N-isopropylacrylamide) (pNiPAM) microgels by light scattering techniques and small-angle X-ray scattering. Due to their weak hydration, these POMs bind spontaneously to the microgels at millimolar concentrations. The microgels thus become charged and swell at low POM concentration, surprisingly without strongly increasing the volume phase transition temperature, and deswell at higher POM concentration. The swelling arises because of the osmotic pressure of dissociated counterions of the POMs, while the deswelling is due to POMs acting as physical cross-links in the microgels under screened electrostatics in NaCl or excess POM solution. This swelling/deswelling transition is sharper for PW than for SiW related to the lower charge density, weaker hydration, and stronger binding of PW. The POMs elicit qualitatively and quantitatively different swelling effects from ionic surfactants and classical salts. Moreover, the network softness and topology govern the swelling response upon POM binding. The softer the microgel, the stronger is the swelling response, while, inside the microgel, regions of high polymer density swell/contract more upon electric charging/cross-linking than regions with low polymer density. POM binding thus enables fine-tuning of microgel properties and highlights the role of network topology in microgel swelling. Because POMs decompose at an alkaline pH, these POM/microgel systems also exhibit pH-responsive swelling in addition to the typical temperature responsiveness of pNiPAM microgels.
Collapse
Affiliation(s)
- Jasmin Simons
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| | - Nabanita Hazra
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| | - Alexander V Petrunin
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| | - Jérôme J Crassous
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| | - Max Hohenschutz
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| |
Collapse
|
9
|
Salar Amoli M, Yang H, Anand R, EzEldeen M, Aktan MK, Braem A, Jacobs R, Bloemen V. Development and characterization of colloidal pNIPAM-methylcellulose microgels with potential application for drug delivery in dentoalveolar tissue engineering strategies. Int J Biol Macromol 2024; 262:129684. [PMID: 38307741 DOI: 10.1016/j.ijbiomac.2024.129684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/28/2023] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
Incorporation of growth factors, signaling molecules and drugs can be vital for the success of tissue engineering in complex structures such as the dentoalveolar region. This has led to the development of a variety of drug release systems. This study aimed to develop pNIPAM-methylcellulose microgels with different synthesis parameters based on a 23 full factorial design of experiments for this application. Microgel properties, including volume phase transition temperature (VPTT), hydrodynamic size, drug loading and release, and cytocompatibility were systematically evaluated. The results demonstrated successful copolymerization and development of the microgels, a hydrodynamic size ranging from ∼200 to ∼500 nm, and VPTT in the range of 34-39 °C. Furthermore, loading of genipin, capable of inducing odontoblastic differentiation, and its sustained release over a week was shown in all formulations. Together, this can serve as a solid basis for the development of tunable drug-delivering pNIPAM-methylcellulose microgels for specific tissue engineering applications.
Collapse
Affiliation(s)
- Mehdi Salar Amoli
- Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium; OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium; Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering (MTM), KU Leuven, Kasteelpark Arenberg 44 - box 2450, B-3001 Leuven, Belgium
| | - Huimin Yang
- Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium
| | - Resmi Anand
- Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
| | - Mostafa EzEldeen
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium; Department of Oral Health Sciences, KU Leuven and Paediatric Dentistry and Special Dental Care, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium
| | - Merve Kübra Aktan
- Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering (MTM), KU Leuven, Kasteelpark Arenberg 44 - box 2450, B-3001 Leuven, Belgium
| | - Annabel Braem
- Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering (MTM), KU Leuven, Kasteelpark Arenberg 44 - box 2450, B-3001 Leuven, Belgium
| | - Reinhilde Jacobs
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium; Department of Dental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Veerle Bloemen
- Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium; Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering (MTM), KU Leuven, Kasteelpark Arenberg 44 - box 2450, B-3001 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium.
| |
Collapse
|
10
|
Bochenek S, Rudov AA, Sassmann T, Potemkin II, Richtering W. Influence of Architecture on the Interfacial Properties of Polymers: Linear Chains, Stars, and Microgels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18354-18365. [PMID: 38059308 DOI: 10.1021/acs.langmuir.3c02470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Surface-active polymers have important applications as effective and responsive emulsifiers, foaming agents, and coatings. In this contribution, we explore the impact of the polymer architecture on the behavior at oil-water interfaces by comparing different poly(N-isopropylacrylamide) (pNIPAM)-based systems, namely, monolayers of linear and star-shaped macromolecules, ultralow cross-linked, regular cross-linked, and hollow microgels. Compression isotherms were determined experimentally as well as by computer simulations. The latter provides information about the conformational changes of the individual macromolecules as well as the interfacial properties of the monolayer, including the surface structure and the density distribution of an ensemble of interacting macromolecules near an interface. Surprisingly, the isotherms of the linear polymer, of the star polymer, and of the ultralow cross-linked microgel have an identical shape that differs from the isotherms of regular and hollow microgels. We introduced the mass fraction of adsorbed polymer, which gives a measure of the polymer segments contributing to the isotherm in relation to the most flexible architecture, i.e., the linear polymer, and allows a comparison of polymers with different architectures. The data demonstrate that increasing the number of cross-links leads to a significantly lower amount of polymer in the proximity of the interface as the increase in cross-linker reduces the deformability or softness of the polymers at the interface. The volume fraction profiles along the normal to the interface are essentially different in the microgel monolayers as compared to those in the linear and star polymer. The profiles through the microgel contact line and their growth upon initial compression are similar to those of the linear chains. Herewith, the profiles through the center of mass practically do not change upon compression. Therefore, the initial growth in the microgel surface pressure reveals the polymer-like behavior and is related to the deformation of the peripheral part of the microgel. Further compression of the microgel monolayer leads to 3D interactions of the microgels within the aqueous side of the interface and soft colloid-like behavior.
Collapse
Affiliation(s)
- Steffen Bochenek
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Andrey A Rudov
- DWI - Leibniz Institute for Interactive Materials, 52056 Aachen, Germany, European Union
| | - Tim Sassmann
- DWI - Leibniz Institute for Interactive Materials, 52056 Aachen, Germany, European Union
| | - Igor I Potemkin
- DWI - Leibniz Institute for Interactive Materials, 52056 Aachen, Germany, European Union
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| |
Collapse
|
11
|
Kittel Y, Guerzoni LPB, Itzin C, Rommel D, Mork M, Bastard C, Häßel B, Omidinia-Anarkoli A, Centeno SP, Haraszti T, Kim K, Guck J, Kuehne AJC, De Laporte L. Varying the Stiffness and Diffusivity of Rod-Shaped Microgels Independently through Their Molecular Building Blocks. Angew Chem Int Ed Engl 2023; 62:e202309779. [PMID: 37712344 DOI: 10.1002/anie.202309779] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
Microgels are water-swollen, crosslinked polymers that are widely used as colloidal building blocks in scaffold materials for tissue engineering and regenerative medicine. Microgels can be controlled in their stiffness, degree of swelling, and mesh size depending on their polymer architecture, crosslink density, and fabrication method-all of which influence their function and interaction with the environment. Currently, there is a lack of understanding of how the polymer composition influences the internal structure of soft microgels and how this morphology affects specific biomedical applications. In this report, we systematically vary the architecture and molar mass of polyethylene glycol-acrylate (PEG-Ac) precursors, as well as their concentration and combination, to gain insight in the different parameters that affect the internal structure of rod-shaped microgels. We characterize the mechanical properties and diffusivity, as well as the conversion of acrylate groups during photopolymerization, in both bulk hydrogels and microgels produced from the PEG-Ac precursors. Furthermore, we investigate cell-microgel interaction, and we observe improved cell spreading on microgels with more accessible RGD peptide and with a stiffness in a range of 20 kPa to 50 kPa lead to better cell growth.
Collapse
Affiliation(s)
- Yonca Kittel
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
- Institute of Organic and Macromolecular Chemistry, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Luis P B Guerzoni
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
| | - Carolina Itzin
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
| | - Dirk Rommel
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
| | - Matthias Mork
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
| | - Céline Bastard
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
- Center for Biohybrid Medical Systems (CBMS), Advanced Materials for Biomedicine (AMB), Institute of Applied Medical Engineering (AME), Forckenbeckstraße 55, 52074, Aachen, Germany
| | - Bernhard Häßel
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
| | - Abdolrahman Omidinia-Anarkoli
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
| | - Silvia P Centeno
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Tamás Haraszti
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
| | - Kyoohyun Kim
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Staudtstraße 2, 91058, Erlangen, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Staudtstraße 2, 91058, Erlangen, Germany
| | - Alexander J C Kuehne
- Institute of Organic and Macromolecular Chemistry, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Laura De Laporte
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
- Center for Biohybrid Medical Systems (CBMS), Advanced Materials for Biomedicine (AMB), Institute of Applied Medical Engineering (AME), Forckenbeckstraße 55, 52074, Aachen, Germany
| |
Collapse
|
12
|
Akgonullu DZ, Murray BS, Connell SD, Fang Y, Linter B, Sarkar A. Synthetic and biopolymeric microgels: Review of similarities and difference in behaviour in bulk phases and at interfaces. Adv Colloid Interface Sci 2023; 320:102983. [PMID: 37690329 DOI: 10.1016/j.cis.2023.102983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023]
Abstract
This review discusses the current knowledge of interfacial and bulk interactions of biopolymeric microgels in relation to the well-established properties of synthetic microgels for applications as viscosity modifiers and Pickering stabilisers. We present a timeline showing the key milestones in designing microgels and their bulk/ interfacial performance. Poly(N-isopropylacrylamide) (pNIPAM) microgels have remained as the protagonist in the synthetic microgel domain whilst proteins or polysaccharides have been primarily used to fabricate biopolymeric microgels. Bulk properties of microgel dispersions are dominated by the volume fraction (ϕ) of the microgel particles, but ϕ is difficult to pinpoint, as addressed by many theoretical models. By evaluating recent experimental studies over the last five years, we find an increasing focus on the analysis of microgel elasticity as a key parameter in modulating their packing at the interfaces, within the provinces of both synthetic and biopolymeric systems. Production methods and physiochemical factors shown to influence microgel swelling in the aqueous phase can have a significant impact on their bulk as well as interfacial performance. Compared to synthetic microgels, biopolymer microgels show a greater tendency for polydispersity and aggregation and do not appear to have a core-corona structure. Comprehensive studies of biopolymeric microgels are still lacking, for example, to accurately determine their inter- and intra- particle interactions, whilst a wider variety of techniques need to be applied in order to allow comparisons to real systems of practical usage.
Collapse
Affiliation(s)
- Daisy Z Akgonullu
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, UK
| | - Brent S Murray
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, UK
| | - Simon D Connell
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, UK
| | - Yuan Fang
- PepsiCo, Valhalla, New York, NY, USA
| | | | - Anwesha Sarkar
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, UK.
| |
Collapse
|
13
|
Boesveld S, Kittel Y, Luo Y, Jans A, Oezcifci B, Bartneck M, Preisinger C, Rommel D, Haraszti T, Centeno SP, Boersma AJ, De Laporte L, Trautwein C, Kuehne AJC, Strnad P. Microgels as Platforms for Antibody-Mediated Cytokine Scavenging. Adv Healthc Mater 2023; 12:e2300695. [PMID: 37248777 PMCID: PMC11469277 DOI: 10.1002/adhm.202300695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Therapeutic antibodies are the key treatment option for various cytokine-mediated diseases, such as rheumatoid arthritis, psoriasis, and inflammatory bowel disease. However, systemic injection of these antibodies can cause side effects and suppress the immune system. Moreover, clearance of therapeutic antibodies from the blood is limiting their efficacy. Here, water-swollen microgels are produced with a size of 25 µm using droplet-based microfluidics. The microgels are functionalized with TNFα antibodies to locally scavenge the pro-inflammatory cytokine TNFα. Homogeneous distribution of TNFα-antibodies is shown throughout the microgel network and demonstrates specific antibody-antigen binding using confocal microscopy and FLIM-FRET measurements. Due to the large internal accessibility of the microgel network, its capacity to bind TNFα is extremely high. At a TNFα concentration of 2.5 µg mL-1 , the microgels are able to scavenge 88% of the cytokine. Cell culture experiments reveal the therapeutic potential of these microgels by protecting HT29 colorectal adenocarcinoma cells from TNFα toxicity and resulting in a significant reduction of COX II and IL8 production of the cells. When the microgels are incubated with stimulated human macrophages, to mimic the in vivo situation of inflammatory bowel disease, the microgels scavenge almost all TNFα that is produced by the cells.
Collapse
Affiliation(s)
- Sarah Boesveld
- Department of Internal Medicine IIIUniversity HospitalRWTH Aachen UniversityPauwelsstraße 3052074AachenGermany
| | - Yonca Kittel
- DWI‐Leibniz Institute for Interactive MaterialsRWTH Aachen UniversityForckenbeckstraße 5052074AachenGermany
- Institute for Technical and Macromolecular Chemistry (ITMC)RWTH Aachen UniversityWorringerweg 252074AachenGermany
- Institute of Organic and Macromolecular ChemistryUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| | - Yizhao Luo
- Department of Internal Medicine IIIUniversity HospitalRWTH Aachen UniversityPauwelsstraße 3052074AachenGermany
| | - Alexander Jans
- Department of Internal Medicine IIIUniversity HospitalRWTH Aachen UniversityPauwelsstraße 3052074AachenGermany
| | - Burak Oezcifci
- DWI‐Leibniz Institute for Interactive MaterialsRWTH Aachen UniversityForckenbeckstraße 5052074AachenGermany
- Department of Cellular Protein ChemistryBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 8Utrecht3584 CHThe Netherlands
| | - Matthias Bartneck
- Department of Internal Medicine IIIUniversity HospitalRWTH Aachen UniversityPauwelsstraße 3052074AachenGermany
| | - Christian Preisinger
- Proteomics FacilityInterdisciplinary Centre for Clinical Research (IZKF)Medical SchoolRWTH Aachen UniversityPauwelsstraße 3052074AachenGermany
| | - Dirk Rommel
- DWI‐Leibniz Institute for Interactive MaterialsRWTH Aachen UniversityForckenbeckstraße 5052074AachenGermany
- Institute for Technical and Macromolecular Chemistry (ITMC)RWTH Aachen UniversityWorringerweg 252074AachenGermany
| | - Tamás Haraszti
- DWI‐Leibniz Institute for Interactive MaterialsRWTH Aachen UniversityForckenbeckstraße 5052074AachenGermany
- Institute for Technical and Macromolecular Chemistry (ITMC)RWTH Aachen UniversityWorringerweg 252074AachenGermany
| | - Silvia P. Centeno
- DWI‐Leibniz Institute for Interactive MaterialsRWTH Aachen UniversityForckenbeckstraße 5052074AachenGermany
| | - Arnold J. Boersma
- DWI‐Leibniz Institute for Interactive MaterialsRWTH Aachen UniversityForckenbeckstraße 5052074AachenGermany
- Department of Cellular Protein ChemistryBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 8Utrecht3584 CHThe Netherlands
| | - Laura De Laporte
- DWI‐Leibniz Institute for Interactive MaterialsRWTH Aachen UniversityForckenbeckstraße 5052074AachenGermany
- Institute for Technical and Macromolecular Chemistry (ITMC)RWTH Aachen UniversityWorringerweg 252074AachenGermany
- Advanced Materials for Biomedicine (AMB), Institute of Applied Medical Engineering (AME) Department of Center for Biohybrid Medical Systems (CBMS)Forckenbeckstraße 5552074AachenGermany
| | - Christian Trautwein
- Department of Internal Medicine IIIUniversity HospitalRWTH Aachen UniversityPauwelsstraße 3052074AachenGermany
| | - Alexander J. C. Kuehne
- Institute of Organic and Macromolecular ChemistryUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| | - Pavel Strnad
- Department of Internal Medicine IIIUniversity HospitalRWTH Aachen UniversityPauwelsstraße 3052074AachenGermany
| |
Collapse
|
14
|
Hagemans F, Camerin F, Hazra N, Lammertz J, Dux F, Del Monte G, Laukkanen OV, Crassous JJ, Zaccarelli E, Richtering W. Buckling and Interfacial Deformation of Fluorescent Poly( N-isopropylacrylamide) Microgel Capsules. ACS NANO 2023; 17:7257-7271. [PMID: 37053566 DOI: 10.1021/acsnano.2c10164] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Hollow microgels are fascinating model systems at the crossover between polymer vesicles, emulsions, and colloids as they deform, interpenetrate, and eventually shrink at higher volume fraction or when subjected to an external stress. Here, we introduce a system consisting of microgels with a micrometer-sized cavity enabling a straightforward characterization in situ using fluorescence microscopy techniques. Similarly to elastic capsules, these systems are found to reversibly buckle above a critical osmotic pressure, conversely to smaller hollow microgels, which were previously reported to deswell at high volume fraction. Simulations performed on monomer-resolved in silico hollow microgels confirm the buckling transition and show that the presented microgels can be described with a thin shell model theory. When brought to an interface, these microgels, that we define as microgel capsules, strongly deform and we thus propose to utilize them to locally probe interfacial properties within a theoretical framework adapted from the Johnson-Kendall-Roberts (JKR) theory. Besides their capability to sense their environment and to address fundamental questions on the elasticity and permeability of microgel systems, microgel capsules can be further envisioned as model systems mimicking anisotropic responsive biological systems such as red blood and epithelial cells thanks to the possibility offered by microgels to be synthesized with custom-designed properties.
Collapse
Affiliation(s)
- Fabian Hagemans
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| | - Fabrizio Camerin
- CNR-ISC, Sapienza University of Rome, p.le A. Moro 2, 00185 Roma, Italy
- Department of Physics, Sapienza University of Rome, p.le A. Moro 2 00185 Roma, Italy
| | - Nabanita Hazra
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| | - Janik Lammertz
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| | - Frédéric Dux
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| | - Giovanni Del Monte
- CNR-ISC, Sapienza University of Rome, p.le A. Moro 2, 00185 Roma, Italy
- Department of Physics, Sapienza University of Rome, p.le A. Moro 2 00185 Roma, Italy
| | - Olli-Ville Laukkanen
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
- VTT Technical Research Centre of Finland Ltd, Koivurannantie 1, 40400 Jyväskylä, Finland
| | - Jérôme J Crassous
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| | - Emanuela Zaccarelli
- CNR-ISC, Sapienza University of Rome, p.le A. Moro 2, 00185 Roma, Italy
- Department of Physics, Sapienza University of Rome, p.le A. Moro 2 00185 Roma, Italy
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| |
Collapse
|
15
|
Xiao Y, Pandey K, Nicolás-Boluda A, Onidas D, Nizard P, Carn F, Lucas T, Gateau J, Martin-Molina A, Quesada-Pérez M, Del Mar Ramos-Tejada M, Gazeau F, Luo Y, Mangeney C. Synergic Thermo- and pH-Sensitive Hybrid Microgels Loaded with Fluorescent Dyes and Ultrasmall Gold Nanoparticles for Photoacoustic Imaging and Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54439-54457. [PMID: 36468426 DOI: 10.1021/acsami.2c12796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Smart microgels (μGels) made of polymeric particles doped with inorganic nanoparticles have emerged recently as promising multifunctional materials for nanomedicine applications. However, the synthesis of these hybrid materials is still a challenging task with the necessity to control several features, such as particle sizes and doping levels, in order to tailor their final properties in relation to the targeted application. We report herein an innovative modular strategy to achieve the rational design of well-defined and densely filled hybrid particles. It is based on the assembly of the different building blocks, i.e., μGels, dyes, and small gold nanoparticles (<4 nm), and the tuning of nanoparticle loading within the polymer matrix through successive incubation steps. The characterization of the final hybrid networks using UV-vis absorption, fluorescence, transmission electron microscopy, dynamic light scattering, and small-angle X-ray scattering revealed that they uniquely combine the properties of hydrogel particles, including high loading capacity and stimuli-responsive behavior, the photoluminescent properties of dyes (rhodamine 6G, methylene blue and cyanine 7.5), and the features of gold nanoparticle assembly. Interestingly, in response to pH and temperature stimuli, the smart hybrid μGels can shrink, leading to the aggregation of the gold nanoparticles trapped inside the polymer matrix. This stimuli-responsive behavior results in plasmon band broadening and red shift toward the near-infrared region (NIR), opening promising prospects in biomedical science. Particularly, the potential of these smart hybrid nanoplatforms for photoactivated hyperthermia, photoacoustic imaging, cellular internalization, intracellular imaging, and photothermal therapy was assessed, demonstrating well controlled multimodal opportunities for theranostics.
Collapse
Affiliation(s)
- Yu Xiao
- CNRS Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, ParisF-75006, France
| | - Kartikey Pandey
- CNRS Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, ParisF-75006, France
| | - Alba Nicolás-Boluda
- CNRS Matière et Systèmes Complexes MSC, Université Paris Cité, ParisF-75006, France
| | - Delphine Onidas
- CNRS Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, ParisF-75006, France
| | - Philippe Nizard
- CNRS Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, ParisF-75006, France
| | - Florent Carn
- CNRS Matière et Systèmes Complexes MSC, Université Paris Cité, ParisF-75006, France
| | - Théotim Lucas
- CNRS Matière et Systèmes Complexes MSC, Université Paris Cité, ParisF-75006, France
- CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, Sorbonne Université, ParisF-75006, France
| | - Jérôme Gateau
- CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, Sorbonne Université, ParisF-75006, France
| | - Alberto Martin-Molina
- Departamento de Física Aplicada, Universidad de Granada, Campus de Fuentenueva s/n, Granada18071, Spain
- Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Campus de Fuentenueva s/n, Granada18071, Spain
| | - Manuel Quesada-Pérez
- Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, Linares, Jaén23700, Spain
| | - Maria Del Mar Ramos-Tejada
- Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, Linares, Jaén23700, Spain
| | - Florence Gazeau
- CNRS Matière et Systèmes Complexes MSC, Université Paris Cité, ParisF-75006, France
| | - Yun Luo
- CNRS Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, ParisF-75006, France
| | - Claire Mangeney
- CNRS Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, ParisF-75006, France
| |
Collapse
|
16
|
He P, Shen M, Xie W, Ma Y, Pan J. The Efficient and Convenient Extracting Uranium from Water by a Uranyl-Ion Affine Microgel Container. NANOMATERIALS 2022; 12:nano12132259. [PMID: 35808098 PMCID: PMC9268145 DOI: 10.3390/nano12132259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
Uranium is an indispensable part of the nuclear industry that benefits us, but its consequent pollution of water bodies also makes a far-reaching impact on human society. The rapid, efficient and convenient extraction of uranium from water is to be a top priority. Thanks to the super hydrophilic and fast adsorption rate of microgel, it has been the ideal adsorbent in water; however, it was too difficult to recover the microgel after adsorption, which limited its practical applications. Here, we developed a uranyl-ion affine and recyclable microgel container that has not only the rapid swelling rate of microgel particles but also allows the detection of the adsorption saturation process by the naked eye.
Collapse
|
17
|
Scotti A, Schulte MF, Lopez CG, Crassous JJ, Bochenek S, Richtering W. How Softness Matters in Soft Nanogels and Nanogel Assemblies. Chem Rev 2022; 122:11675-11700. [PMID: 35671377 DOI: 10.1021/acs.chemrev.2c00035] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Softness plays a key role in determining the macroscopic properties of colloidal systems, from synthetic nanogels to biological macromolecules, from viruses to star polymers. However, we are missing a way to quantify what the term "softness" means in nanoscience. Having quantitative parameters is fundamental to compare different systems and understand what the consequences of softness on the macroscopic properties are. Here, we propose different quantities that can be measured using scattering methods and microscopy experiments. On the basis of these quantities, we review the recent literature on micro- and nanogels, i.e. cross-linked polymer networks swollen in water, a widely used model system for soft colloids. Applying our criteria, we address the question what makes a nanomaterial soft? We discuss and introduce general criteria to quantify the different definitions of softness for an individual compressible colloid. This is done in terms of the energetic cost associated with the deformation and the capability of the colloid to isotropically deswell. Then, concentrated solutions of soft colloids are considered. New definitions of softness and new parameters, which depend on the particle-to-particle interactions, are introduced in terms of faceting and interpenetration. The influence of the different synthetic routes on the softness of nanogels is discussed. Concentrated solutions of nanogels are considered and we review the recent results in the literature concerning the phase behavior and flow properties of nanogels both in three and two dimensions, in the light of the different parameters we defined. The aim of this review is to look at the results on micro- and nanogels in a more quantitative way that allow us to explain the reported properties in terms of differences in colloidal softness. Furthermore, this review can give researchers dealing with soft colloids quantitative methods to define unambiguously which softness matters in their compound.
Collapse
Affiliation(s)
- Andrea Scotti
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - M Friederike Schulte
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Carlos G Lopez
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Jérôme J Crassous
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Steffen Bochenek
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| |
Collapse
|
18
|
Teoh JY, Jeon S, Yim B, Yang HM, Hwang Y, Kim J, Lee SK, Park E, Kong TY, Kim SY, Park Y, Kim YG, Kim J, Yoo D. Tuning Surface Plasmon Resonance Responses through Size and Crosslinking Control of Multivalent Protein Binding-Capable Nanoscale Hydrogels. ACS Biomater Sci Eng 2022; 8:2878-2889. [PMID: 35658391 DOI: 10.1021/acsbiomaterials.2c00250] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Surface plasmon resonance (SPR) phenomena have been widely studied to detect biomolecules because of their high sensitivity and ability to determine biomolecular interactions with kinetic information. However, highly selective detection in specific concentration ranges relevant to target biomolecules is still a challenging task. Recently, we developed bioresponsive nanoscale hydrogels to selectively intensify SPR signals through multivalent protein binding (MPB) events with target biomolecules, including IL-2, where we were able to demonstrate exceptional selectivity for target biomolecules with minimal responses to nonspecific and monovalent binding events. In this work, we systematically explored the relationship between the physical properties of MPB-capable nanoscale hydrogels and their SPR response induced in the presence of the programmed cell death protein 1 antibody (PD-1Ab) as a model target biomolecule. First, we developed a synthetic protocol by controlling various reaction parameters to construct a library of nanoscale poly(N-isopropylacrylamide-co-acrylic acid) hydrogels (NHs) with different sizes (from 400 nm to 1 μm) and degrees of crosslinking (from 2 to 8%). Then, by incorporating MPB-capable PD-1 receptors onto the surface of NHs to form PD-1-responsive nanoscale hydrogels (PNHs), the hydrogel size and crosslinking dependency of their SPR responses were investigated. Our results reveal the appropriate hydrogel size regime and degree of crosslinking for effective PD-1Ab detection at specific concentrations range between a few nM and 1 μM. Overall, our study demonstrates that by tuning the physical properties of the nanoscale hydrogel matrix, the sensitivity and detection range of MPB-based SPR sensors can be modulated to potentially benefit clinical applications such as monitoring diverse therapeutic biomolecules.
Collapse
Affiliation(s)
- Jie Ying Teoh
- Department of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Suhwan Jeon
- Department of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Bora Yim
- R&D Center, Scholar Foxtrot Co. Ltd., Seoul 02841, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Hae Min Yang
- Department of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Yunseo Hwang
- Department of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Juhui Kim
- Department of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Su-Kyoung Lee
- R&D Center, Scholar Foxtrot Co. Ltd., Seoul 02841, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Eunyoung Park
- Department of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Yeon Kong
- Department of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - So Youn Kim
- Department of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongdoo Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Young Gyu Kim
- Department of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongseong Kim
- R&D Center, Scholar Foxtrot Co. Ltd., Seoul 02841, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Dongwon Yoo
- Department of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea.,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| |
Collapse
|
19
|
LeValley PJ, Parsons AL, Sutherland BP, Kiick KL, Oakey JS, Kloxin AM. Microgels Formed by Spontaneous Click Chemistries Utilizing Microfluidic Flow Focusing for Cargo Release in Response to Endogenous or Exogenous Stimuli. Pharmaceutics 2022; 14:1062. [PMID: 35631649 PMCID: PMC9145542 DOI: 10.3390/pharmaceutics14051062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 02/05/2023] Open
Abstract
Protein therapeutics have become increasingly popular for the treatment of a variety of diseases owing to their specificity to targets of interest. However, challenges associated with them have limited their use for a range of ailments, including the limited options available for local controlled delivery. To address this challenge, degradable hydrogel microparticles, or microgels, loaded with model biocargoes were created with tunable release profiles or triggered burst release using chemistries responsive to endogenous or exogeneous stimuli, respectively. Specifically, microfluidic flow-focusing was utilized to form homogenous microgels with different spontaneous click chemistries that afforded degradation either in response to redox environments for sustained cargo release or light for on-demand cargo release. The resulting microgels were an appropriate size to remain localized within tissues upon injection and were easily passed through a needle relevant for injection, providing means for localized delivery. Release of a model biopolymer was observed over the course of several weeks for redox-responsive formulations or triggered for immediate release from the light-responsive formulation. Overall, we demonstrate the ability of microgels to be formulated with different materials chemistries to achieve various therapeutic release modalities, providing new tools for creation of more complex protein release profiles to improve therapeutic regimens.
Collapse
Affiliation(s)
- Paige J. LeValley
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA; (P.J.L.); (B.P.S.)
| | - Amanda L. Parsons
- Chemical Engineering, University of Wyoming, Laramie, WY 82071, USA;
| | - Bryan P. Sutherland
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA; (P.J.L.); (B.P.S.)
| | - Kristi L. Kiick
- Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA;
- Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - John S. Oakey
- Chemical Engineering, University of Wyoming, Laramie, WY 82071, USA;
| | - April M. Kloxin
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA; (P.J.L.); (B.P.S.)
- Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA;
| |
Collapse
|
20
|
Schulte MF, Izak-Nau E, Braun S, Pich A, Richtering W, Göstl R. Microgels react to force: mechanical properties, syntheses, and force-activated functions. Chem Soc Rev 2022; 51:2939-2956. [PMID: 35319064 DOI: 10.1039/d2cs00011c] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microgels are colloidal polymer networks with high molar mass and properties between rigid particles, flexible macromolecules, and micellar aggregates. Their unique stimuli-responsiveness in conjunction with their colloidal phase behavior render them useful for many applications ranging from engineering to biomedicine. In many scenarios either the microgel's mechanical properties or its interactions with mechanical force play an important role. Here, we firstly explain microgel mechanical properties and how these are measured by atomic force microscopy (AFM), then we equip the reader with the synthetic background to understand how specific architectures and chemical functionalities enable these mechanical properties, and eventually we elucidate how the interaction of force with microgels can lead to the activation of latent functionality. Since the interaction of microgels with force is a multiscale and multidisciplinary subject, we introduce and interconnect the different research areas that contribute to the understanding of this emerging field in this Tutorial Review.
Collapse
Affiliation(s)
- M Friederike Schulte
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.
| | - Emilia Izak-Nau
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany.
| | - Susanne Braun
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany. .,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Andrij Pich
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany. .,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.,Maastricht University, Aachen Maastricht Institute for Biobased Materials (AMIBM), Brightlands Chemelot Campus, 6167 RD Geleen, The Netherlands
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.
| | - Robert Göstl
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany.
| |
Collapse
|
21
|
Echeverría C, Mijangos C. Rheology Applied to Microgels: Brief (Revision of the) State of the Art. Polymers (Basel) 2022; 14:1279. [PMID: 35406152 PMCID: PMC9003433 DOI: 10.3390/polym14071279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/10/2022] Open
Abstract
The ability of polymer microgels to rapidly respond to external stimuli is of great interest in sensors, lubricants, and biomedical applications, among others. In most of their uses, microgels are subjected to shear, deformation, and compression forces or a combination of them, leading to variations in their rheological properties. This review article mainly refers to the rheology of microgels, from the hard sphere versus soft particles' model. It clearly describes the scaling theories and fractal structure formation, in particular, the Shih et al. and Wu and Morbidelli models as a tool to determine the interactions among microgel particles and, thus, the viscoelastic properties. Additionally, the most recent advances on the characterization of microgels' single-particle interactions are also described. The review starts with the definition of microgels, and a brief introduction addresses the preparation and applications of microgels and hybrid microgels.
Collapse
Affiliation(s)
- Coro Echeverría
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain;
| | | |
Collapse
|
22
|
Panova IG, Sudareva EA, Novoskoltseva OA, Spiridonov VV, Shtilman MI, Richtering W, Yaroslavov AA. Temperature-induced unloading of liposomes bound to microgels. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Makvandi P, Chen M, Sartorius R, Zarrabi A, Ashrafizadeh M, Dabbagh Moghaddam F, Ma J, Mattoli V, Tay FR. Endocytosis of abiotic nanomaterials and nanobiovectors: Inhibition of membrane trafficking. NANO TODAY 2021; 40:101279. [PMID: 34518771 PMCID: PMC8425779 DOI: 10.1016/j.nantod.2021.101279] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 05/04/2023]
Abstract
Humans are exposed to nanoscopical nanobiovectors (e.g. coronavirus SARS-CoV-2) as well as abiotic metal/carbon-based nanomaterials that enter cells serendipitously or intentionally. Understanding the interactions of cell membranes with these abiotic and biotic nanostructures will facilitate scientists to design better functional nanomaterials for biomedical applications. Such knowledge will also provide important clues for the control of viral infections and the treatment of virus-induced infectious diseases. In the present review, the mechanisms of endocytosis are reviewed in the context of how nanomaterials are uptaken into cells. This is followed by a detailed discussion of the attributes of man-made nanomaterials (e.g. size, shape, surface functional groups and elasticity) that affect endocytosis, as well as the different human cell types that participate in the endocytosis of nanomaterials. Readers are then introduced to the concept of viruses as nature-derived nanoparticles. The mechanisms in which different classes of viruses interact with various cell types to gain entry into the human body are reviewed with examples published over the last five years. These basic tenets will enable the avid reader to design advanced drug delivery and gene transfer nanoplatforms that harness the knowledge acquired from endocytosis to improve their biomedical efficacy. The review winds up with a discussion on the hurdles to be addressed in mimicking the natural mechanisms of endocytosis in nanomaterials design.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Meiling Chen
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples 80131, Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Farnaz Dabbagh Moghaddam
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Jingzhi Ma
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA 30912, United States
| |
Collapse
|
24
|
Wang X, Zhang G, Yu D, Wang N, Guan Q. The interaction of folate-modified Bletilla striata polysaccharide-based micelle with bovine serum albumin. Glycoconj J 2021; 38:585-597. [PMID: 34586534 DOI: 10.1007/s10719-021-10022-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/19/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022]
Abstract
We fabricated an amphiphilic folate-modified Bletilla striata polysaccharide (FA-BSP-SA) copolymer that exhibited good biocompatibility and superior antitumor effects. This study investigated the affinity between FA-BSP-SA and bovine serum albumin (BSA) via multispetroscopic approaches. Changes in the morphology and particle size showed that FA-BSP-SA formed a blurry "protein corona". Stern-Volmer equation demonstrated that FA-BSP-SA micelles decreased the fluorescence of BSA via static quenching. The measurement results of thermodynamic parameters (entropy change, enthalpy change, and Gibbs free energy) suggested that the binding between FA-BSP-SA and BSA was spontaneous in which Van der Waals forces and hydrogen bonding played major roles. The results from synchronous fluorescence, circular dichroism, and UV spectra also revealed that BSA conformation was slightly altered by decreasing α-helical contents. In addition, the antitumor effects in vitro of Dox@FA-BSP-SA micelles and the cellular uptake behavior of micelles in 4T1 cells were decreased after incubating with BSA.
Collapse
Affiliation(s)
- Xinying Wang
- Department of Pharmaceutics, School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun, 130021, China
| | - Guangyuan Zhang
- Department of Pharmaceutics, School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun, 130021, China
| | - Di Yu
- Department of Pharmaceutics, School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun, 130021, China
| | - Ning Wang
- Department of Pharmaceutics, School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun, 130021, China
| | - Qingxiang Guan
- Department of Pharmaceutics, School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun, 130021, China.
| |
Collapse
|
25
|
Rana MM, De la Hoz Siegler H. Tuning the Properties of PNIPAm-Based Hydrogel Scaffolds for Cartilage Tissue Engineering. Polymers (Basel) 2021; 13:3154. [PMID: 34578055 PMCID: PMC8467289 DOI: 10.3390/polym13183154] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/15/2023] Open
Abstract
Poly(N-isopropylacrylamide) (PNIPAm) is a three-dimensional (3D) crosslinked polymer that can interact with human cells and play an important role in the development of tissue morphogenesis in both in vitro and in vivo conditions. PNIPAm-based scaffolds possess many desirable structural and physical properties required for tissue regeneration, but insufficient mechanical strength, biocompatibility, and biomimicry for tissue development remain obstacles for their application in tissue engineering. The structural integrity and physical properties of the hydrogels depend on the crosslinks formed between polymer chains during synthesis. A variety of design variables including crosslinker content, the combination of natural and synthetic polymers, and solvent type have been explored over the past decade to develop PNIPAm-based scaffolds with optimized properties suitable for tissue engineering applications. These design parameters have been implemented to provide hydrogel scaffolds with dynamic and spatially patterned cues that mimic the biological environment and guide the required cellular functions for cartilage tissue regeneration. The current advances on tuning the properties of PNIPAm-based scaffolds were searched for on Google Scholar, PubMed, and Web of Science. This review provides a comprehensive overview of the scaffolding properties of PNIPAm-based hydrogels and the effects of synthesis-solvent and crosslinking density on tuning these properties. Finally, the challenges and perspectives of considering these two design variables for developing PNIPAm-based scaffolds are outlined.
Collapse
Affiliation(s)
- Md Mohosin Rana
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Hector De la Hoz Siegler
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
26
|
Nanogels: An overview of properties, biomedical applications, future research trends and developments. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
27
|
Birhan YS, Tsai HC. Recent developments in selenium-containing polymeric micelles: prospective stimuli, drug-release behaviors, and intrinsic anticancer activity. J Mater Chem B 2021; 9:6770-6801. [PMID: 34350452 DOI: 10.1039/d1tb01253c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selenium is capable of forming a dynamic covalent bond with itself and other elements and can undergo metathesis and regeneration reactions under optimum conditions. Its dynamic nature endows selenium-containing polymers with striking sensitivity towards some environmental alterations. In the past decade, several selenium-containing polymers were synthesized and used for the preparation of oxidation-, reduction-, and radiation-responsive nanocarriers. Recently, thioredoxin reductase, sonication, and osmotic pressure triggered the cleavage of Se-Se bonds and swelling or disassembly of nanostructures. Moreover, some selenium-containing nanocarriers form oxidation products such as seleninic acids and acrylates with inherent anticancer activities. Thus, selenium-containing polymers hold promise for the fabrication of ultrasensitive and multifunctional nanocarriers of radiotherapeutic, chemotherapeutic, and immunotherapeutic significance. Herein, we discuss the most recent developments in selenium-containing polymeric micelles in light of their architecture, multiple stimuli-responsive properties, emerging immunomodulatory activities, and future perspectives in the delivery and controlled release of anticancer agents.
Collapse
Affiliation(s)
- Yihenew Simegniew Birhan
- Department of Chemistry, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos, Ethiopia
| | | |
Collapse
|
28
|
Nakamoto M, Escalante T, Gutiérrez JM, Shea KJ. A Biomimetic of Endogenous Tissue Inhibitors of Metalloproteinases: Inhibition Mechanism and Contribution of Composition, Polymer Size, and Shape to the Inhibitory Effect. NANO LETTERS 2021; 21:5663-5670. [PMID: 34181420 DOI: 10.1021/acs.nanolett.1c01357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A biomimetic of endogenous tissue inhibitors of metalloproteinases (TIMPs) was engineered by introducing three binding elements to a synthetic tetrapolymer. We evaluated the contribution of composition, size, and shape of the TIMP-mimicking polymers to the inhibition of BaP1, a P-I class snake venom metalloproteinase (SVMP). Inhibition was achieved when the size of the linear polymer (LP) was comparable to or greater than that of the enzyme, indicating the efficacy requires binding to a significant portion of the enzyme surface in the vicinity of the active site. The efficacy of a low cross-linked polymer hydrogel nanoparticle (NP) of substantially greater molecular weight was comparable to that of the LPs despite differences in size and shape, an important finding for in vivo applications. The abiotic TIMP was effective against two classes of SVMPs in whole snake venom. The results can serve as a design principle for biomimetic polymer inhibitors of enzymes.
Collapse
Affiliation(s)
- Masahiko Nakamoto
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Teresa Escalante
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - José M Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Kenneth J Shea
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
29
|
Monteiro MJ, Cunningham MF. Polymer Colloids: Synthesis Fundamentals to Applications. Biomacromolecules 2021; 21:4377-4378. [PMID: 33161722 DOI: 10.1021/acs.biomac.0c01462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This special issue of Biomacromolecules highlights research from The International Polymer Colloid Group (IPCG), which was founded in 1972 as a forum for the exchange of ideas and emerging research activities for scientists and engineers from both academia and industry who study or use polymer colloids. The increasing relevance of polymeric structures with colloidal dimensions to biomacromolecules research provided the impetus for organizing this special issue. The IPCG is composed of over 120 researchers from over 20 countries who are elected to membership. Activities comprise annual symposia including a biennial International Polymer Colloid Group Research Conference and a semiannual newsletter that incorporates a summary of recent (including unpublished) research results from our members.
Collapse
Affiliation(s)
- Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Michael F Cunningham
- Department of Chemical Engineering, Queen's University, Kinston, Ontario, Canada K7L 3N6
| |
Collapse
|
30
|
Liu Y, Mao S, Zhu L, Chen S, Wu C. Based on tannic acid and thermoresponsive microgels design a simple and high-efficiency multifunctional antibacterial coating. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Budiarta M, Xu W, Schubert L, Meledina M, Meledin A, Wöll D, Pich A, Beck T. Protecting redesigned supercharged ferritin containers against protease by integration into acid-cleavable polyelectrolyte microgels. J Colloid Interface Sci 2021; 591:451-462. [PMID: 33631532 DOI: 10.1016/j.jcis.2021.01.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 10/22/2022]
Abstract
HYPOTHESIS The application of ferritin containers as a promising drug delivery vehicle is limited by their low bioavailability in blood circulation due to unfavorable environments, such as degradation by protease. The integration of ferritin containers into the polymeric network of microgels through electrostatic interactions is expected to be able to protect ferritin against degradation by protease. Furthermore, a stimuli-responsive microgel system can be designed by employing an acid-degradable crosslinker during the microgel synthesis. This should enable ferritin release in an acidic environment, which will be useful for future drug delivery applications. EXPERIMENTS Nanoparticle/fluorophores-loaded ferritin was integrated into microgels during precipitation polymerization. The integration was monitored by transmission electron microscopy (TEM)2 and fluorescence microscopy, respectively. After studying ferritin release in acidic solutions, we investigated the stability of ferritin inside microgels against degradation by chymotrypsin. FINDINGS About 80% of the applied ferritin containers were integrated into microgels and around 85% and 50% of them could be released in buffer pH 2.5 and 4.0, respectively. Total degradation of the microgels was not achieved due to the self-crosslinking of N-isopropylacrylamide (NIPAM). Finally, we prove that microgels could protect ferritin against degradation by chymotrypsin at 37 °C.
Collapse
Affiliation(s)
- Made Budiarta
- RWTH Aachen University, Institute of Inorganic Chemistry, Landoltweg 1, 52074 Aachen, Germany.
| | - Wenjing Xu
- DWI- Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074 Aachen, Germany; RWTH Aachen University, Institute of Technical and Molecular Chemistry, Woringer Weg 2, 52074 Aachen, Germany.
| | - Lukas Schubert
- RWTH Aachen University, Institute of Physical Chemistry, Landoltweg 2, 52074 Aachen, Germany.
| | - Maria Meledina
- RWTH Aachen University, Central Facility for Electron Microscopy, Ahornstraße 55, Aachen 52074, Germany.
| | - Alexander Meledin
- RWTH Aachen University, Central Facility for Electron Microscopy, Ahornstraße 55, Aachen 52074, Germany.
| | - Dominik Wöll
- RWTH Aachen University, Institute of Physical Chemistry, Landoltweg 2, 52074 Aachen, Germany.
| | - Andrij Pich
- DWI- Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074 Aachen, Germany; RWTH Aachen University, Institute of Technical and Molecular Chemistry, Woringer Weg 2, 52074 Aachen, Germany; Maastricht University, Aachen Maastricht Institute for Biobased Materials, Urmonderbaan 22, 6167 RD, Geleen, the Netherlands.
| | - Tobias Beck
- Universität Hamburg, Department of Chemistry, Institute of Physical Chemistry, Grindelallee 117, 20146 Hamburg, Germany; The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany.
| |
Collapse
|
32
|
Loading of doxorubicin into surface-attached stimuli-responsive microgels and its subsequent release under different conditions. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Zhang L, Fu L, Zhang X, Chen L, Cai Q, Yang X. Hierarchical and heterogeneous hydrogel system as a promising strategy for diversified interfacial tissue regeneration. Biomater Sci 2021; 9:1547-1573. [DOI: 10.1039/d0bm01595d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A state-of-the-art review on the design and preparation of hierarchical and heterogeneous hydrogel systems for interfacial tissue regeneration.
Collapse
Affiliation(s)
- Liwen Zhang
- State Key Laboratory of Organic–Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| | - Lei Fu
- State Key Laboratory of Organic–Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| | - Xin Zhang
- Institute of Sports Medicine
- Beijing Key Laboratory of Sports Injuries
- Peking University Third Hospital
- Beijing 100191
- P. R. China
| | - Linxin Chen
- Peking University Third Hospital
- Beijing 100191
- P. R. China
| | - Qing Cai
- State Key Laboratory of Organic–Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic–Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| |
Collapse
|
34
|
Bochenek S, McNamee CE, Kappl M, Butt HJ, Richtering W. Interactions between a responsive microgel monolayer and a rigid colloid: from soft to hard interfaces. Phys Chem Chem Phys 2021; 23:16754-16766. [PMID: 34319323 DOI: 10.1039/d1cp01703a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Responsive poly-N-isopropylacrylamide-based microgels are commonly used as model colloids with soft repulsive interactions. It has been shown that the microgel-microgel interaction in solution can be easily adjusted by varying the environmental parameters, e.g., temperature, pH, or salt concentration. Furthermore, microgels readily adsorb to liquid-gas and liquid-liquid interfaces forming responsive foams and emulsions that can be broken on-demand. In this work, we explore the interactions between microgel monolayers at the air-water interface and a hard colloid in the water. Force-distance curves between the monolayer and a silica particle were measured with the Monolayer Particle Interaction Apparatus. The measurements were conducted at different temperatures and lateral compressions, i.e., different surface pressures. The force-distance approach curves display long-range repulsive forces below the volume phase transition temperature of the microgels. Temperature and lateral compression reduce the stiffness of the monolayer. The adhesion increases with temperature and decreases with a lateral compression of the monolayer. When compressed laterally, the interactions between the microgels are hardly affected by temperature, as the directly adsorbed microgel fractions are nearly insensitive to temperature. In contrast, our findings show that the temperature-dependent swelling of the microgel fractions in the aqueous phase strongly influences the interaction with the probe. This is explained by a change in the microgel monolayer from a soft to a hard repulsive interface.
Collapse
Affiliation(s)
- Steffen Bochenek
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany
| | | | | | | | | |
Collapse
|
35
|
Kim H, Witt H, Oswald TA, Tarantola M. Adhesion of Epithelial Cells to PNIPAm Treated Surfaces for Temperature-Controlled Cell-Sheet Harvesting. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33516-33529. [PMID: 32631046 PMCID: PMC7467562 DOI: 10.1021/acsami.0c09166] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Stimuli responsive polymer coatings are a common motive for designing surfaces for cell biological applications. In the present study, we have characterized temperature dependent adhesive properties of poly(N-isopropylacrylamide) (PNIPAm) microgel coated surfaces (PMS) using various atomic force microscopy based approaches. We imaged and quantified the material properties of PMS upon a temperature switch using quantitative AFM imaging but also employed single-cell force spectroscopy (SCFS) before and after decreasing the temperature to assess the forces and work of initial adhesion between cells and PMS. We performed a detailed analysis of steps in the force-distance curves. Finally, we applied colloid probe atomic force microscopy (CP-AFM) to analyze the adhesive properties of two major components of the extracellular matrix to PMS under temperature control, namely collagen I and fibronectin. In combination with confocal imaging, we could show that these two ECM components differ in their detachment properties from PNIPAm microgel films upon cell harvesting, and thus gained a deeper understanding of cell-sheet maturation and harvesting process and the involved partial ECM dissolution.
Collapse
Affiliation(s)
- Hyejeong Kim
- Max Planck Institute
for Dynamics and Self Organization (MPIDS), Am Fassberg 17, 37077 Göttingen, Germany
| | - Hannes Witt
- Max Planck Institute
for Dynamics and Self Organization (MPIDS), Am Fassberg 17, 37077 Göttingen, Germany
| | - Tabea A. Oswald
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Marco Tarantola
- Max Planck Institute
for Dynamics and Self Organization (MPIDS), Am Fassberg 17, 37077 Göttingen, Germany
- Institute for Dynamics of Complex Systems, University of Göttingen, Friedrich-Hund Platz 1, 37073 Göttingen, Germany
- E-mail: . Phone: +49-551-5176-316
| |
Collapse
|