1
|
Walters-Shumka JP, Cheng C, Jiang F, Willerth SM. Recent Advances in Modeling Tissues Using 3D Bioprinted Nanocellulose Bioinks. ACS Biomater Sci Eng 2025; 11:1882-1896. [PMID: 40065192 DOI: 10.1021/acsbiomaterials.4c01902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Bioprinting creates 3D tissue models by depositing cells encapsulated in biocompatible materials. These 3D printed models can better emulate physiological conditions in comparison with traditional 2D cell cultures or animal models. Such models can be produced from human cells, possessing human genetics and replicating the 3D microenvironment found in vivo. Many different types of biocompatible materials serve as bioinks, including gelatin methacryloyl (GelMA), alginate, fibrin, and gelatin. Nanocellulose has emerged as a promising addition to these materials. Nanocellulose─composed of cellulose chain bundles with lateral dimensions ranging from a few to several tens of nanometers─possesses key properties for 3D bioprinting applications. It can form biocompatible hydrogels, which have excellent physical properties, and its structure resembles collagen, making it useful for modeling tissues with high collagen content such as bone, cartilage, sink, and muscle. Here we review some of the recent advances in the use of nanocellulose in bioinks for the creation of bone, cartilage, skin, and muscle tissue specific models and identify areas for future progress.
Collapse
Affiliation(s)
- Jonathan P Walters-Shumka
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada
| | - Changfeng Cheng
- Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Feng Jiang
- Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Stephanie M Willerth
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada
- Axolotl Biosciences, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada
- Centre for Advanced Materials and Technologies, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
2
|
Dar MA, Xie R, Liu J, Ali S, Pawar KD, Sudiana IM, Sun J. Current Paradigms and Future Challenges in Harnessing Nanocellulose for Advanced Applications in Tissue Engineering: A Critical State-of-the-Art Review for Biomedicine. Int J Mol Sci 2025; 26:1449. [PMID: 40003914 PMCID: PMC11855852 DOI: 10.3390/ijms26041449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Nanocellulose-based biomaterials are at the forefront of biomedicine, presenting innovative solutions to longstanding challenges in tissue engineering and wound repair. These advanced materials demonstrate enhanced mechanical properties and improved biocompatibility while allowing for precise tuning of drug release profiles. Recent progress in the design, fabrication, and characterization of these biomaterials underscores their transformative potential in biomedicine. Researchers are employing strategic methodologies to investigate and characterize the structure and functionality of nanocellulose in tissue engineering and wound repair. In tissue engineering, nanocellulose-based scaffolds offer transformative opportunities to replicate the complexities of native tissues, facilitating the study of drug effects on the metabolism, vascularization, and cellular behavior in engineered liver, adipose, and tumor models. Concurrently, nanocellulose has gained recognition as an advanced wound dressing material, leveraging its ability to deliver therapeutic agents via precise topical, transdermal, and systemic pathways while simultaneously promoting cellular proliferation and tissue regeneration. The inherent transparency of nanocellulose provides a unique advantage, enabling real-time monitoring of wound healing progress. Despite these advancements, significant challenges remain in the large-scale production, reproducibility, and commercial viability of nanocellulose-based biomaterials. This review not only underscores these hurdles but also outlines strategic directions for future research, including the need for bioengineering of nanocellulose-based wound dressings with scalable production and the incorporation of novel functionalities for clinical translation. By addressing these key challenges, nanocellulose has the potential to redefine biomedical material design and offer transformative solutions for unmet clinical needs in tissue engineering and beyond.
Collapse
Affiliation(s)
- Mudasir A. Dar
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.A.D.); (J.L.); (S.A.)
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Rongrong Xie
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.A.D.); (J.L.); (S.A.)
| | - Jun Liu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.A.D.); (J.L.); (S.A.)
| | - Shehbaz Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.A.D.); (J.L.); (S.A.)
| | - Kiran D. Pawar
- School of Nanoscience and Biotechnology, Shivaji University, Vidyanagar, Kolhapur 416004, India;
| | - I Made Sudiana
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta-Bogor KM. 46, KST Soekarno, Cibinong, Bogor 16911, Indonesia;
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.A.D.); (J.L.); (S.A.)
| |
Collapse
|
3
|
Hatase R, Li Q, Hatakeyama M, Kitaoka T. Direct activation of Toll-like receptor 2 signaling stimulated by contact with the interfacial structures of chitin nanofibers. Int J Biol Macromol 2025; 284:138092. [PMID: 39613079 DOI: 10.1016/j.ijbiomac.2024.138092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
The innate immune system, which eliminates pathogens and abnormal cells, is involved in the pathogenesis of various diseases and infections, where Toll-like receptors (TLRs) play a critical regulatory role. In this study, we investigated the potential of chitin nanofiber (CtNF) to induce an immune response, which is expected to act as an agonist of TLR2. Crab-derived CtNF, surface-deacetylated CtNF, and surface-carboxylated cellulose NF were employed as TLR2-mediated immune stimulator, signal regulator, and cell adhesion promoter, respectively, to fabricate cell culture scaffolds for HEK293 cells with TLR2 and human monocyte THP-1 cells with or without TLR2. Surface deacetylation of CtNF drastically diminished the immunological response of HEK293 cells, suggesting that the N-acetyl groups on the solid CtNF surface were pivotal for TLR2-mediated stimulation. A comparison of wild-type and TLR2-KO THP-1 cells on cell culture substrates with N-acetyl groups ranging from 0 to 1.39 mmol g-1 revealed that immune signaling for nuclear factor-κB and interferon regulatory factor pathways was strongly dependent on the surface N-acetyl group content. The immunostimulatory level at the interface of solid CtNF and immune cells could be regulated by simply mixing CtNF and surface-deacetylated CtNF, which is a significant advantage for its potential use as a novel immunostimulant.
Collapse
Affiliation(s)
- Risa Hatase
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Qi Li
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Mayumi Hatakeyama
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Takuya Kitaoka
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
4
|
Tamo AK. Nanocellulose-based hydrogels as versatile materials with interesting functional properties for tissue engineering applications. J Mater Chem B 2024; 12:7692-7759. [PMID: 38805188 DOI: 10.1039/d4tb00397g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tissue engineering has emerged as a remarkable field aiming to restore or replace damaged tissues through the use of biomimetic constructs. Among the diverse materials investigated for this purpose, nanocellulose-based hydrogels have garnered attention due to their intriguing biocompatibility, tunable mechanical properties, and sustainability. Over the past few years, numerous research works have been published focusing on the successful use of nanocellulose-based hydrogels as artificial extracellular matrices for regenerating various types of tissues. The review emphasizes the importance of tissue engineering, highlighting hydrogels as biomimetic scaffolds, and specifically focuses on the role of nanocellulose in composites that mimic the structures, properties, and functions of the native extracellular matrix for regenerating damaged tissues. It also summarizes the types of nanocellulose, as well as their structural, mechanical, and biological properties, and their contributions to enhancing the properties and characteristics of functional hydrogels for tissue engineering of skin, bone, cartilage, heart, nerves and blood vessels. Additionally, recent advancements in the application of nanocellulose-based hydrogels for tissue engineering have been evaluated and documented. The review also addresses the challenges encountered in their fabrication while exploring the potential future prospects of these hydrogel matrices for biomedical applications.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France
| |
Collapse
|
5
|
Sun J, Fang W, Liza AA, Gao R, Song J, Guo J, Rojas OJ. Photoluminescent Nanocellulosic Film for Selective Hg 2+ Ion Detection. Polymers (Basel) 2024; 16:1583. [PMID: 38891529 PMCID: PMC11174859 DOI: 10.3390/polym16111583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
We developed a highly sensitive solid-state sensor for mercury detection by stabilizing red-sub-nanometric fluorescent gold nanoclusters (AuNC, 0.9 ± 0.1 nm diameter) with bovine serum albumin in a matrix composed of cellulose nanofibrils (CNF) (BSA-AuNC/CNF). The main morphological and optical features of the system were investigated via atomic force/transmission electron microscopy and UV-Vis/fluorescence spectroscopy. The hybrid film (off-white and highly transparent) showed strong photoluminescene under UV irradiation. The latter is assigned to the AuNC, which also increase the ductility of the emitting film, which was demonstrated for high sensitivity Hg2+ detection. When used as a sensor system, following AuNC printing on CNF hybrid films, a limit of detection <10 nM was confirmed. What is more, nanocellulose films have a high pore structure and selective separation properties, showcasing a wide range of potential applications in many fields such as water treatment and oil-water separation.
Collapse
Affiliation(s)
- Jing Sun
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; (J.S.); (A.A.L.); (R.G.); (J.S.)
| | - Wenwen Fang
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 00076 Helsinki, Finland;
| | - Afroza Akter Liza
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; (J.S.); (A.A.L.); (R.G.); (J.S.)
| | - Rui Gao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; (J.S.); (A.A.L.); (R.G.); (J.S.)
| | - Junlong Song
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; (J.S.); (A.A.L.); (R.G.); (J.S.)
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; (J.S.); (A.A.L.); (R.G.); (J.S.)
| | - Orlando J. Rojas
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 00076 Helsinki, Finland;
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, 2360, East Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
6
|
Sreedharan M, Vijayamma R, Liyaskina E, Revin VV, Ullah MW, Shi Z, Yang G, Grohens Y, Kalarikkal N, Ali Khan K, Thomas S. Nanocellulose-Based Hybrid Scaffolds for Skin and Bone Tissue Engineering: A 10-Year Overview. Biomacromolecules 2024; 25:2136-2155. [PMID: 38448083 DOI: 10.1021/acs.biomac.3c00975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Cellulose, the most abundant polymer on Earth, has been widely utilized in its nanoform due to its excellent properties, finding applications across various scientific fields. As the demand for nanocellulose continues to rise and its ease of use becomes apparent, there has been a significant increase in research publications centered on this biomaterial. Nanocellulose, in its different forms, has shown tremendous promise as a tissue engineered scaffold for regeneration and repair. Particularly, nanocellulose-based composites and scaffolds have emerged as highly demanding materials for both soft and hard tissue engineering. Medical practitioners have traditionally relied on collagen and its analogue, gelatin, for treating tissue damage. However, the limited mechanical strength of these biopolymers restricts their direct use in various applications. This issue can be overcome by making hybrids of these biopolymers with nanocellulose. This review presents a comprehensive analysis of the recent and most relevant publications focusing on hybrid composites of collagen and gelatin with a specific emphasis on their combination with nanocellulose. While bone and skin tissue engineering represents two areas where a majority of researchers are concentrating their efforts, this review highlights the use of nanocellulose-based hybrids in these contexts.
Collapse
Affiliation(s)
- Mridula Sreedharan
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Raji Vijayamma
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Elena Liyaskina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, Saransk 430005, Russia
| | - Viktor V Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, Saransk 430005, Russia
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yves Grohens
- Univ. Bretagne Sud, UMR CNRS 6027, IRDL, F-56321 Lorient, France
| | - Nandakumar Kalarikkal
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Khalid Ali Khan
- Applied College, Mahala Campus and the Unit of Bee Research and Honey Production/Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| |
Collapse
|
7
|
Šuca H, Čoma M, Tomšů J, Sabová J, Zajíček R, Brož A, Doubková M, Novotný T, Bačáková L, Jenčová V, Kuželová Košťáková E, Lukačín Š, Rejman D, Gál P. Current Approaches to Wound Repair in Burns: How far Have we Come From Cover to Close? A Narrative Review. J Surg Res 2024; 296:383-403. [PMID: 38309220 DOI: 10.1016/j.jss.2023.12.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/06/2023] [Accepted: 12/29/2023] [Indexed: 02/05/2024]
Abstract
Burn injuries are a significant global health concern, with more than 11 million people requiring medical intervention each year and approximately 180,000 deaths annually. Despite progress in health and social care, burn injuries continue to result in socioeconomic burdens for victims and their families. The management of severe burn injuries involves preventing and treating burn shock and promoting skin repair through a two-step procedure of covering and closing the wound. Currently, split-thickness/full-thickness skin autografts are the gold standard for permanent skin substitution. However, deep burns treated with split-thickness skin autografts may contract, leading to functional and appearance issues. Conversely, defects treated with full-thickness skin autografts often result in more satisfactory function and appearance. The development of tissue-engineered dermal templates has further expanded the scope of wound repair, providing scar reductive and regenerative properties that have extended their use to reconstructive surgical interventions. Although their interactions with the wound microenvironment are not fully understood, these templates have shown potential in local infection control. This narrative review discusses the current state of wound repair in burn injuries, focusing on the progress made from wound cover to wound closure and local infection control. Advancements in technology and therapies hold promise for improving the outcomes for burn injury patients. Understanding the underlying mechanisms of wound repair and tissue regeneration may provide new insights for developing more effective treatments in the future.
Collapse
Affiliation(s)
- Hubert Šuca
- Prague Burn Center, Third Faculty of Medicine, Charles University and Královské Vinohrady University Hospital, Prague, Czech Republic
| | - Matúš Čoma
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic; Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Inc, Košice, Slovak Republic
| | - Júlia Tomšů
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Sabová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic
| | - Robert Zajíček
- Prague Burn Center, Third Faculty of Medicine, Charles University and Královské Vinohrady University Hospital, Prague, Czech Republic
| | - Antonín Brož
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Doubková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Novotný
- Department of Orthopaedics, University J.E. Purkině and Masaryk Hospital, Ústí nad Labem, Czech Republic; Department of Histology and Embryology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Orthopaedic Surgery, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lucie Bačáková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Věra Jenčová
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Liberec, Czech Republic
| | - Eva Kuželová Košťáková
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Liberec, Czech Republic
| | - Štefan Lukačín
- Department of Heart Surgery, East-Slovak Institute of Cardiovascular Diseases, Inc, Košice, Slovak Republic
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Gál
- Prague Burn Center, Third Faculty of Medicine, Charles University and Královské Vinohrady University Hospital, Prague, Czech Republic; Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic; Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Inc, Košice, Slovak Republic; Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic; Biomedical Research Center of the Slovak Academy of Sciences, Košice, Slovak Republic.
| |
Collapse
|
8
|
Yusuf J, Sapuan SM, Ansari MA, Siddiqui VU, Jamal T, Ilyas RA, Hassan MR. Exploring nanocellulose frontiers: A comprehensive review of its extraction, properties, and pioneering applications in the automotive and biomedical industries. Int J Biol Macromol 2024; 255:128121. [PMID: 37984579 DOI: 10.1016/j.ijbiomac.2023.128121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Material is an inseparable entity for humans to serve different purposes. However, synthetic polymers represent a major category of anthropogenic pollutants with detrimental impacts on natural ecosystems. This escalating environmental issue is characterized by the accumulation of non-biodegradable plastic materials, which pose serious threats to the health of our planet's ecosystem. Cellulose is becoming a focal point for many researchers due to its high availability. It has been used to serve various purposes. Recent scientific advancements have unveiled innovative prospects for the utilization of nanocellulose within the area of advanced science. This comprehensive review investigates deeply into the field of nanocellulose, explaining the methodologies employed in separating nanocellulose from cellulose. It also explains upon two intricately examined applications that emphasize the pivotal role of nanocellulose in nanocomposites. The initial instance pertains to the automotive sector, encompassing cutting-edge applications in electric vehicle (EV) batteries, while the second exemplifies the use of nanocellulose in the field of biomedical applications like otorhinolaryngology, ophthalmology, and wound dressing. This review aims to provide comprehensive information starting from the definitions, identifying the sources of the nanocellulose and its extraction, and ending with the recent applications in the emerging field such as energy storage and biomedical applications.
Collapse
Affiliation(s)
- J Yusuf
- Advanced Engineering Materials and Composites (AEMC) Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - S M Sapuan
- Advanced Engineering Materials and Composites (AEMC) Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Mubashshir Ahmad Ansari
- Department of Mechanical Engineering, Zakir Husain College of Engineering and Technology, Aligarh Muslim University, Aligarh 202001, India.
| | - Vasi Uddin Siddiqui
- Advanced Engineering Materials and Composites (AEMC) Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Tarique Jamal
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - R A Ilyas
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia.
| | - M R Hassan
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
9
|
Rashad A, Grøndahl M, Heggset EB, Mustafa K, Syverud K. Responses of Rat Mesenchymal Stromal Cells to Nanocellulose with Different Functional Groups. ACS APPLIED BIO MATERIALS 2023; 6:987-998. [PMID: 36763504 PMCID: PMC10031564 DOI: 10.1021/acsabm.2c00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Cellulose nanofibrils (CNFs) are multiscale hydrophilic biocompatible polysaccharide materials derived from wood and plants. TEMPO-mediated oxidation of CNFs (TO-CNF) turns some of the primary hydroxyl groups to carboxylate and aldehyde groups. Unlike carboxylic functional groups, there is little or no information about the biological role of the aldehyde groups on the surface of wood-based CNFs. In this work, we replaced the aldehyde groups in the TO-CNF samples with carboxyl groups by another oxidation treatment (TO-O-CNF) or with primary alcohols with terminal hydroxyl groups by a reduction reaction (TO-R-CNF). Rat mesenchymal stem/stromal cells (MSCs) derived from bone marrow were seeded on polystyrene tissue culture plates (TCP) coated with CNFs with and without aldehyde groups. TCP and TCP coated with bacterial nanocellulose (BNC) were used as control groups. Protein adsorption measurements demonstrated that more proteins were adsorbed from cell culture media on all CNF surfaces compared to BNC. Live/dead and lactate dehydrogenase assays confirmed that all nanocellulose biomaterials supported excellent cell viability. Interestingly, TO-R-CNF samples, which have no aldehyde groups, showed better cell spreading than BNC and comparable results to TCP. Unlike TO-O-CNF surfaces, which have no aldehyde groups either, TO-R-CNF stimulated cells, in osteogenic medium, to have higher alkaline phosphatase activity and to form more biomineralization than TCP and TO-CNF groups. These findings indicate that the presence of aldehyde groups (280 ± 14 μmol/g) on the surface of TEMPO-oxidized CNFs might have little or no effect on attachment, proliferation, and osteogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Ahmad Rashad
- Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway
| | - Martha Grøndahl
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | | | - Kamal Mustafa
- Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway
| | - Kristin Syverud
- RISE PFI, Trondheim 7491, Norway
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| |
Collapse
|
10
|
Nikolits I, Radwan S, Liebner F, Dietrich W, Egger D, Chariyev-Prinz F, Kasper C. Hydrogels from TEMPO-Oxidized Nanofibrillated Cellulose Support In Vitro Cultivation of Encapsulated Human Mesenchymal Stem Cells. ACS APPLIED BIO MATERIALS 2023; 6:543-551. [PMID: 36745634 PMCID: PMC9945099 DOI: 10.1021/acsabm.2c00854] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) are the most prominent type of adult stem cells for clinical applications. Three-dimensional (3D) cultivation of MSCs in biomimetic hydrogels provides a more physiologically relevant cultivation microenvironment for in vitro testing and modeling, thus overcoming the limitations of traditional planar cultivation methods. Cellulose nanofibers are an excellent candidate biomaterial for synthesis of hydrogels for this application, due to their biocompatibility, tunable properties, availability, and low cost. Herein, we demonstrate the capacity of hydrogels prepared from 2,2,6,6-tetramethylpiperidine-1-oxyl -oxidized and subsequently individualized cellulose-nanofibrils to support physiologically relevant 3D in vitro cultivation of human MSCs at low solid contents (0.2-0.5 wt %). Our results show that MSCs can spread, proliferate, and migrate inside the cellulose hydrogels, while the metabolic activity and proliferative capacity of the cells as well as their morphological characteristics benefit more in the lower bulk cellulose concentration hydrogels.
Collapse
Affiliation(s)
- Ilias Nikolits
- Institute
of Cell and Tissue Culture Technologies, Department of Biotechnology, University of Natural Resources and Life Sciences
BOKU Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Sara Radwan
- Department
of Life Science Engineering, University
of Applied Sciences Technikum Vienna, Höchstädtplatz 6, 1200 Vienna, Austria
| | - Falk Liebner
- Institute
of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences
BOKU Vienna, Konrad Lorenz Straße 24, 3430 Tulln, Austria
| | - Wolf Dietrich
- Department
of Gynecology and Obstetrics, Karl Landsteiner
University of Health Sciences, Alter Ziegelweg 10, 3430 Tulln, Austria
| | - Dominik Egger
- Institute
of Cell and Tissue Culture Technologies, Department of Biotechnology, University of Natural Resources and Life Sciences
BOKU Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Farhad Chariyev-Prinz
- Institute
of Cell and Tissue Culture Technologies, Department of Biotechnology, University of Natural Resources and Life Sciences
BOKU Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Cornelia Kasper
- Institute
of Cell and Tissue Culture Technologies, Department of Biotechnology, University of Natural Resources and Life Sciences
BOKU Vienna, Muthgasse 18, 1190 Vienna, Austria,
| |
Collapse
|
11
|
From Regenerated Wood Pulp Fibers to Cationic Cellulose: Preparation, Characterization and Dyeing Properties. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3030036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The global demand for sustainable textile fibers is growing and has led to an increasing research interest from both academia and industry to find effective solutions. In this research, regenerated wood pulp fibers were functionalized with glycidyltrimethylammonium chloride (GTAC) to produce modified regenerated cellulose with cationic pending groups for improved dye uptake. The resultant cationic cellulose with a degree of substitution (DS) between 0.13 and 0.33 exhibited distinct morphologies and contact angles with water ranging from 65.7° to 82.5° for the fibers with DS values of 0.13 and 0.33, respectively. Furthermore, the thermal stability of the modified regenerated cellulose fibers, albeit lower than the pristine ones, reached temperatures up to 220 °C. Additionally, the modified fibers showed higher dye exhaustion and dye fixation values than the non-modified ones, attaining maxima values of 89.3% ± 0.9% and 80.6% ± 1.3%, respectively, for the cationic fibers with a DS of 0.13. These values of dye exhaustion and dye fixation are ca. 34% and 77% higher than those obtained for the non-modified fibers. Overall, regenerated wood pulp cellulose fibers can be used, after cationization, as textiles fiber with enhanced dye uptake performance that might offer new options for dyeing treatments.
Collapse
|
12
|
Yoshikawa C, Sakakibara K, Nonsuwan P, Shobo M, Yuan X, Matsumura K. Cellular Flocculation Driven by Concentrated Polymer Brush-Modified Cellulose Nanofibers with Different Surface Charges. Biomacromolecules 2022; 23:3186-3197. [DOI: 10.1021/acs.biomac.2c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chiaki Yoshikawa
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0047, Japan
| | - Keita Sakakibara
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Punnida Nonsuwan
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0047, Japan
| | - Miwako Shobo
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0047, Japan
| | - Xida Yuan
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
13
|
Cherian RM, Tharayil A, Varghese RT, Antony T, Kargarzadeh H, Chirayil CJ, Thomas S. A review on the emerging applications of nano-cellulose as advanced coatings. Carbohydr Polym 2022; 282:119123. [DOI: 10.1016/j.carbpol.2022.119123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 12/26/2022]
|
14
|
Combination of Polysaccharide Nanofibers Derived from Cellulose and Chitin Promotes the Adhesion, Migration and Proliferation of Mouse Fibroblast Cells. NANOMATERIALS 2022; 12:nano12030402. [PMID: 35159746 PMCID: PMC8840717 DOI: 10.3390/nano12030402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 12/29/2022]
Abstract
Extracellular matrix (ECM) as a structural and biochemical scaffold to surrounding cells plays significant roles in cell adhesion, migration, proliferation and differentiation. Herein, we show the novel combination of TEMPO-oxidized cellulose nanofiber (TOCNF) and surface-N-deacetylated chitin nanofiber (SDCtNF), respectively, having carboxylate and amine groups on each crystalline surface, for mouse fibroblast cell culture. The TOCNF/SDCtNF composite scaffolds demonstrated characteristic cellular behavior, strongly depending on the molar ratios of carboxylates and amines of polysaccharide NFs. Pure TOCNF substrate exhibited good cell attachment, although intact carboxylate-free CNF made no contribution to cell adhesion. By contrast, pure SDCtNF induced crucial cell aggregation to form spheroids; nevertheless, the combination of TOCNF and SDCtNF enhanced cell attachment and subsequent proliferation. Molecular blend of carboxymethylcellulose and acid-soluble chitosan made nearly no contribution to cell culture behavior. The wound healing assay revealed that the polysaccharide combination markedly promoted skin repair for wound healing. Both of TOCNF and SDCtNF possessed rigid nanofiber nanoarchitectures with native crystalline forms and regularly-repeated functional groups, of which such structural characteristics would provide a potential for developing cell culture scaffolds having ECM functions, possibly promoting good cellular adhesion, migration and growth in the designated cellular microenvironments.
Collapse
|
15
|
Skogberg A, Siljander S, Mäki AJ, Honkanen M, Efimov A, Hannula M, Lahtinen P, Tuukkanen S, Björkqvist T, Kallio P. Self-assembled cellulose nanofiber-carbon nanotube nanocomposite films with anisotropic conductivity. NANOSCALE 2022; 14:448-463. [PMID: 34908086 DOI: 10.1039/d1nr06937c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, a nanocellulose-based material showing anisotopic conductivity is introduced. The material has up to 1000 times higher conductivity along the dry-line boundary direction than along the radial direction. In addition to the material itself, the method to produce the material is novel and is based on the alignment of cationic cellulose nanofibers (c-CNFs) along the dry-line boundary of an evaporating droplet composed of c-CNFs in two forms and conductive multi-walled carbon nanotubes (MWCNTs). On the one hand, c-CNFs are used as a dispersant of MWCNTs, and on the other hand they are used as an additional suspension element to create the desired anisotropy. When the suspended c-CNF is left out, and the nanocomposite film is manufactured using the high energy sonicated c-CNF/MWCNT dispersion only, conductive anisotropy is not present but evenly conducting nanocomposite films are obtained. Therefore, we suggest that suspending additional c-CNFs in the c-CNF/MWCNT dispersion results in nanocomposite films with anisotropic conductivity. This is a new way to obtain nanocomposite films with substantial anisotropic conductivity.
Collapse
Affiliation(s)
- Anne Skogberg
- BioMediTech Institute and Faculty of Medicine and Health Technology (MET), Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Sanna Siljander
- Automation Technology and Mechanical Engineering, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 6, 33720 Tampere, Finland.
| | - Antti-Juhana Mäki
- BioMediTech Institute and Faculty of Medicine and Health Technology (MET), Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Mari Honkanen
- Tampere Microscopy Center, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland
| | - Alexander Efimov
- Chemistry, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720 Tampere, Finland
| | - Markus Hannula
- BioMediTech Institute and Faculty of Medicine and Health Technology (MET), Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Panu Lahtinen
- VTT Technical Research Center of Finland, Tietotie 4E, 02150 Espoo, Finland
| | - Sampo Tuukkanen
- BioMediTech Institute and Faculty of Medicine and Health Technology (MET), Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Tomas Björkqvist
- Automation Technology and Mechanical Engineering, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 6, 33720 Tampere, Finland.
| | - Pasi Kallio
- BioMediTech Institute and Faculty of Medicine and Health Technology (MET), Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| |
Collapse
|