1
|
Feng Y, Shan L, Wang Y, Chen X, Wang C, Liu J. Conductive Hydrogels with Topographical Geometry and Mechanical Robustness for Enhanced Peripheral Nerve Regeneration. ACS NANO 2025. [PMID: 40273006 DOI: 10.1021/acsnano.5c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Nerve guidance conduits (NGCs) emerge as a promising solution for nerve regeneration; however, conventional NGCs fail to fulfill the requirements for peripheral nerve regeneration, which are subjected to periodical yet vigorous stretching, bending, and compression. Here, we developed a fatigue-resistant conductive hydrogel-based NGC by integrating topographical geometry, enhanced electroactivity, and superior fatigue resistance within one unit. The hydrogel, consisting of a PVA matrix with PEDOT:PSS as a conductive filler, features a topographical alignment that promotes axonal growth and achieves a fatigue threshold over 500 J/m2, making it well-suited for sciatic nerve repairing. Phase segregation of PEDOT chains enhances its electrical conductivity (>500 S/m) and mitigates the interfacial impedance mismatch, allowing for high-efficiency bioelectrical signal transmission. In vivo studies on a rat sciatic nerve injury model corroborate the accelerated peripheral nerve regeneration through improved motor function recovery and efficient electrophysiological signal transmission. These findings establish our hydrogel-based NGCs as a promising solution for high-efficiency nerve regeneration through the synergy of topographical, mechanical, and electrical engineering.
Collapse
Affiliation(s)
- Yinghui Feng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liangjie Shan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yafei Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xingmei Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chang Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Liu C, Sun M, Lin L, Luo Y, Peng L, Zhang J, Qiu T, Liu Z, Yin J, Yu M. Potentially commercializable nerve guidance conduits for peripheral nerve injury: Past, present, and future. Mater Today Bio 2025; 31:101503. [PMID: 40018056 PMCID: PMC11867546 DOI: 10.1016/j.mtbio.2025.101503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 03/01/2025] Open
Abstract
Peripheral nerve injuries are a prevalent global issue that has garnered great concern. Although autografts remain the preferred clinical approach to repair, their efficacy is hampered by factors like donor scarcity. The emergence of nerve guidance conduits as novel tissue engineering tools offers a promising alternative strategy. This review aims to interpret nerve guidance conduits and their commercialization from both clinical and laboratory perspectives. To enhance comprehension of clinical situations, this article provides a comprehensive analysis of the clinical efficacy of nerve conduits approved by the United States Food and Drug Administration. It proposes that the initial six months post-transplantation is a critical window period for evaluating their efficacy. Additionally, this study conducts a systematic discussion on the research progress of laboratory conduits, focusing on biomaterials and add-on strategies as pivotal factors for nerve regeneration, as supported by the literature analysis. The clinical conduit materials and prospective optimal materials are thoroughly discussed. The add-on strategies, together with their distinct obstacles and potentials are deeply analyzed. Based on the above evaluations, the development path and manufacturing strategy for the commercialization of nerve guidance conduits are envisioned. The critical conclusion promoting commercialization is summarized as follows: 1) The optimization of biomaterials is the fundamental means; 2) The phased application of additional strategies is the emphasized direction; 3) The additive manufacturing techniques are the necessary tools. As a result, the findings of this research provide academic and clinical practitioners with valuable insights that may facilitate future commercialization endeavors of nerve guidance conduits.
Collapse
Affiliation(s)
- Chundi Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Mouyuan Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Lining Lin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yaxian Luo
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Lianjie Peng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jingyu Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Tao Qiu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhichao Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Mengfei Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
3
|
Su S, Wang J. A Comprehensive Review on Bioprinted Graphene-Based Material (GBM)-Enhanced Scaffolds for Nerve Guidance Conduits. Biomimetics (Basel) 2025; 10:213. [PMID: 40277612 DOI: 10.3390/biomimetics10040213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025] Open
Abstract
Peripheral nerve injuries (PNIs) pose significant challenges to recovery, often resulting in impaired function and quality of life. To address these challenges, nerve guidance conduits (NGCs) are being developed as effective strategies to promote nerve regeneration by providing a supportive framework that guides axonal growth and facilitates reconnection of severed nerves. Among the materials being explored, graphene-based materials (GBMs) have emerged as promising candidates due to their unique properties. Their unique properties-such as high mechanical strength, excellent electrical conductivity, and favorable biocompatibility-make them ideal for applications in nerve repair. The integration of 3D printing technologies further enhances the development of GBM-based NGCs, enabling the creation of scaffolds with complex architectures and precise topographical cues that closely mimic the natural neural environment. This customization significantly increases the potential for successful nerve repair. This review offers a comprehensive overview of properties of GBMs, the principles of 3D printing, and key design strategies for 3D-printed NGCs. Additionally, it discusses future perspectives and research directions that could advance the application of 3D-printed GBMs in nerve regeneration therapies.
Collapse
Affiliation(s)
- Siheng Su
- Department of Mechanical Engineering, California State University, Fullerton, CA 92831, USA
| | - Jilong Wang
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, College of Textile and Garment, Shaoxing University, Shaoxing 312000, China
- Shaoxing Sub-Center of National Engineering Research Center for Fiber-Based Composites, Shaoxing University, Shaoxing 312000, China
- Shaoxing Key Laboratory of High Performance Fibers & Products, Shaoxing University, Shaoxing 312000, China
| |
Collapse
|
4
|
Borah R, Diez Clarke D, Upadhyay J, Monaghan MG. From innovation to clinic: Emerging strategies harnessing electrically conductive polymers to enhance electrically stimulated peripheral nerve repair. Mater Today Bio 2025; 30:101415. [PMID: 39816667 PMCID: PMC11733191 DOI: 10.1016/j.mtbio.2024.101415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025] Open
Abstract
Peripheral nerve repair (PNR) is a major healthcare challenge due to the limited regenerative capacity of the nervous system, often leading to severe functional impairments. While nerve autografts are the gold standard, their implications are constrained by issues such as donor site morbidity and limited availability, necessitating innovative alternatives like nerve guidance conduits (NGCs). However, the inherently slow nerve growth rate (∼1 mm/day) and prolonged neuroinflammation, delay recovery even with the use of passive (no-conductive) NGCs, resulting in muscle atrophy and loss of locomotor function. Electrical stimulation (ES) has the ability to enhance nerve regeneration rate by modulating the innate bioelectrical microenvironment of nerve tissue while simultaneously fostering a reparative environment through immunoregulation. In this context, electrically conductive polymer (ECP)-based biomaterials offer unique advantages for nerve repair combining their flexibility, akin to traditional plastics, and mixed ionic-electronic conductivity, similar to ionically conductive nerve tissue, as well as their biocompatibility and ease of fabrication. This review focuses on the progress, challenges, and emerging techniques for integrating ECP based NGCs with ES for functional nerve regeneration. It critically evaluates the various approaches using ECP based scaffolds, identifying gaps that have hindered clinical translation. Key challenges discussed include designing effective 3D NGCs with high electroactivity, optimizing ES modules, and better understanding of immunoregulation during nerve repair. The review also explores innovative strategies in material development and wireless, self-powered ES methods. Furthermore, it emphasizes the need for non-invasive ES delivery methods combined with hybrid ECP based neural scaffolds, highlighting future directions for advancing preclinical and clinical translation. Together, ECP based NGCs combined with ES represent a promising avenue for advancing PNR and improving patient outcomes.
Collapse
Affiliation(s)
- Rajiv Borah
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Daniel Diez Clarke
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Jnanendra Upadhyay
- Department of Physics, Dakshin Kamrup College, Kamrup, Assam, 781125, India
| | - Michael G. Monaghan
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
- CÚRAM, Research Ireland Centre for Research in Medical Devices, University of Galway, H91 W2TY Galway, Ireland
| |
Collapse
|
5
|
Liao W, Shi Y, Li Z, Yin X. Advances in 3D printing combined with tissue engineering for nerve regeneration and repair. J Nanobiotechnology 2025; 23:5. [PMID: 39754257 PMCID: PMC11697815 DOI: 10.1186/s12951-024-03052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/29/2024] [Indexed: 01/06/2025] Open
Abstract
The repair of nerve damage has long posed a challenge owing to limited self-repair capacity and the highly differentiated nature of nerves. While new therapeutic and pharmacologic interventions have emerged in neurology, their regenerative efficacy remains limited. Tissue engineering offers a promising avenue for overcoming the limitations of conventional treatments and increasing the outcomes of regenerative repair. By implanting scaffolds into damaged nerve tissue sites, the repair and functional reconstruction of nerve injuries can be significantly facilitated. The integration of three-dimensional (3D) printing technology introduces a novel approach for accurate simulation and scalably fabricating neural tissue structures. Tissue-engineered scaffolds developed through 3D printing technology are expected to be a viable therapeutic option for nerve injuries, with broad applicability and continued development. This review systematically examines recent advances in 3D printing and tissue engineering for nerve regeneration and repair. It details the basic principles and construction strategies of neural tissue engineering and explores the crucial role of 3D printing technology. Additionally, it elucidates specific applications and technical challenges associated with this integrated approach, thereby providing valuable insights into innovative strategies and pragmatic implementation within this field.
Collapse
Affiliation(s)
- Weifang Liao
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Yuying Shi
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Zuguang Li
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, No. 57 East Xunyang Road, Jiujiang, Jiangxi, 332005, China.
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China.
| |
Collapse
|
6
|
Tuanchai A, Iamphring P, Suttaphakdee P, Boupan M, Mikule J, Pérez Aguilera JP, Worajittiphon P, Liu Y, Ross GM, Kunc S, Mikeš P, Unno M, Ross S. Bilayer Scaffolds of PLLA/PCL/CAB Ternary Blend Films and Curcumin-Incorporated PLGA Electrospun Nanofibers: The Effects of Polymer Compositions and Solvents on Morphology and Molecular Interactions. Polymers (Basel) 2024; 16:1679. [PMID: 38932029 PMCID: PMC11207424 DOI: 10.3390/polym16121679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Tissue engineering scaffolds have been dedicated to regenerating damaged tissue by serving as host biomaterials for cell adhesion, growth, differentiation, and proliferation to develop new tissue. In this work, the design and fabrication of a biodegradable bilayer scaffold consisting of a ternary PLLA/PCL/CAB blend film layer and a PLGA/curcumin (CC) electrospun fiber layer were studied and discussed in terms of surface morphology, tensile mechanical properties, and molecular interactions. Three different compositions of PLLA/PCL/CAB-60/15/25 (TBF1), 75/10/15 (TBF2), and 85/5/10 (TBF3)-were fabricated using the solvent casting method. The electrospun fibers of PLGA/CC were fabricated using chloroform (CF) and dimethylformamide (DMF) co-solvents in 50:50 and 60:40 volume ratios. Spherical patterns of varying sizes were observed on the surfaces of all blend films-TBF1 (17-21 µm) > TBF2 (5-9 µm) > TBF3 (1-5 µm)-caused by heterogeneous surfaces inducing bubble nucleation. The TBF1, TBF2, and TBF3 films showed tensile elongation at break values of approximately 170%, 94%, and 43%, respectively. The PLGA/CC electrospun fibers fabricated using 50:50 CF:DMF had diameters ranging from 100 to 400 nm, which were larger than those of the PLGA fibers (50-200 nm). In contrast, the PLGA/CC electrospun fibers fabricated using 60:40 CF:DMF had diameters mostly ranging from 200 to 700 nm, which were larger than those of PLGA fibers (200-500 nm). Molecular interactions via hydrogen bonding were observed between PLGA and CC. The surface morphology of the bilayer scaffold demonstrated adhesion between these two solid surfaces resembling "thread stitches" promoted by hydrophobic interactions, hydrogen bonding, and surface roughness.
Collapse
Affiliation(s)
- Areeya Tuanchai
- Biopolymer Group, Department of Chemistry, Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand; (A.T.); (P.I.); (P.S.); (M.B.); (G.M.R.)
| | - Phakanan Iamphring
- Biopolymer Group, Department of Chemistry, Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand; (A.T.); (P.I.); (P.S.); (M.B.); (G.M.R.)
| | - Pattaraporn Suttaphakdee
- Biopolymer Group, Department of Chemistry, Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand; (A.T.); (P.I.); (P.S.); (M.B.); (G.M.R.)
| | - Medta Boupan
- Biopolymer Group, Department of Chemistry, Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand; (A.T.); (P.I.); (P.S.); (M.B.); (G.M.R.)
| | - Jaroslav Mikule
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic; (J.M.)
| | - Juan Pablo Pérez Aguilera
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic; (J.M.)
| | - Patnarin Worajittiphon
- Department of Chemistry, Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Yujia Liu
- Department of Chemistry and Chemical Biology, Faculty of Science and Technology, Gunma University, Tenjin-cho, Kiryu 376-8515, Japan; (Y.L.); (M.U.)
| | - Gareth Michael Ross
- Biopolymer Group, Department of Chemistry, Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand; (A.T.); (P.I.); (P.S.); (M.B.); (G.M.R.)
| | - Stepan Kunc
- Department of Physics, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic; (S.K.); (P.M.)
| | - Petr Mikeš
- Department of Physics, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic; (S.K.); (P.M.)
| | - Masafumi Unno
- Department of Chemistry and Chemical Biology, Faculty of Science and Technology, Gunma University, Tenjin-cho, Kiryu 376-8515, Japan; (Y.L.); (M.U.)
| | - Sukunya Ross
- Biopolymer Group, Department of Chemistry, Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand; (A.T.); (P.I.); (P.S.); (M.B.); (G.M.R.)
| |
Collapse
|
7
|
Pinzon-Herrera L, Magness J, Apodaca-Reyes H, Sanchez J, Almodovar J. Surface Modification of Nerve Guide Conduits with ECM Coatings and Investigating Their Impact on Schwann Cell Response. Adv Healthc Mater 2024; 13:e2304103. [PMID: 38400540 DOI: 10.1002/adhm.202304103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/06/2024] [Indexed: 02/25/2024]
Abstract
In this study, layer-by-layer coatings composed of heparin and collagen are proposed as an extracellular mimetic environment on nerve guide conduits (NGC) to modulate the behavior of Schwann cells (hSCs). The authors evaluated the stability, degradation over time, and bioactivity of six bilayers of heparin/collagen layer-by-layer coatings, denoted as (HEP/COL)6. The stability study reveals that (HEP/COL)6 is stable after incubating the coatings in cell media for up to 21 days. The impact of (HEP/COL)6 on hSCs viability, protein expression, and migration is evaluated. These assays show that hSCs cultured in (HEP/COL)6 have enhanced protein expression and migration. This condition increases the expression of neurotrophic and immunomodulatory factors up to 1.5-fold compared to controls, and hSCs migrated 1.34 times faster than in the uncoated surfaces. Finally, (HEP/COL)6 is also applied to a commercial collagen-based NGC, NeuraGen, and hSC viability and adhesion are studied after 6 days of culture. The morphology of NeuraGen is not altered by the presence of (HEP/COL)6 and a nearly 170% increase of the cell viability is observed in the condition where NeuraGen is used with (HEP/COL)6. Additionally, cell adhesion on the coated samples is successfully demonstrated. This work demonstrates the reparative enhancing potential of extracellular mimetic coatings.
Collapse
Affiliation(s)
- Luis Pinzon-Herrera
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - John Magness
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA
| | - Hector Apodaca-Reyes
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA
| | - Jesus Sanchez
- Science & Mathematics Division, Northwest Arkansas Community College, 1418 Burns Hall, Bentonville, AR, 72712, USA
| | - Jorge Almodovar
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| |
Collapse
|
8
|
de Souza JR, Cardoso LM, de Toledo PTA, Rahimnejad M, Kito LT, Thim GP, Campos TMB, Borges ALS, Bottino MC. Biodegradable electrospun poly(L-lactide-co-ε-caprolactone)/polyethylene glycol/bioactive glass composite scaffold for bone tissue engineering. J Biomed Mater Res B Appl Biomater 2024; 112:e35406. [PMID: 38676957 PMCID: PMC11288622 DOI: 10.1002/jbm.b.35406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/04/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024]
Abstract
The field of tissue engineering has witnessed significant advancements in recent years, driven by the pursuit of innovative solutions to address the challenges of bone regeneration. In this study, we developed an electrospun composite scaffold for bone tissue engineering. The composite scaffold is made of a blend of poly(L-lactide-co-ε-caprolactone) (PLCL) and polyethylene glycol (PEG), with the incorporation of calcined and lyophilized silicate-chlorinated bioactive glass (BG) particles. Our investigation involved a comprehensive characterization of the scaffold's physical, chemical, and mechanical properties, alongside an evaluation of its biological efficacy employing alveolar bone-derived mesenchymal stem cells. The incorporation of PEG and BG resulted in elevated swelling ratios, consequently enhancing hydrophilicity. Thermal gravimetric analysis confirmed the efficient incorporation of BG, with the scaffolds demonstrating thermal stability up to 250°C. Mechanical testing revealed enhanced tensile strength and Young's modulus in the presence of BG; however, the elongation at break decreased. Cell viability assays demonstrated improved cytocompatibility, especially in the PLCL/PEG+BG group. Alizarin red staining indicated enhanced osteoinductive potential, and fluorescence analysis confirmed increased cell adhesion in the PLCL/PEG+BG group. Our findings suggest that the PLCL/PEG/BG composite scaffold holds promise as an advanced biomaterial for bone tissue engineering.
Collapse
Affiliation(s)
- Joyce R. de Souza
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Department of Dental Materials and Prosthodontics, Institute of Science and Technology of São José dos Campos, São Paulo State University (UNESP), São José dos Campos, São José dos Campos, SP 12245-000, Brazil
| | - Lais M. Cardoso
- Department of Dental Materials and Prosthodontics, Institute of Science and Technology of São José dos Campos, São Paulo State University (UNESP), São José dos Campos, São José dos Campos, SP 12245-000, Brazil
| | - Priscila T. A. de Toledo
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP 16015-050, Brazil
| | - Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Letícia T. Kito
- Department of Materials Manufacture and Automation, Technological Institute of Aeronautics (ITA), São José dos Campos, SP 12228-900, Brazil
| | - Gilmar P. Thim
- Department of Materials Manufacture and Automation, Technological Institute of Aeronautics (ITA), São José dos Campos, SP 12228-900, Brazil
| | - Tiago M. B. Campos
- Department of Prosthodontics and Periodontology, Bauru School of Dentistry, University of São Paulo, Bauru, SP 17012-901, Brazil
| | - Alexandre L. S. Borges
- Department of Dental Materials and Prosthodontics, Institute of Science and Technology of São José dos Campos, São Paulo State University (UNESP), São José dos Campos, São José dos Campos, SP 12245-000, Brazil
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Li X, Mao X, Tao M, Liang F, Tian X, Fan J, Wang X, Yu T, Ao Q. Enhancing neuroinduction activity of PLCL-based nerve conduits through native epineurium integration. BIOMATERIALS ADVANCES 2024; 159:213803. [PMID: 38447384 DOI: 10.1016/j.bioadv.2024.213803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/23/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
Autologous nerve grafts have been considered the gold standard for peripheral nerve grafts. However, due to drawbacks such as functional loss in the donor area and a shortage of donor sources, nerve conduits are increasingly being considered as an alternative approach. Polymer materials have been widely studied as nerve repair materials due to their excellent processing performance. However, their limited biocompatibility has restricted further clinical applications. The epineurium is a natural extra-neural wrapping structure. After undergoing decellularization, the epineurium not only reduces immune rejection but also retains certain bioactive components. In this study, decellularized epineurium (DEP) derived from the sciatic nerve of mammals was prepared, and a bilayer nerve conduit was created by electrospinning a poly (l-lactide-co-ε-caprolactone) (PLCL) membrane layer onto the outer surface of the DEP. Components of the DEP were examined; the physical properties and biosafety of the bilayer nerve conduit were evaluated; and the functionality of the nerve conduit was evaluated in rats. The results demonstrate that the developed bilayer nerve conduit exhibits excellent biocompatibility and mechanical properties. Furthermore, this bilayer nerve conduit shows significantly superior therapeutic effects for sciatic nerve defects in rats compared to the pure PLCL nerve conduit. In conclusion, this research provides a novel strategy for the design of nerve regeneration materials and holds promising potential for further clinical translation.
Collapse
Affiliation(s)
- Xiao Li
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Xiaoyan Mao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Meihan Tao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Fang Liang
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Xiaohong Tian
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Jun Fan
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Xiaohong Wang
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Tianhao Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Qiang Ao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China..
| |
Collapse
|
10
|
Yan B, Hua Y, Wang J, Shao T, Wang S, Gao X, Gao J. Surface Modification Progress for PLGA-Based Cell Scaffolds. Polymers (Basel) 2024; 16:165. [PMID: 38201830 PMCID: PMC10780542 DOI: 10.3390/polym16010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Poly(lactic-glycolic acid) (PLGA) is a biocompatible bio-scaffold material, but its own hydrophobic and electrically neutral surface limits its application as a cell scaffold. Polymer materials, mimics ECM materials, and organic material have often been used as coating materials for PLGA cell scaffolds to improve the poor cell adhesion of PLGA and enhance tissue adaptation. These coating materials can be modified on the PLGA surface via simple physical or chemical methods, and coating multiple materials can simultaneously confer different functions to the PLGA scaffold; not only does this ensure stronger cell adhesion but it also modulates cell behavior and function. This approach to coating could facilitate the production of more PLGA-based cell scaffolds. This review focuses on the PLGA surface-modified materials, methods, and applications, and will provide guidance for PLGA surface modification.
Collapse
Affiliation(s)
- Bohua Yan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (B.Y.); (J.W.); (T.S.); (S.W.)
| | - Yabing Hua
- Department of Pharmacy, Xuzhou Medical University Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China;
| | - Jinyue Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (B.Y.); (J.W.); (T.S.); (S.W.)
| | - Tianjiao Shao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (B.Y.); (J.W.); (T.S.); (S.W.)
| | - Shan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (B.Y.); (J.W.); (T.S.); (S.W.)
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (B.Y.); (J.W.); (T.S.); (S.W.)
| | - Jing Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (B.Y.); (J.W.); (T.S.); (S.W.)
| |
Collapse
|
11
|
Sartoneva R, Paakinaho K, Hannula M, Kuismanen K, Huhtala H, Hyttinen J, Miettinen S. Ascorbic Acid 2-Phosphate Releasing Supercritically Foamed Porous Poly-L-Lactide-Co-ε-Caprolactone Scaffold Enhances the Collagen Production of Human Vaginal Stromal Cells: A New Approach for Vaginal Tissue Engineering. Tissue Eng Regen Med 2024; 21:81-96. [PMID: 37907765 PMCID: PMC10764701 DOI: 10.1007/s13770-023-00603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/17/2023] [Accepted: 09/24/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND The reconstructive surgery of vaginal defects is highly demanding and susceptible to complications, especially in larger defects requiring nonvaginal tissue grafts. Thus, tissue engineering-based solutions could provide a potential approach to the reconstruction of vaginal defects. METHODS Here, we evaluated a novel porous ascorbic acid 2-phosphate (A2P)-releasing supercritical carbon dioxide foamed poly-L-lactide-co-ε-caprolactone (scPLCLA2P) scaffold for vaginal reconstruction with vaginal epithelial (EC) and stromal (SC) cells. The viability, proliferation, and phenotype of ECs and SCs were evaluated in monocultures and in cocultures on d 1, d 7 and d 14. Furthermore, the collagen production of SCs on scPLCLA2P was compared to that on scPLCL without A2P on d 14. RESULTS Both ECs and SCs maintained their viability on the scPLCLA2P scaffold in mono- and coculture conditions, and the cells maintained their typical morphology during the 14-d culture period. Most importantly, the scPLCLA2P scaffolds supported the collagen production of SCs superior to plain scPLCL based on total collagen amount, collagen I and III gene expression results and collagen immunostaining results. CONCLUSION This is the first study evaluating the effect of A2P on vaginal tissue engineering, and the results are highly encouraging, indicating that scPLCLA2P has potential as a scaffold for vaginal tissue engineering.
Collapse
Affiliation(s)
- Reetta Sartoneva
- Faculty of Medicine and Health Technology (MET), Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland.
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Arvo Ylpön Katu 34, 33520, Tampere, Finland.
- Department of Obstetrics and Gynaecology, Seinäjoki Central Hospital, Seinäjoki, Finland.
| | - Kaarlo Paakinaho
- Faculty of Medicine and Health Technology (MET), Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Markus Hannula
- Faculty of Medicine and Health Technology (MET), Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Kirsi Kuismanen
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Arvo Ylpön Katu 34, 33520, Tampere, Finland
- Department of Obstetrics and Gynaecology, Tampere University Hospital, Tampere, Finland
| | - Heini Huhtala
- Faculty of Social Sciences, University of Tampere, Tampere, Finland
| | - Jari Hyttinen
- Faculty of Medicine and Health Technology (MET), Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Susanna Miettinen
- Faculty of Medicine and Health Technology (MET), Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| |
Collapse
|
12
|
Thomas AP, Kasa VP, Dubey BK, Sen R, Sarmah AK. Synthesis and commercialization of bioplastics: Organic waste as a sustainable feedstock. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:167243. [PMID: 37741416 DOI: 10.1016/j.scitotenv.2023.167243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Substituting synthetic plastics with bioplastics, primarily due to their inherent biodegradable properties, represents a highly effective strategy to address the current global issue of plastic waste accumulation in the environment. Advances in bioplastic research have led to the development of materials with improved properties, enabling their use in a wide range of applications in major commercial sectors. Bioplastics are derived from various natural sources such as plants, animals, and microorganisms. Polyhydroxyalkanoate (PHA), a biopolymer synthesized by bacteria through microbial fermentation, exhibits physicochemical and mechanical characteristics comparable to those of synthetic plastics. In response to the growing demand for these environmentally friendly plastics, researchers are actively investigating various cleaner production methods, including modification or derivatization of existing molecules for enhanced properties and new-generation applications to expand their market share in the coming decades. By 2026, the commercial manufacturing capacity of bioplastics is projected to reach 7.6 million tonnes, with Europe currently holding a significant market share of 43.5 %. Bioplastics are predominantly utilized in the packaging industry, indicating a strong focus of their application in the sector. With the anticipated rise in bioplastic waste volume over the next few decades, it is crucial to comprehend their fate in various environments to evaluate the overall environmental impact. Ensuring their complete biodegradation involves optimizing waste management strategies and appropriate disposal within these facilities. Future research efforts should prioritize exploration of their end-of-life management and toxicity assessment of degradation products. These efforts are crucial to ensure the economic viability and environmental sustainability of bioplastics as alternatives to synthetic plastics.
Collapse
Affiliation(s)
- Anjaly P Thomas
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Vara Prasad Kasa
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Brajesh Kumar Dubey
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Ajit K Sarmah
- Department of Civil & Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; The Institute of Agriculture, The University of Western Australia, Nedlands, Perth, WA 6009, Australia
| |
Collapse
|
13
|
Flores León J, Quiroz Castillo JM, Rodríguez Félix DE, Castillo Ortega MM, Cabrera-González AD, Ramirez-Mendoza CG, Santacruz-Ortega H, Suárez-Campos G, Valenzuela-García JL, Herrera-Franco PJ. Preparation and Characterization of Extruded PLA Films Coated with Polyaniline or Polypyrrole by In Situ Chemical Polymerization. ACS OMEGA 2023; 8:43243-43253. [PMID: 38024776 PMCID: PMC10653065 DOI: 10.1021/acsomega.3c07201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Conductive polymers, such as polypyrrole and polyaniline, have been extensively studied for their notable intrinsic electronic and ionic conductivities, rendering them suitable for a range of diverse applications. In this study, in situ chemical polymerization was employed to coat extruded PLA films with PPy and PANi. Morphological analysis reveals a uniform and compact deposition of both polyaniline and polypyrrole after polymerization periods of 3 and 1 h, respectively. Furthermore, the PLA-PANi-3h and PLA-PPy-1h composites exhibited the highest electrical conductivity, with values of 0.042 and 0.022 S cm-1, respectively. These findings were in agreement with the XPS results, as the polyaniline-coated film showed a higher proportion of charge carriers compared to the polypyrrole composite. The elastic modulus of the coated films showed an increase compared with that of pure PLA films. Additionally, the inflection temperatures for the PLA-PANi-3h and PLA-PPy-1h composites were 368.7 and 367.2 °C, respectively, while for pure PLA, it reached 341.47 °C. This improvement in mechanical and thermal properties revealed the effective interfacial adhesion between the PLA matrix and the conducting polymer. Therefore, this work demonstrates that coating biopolymeric matrices with PANi or PPy enables the production of functional and environmentally friendly conductive materials suitable for potential use in the removal of heavy metals in water treatment.
Collapse
Affiliation(s)
- José
Ramón Flores León
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, C.P. 83000 Hermosillo, Sonora, México
| | - Jesús Manuel Quiroz Castillo
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, C.P. 83000 Hermosillo, Sonora, México
| | - Dora E. Rodríguez Félix
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, C.P. 83000 Hermosillo, Sonora, México
| | - María Mónica Castillo Ortega
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, C.P. 83000 Hermosillo, Sonora, México
| | - Ana Daymi Cabrera-González
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, C.P. 83000 Hermosillo, Sonora, México
| | | | - Hisila Santacruz-Ortega
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, C.P. 83000 Hermosillo, Sonora, México
| | - Guillermo Suárez-Campos
- Departamento
de Investigación en Física, Universidad de Sonora, C.P. 83000 Hermosillo, Sonora, México
| | | | | |
Collapse
|
14
|
Tumacder DV, Minisy IM, Taboubi O, Bober P. Highly Electroactive Frozen-State Polymerized Polypyrrole Nanostructures for Flexible Supercapacitors. Polymers (Basel) 2023; 15:4140. [PMID: 37896384 PMCID: PMC10610487 DOI: 10.3390/polym15204140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The polymerization of pyrrole in the frozen state with the presence of organic dyes (methyl orange (MO) and Acid Blue 25 (AB)) has proven to produce polypyrrole (PPy) nanostructures. Herein, we explore the electrochemical properties of PPy prepared under frozen-state conditions (-24 °C) with and without the presence of organic dyes. The electroactivity of PPy prepared with MO and AB significantly increased in all electrolytic media with a capacitance higher than this of the PPy prepared at room temperature. The highest capacitance (1914 F g-1) was obtained for PPy-MO in 0.2 M HCl solution. The impedance spectra of PPy showed a decrease in charge transfer resistance when the dyes were present. This indicates a conductivity increase of PPy. Improved electrochemical stability was observed for PPy, PPy-MO, and PPy-AB prepared at -24 °C, wherein a steady gain of capacitance was maintained during 5000 potential cycling. In addition, a PPy-based supercapacitor device was fabricated to demonstrate the energy storage characteristics of PPy, where it showed good capacitive behavior and stability. Overall, frozen-state polymerized PPy posed an impressive capacitive performance for flexible supercapacitors.
Collapse
Affiliation(s)
- Doebner Von Tumacder
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic; (D.V.T.); (I.M.M.); (O.T.)
- Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Islam M. Minisy
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic; (D.V.T.); (I.M.M.); (O.T.)
| | - Oumayma Taboubi
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic; (D.V.T.); (I.M.M.); (O.T.)
| | - Patrycja Bober
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic; (D.V.T.); (I.M.M.); (O.T.)
| |
Collapse
|
15
|
Chen X, Fazel Anvari-Yazdi A, Duan X, Zimmerling A, Gharraei R, Sharma N, Sweilem S, Ning L. Biomaterials / bioinks and extrusion bioprinting. Bioact Mater 2023; 28:511-536. [PMID: 37435177 PMCID: PMC10331419 DOI: 10.1016/j.bioactmat.2023.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/19/2023] [Accepted: 06/08/2023] [Indexed: 07/13/2023] Open
Abstract
Bioinks are formulations of biomaterials and living cells, sometimes with growth factors or other biomolecules, while extrusion bioprinting is an emerging technique to apply or deposit these bioinks or biomaterial solutions to create three-dimensional (3D) constructs with architectures and mechanical/biological properties that mimic those of native human tissue or organs. Printed constructs have found wide applications in tissue engineering for repairing or treating tissue/organ injuries, as well as in vitro tissue modelling for testing or validating newly developed therapeutics and vaccines prior to their use in humans. Successful printing of constructs and their subsequent applications rely on the properties of the formulated bioinks, including the rheological, mechanical, and biological properties, as well as the printing process. This article critically reviews the latest developments in bioinks and biomaterial solutions for extrusion bioprinting, focusing on bioink synthesis and characterization, as well as the influence of bioink properties on the printing process. Key issues and challenges are also discussed along with recommendations for future research.
Collapse
Affiliation(s)
- X.B. Chen
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Dr, S7K 5A9, Saskatoon, Canada
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - A. Fazel Anvari-Yazdi
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - X. Duan
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - A. Zimmerling
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - R. Gharraei
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - N.K. Sharma
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Dr, S7K 5A9, Saskatoon, Canada
| | - S. Sweilem
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| | - L. Ning
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| |
Collapse
|
16
|
Fan L, Cai Z, Zhao J, Wang X, Li JL. Facile In Situ Assembly of Nanofibers within Three-Dimensional Porous Matrices with Arbitrary Characteristics for Creating Biomimetic Architectures. NANO LETTERS 2023; 23:8602-8609. [PMID: 37706635 DOI: 10.1021/acs.nanolett.3c02440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
It is challenging to recapitulate the natural extracellular matrix's hierarchical nano/microfibrous three-dimensional (3D) structure with multilevel pores, good mechanical and hydrophilic properties, and excellent bioactivity for designing and developing advanced biomimetic materials. This work reports a new facile strategy for the scalable manufacturing of such a 3D architecture. Natural polymers in an aqueous solution are interpenetrated into a 3D microfibrous matrix with arbitrary shapes and property characteristics to self-assemble in situ into a nanofibrous network. The collagen fiber-like hierarchical structure and interconnected multilevel pores are achieved by self-assembly of the formed nanofibers within the 3D matrix, triggered by a simple cross-linking treatment. The as-prepared alginate/polypropylene biomimetic matrices are bioactive and have a tunable mechanical property (compressive modulus from ∼17 to ∼24 kPa) and a tunable hydrophilicity (water contact angle from ∼94° to 63°). This facile and versatile strategy allows eco-friendly and scalable manufacturing of diverse biomimetic matrices or modification of any existing porous matrices using different polymers.
Collapse
Affiliation(s)
- Linpeng Fan
- Australian Future Fibers Research and Innovation Center, Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Zengxiao Cai
- Australian Future Fibers Research and Innovation Center, Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Jian Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xungai Wang
- JC STEM Lab of Sustainable Fibers and Textiles, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Jing-Liang Li
- Australian Future Fibers Research and Innovation Center, Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
17
|
Wan T, Wang YL, Zhang FS, Zhang XM, Zhang YC, Jiang HR, Zhang M, Zhang PX. The Porous Structure of Peripheral Nerve Guidance Conduits: Features, Fabrication, and Implications for Peripheral Nerve Regeneration. Int J Mol Sci 2023; 24:14132. [PMID: 37762437 PMCID: PMC10531895 DOI: 10.3390/ijms241814132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Porous structure is an important three-dimensional morphological feature of the peripheral nerve guidance conduit (NGC), which permits the infiltration of cells, nutrients, and molecular signals and the discharge of metabolic waste. Porous structures with precisely customized pore sizes, porosities, and connectivities are being used to construct fully permeable, semi-permeable, and asymmetric peripheral NGCs for the replacement of traditional nerve autografts in the treatment of long-segment peripheral nerve injury. In this review, the features of porous structures and the classification of NGCs based on these characteristics are discussed. Common methods for constructing 3D porous NGCs in current research are described, as well as the pore characteristics and the parameters used to tune the pores. The effects of the porous structure on the physical properties of NGCs, including biodegradation, mechanical performance, and permeability, were analyzed. Pore structure affects the biological behavior of Schwann cells, macrophages, fibroblasts, and vascular endothelial cells during peripheral nerve regeneration. The construction of ideal porous structures is a significant advancement in the regeneration of peripheral nerve tissue engineering materials. The purpose of this review is to generalize, summarize, and analyze methods for the preparation of porous NGCs and their biological functions in promoting peripheral nerve regeneration to guide the development of medical nerve repair materials.
Collapse
Affiliation(s)
- Teng Wan
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Yi-Lin Wang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Feng-Shi Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Xiao-Meng Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Yi-Chong Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Hao-Ran Jiang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Meng Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Pei-Xun Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| |
Collapse
|
18
|
Ghosh A, Orasugh JT, Ray SS, Chattopadhyay D. Integration of 3D Printing-Coelectrospinning: Concept Shifting in Biomedical Applications. ACS OMEGA 2023; 8:28002-28025. [PMID: 37576662 PMCID: PMC10413848 DOI: 10.1021/acsomega.3c03920] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023]
Abstract
Porous structures with sizes between the submicrometer and nanometer scales can be produced using efficient and adaptable electrospinning technology. However, to approximate desirable structures, the construction lacks mechanical sophistication and conformance and requires three-dimensional solitary or multifunctional structures. The diversity of high-performance polymers and blends has enabled the creation of several porous structural conformations for applications in advanced materials science, particularly in biomedicine. Two promising technologies can be combined, such as electrospinning with 3D printing or additive manufacturing, thereby providing a straightforward yet flexible technique for digitally controlled shape-morphing fabrication. The hierarchical integration of configurations is used to imprint complex shapes and patterns onto mesostructured, stimulus-responsive electrospun fabrics. This technique controls the internal stresses caused by the swelling/contraction mismatch in the in-plane and interlayer regions, which, in turn, controls the morphological characteristics of the electrospun membranes. Major innovations in 3D printing, along with additive manufacturing, have led to the production of materials and scaffold systems for tactile and wearable sensors, filtration structures, sensors for structural health monitoring, tissue engineering, biomedical scaffolds, and optical patterning. This review discusses the synergy between 3D printing and electrospinning as a constituent of specific microfabrication methods for quick structural prototypes that are expected to advance into next-generation constructs. Furthermore, individual techniques, their process parameters, and how the fabricated novel structures are applied holistically in the biomedical field have never been discussed in the literature. In summary, this review offers novel insights into the use of electrospinning and 3D printing as well as their integration for cutting-edge applications in the biomedical field.
Collapse
Affiliation(s)
- Adrija Ghosh
- Department
of Polymer Science and Technology, University
of Calcutta, Kolkata 700009, India
| | - Jonathan Tersur Orasugh
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
- Department
of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa
| | - Suprakas Sinha Ray
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
- Department
of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa
| | - Dipankar Chattopadhyay
- Department
of Polymer Science and Technology, University
of Calcutta, Kolkata 700009, India
- Center
for Research in Nanoscience and Nanotechnology, Acharya Prafulla Chandra
Roy Sikhsha Prangan, University of Calcutta, JD-2, Sector-III, Saltlake City, Kolkata 700098, India
| |
Collapse
|
19
|
Zennifer A, Thangadurai M, Sundaramurthi D, Sethuraman S. Additive manufacturing of peripheral nerve conduits - Fabrication methods, design considerations and clinical challenges. SLAS Technol 2023; 28:102-126. [PMID: 37028493 DOI: 10.1016/j.slast.2023.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023]
Abstract
Tissue-engineered nerve guidance conduits (NGCs) are a viable clinical alternative to autografts and allografts and have been widely used to treat peripheral nerve injuries (PNIs). Although these NGCs are successful to some extent, they cannot aid in native regeneration by improving native-equivalent neural innervation or regrowth. Further, NGCs exhibit longer recovery period and high cost limiting their clinical applications. Additive manufacturing (AM) could be an alternative to the existing drawbacks of the conventional NGCs fabrication methods. The emergence of the AM technique has offered ease for developing personalized three-dimensional (3D) neural constructs with intricate features and higher accuracy on a larger scale, replicating the native feature of nerve tissue. This review introduces the structural organization of peripheral nerves, the classification of PNI, and limitations in clinical and conventional nerve scaffold fabrication strategies. The principles and advantages of AM-based techniques, including the combinatorial approaches utilized for manufacturing 3D nerve conduits, are briefly summarized. This review also outlines the crucial parameters, such as the choice of printable biomaterials, 3D microstructural design/model, conductivity, permeability, degradation, mechanical property, and sterilization required to fabricate large-scale additive-manufactured NGCs successfully. Finally, the challenges and future directions toward fabricating the 3D-printed/bioprinted NGCs for clinical translation are also discussed.
Collapse
Affiliation(s)
- Allen Zennifer
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Madhumithra Thangadurai
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India.
| |
Collapse
|
20
|
Limwanich W, Rakbamrung N, Meepowpan P, Funfuenha W, Kongsuk J, Punyodom W. Solvent-free ring-opening polymerization of ε-caprolactone initiated by Mg(II), Sn(II), Zn(II), Al(III), and Sn(IV) derivatives: a comparative study. REACTION KINETICS MECHANISMS AND CATALYSIS 2023. [DOI: 10.1007/s11144-023-02354-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
21
|
The Current Status, Prospects, and Challenges of Shape Memory Polymers Application in Bone Tissue Engineering. Polymers (Basel) 2023; 15:polym15030556. [PMID: 36771857 PMCID: PMC9920657 DOI: 10.3390/polym15030556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/28/2022] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Bone defects can occur after severe trauma, infection, or bone tumor resection surgery, which requires grafting to repair the defect when it reaches a critical size, as the bone's self-healing ability is insufficient to complete the bone repair. Natural bone grafts or artificial bone grafts, such as bioceramics, are currently used in bone tissue engineering, but the low availability of bone and high cost limit these treatments. Therefore, shape memory polymers (SMPs), which combine biocompatibility, biodegradability, mechanical properties, shape tunability, ease of access, and minimally invasive implantation, have received attention in bone tissue engineering in recent years. Here, we reviewed the various excellent properties of SMPs and their contribution to bone formation in experiments at the cellular and animal levels, respectively, especially for the repair of defects in craniomaxillofacial (CMF) and limb bones, to provide new ideas for the application of these new SMPs in bone tissue engineering.
Collapse
|
22
|
Zeng XX, Zeng JB. Systems Medicine as a Strategy to Deal with Alzheimer's Disease. J Alzheimers Dis 2023; 96:1411-1426. [PMID: 37980671 DOI: 10.3233/jad-230739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The traits of Alzheimer's disease (AD) include amyloid plaques made of Aβ1-40 and Aβ1-42, and neurofibrillary tangles by the hyperphosphorylation of tau protein. AD is a complex disorder that is heterogenous in genetical, neuropathological, and clinical contexts. Current available therapeutics are unable to cure AD. Systems medicine is a strategy by viewing the body as a whole system, taking into account each individual's unique health profile, provide treatment and associated nursing care clinically for the patient, aiming for precision. Since the onset of AD can lead towards cognitive impairment, it is vital to intervene and diagnose early and prevent further progressive loss of neurons. Moreover, as the individual's brain functions are impaired due to neurodegeneration in AD, it is essential to reconstruct the neurons or brain cells to enable normal brain functions. Although there are different subtypes of AD due to varied pathological lesions, in the majority cases of AD, neurodegeneration and severe brain atrophy develop at the chronic stage. Novel approaches including RNA based gene therapy, stem cell based technology, bioprinting technology, synthetic biology for brain tissue reconstruction are researched in recent decades in the hope to decrease neuroinflammation and restore normal brain function in individuals of AD. Systems medicine include the prevention of disease, diagnosis and treatment by viewing the individual's body as a whole system, along with systems medicine based nursing as a strategy against AD that should be researched further.
Collapse
Affiliation(s)
- Xiao Xue Zeng
- Department of Health Management, Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, Lishui Town, Nanhai District, Foshan City, Guangdong Province, P.R. China
| | - Jie Bangzhe Zeng
- Benjoe Institute of Systems Bio-Engineering, High Technology Park, Xinbei District, Changzhou City, Jiangsu Province, P.R. China
| |
Collapse
|