1
|
Steffens RC, Folda P, Fendler NL, Höhn M, Bücher-Schossau K, Kempter S, Snyder NL, Hartmann L, Wagner E, Berger S. GalNAc- or Mannose-PEG-Functionalized Polyplexes Enable Effective Lectin-Mediated DNA Delivery. Bioconjug Chem 2024; 35:351-370. [PMID: 38440876 DOI: 10.1021/acs.bioconjchem.3c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
A cationic, dendrimer-like oligo(aminoamide) carrier with four-arm topology based on succinoyl tetraethylene pentamine and histidines, cysteines, and N-terminal azido-lysines was screened for plasmid DNA delivery on various cell lines. The incorporated azides allow modification with various shielding agents of different polyethylene glycol (PEG) lengths and/or different ligands by copper-free click reaction, either before or after polyplex formation. Prefunctionalization was found to be advantageous over postfunctionalization in terms of nanoparticle formation, stability, and efficacy. A length of 24 ethylene oxide repetition units and prefunctionalization of ≥50% of azides per carrier promoted optimal polyplex shielding. PEG shielding resulted in drastically reduced DNA transfer, which could be successfully restored by active lectin targeting via novel GalNAc or mannose ligands, enabling enhanced receptor-mediated endocytosis of the carrier system. The involvement of the asialoglycoprotein receptor (ASGPR) in the uptake of GalNAc-functionalized polyplexes was confirmed in the ASGPR-positive hepatocarcinoma cell lines HepG2 and Huh7. Mannose-modified polyplexes showed superior cellular uptake and transfection efficacy compared to unmodified and shielded polyplexes in mannose-receptor-expressing dendritic cell-like DC2.4 cells.
Collapse
Affiliation(s)
- Ricarda C Steffens
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
- Center for NanoScience (CeNS), LMU Munich, 80799 Munich, Germany
| | - Paul Folda
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
| | - Nikole L Fendler
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Miriam Höhn
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
| | - Katharina Bücher-Schossau
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Susanne Kempter
- Faculty of Physics, LMU Munich, 80539 Munich, Germany
- Center for NanoScience (CeNS), LMU Munich, 80799 Munich, Germany
| | - Nicole L Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Laura Hartmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Institute for Macromolecular Chemistry, University Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg im Breisgau, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
- Center for NanoScience (CeNS), LMU Munich, 80799 Munich, Germany
| | - Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
- Center for NanoScience (CeNS), LMU Munich, 80799 Munich, Germany
| |
Collapse
|
2
|
Lu J, Dai Y, He Y, Zhang T, Zhang J, Chen X, Jiang C, Lu H. Organ/Cell-Selective Intracellular Delivery of Biologics via N-Acetylated Galactosamine-Functionalized Polydisulfide Conjugates. J Am Chem Soc 2024; 146:3974-3983. [PMID: 38299512 DOI: 10.1021/jacs.3c11914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Biologics, including proteins and antisense oligonucleotides (ASOs), face significant challenges when it comes to achieving intracellular delivery within specific organs or cells through systemic administrations. In this study, we present a novel approach for delivering proteins and ASOs to liver cells, both in vitro and in vivo, using conjugates that tether N-acetylated galactosamine (GalNAc)-functionalized, cell-penetrating polydisulfides (PDSs). The method involves the thiol-bearing cargo-mediated ring-opening polymerization of GalNAc-functionalized lipoamide monomers through the so-called aggregation-induced polymerization, leading to the formation of site-specific protein/ASO-PDS conjugates with narrow dispersity. The hepatocyte-selective intracellular delivery of the conjugates arises from a combination of factors, including first GalNAc binding with ASGPR receptors on liver cells, leading to cell immobilization, and the subsequent thiol-disulfide exchange occurring on the cell surface, promoting internalization. Our findings emphasize the critical role of the close proximity of the PDS backbone to the cell surface, as it governs the success of thiol-disulfide exchange and, consequently, cell penetration. These conjugates hold tremendous potential in overcoming the various biological barriers encountered during systemic and cell-specific delivery of biomacromolecular cargos, opening up new avenues for the diagnosis and treatment of a range of liver-targeting diseases.
Collapse
Affiliation(s)
- Jianhua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yuanhao Dai
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yahui He
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Ting Zhang
- Department of Microbiology & Infectious Disease Center, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, People's Republic of China
| | - Jing Zhang
- Department of Microbiology & Infectious Disease Center, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, People's Republic of China
| | - Xiangmei Chen
- Department of Microbiology & Infectious Disease Center, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, People's Republic of China
| | - Changtao Jiang
- Department of Immunology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Peking University, Beijing 100191, China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
3
|
Hincapie R, Bhattacharya S, Baksh MM, Sanhueza CA, Echeverri ES, Kim H, Paunovska K, Podilapu AR, Xu M, Dahlman JE, Finn MG. Multivalent Targeting of the Asialoglycoprotein Receptor by Virus-Like Particles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304263. [PMID: 37649182 PMCID: PMC10840735 DOI: 10.1002/smll.202304263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/16/2023] [Indexed: 09/01/2023]
Abstract
The asialoglycoprotein receptor (ASGPR) is expressed in high density on hepatocytes. Multivalent variants of galactosyl carbohydrates bind ASGPR with high affinity, enabling hepatic delivery of ligand-bound cargo. Virus-like particle (VLP) conjugates of a relatively high-affinity ligand were efficiently endocytosed by ASGPR-expressing cells in a manner strongly dependent on the nature and density of ligand display, with the best formulation using a nanomolar-, but not a picomolar-level, binder. Optimized particles were taken up by HepG2 cells with greater efficiency than competing small molecules or the natural multigalactosylated ligand, asialoorosomucoid. Upon systemic injection in mice, these VLPs were rapidly cleared to the liver and were found in association with sinusoidal endothelial cells, Kupffer cells, hepatocytes, dendritic cells, and other immune cells. Both ASGPR-targeted and nontargeted particles were distributed similarly to endothelial and Kupffer cells, but targeted particles were distributed to a greater number and fraction of hepatocytes. Thus, selective cellular trafficking in the liver is difficult to achieve: even with the most potent ASGPR targeting available, barrier cells take up much of the injected particles and hepatocytes are accessed only approximately twice as efficiently in the best case.
Collapse
Affiliation(s)
- Robert Hincapie
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Sonia Bhattacharya
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Michael M Baksh
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Carlos A Sanhueza
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Elisa Schrader Echeverri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Hyejin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Kalina Paunovska
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Ananda R Podilapu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Minghao Xu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - M G Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| |
Collapse
|
4
|
Santo D, Mendonça PV, Serra AC, Coelho JFJ, Faneca H. Targeted downregulation of MYC mediated by a highly efficient lactobionic acid-based glycoplex to enhance chemosensitivity in human hepatocellular carcinoma cells. Int J Pharm 2023; 637:122865. [PMID: 36940837 DOI: 10.1016/j.ijpharm.2023.122865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/31/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023]
Abstract
The chemosensitization of tumor cells by gene therapy represents a promising strategy for hepatocellular carcinoma (HCC) treatment. In this regard, HCC-specific and highly efficient gene delivery nanocarriers are urgently needed. For this purpose, novel lactobionic acid-based gene delivery nanosystems were developed to downregulate c-MYC expression and sensitize tumor cells to low concentration of sorafenib (SF). A library of tailor-made cationic glycopolymers, based on poly(2-aminoethyl methacrylate hydrochloride) (PAMA) and poly(2-lactobionamidoethyl methacrylate) (PLAMA) were synthesized by a straightforward activators regenerated by electron transfer atom transfer radical polymerization. The nanocarriers prepared with PAMA114-co-PLAMA20 glycopolymer were the most efficient for gene delivery. These glycoplexes specifically bound to the asialoglycoprotein receptor and were internalized through the clathrin-coated pit endocytic pathway. c-MYC expression was significantly downregulated by MYC short-hairpin RNA (MYC shRNA), resulting in efficient inhibition of tumor cells proliferation and a high levels apoptosis in 2D and 3D HCC-tumor models. Moreover, c-MYC silencing increased the sensitivity of HCC cells to SF (IC50 for MYC shRNA+ SF 1.9 μM compared to 6.9 μM for control shRNA + SF). Overall, the data obtained demonstrated the great potential of PAMA114-co-PLAMA20/MYC shRNA nanosystems combined with low doses of SF for the treatment of HCC.
Collapse
Affiliation(s)
- Daniela Santo
- University of Coimbra, Center for Neuroscience and Cell Biology, Coimbra, Portugal; University of Coimbra, Institute for Interdisciplinary Research, Coimbra, Portugal
| | - Patrícia V Mendonça
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, Coimbra, Portugal
| | - Arménio C Serra
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, Coimbra, Portugal
| | - Jorge F J Coelho
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, Coimbra, Portugal; IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, 3030-199 Coimbra, Portugal
| | - Henrique Faneca
- University of Coimbra, Center for Neuroscience and Cell Biology, Coimbra, Portugal; University of Coimbra, Institute for Interdisciplinary Research, Coimbra, Portugal.
| |
Collapse
|
5
|
Santo D, Cordeiro RA, Mendonça P, Serra A, Coelho JFJ, Faneca H. Glycopolymers Mediate Suicide Gene Therapy in ASGPR-Expressing Hepatocellular Carcinoma Cells in Tandem with Docetaxel. Biomacromolecules 2023; 24:1274-1286. [PMID: 36780314 PMCID: PMC10015461 DOI: 10.1021/acs.biomac.2c01329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Cationic glycopolymers stand out as gene delivery nanosystems due to their inherent biocompatibility and high binding affinity to the asialoglycoprotein receptor (ASGPR), a target receptor overexpressed in hepatocellular carcinoma (HCC) cells. However, their synthesis procedure remains laborious and complex, with problems of solubilization and the need for protection/deprotection steps. Here, a mini-library of well-defined poly(2-aminoethyl methacrylate hydrochloride-co-poly(2-lactobionamidoethyl methacrylate) (PAMA-co-PLAMA) glycopolymers was synthesized by activators regenerated by electron transfer (ARGET) ATRP to develop an efficient gene delivery nanosystem. The glycoplexes generated had suitable physicochemical properties and showed high ASGPR specificity and high transfection efficiency. Moreover, the HSV-TK/GCV suicide gene therapy strategy, mediated by PAMA144-co-PLAMA19-based nanocarriers, resulted in high antitumor activity in 2D and 3D culture models of HCC, which was significantly enhanced by the combination with small amounts of docetaxel. Overall, our results demonstrated the potential of primary-amine polymethacrylate-containing-glycopolymers as HCC-targeted suicide gene delivery nanosystems and highlight the importance of combined strategies for HCC treatment.
Collapse
Affiliation(s)
- Daniela Santo
- Center
for Neuroscience and Cell Biology, University
of Coimbra, Coimbra 3004-504, Portugal
- Institute
for Interdisciplinary Research, University
of Coimbra, Coimbra 3030-789, Portugal
| | - Rosemeyre A. Cordeiro
- Center
for Neuroscience and Cell Biology, University
of Coimbra, Coimbra 3004-504, Portugal
- Institute
for Interdisciplinary Research, University
of Coimbra, Coimbra 3030-789, Portugal
| | - Patrícia
V. Mendonça
- Centre
for Mechanical Engineering, Materials and Processes, Department of
Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal
| | - Arménio
C. Serra
- Centre
for Mechanical Engineering, Materials and Processes, Department of
Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal
| | - Jorge F. J. Coelho
- Centre
for Mechanical Engineering, Materials and Processes, Department of
Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal
- Associação
para a Inovação e Desenvolvimento Em Ciência
e Tecnologia, IPN—Instituto Pedro
Nunes, Rua Pedro Nunes, 3030-199 Coimbra, Portugal
| | - Henrique Faneca
- Center
for Neuroscience and Cell Biology, University
of Coimbra, Coimbra 3004-504, Portugal
- Institute
for Interdisciplinary Research, University
of Coimbra, Coimbra 3030-789, Portugal
- . Phone: +351-239-820-190. Fax: +351- 239-853-607
| |
Collapse
|
6
|
Mishra AK, Pandey M, Dewangan HK, Sl N, Sahoo PK. A Comprehensive Review on Liver Targeting: Emphasis on Nanotechnology- based Molecular Targets and Receptors Mediated Approaches. Curr Drug Targets 2022; 23:1381-1405. [PMID: 36065923 DOI: 10.2174/1389450123666220906091432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/10/2022] [Accepted: 02/25/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND The pathogenesis of hepatic diseases involves several cells, which complicates the delivery of pharmaceutical agents. Many severe liver diseases affecting the worldwide population cannot be effectively treated. Major hindrances or challenges are natural physiological barriers and non-specific targeting of drugs administered, leading to inefficient treatment. Hence, there is an earnest need to look for novel therapeutic strategies to overcome these hindrances. A kind of literature has reported that drug safety and efficacy are incredibly raised when a drug is incorporated inside or attached to a polymeric material of either hydrophilic or lipophilic nature. This has driven the dynamic investigation for developing novel biodegradable materials, drug delivery carriers, target-specific drug delivery systems, and many other novel approaches. OBJECTIVE Present review is devoted to summarizing receptor-based liver cell targeting using different modified novel synthetic drug delivery carriers. It also highlights recent progress in drug targeting to diseased liver mediated by various receptors, including asialoglycoprotein, mannose and galactose receptor, Fc receptor, low-density lipoprotein, glycyrrhetinic, and bile acid receptor. The essential consideration is given to treating liver cancer targeting using nanoparticulate systems, proteins, viral and non-viral vectors, homing peptides and gene delivery. CONCLUSION Receptors based targeting approach is one such approach that was explored by researchers to develop novel formulations which can ensure site-specific drug delivery. Several receptors are on the surfaces of liver cells, which are highly overexpressed in various disease conditions. They all are helpful for the treatment of liver cancer.
Collapse
Affiliation(s)
- Ashwini Kumar Mishra
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector 3, MB Road Pushp Vihar, Delhi 110017, India
| | - Mukesh Pandey
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector 3, MB Road Pushp Vihar, Delhi 110017, India
| | - Hitesh Kumar Dewangan
- University Institute of Pharma Sciences (UIPS), Chandigarh University NH-05, Chandigarh Ludhiana Highway, Mohali Punjab, Pin: 160101, India
| | - Neha Sl
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector 3, MB Road Pushp Vihar, Delhi 110017, India
| | - Pravat Kumar Sahoo
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector 3, MB Road Pushp Vihar, Delhi 110017, India
| |
Collapse
|
7
|
Bhattacharya K, Kalita U, Singha NK. Tailor-made Glycopolymers via Reversible Deactivation Radical Polymerization: Design, Properties and Applications. Polym Chem 2022. [DOI: 10.1039/d1py01640g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigating the underlying mechanism of biological interactions using glycopolymer is becoming increasingly important owing to their unique recognition properties. The multivalent interactions between lectin and glycopolymer are significantly influenced by...
Collapse
|
8
|
Kim Y, Hyun JY, Shin I. Multivalent glycans for biological and biomedical applications. Chem Soc Rev 2021; 50:10567-10593. [PMID: 34346405 DOI: 10.1039/d0cs01606c] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recognition of glycans by proteins plays a crucial role in a variety of physiological processes in cells and living organisms. In addition, interactions of glycans with proteins are involved in the development of diverse diseases, such as pathogen infection, inflammation and tumor metastasis. It is well-known that multivalent glycans bind to proteins much more strongly than do their monomeric counterparts. Owing to this property, numerous multivalent glycans have been utilized to elucidate glycan-mediated biological processes and to discover glycan-based biomedical agents. In this review, we discuss recent advances (2014-2020) made in the development and biological and biomedical applications of synthetic multivalent glycans, including neoglycopeptides, neoglycoproteins, glycodendrimers, glycopolymers, glyconanoparticles and glycoliposomes. We hope this review assists researchers in the design and development of novel multivalent glycans with predictable activities.
Collapse
Affiliation(s)
- Yujun Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
9
|
Marras AE, Ting JM, Stevens KC, Tirrell MV. Advances in the Structural Design of Polyelectrolyte Complex Micelles. J Phys Chem B 2021; 125:7076-7089. [PMID: 34160221 PMCID: PMC9282648 DOI: 10.1021/acs.jpcb.1c01258] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polyelectrolyte complex micelles (PCMs) are a unique class of self-assembled nanoparticles that form with a core of associated polycations and polyanions, microphase-separated from neutral, hydrophilic coronas in aqueous solution. The hydrated nature and structural and chemical versatility make PCMs an attractive system for delivery and for fundamental polymer physics research. By leveraging block copolymer design with controlled self-assembly, fundamental structure-property relationships can be established to tune the size, morphology, and stability of PCMs precisely in pursuit of tailored nanocarriers, ultimately offering storage, protection, transport, and delivery of active ingredients. This perspective highlights recent advances in predictive PCM design, focusing on (i) structure-property relationships to target specific nanoscale dimensions and shapes and (ii) characterization of PCM dynamics primarily using time-resolved scattering techniques. We present several vignettes from these two emerging areas of PCM research and discuss key opportunities for PCM design to advance precision medicine.
Collapse
Affiliation(s)
- Alexander E Marras
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jeffrey M Ting
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Kaden C Stevens
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew V Tirrell
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
10
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
11
|
Bockman MR, Dalal RJ, Kumar R, Reineke TM. Facile synthesis of GalNAc monomers and block polycations for hepatocyte gene delivery. Polym Chem 2021. [DOI: 10.1039/d1py00250c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Here, we present a facile synthetic route for a monomer displaying N-acetyl-d-galactosamine and subsequent copolymerization in a block format with cationic subunits readily accessing liver-targeted polymeric pDNA delivery vehicles with low toxicity.
Collapse
Affiliation(s)
| | - Rishad J. Dalal
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
| | - Ramya Kumar
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
| | | |
Collapse
|
12
|
Liver-targeted polymeric prodrugs of 8-aminoquinolines for malaria radical cure. J Control Release 2020; 331:213-227. [PMID: 33378692 DOI: 10.1016/j.jconrel.2020.12.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022]
Abstract
Primaquine and tafenoquine are the two 8-aminoquinoline (8-AQ) antimalarial drugs approved for malarial radical cure - the elimination of liver stage hypnozoites after infection with Plasmodium vivax. A single oral dose of tafenoquine leads to high efficacy against intra-hepatocyte hypnozoites after efficient first pass liver uptake and metabolism. Unfortunately, both drugs cause hemolytic anemia in G6PD-deficient humans. This toxicity prevents their mass administration without G6PD testing given the approximately 400 million G6PD deficient people across malarial endemic regions of the world. We hypothesized that liver-targeted delivery of 8-AQ prodrugs could maximize liver exposure and minimize erythrocyte exposure to increase their therapeutic window. Primaquine and tafenoquine were first synthesized as prodrug vinyl monomers with self-immolative hydrolytic linkers or cathepsin-cleavable valine-citrulline peptide linkers. RAFT polymerization was exploited to copolymerize these prodrug monomers with hepatocyte-targeting GalNAc monomers. Pharmacokinetic studies of released drugs after intravenous administration showed that the liver-to-plasma AUC ratios could be significantly improved, compared to parent drug administered orally. Single doses of the liver-targeted, enzyme-cleavable tafenoquine polymer were found to be as efficacious as an equivalent dose of the oral parent drug in the P. berghei causal prophylaxis model. They also elicited significantly milder hemotoxicity in the humanized NOD/SCID mouse model engrafted with red blood cells from G6PD deficient donors. The clinical application is envisioned as a single subcutaneous administration, and the lead tafenoquine polymer also showed excellent bioavailability and liver-to-blood ratios exceeding the IV administered polymer. The liver-targeted tafenoquine polymers warrant further development as a single-dose therapeutic via the subcutaneous route with the potential for broader patient administration without a requirement for G6PD diagnosis.
Collapse
|
13
|
Tan Z, Jiang Y, Zhang W, Karls L, Lodge TP, Reineke TM. Polycation Architecture and Assembly Direct Successful Gene Delivery: Micelleplexes Outperform Polyplexes via Optimal DNA Packaging. J Am Chem Soc 2019; 141:15804-15817. [PMID: 31553590 DOI: 10.1021/jacs.9b06218] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cellular delivery of biomacromolecules is vital to medical research and therapeutic development. Cationic polymers are promising and affordable candidate vehicles for these precious payloads. However, the impact of polycation architecture and solution assembly on the biological mechanisms and efficacy of these vehicles has not been clearly defined. In this study, four polymers containing the same cationic poly(2-(dimethylamino)ethyl methacrylate) (D) block but placed in different architectures have been synthesized, characterized, and compared for cargo binding and biological performance. The D homopolymer and its diblock copolymer poly(ethylene glycol)-block-poly(2-(dimethylamino) ethyl methacrylate) (OD) readily encapsulate pDNA to form polyplexes. Two amphiphilic block polymer variants, poly(2-(dimethylamino)ethyl methacrylate)-block-poly(n-butyl methacrylate) (DB) and poly(ethylene glycol)-block-poly(2-(dimethylamino)ethyl methacrylate)-block-poly(n-butyl methacrylate) (ODB), self-assemble into micelles, which template pDNA winding around the cationic corona to form micelleplexes. Micelleplexes were found to have superior delivery efficiency compared to polyplexes and detailed physicochemical and biological characterizations were performed to pinpoint the mechanisms by testing hypotheses related to cellular internalization, intracellular trafficking, and pDNA unpackaging. For the first time, we find that the higher concentration of amines housed in micelleplexes stimulates both cellular internalization and potential endosomal escape, and the physical motif of pDNA winding into micelleplexes, reminiscent of DNA compaction by histones in chromatin, preserves the pDNA secondary structure in its native B form. This likely allows greater payload accessibility for protein expression with micelleplexes compared to polyplexes, which tightly condense pDNA and significantly distort its helicity. This work provides important guidance for the design of successful biomolecular delivery systems via optimizing the physicochemical properties.
Collapse
Affiliation(s)
- Zhe Tan
- Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - Yaming Jiang
- Department of Chemical Engineering & Materials Science , University of Minnesota , 421 Washington Avenue SE , Minneapolis , Minnesota 55455 , United States
| | - Wenjia Zhang
- Department of Chemical Engineering & Materials Science , University of Minnesota , 421 Washington Avenue SE , Minneapolis , Minnesota 55455 , United States
| | - Logan Karls
- Department of Chemical Engineering & Materials Science , University of Minnesota , 421 Washington Avenue SE , Minneapolis , Minnesota 55455 , United States
| | - Timothy P Lodge
- Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States.,Department of Chemical Engineering & Materials Science , University of Minnesota , 421 Washington Avenue SE , Minneapolis , Minnesota 55455 , United States
| | - Theresa M Reineke
- Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
14
|
Chen S, Xu XL, Zhou B, Tian J, Luo BM, Zhang LM. Acidic pH-Activated Gas-Generating Nanoparticles with Pullulan Decorating for Hepatoma-Targeted Ultrasound Imaging. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22194-22205. [PMID: 31199110 DOI: 10.1021/acsami.9b06745] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Contrast-enhanced ultrasound (US) is a widely used imaging modality for hepatocellular carcinoma diagnosis. Mostly, US imaging is confined to the intravascular process because of the limitation of the microbubble contrast agent currently utilized. Targeted contrast agents that incline to accumulate in tumor tissue or tumor cells and enhance the US signal may advance the sensitivity of ultrasonography and exploit the dimension of US imaging of tumor at the molecular level. In this study, we developed CaCO3/pul-PCB (CPP) hybrid nanoparticles with hepatoma-targeting pullulan decorating on the surface through a mineralization route using the pullulan- graft-poly(carboxybetaine methacrylate) (pul-PCB) copolymer as a modifier. This particle was stable in blood physiological pH and generated echogenic CO2 bubbles under tumoral acidic conditions, which enabled the US signal enhancement. Upon intravenous injection, CPP hybrid nanoparticles accumulated efficiently in tumor tissue and exhibited sixfold contrast enhancement in 35 min at the tumor site in the hepatoma-bearing mice model. By contrast, there was barely any signal change in normal liver tissue. Therefore, the presented CPP hybrid nanoparticle is a promising contrast agent for effective US imaging of hepatoma.
Collapse
Affiliation(s)
- Shanshan Chen
- DSAPM Lab and PCFM Lab, School of Materials Science and Engineering , Sun Yat-sen University , Guangzhou 510275 , China
| | - Xiao-Lin Xu
- Department of Ultrasound, Sun Yat-sen Memorial Hospital , Sun Yat-sen University , Guangzhou 510120 , China
| | - Boyang Zhou
- Department of Ultrasound, Sun Yat-sen Memorial Hospital , Sun Yat-sen University , Guangzhou 510120 , China
| | - Jing Tian
- Department of Ultrasound, Sun Yat-sen Memorial Hospital , Sun Yat-sen University , Guangzhou 510120 , China
| | - Bao-Ming Luo
- Department of Ultrasound, Sun Yat-sen Memorial Hospital , Sun Yat-sen University , Guangzhou 510120 , China
| | - Li-Ming Zhang
- DSAPM Lab and PCFM Lab, School of Materials Science and Engineering , Sun Yat-sen University , Guangzhou 510275 , China
| |
Collapse
|
15
|
Xia X, Zhou Z, DeSantis C, Rossi JJ, Bong D. Triplex Hybridization of siRNA with Bifacial Glycopolymer Nucleic Acid Enables Hepatocyte-Targeted Silencing. ACS Chem Biol 2019; 14:1310-1318. [PMID: 31141333 PMCID: PMC7001860 DOI: 10.1021/acschembio.9b00273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Herein, we describe a versatile non-covalent strategy for packaging nucleic acid cargo with targeting modalities, based on triplex hybridization of oligo-uridylate RNA with bifacial polymer nucleic acid (bPoNA). Polyacrylate bPoNA was prepared and side chain-functionalized with N-acetylgalactosamine (GalNAc), which is known to enable delivery to hepatocytes and liver via binding to the asialoglycoprotein receptor (ASGPR). Polymer binding resulted in successful delivery of both native and synthetically modified siRNAs to HepG2 cells in culture, yielding in low nanomolar IC50 silencing of the endogenous ApoB target, in line with observations of expected Dicer processing of the polymer-siRNA targeting complex. Indeed, in vitro Dicer treatment of the polymer complex indicated that triplex hybridization does not impede RNA processing and release from the polymer. The complex itself elicited a quiescent immunostimulation profile relative to free RNA in a cytokine screen, setting the stage for a preliminary in vivo study in a high-calorie-diet mouse model. Gratifyingly, we observed significant ApoB silencing in a preliminary animal study, validating bPoNA as an in vivo carrier platform for systemic siRNA delivery. Thus, this new siRNA carrier platform exhibits generally useful function and is accessible through scalable synthesis. In addition to its utility as a carrier, the triplex-hybridizing synthetic platform could be useful for optimization screens of siRNA sequences using the identical polymer carriers, thus alleviating the need for covalent ligand modification of each RNA substrate.
Collapse
Affiliation(s)
- Xin Xia
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California 91010, United States
| | - Zhun Zhou
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Chris DeSantis
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - John J. Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California 91010, United States
| | - Dennis Bong
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
16
|
Benner NL, McClellan RL, Turlington CR, Haabeth OAW, Waymouth RM, Wender PA. Oligo(serine ester) Charge-Altering Releasable Transporters: Organocatalytic Ring-Opening Polymerization and their Use for in Vitro and in Vivo mRNA Delivery. J Am Chem Soc 2019; 141:8416-8421. [PMID: 31083999 PMCID: PMC7209379 DOI: 10.1021/jacs.9b03154] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RNA technology is transforming life science research and medicine, but many applications are limited by the accessibility, cost, efficacy, and tolerability of delivery systems. Here we report the first members of a new class of dynamic RNA delivery vectors, oligo(serine ester)-based charge-altering releasable transporters (Ser-CARTs). Composed of lipid-containing oligocarbonates and cationic oligo(serine esters), Ser-CARTs are readily prepared (one flask) by a mild ring-opening polymerization using thiourea anions and, upon simple mixing with mRNA, readily form complexes that degrade to neutral serine-based products, efficiently releasing their mRNA cargo. mRNA/Ser-CART transfection efficiencies of >95% are achieved in vitro. Intramuscular or intravenous (iv) injections of mRNA/Ser-CARTs into living mice result in in vivo expression of a luciferase reporter protein, with spleen localization observed after iv injection.
Collapse
Affiliation(s)
- Nancy L. Benner
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Rebecca L. McClellan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | | | - Ole A. W. Haabeth
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University, Stanford, California 94305, United States
| | - Robert M. Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Paul A. Wender
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
17
|
Van Bruggen C, Hexum JK, Tan Z, Dalal RJ, Reineke TM. Nonviral Gene Delivery with Cationic Glycopolymers. Acc Chem Res 2019; 52:1347-1358. [PMID: 30993967 DOI: 10.1021/acs.accounts.8b00665] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The field of gene therapy, which aims to treat patients by modulating gene expression, has come to fruition and has landed several landmark FDA approvals. Most gene therapies currently rely on viral vectors to deliver nucleic acid cargo into cells, but there is significant interest in moving toward chemical-based methods, such as polymer-based vectors, due to their low cost, immunocompatibility, and tunability. The full potential of polymer-based delivery systems has yet to be realized, however, because most polymeric transfection reagents are either too inefficient or too toxic for use in the clinic. In this Account, we describe developments in carbohydrate-based cationic polymers, termed glycopolymers, for enhanced nonviral gene delivery. As ubiquitous components of biological systems, carbohydrates are a rich class of compounds that can be harnessed to improve the biocompatibility of non-native polymers, such as linear polyamines used for promoting transfection. Reineke et al. developed a new class of carbohydrate-based polymers called poly(glycoamidoamine)s (PGAAs) by step-growth polymerization of linear monosaccharides with linear ethyleneamines. These glycopolymers were shown to be both efficient and biocompatible transfection reagents. Systematic modifications of the structural components of the PGAA system revealed structure-activity relationships important to its function, including its ability to degrade in situ. Expanding upon the development of step-growth glycopolymers, monosaccharides, such as glucose, were functionalized as vinyl-based monomers for the formation of diblock copolymers via radical addition-fragmentation chain-transfer (RAFT) polymerization. Upon complexation with plasmid DNA, the glucose-containing block creates a hydrophilic shell that promotes colloidal stability as effectively as PEG functionalization. An N-acetyl-d-galactosamine variant of this diblock polymer yields colloidally stable particles that show increased receptor-mediated uptake by liver hepatocytes in vitro and promotes liver targeting in mice. Finally, the disaccharide trehalose was incorporated into polycationic structures using both step-growth and RAFT techniques. It was shown that these trehalose-based copolymers imparted increased colloidal stability and yielded plasmid and siRNA polyplexes that resist aggregation upon lyophilization and reconstitution in water. The aforementioned series of glycopolymers use carbohydrates to promote effective and safe delivery of nucleic acid cargo into a variety of human cells types by promoting vehicle degradation, tissue-targeting, colloidal stabilization, and stability toward lyophilization to extend shelf life. Work is currently underway to translate the use of glycopolymers for safe and efficient delivery of nucleic acid cargo for gene therapy and gene editing applications.
Collapse
Affiliation(s)
- Craig Van Bruggen
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Joseph K. Hexum
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Zhe Tan
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Rishad J. Dalal
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Theresa M. Reineke
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
18
|
Phillips HR, Tolstyka ZP, Hall BC, Hexum JK, Hackett PB, Reineke TM. Glycopolycation–DNA Polyplex Formulation N/P Ratio Affects Stability, Hemocompatibility, and in Vivo Biodistribution. Biomacromolecules 2019; 20:1530-1544. [DOI: 10.1021/acs.biomac.8b01704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Haley R. Phillips
- Center for Genome Engineering and Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Zachary P. Tolstyka
- Center for Genome Engineering and Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Bryan C. Hall
- Center for Genome Engineering and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K. Hexum
- Center for Genome Engineering and Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Perry B. Hackett
- Center for Genome Engineering and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M. Reineke
- Center for Genome Engineering and Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
19
|
Zhou D, Zeng M, Gao Y, Sigen A, Lyu J, Wang W. Advanced Polymers for Nonviral Gene Delivery. NUCLEIC ACID NANOTHERANOSTICS 2019:311-364. [DOI: 10.1016/b978-0-12-814470-1.00010-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
20
|
Boyle WS, Twaroski K, Woska EC, Tolar J, Reineke TM. Molecular Additives Significantly Enhance Glycopolymer-Mediated Transfection of Large Plasmids and Functional CRISPR-Cas9 Transcription Activation Ex Vivo in Primary Human Fibroblasts and Induced Pluripotent Stem Cells. Bioconjug Chem 2018; 30:418-431. [DOI: 10.1021/acs.bioconjchem.8b00760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Szlag VM, Jung S, Rodriguez RS, Bourgeois M, Bryson S, Schatz GC, Reineke TM, Haynes CL. Isothermal Titration Calorimetry for the Screening of Aflatoxin B1 Surface-Enhanced Raman Scattering Sensor Affinity Agents. Anal Chem 2018; 90:13409-13418. [DOI: 10.1021/acs.analchem.8b03221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Victoria M. Szlag
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Seyoung Jung
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Rebeca S. Rodriguez
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Marc Bourgeois
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Samuel Bryson
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - George C. Schatz
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Theresa M. Reineke
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christy L. Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
22
|
Zhao L, Li Y, Pei D, Huang Q, Zhang H, Yang Z, Li F, Shi T. Glycopolymers/PEI complexes as serum-tolerant vectors for enhanced gene delivery to hepatocytes. Carbohydr Polym 2018; 205:167-175. [PMID: 30446092 DOI: 10.1016/j.carbpol.2018.10.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 10/28/2022]
Abstract
Serum stability is a crucial factor for ideal polymeric gene vectors. In this work, a series of serum-tolerant and low-toxicity glycopolymers/poly(ethyleneimine) (PEI) complexes were designed for gene delivery. Atomic transfer radical polymerization (ATRP) was used to synthesize the comb-shaped random copolymers dextran-g-poly(2-dimethylaminoethyl methacrylate-co-2-lactobionamidoethyl methacrylate) (DDrL). Then DDrLs/PEI were investigated for their use as plasmid DNA (pDNA) vectors, which can completely condense the pDNA into nanoparticles. The DDrLs/PEI/pDNA complexes in serum-containing media showed better stability than PEI/pDNA complexes. in vitro gene transfection studies showed that DDrLs/PEI exhibited a remarkable transfection efficiency enhancement in the presence of serum compared to that in serum-free conditions. Moreover, the transfection level of DDrLs/PEI were two orders of magnitude higher than that of PEI alone in the presence of 30% serum. DDrLs/PEI complexes with galactose enhanced pDNA delivery to hepatocytes, with higher protein expression in ASGPr-presenting HepG2 than in HeLa cells, which lack the receptor. All of the DDrLs/PEI/pDNA complexes had lower cytotoxicity than PEI/pDNA.
Collapse
Affiliation(s)
- Liman Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Yanchun Li
- Department of Pediatric Respiratory Medicine, First Hospital of Jilin University, Jilin Province 130021, PR China
| | - Danfeng Pei
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, Shandong Province 266101, PR China
| | - Qingrong Huang
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Rd, New Brunswick, NJ 08901, USA
| | - Hongwei Zhang
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Rd, New Brunswick, NJ 08901, USA
| | - Zechuan Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Fan Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Tongfei Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China.
| |
Collapse
|
23
|
Jiang S, Li M, Hu Y, Zhang Z, Lv H. Multifunctional self-assembled micelles of galactosamine-hyaluronic acid-vitamin E succinate for targeting delivery of norcantharidin to hepatic carcinoma. Carbohydr Polym 2018; 197:194-203. [DOI: 10.1016/j.carbpol.2018.05.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 01/07/2023]
|
24
|
Priegue JM, Lostalé-Seijo I, Crisan D, Granja JR, Fernández-Trillo F, Montenegro J. Different-Length Hydrazone Activated Polymers for Plasmid DNA Condensation and Cellular Transfection. Biomacromolecules 2018; 19:2638-2649. [PMID: 29653048 PMCID: PMC6041776 DOI: 10.1021/acs.biomac.8b00252] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/10/2018] [Indexed: 11/29/2022]
Abstract
The recent advances in genetic engineering demand the development of conceptually new methods to prepare and identify efficient vectors for the intracellular delivery of different nucleotide payloads ranging from short single-stranded oligonucleotides to larger plasmid double-stranded circular DNAs. Although many challenges still have to be overcome, polymers hold great potential for intracellular nucleotide delivery and gene therapy. We here develop and apply the postpolymerization modification of polyhydrazide scaffolds, with different degree of polymerization, for the preparation of amphiphilic polymeric vehicles for the intracellular delivery of a circular plasmid DNA. The hydrazone formation reactions with a mixture of cationic and hydrophobic aldehydes proceed in physiologically compatible aqueous conditions, and the resulting amphiphilic polyhydrazones are directly combined with the biological cargo without any purification step. This methodology allowed the preparation of stable polyplexes with a suitable size and zeta potential to achieve an efficient encapsulation and intracellular delivery of the DNA cargo. Simple formulations that performed with efficiencies and cell viabilities comparable to the current gold standard were identified. Furthermore, the internalization mechanism was studied via internalization experiments in the presence of endocytic inhibitors and fluorescence microscopy. The results reported here confirmed that the polyhydrazone functionalization is a suitable strategy for the screening and identification of customized polymeric vehicles for the delivery of different nucleotide cargos.
Collapse
Affiliation(s)
- Juan M. Priegue
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Irene Lostalé-Seijo
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Daniel Crisan
- School
of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Juan R. Granja
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | | | - Javier Montenegro
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| |
Collapse
|
25
|
Borguet Y, Khan S, Noel A, Gunsten SP, Brody SL, Elsabahy M, Wooley KL. Development of Fully Degradable Phosphonium-Functionalized Amphiphilic Diblock Copolymers for Nucleic Acids Delivery. Biomacromolecules 2018; 19:1212-1222. [PMID: 29526096 PMCID: PMC5894060 DOI: 10.1021/acs.biomac.8b00069] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/23/2018] [Indexed: 11/29/2022]
Abstract
To expand the range of functional polymer materials to include fully hydrolytically degradable systems that bear bioinspired phosphorus-containing linkages both along the backbone and as cationic side chain moieties for packaging and delivery of nucleic acids, phosphonium-functionalized polyphosphoester- block-poly(l-lactide) copolymers of various compositions were synthesized, fully characterized, and their self-assembly into nanoparticles were studied. First, an alkyne-functionalized polyphosphoester- block-poly(l-lactide) copolymer was synthesized via a one pot sequential ring opening polymerization of an alkyne-functionalized phospholane monomer, followed by the addition of l-lactide to grow the second block. Second, the alkynyl side groups of the polyphosphoester block were functionalized via photoinitiated thiol-yne radical addition of a phosphonium-functionalized free thiol. The polymers of varying phosphonium substitution degrees were self-assembled in aqueous buffers to afford formation of well-defined core-shell assemblies with an average size ranging between 30 and 50 nm, as determined by dynamic light scattering. Intracellular delivery of the nanoparticles and their effects on cell viability and capability at enhancing transfection efficiency of nucleic acids (e.g., siRNA) were investigated. Cell viability assays demonstrated limited toxicity of the assembly to RAW 264.7 mouse macrophages, except at high polymer concentrations, where the polymer of high degree of phosphonium functionalization induced relatively higher cytotoxicity. Transfection efficiency was strongly affected by the phosphonium-to-phosphate (P+/P-) ratios of the polymers and siRNA, respectively. The AllStars Hs Cell Death siRNA complexed to the various copolymers at a P+/P- ratio of 10:1 induced comparable cell death to Lipofectamine. These fully degradable nanoparticles might provide biocompatible nanocarriers for therapeutic nucleic acid delivery.
Collapse
Affiliation(s)
- Yannick
P. Borguet
- Departments
of Chemistry, Chemical Engineering, and Materials Science & Engineering,
and the Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, Texas 77842, United States
| | - Sarosh Khan
- Departments
of Chemistry, Chemical Engineering, and Materials Science & Engineering,
and the Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, Texas 77842, United States
| | - Amandine Noel
- Departments
of Chemistry, Chemical Engineering, and Materials Science & Engineering,
and the Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, Texas 77842, United States
| | - Sean P. Gunsten
- Department
of Medicine, Washington University, St. Louis, Missouri 63110, United States
| | - Steven L. Brody
- Department
of Medicine, Washington University, St. Louis, Missouri 63110, United States
- Department
of Radiology, Washington University, St. Louis, Missouri 63110, United States
| | - Mahmoud Elsabahy
- Departments
of Chemistry, Chemical Engineering, and Materials Science & Engineering,
and the Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, Texas 77842, United States
- Department
of Pharmaceutics, Faculty of Pharmacy, Assiut International Center
of Nanomedicine, Alrajhy Liver Hospital, Assiut University, Assiut 71515, Egypt
| | - Karen L. Wooley
- Departments
of Chemistry, Chemical Engineering, and Materials Science & Engineering,
and the Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|
26
|
Revealing cooperative binding of polycationic cyclodextrins with DNA oligomers by capillary electrophoresis coupled to mass spectrometry. Anal Chim Acta 2018; 1002:70-81. [DOI: 10.1016/j.aca.2017.11.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/12/2017] [Accepted: 11/14/2017] [Indexed: 11/23/2022]
|
27
|
Jung S, Lodge TP, Reineke TM. Structures and Protonation States of Hydrophilic–Cationic Diblock Copolymers and Their Binding with Plasmid DNA. J Phys Chem B 2018; 122:2449-2461. [DOI: 10.1021/acs.jpcb.7b07902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Seyoung Jung
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Timothy P. Lodge
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota—Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Theresa M. Reineke
- Department of Chemistry, University of Minnesota—Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
28
|
Maiti B, Kamra M, Karande AA, Bhattacharya S. Transfection efficiencies of α-tocopherylated cationic gemini lipids with hydroxyethyl bearing headgroups under high serum conditions. Org Biomol Chem 2018; 16:1983-1993. [DOI: 10.1039/c7ob02835k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Liposomal gene transfection under high serum conditions.
Collapse
Affiliation(s)
- Bappa Maiti
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
- Director's Research Unit
| | - Mohini Kamra
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Anjali A. Karande
- Department of Biochemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Santanu Bhattacharya
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
- Director's Research Unit
| |
Collapse
|
29
|
Tan Z, Dhande YK, Reineke TM. Cell Penetrating Polymers Containing Guanidinium Trigger Apoptosis in Human Hepatocellular Carcinoma Cells unless Conjugated to a Targeting N-Acetyl-Galactosamine Block. Bioconjug Chem 2017; 28:2985-2997. [DOI: 10.1021/acs.bioconjchem.7b00598] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Zhe Tan
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Yogesh K. Dhande
- Department
of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Theresa M. Reineke
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
30
|
Williams EGL, Hutt OE, Hinton TM, Larnaudie SC, Le T, MacDonald JM, Gunatillake P, Thang SH, Duggan PJ. Glycosylated Reversible Addition–Fragmentation Chain Transfer Polymers with Varying Polyethylene Glycol Linkers Produce Different Short Interfering RNA Uptake, Gene Silencing, and Toxicity Profiles. Biomacromolecules 2017; 18:4099-4112. [DOI: 10.1021/acs.biomac.7b01168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | - Oliver E. Hutt
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Tracey M. Hinton
- CSIRO Health and Biosecurity, Port Arlington Rd, East Geelong, Victoria 3219, Australia
| | - Sophie C. Larnaudie
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Tam Le
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - James M. MacDonald
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | | | - San H. Thang
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Peter J. Duggan
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
- School
of Chemical and Physical Sciences, Flinders University, Adelaide, South Australia 5042, Australia
| |
Collapse
|
31
|
Cavallaro G, Farra R, Craparo EF, Sardo C, Porsio B, Giammona G, Perrone F, Grassi M, Pozzato G, Grassi G, Dapas B. Galactosylated polyaspartamide copolymers for siRNA targeted delivery to hepatocellular carcinoma cells. Int J Pharm 2017; 525:397-406. [PMID: 28119125 DOI: 10.1016/j.ijpharm.2017.01.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/23/2016] [Accepted: 01/16/2017] [Indexed: 02/07/2023]
Abstract
The limited efficacy of available treatments for hepatocellular carcinoma (HCC) requires the development of novel therapeutic approaches. We synthesized a novel cationic polymer based on α,β-poly-(N-2-hydroxyethyl)-d,L-aspartamide (PHEA) for drug delivery to HCC cells. The copolymer was synthesized by subsequent derivatization of PHEA with diethylene triamine (DETA) and with a polyethylene glycol (PEG) derivative bearing galactose (GAL) molecules, obtaining the cationic derivative PHEA-DETA-PEG-GAL. PHEA-DETA-PEG-GAL has suitable chemical-physical characteristics for a potential systemic use and can effectively deliver a siRNA (siE2F1) targeted against the transcription factor E2F1, a gene product involved in HCC. The presence of GAL residues in the polyplexes allows the targeting of HCC cells that express the asialo-glycoprotein receptor (ASGP-R). In these cells, but not in ASGP-R non-expressing cells, PHEA-DETA-PEG-GAL/siE2F1 polyplexes induce the reduction of the mRNA and protein levels of E2F1 and of E2F1-regulated genes, all involved in the promotion of the G1/S phase transition. This results in a decrease of cell proliferation with a G1/G0 phase cells accumulation. Notably, removal of GAL residue almost completely abrogates the targeting capacity of the developed polyplexes. In conclusion, the generated polyplexes demonstrate the potential to effectively contributing to the development of novel anti-HCC therapeutic approaches via a siRNA-targeted delivery.
Collapse
Affiliation(s)
- Gennara Cavallaro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), Lab of Biocompatible Polymers, University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - Rossella Farra
- Department of Industrial Engineering and Information Technology, University of Trieste, Italy
| | - Emanuela Fabiola Craparo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), Lab of Biocompatible Polymers, University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - Carla Sardo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), Lab of Biocompatible Polymers, University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - Barbara Porsio
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), Lab of Biocompatible Polymers, University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - Gaetano Giammona
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), Lab of Biocompatible Polymers, University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | | | - Mario Grassi
- Department of Industrial Engineering and Information Technology, University of Trieste, Italy
| | - Gabriele Pozzato
- Department of 'Medical, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Italy
| | | | - Barbara Dapas
- Department of Life Sciences, University of Trieste, Italy
| |
Collapse
|
32
|
Ye P, Cao PF, Su Z, Advincula R. Highly efficient reversible addition-fragmentation chain-transfer polymerization in ethanol/water via flow chemistry. POLYM INT 2017. [DOI: 10.1002/pi.5374] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Piaoran Ye
- Department of Macromolecular Science and Engineering; Case Western Reserve University; Cleveland USA
| | - Peng-Fei Cao
- Chemical Sciences Division, Oak Ridge National Laboratory; Oak Ridge USA
| | - Zhe Su
- Department of Macromolecular Science and Engineering; Case Western Reserve University; Cleveland USA
| | - Rigoberto Advincula
- Department of Macromolecular Science and Engineering; Case Western Reserve University; Cleveland USA
| |
Collapse
|
33
|
Tanaka J, Gleinich AS, Zhang Q, Whitfield R, Kempe K, Haddleton DM, Davis TP, Perrier S, Mitchell DA, Wilson P. Specific and Differential Binding of N-Acetylgalactosamine Glycopolymers to the Human Macrophage Galactose Lectin and Asialoglycoprotein Receptor. Biomacromolecules 2017; 18:1624-1633. [PMID: 28418238 DOI: 10.1021/acs.biomac.7b00228] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A range of glycopolymers composed of N-acetylgalactosamine were prepared via sequential Cu(I)-mediated polymerization and alkyne-azide click (CuAAC). The resulting polymers were shown, via multichannel surface plasmon resonance, to interact specifically with human macrophage galactose lectin (MGL; CD301) with high affinity (KD = 1.11 μM), but they did not bind to the mannose/fucose-selective human lectin dendritic-cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN; CD209). The effect of sugar ligand valency on the binding (so-called "glycoside cluster effect") of poly(N-acetylgalactosamine) to MGL was investigated by varying first the polymer chain length (DP: 100, 64, 40, 23, 12) and then the architecture (4- and 8-arm star glycopolymers). The chain length did not have a significant effect on the binding to MGL (KD = 0.17-0.52 μM); however, when compared to a hepatic C-type lectin of a similar monosaccharide specificity, the asialoglycoprotein receptor (ASGPR), the binding affinity was more noticeably affected (KD = 0.37- 6.65 μM). These data suggest that known differences in the specific configuration/orientation of the carbohydrate recognition domains of MGL and ASGPR are responsible for the differences in binding observed between the different polymers of varied chain length and architecture. In the future, this model has the potential to be employed for the development of tissue-selective delivery systems.
Collapse
Affiliation(s)
- Joji Tanaka
- Chemistry Department, University of Warwick , Library Road, CV4 7AL Coventry, United Kingdom
| | - Anne S Gleinich
- Clinical Sciences Research Institute, Warwick Medical School, University of Warwick , CV2 2DX Coventry, United Kingdom
| | - Qiang Zhang
- Chemistry Department, University of Warwick , Library Road, CV4 7AL Coventry, United Kingdom
| | - Richard Whitfield
- Chemistry Department, University of Warwick , Library Road, CV4 7AL Coventry, United Kingdom
| | - Kristian Kempe
- Chemistry Department, University of Warwick , Library Road, CV4 7AL Coventry, United Kingdom.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - David M Haddleton
- Chemistry Department, University of Warwick , Library Road, CV4 7AL Coventry, United Kingdom.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Thomas P Davis
- Chemistry Department, University of Warwick , Library Road, CV4 7AL Coventry, United Kingdom.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Sébastien Perrier
- Chemistry Department, University of Warwick , Library Road, CV4 7AL Coventry, United Kingdom.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Daniel A Mitchell
- Clinical Sciences Research Institute, Warwick Medical School, University of Warwick , CV2 2DX Coventry, United Kingdom
| | - Paul Wilson
- Chemistry Department, University of Warwick , Library Road, CV4 7AL Coventry, United Kingdom.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| |
Collapse
|
34
|
Jung S, Lodge TP, Reineke TM. Complexation between DNA and Hydrophilic-Cationic Diblock Copolymers. J Phys Chem B 2017; 121:2230-2243. [DOI: 10.1021/acs.jpcb.6b11408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Seyoung Jung
- Department
of Chemical Engineering and Materials Science, University of Minnesota − Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Timothy P. Lodge
- Department
of Chemical Engineering and Materials Science, University of Minnesota − Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
- Department
of Chemistry, University of Minnesota − Twin Cities, 207 Pleasant
Street SE, Minneapolis, Minnesota 55455, United States
| | - Theresa M. Reineke
- Department
of Chemistry, University of Minnesota − Twin Cities, 207 Pleasant
Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
35
|
Ting SRS, Min EH, Lau BKF, Hutvagner G. Acetyl-α-d-mannopyranose-based cationic polymer via RAFT polymerization for lectin and nucleic acid bindings. J Appl Polym Sci 2017. [DOI: 10.1002/app.44947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- S. R. Simon Ting
- Centre for Health Technologies (CHT); Faculty of Engineering and Information Technology, University of Technology Sydney (UTS); Ultimo NSW 2007 Australia
| | - Eun Hee Min
- Centre for Health Technologies (CHT); Faculty of Engineering and Information Technology, University of Technology Sydney (UTS); Ultimo NSW 2007 Australia
| | - Benjamin K. F. Lau
- Centre for Health Technologies (CHT); Faculty of Engineering and Information Technology, University of Technology Sydney (UTS); Ultimo NSW 2007 Australia
| | - Gyorgy Hutvagner
- Centre for Health Technologies (CHT); Faculty of Engineering and Information Technology, University of Technology Sydney (UTS); Ultimo NSW 2007 Australia
| |
Collapse
|
36
|
Du AW, Lu H, Stenzel MH. Cationic glycopolymers through controlled polymerisation of a glucosamine-based monomer mimicking the behaviour of chitosan. Polym Chem 2017. [DOI: 10.1039/c7py00082k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A newly synthesised glucosamine-based monomer was able to undergo controlled polymerisation and retain amine functionality. The resulting polymer had mucoadhesive properties similar to chitosan.
Collapse
Affiliation(s)
- Alice W. Du
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - Hongxu Lu
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| |
Collapse
|
37
|
Wang B, Chen P, Zhang J, Chen XC, Liu YH, Huang Z, Yu QY, Zhang JH, Zhang W, Wei X, Yu XQ. Self-assembled core–shell-corona multifunctional non-viral vector with AIE property for efficient hepatocyte-targeting gene delivery. Polym Chem 2017. [DOI: 10.1039/c7py01520h] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Core–shell-corona multifunctional nanoparticles were prepared and used for cell imaging and cell-targeting delivery of genes toward hepatocytes.
Collapse
|
38
|
Szlag VM, Styles MJ, Madison LR, Campos AR, Wagh B, Sprouse D, Schatz GC, Reineke TM, Haynes CL. SERS Detection of Ricin B-Chain via N-Acetyl-Galactosamine Glycopolymers. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00209] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Victoria M. Szlag
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Matthew J. Styles
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Lindsey R. Madison
- Department
of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Antonio R. Campos
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Bharat Wagh
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Dustin Sprouse
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - George C. Schatz
- Department
of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Theresa M. Reineke
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christy L. Haynes
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
39
|
Witzigmann D, Detampel P, Porta F, Huwyler J. Isolation of multiantennary N-glycans from glycoproteins for hepatocyte specific targeting via the asialoglycoprotein receptor. RSC Adv 2016. [DOI: 10.1039/c6ra18297f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The asialoglycoprotein receptor (ASGPR) expressed on parenchymal liver cells specifically binds multivalent carbohydrates from desialylated glycoproteins.
Collapse
Affiliation(s)
- Dominik Witzigmann
- Division of Pharmaceutical Technology
- Department of Pharmaceutical Sciences
- University of Basel
- Basel CH-4056
- Switzerland
| | - Pascal Detampel
- Division of Pharmaceutical Technology
- Department of Pharmaceutical Sciences
- University of Basel
- Basel CH-4056
- Switzerland
| | - Fabiola Porta
- Division of Pharmaceutical Technology
- Department of Pharmaceutical Sciences
- University of Basel
- Basel CH-4056
- Switzerland
| | - Jörg Huwyler
- Division of Pharmaceutical Technology
- Department of Pharmaceutical Sciences
- University of Basel
- Basel CH-4056
- Switzerland
| |
Collapse
|