1
|
Percec V, Sahoo D. From Frank-Kasper, Quasicrystals, and Biological Membrane Mimics to Reprogramming In Vivo the Living Factory to Target the Delivery of mRNA with One-Component Amphiphilic Janus Dendrimers. Biomacromolecules 2024; 25:1353-1370. [PMID: 38232372 DOI: 10.1021/acs.biomac.3c01390] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
This Perspective is dedicated to the 25th Anniversary of Biomacromolecules. It provides a personal view on the developing field of the polymer and biology interface over the 25 years since the journal was launched by the American Chemical Society (ACS). This Perspective is meant to bridge an article published in the first issue of the journal and recent bioinspired developments in the laboratory of the corresponding author. The discovery of supramolecular spherical helices self-organizing into Frank-Kasper and quasicrystals as models of icosahedral viruses, as well as of columnar helical assemblies that mimic rodlike viruses by supramolecular dendrimers, is briefly presented. The transplant of these assemblies from supramolecular dendrimers to block copolymers, giant surfactants, and other self-organized soft matter follows. Amphiphilic self-assembling Janus dendrimers and glycodendrimers as mimics of biological membranes and their glycans are discussed. New concepts derived from them that evolved in the in vivo targeted delivery of mRNA with the simplest one-component synthetic vector systems are introduced. Some synthetic methodologies employed during the synthesis and self-assembly are explained. Unraveling bioinspired applications of novel materials concludes this brief 25th Anniversary Perspective of Biomacromolecules.
Collapse
Affiliation(s)
- Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Dipankar Sahoo
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
2
|
Dolui S, Sahu B, Mohammad SA, Banerjee S. Multi-Stimuli Responsive Sequence Defined Multi-Arm Star Diblock Copolymers for Controlled Drug Release. JACS AU 2023; 3:2117-2122. [PMID: 37654577 PMCID: PMC10466323 DOI: 10.1021/jacsau.3c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 09/02/2023]
Abstract
Star-shaped polymeric materials provide very high efficiency toward various engineering and biomedical applications. Due to the absence of straightforward and versatile synthetic protocols, the synthesis of sequence-defined star-shaped (co)polymers has remained a major challenge. Here, a facile approach is developed that allows synthesis of a series of unprecedented discrete, multifunctional four-, six-, and eight-arm star-shaped complex macromolecular architectures based on a well-defined triple (thermo/pH/light)-stimuli-responsive poly(N-isopropylacrylamide)-block-poly(methacrylic acid)-umbelliferone (PNIPAM-b-PMAA)n-UMB diblock copolymer, based on temperature responsive PNIPAM segment, pH-responsive PMAA segment, and photoresponsive UMB end groups. Thus, developed star-shaped copolymers self-assemble in water to form spherical nanoaggregates of diameter 90 ± 20 nm, as measured by FESEM. The star-shaped copolymer's response to external stimuli has been assessed against changes in temperature, pH, and light irradiation. The star-shaped copolymer was employed as a nanocarrier for pH responsive release of an anticancer drug, doxorubicin. This study opens up new avenues for efficient star-shaped macromolecular architecture construction for engineering and biomedical applications.
Collapse
Affiliation(s)
- Subrata Dolui
- Department of Chemistry, Indian
Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| | - Bhanendra Sahu
- Department of Chemistry, Indian
Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| | - Sk Arif Mohammad
- Department of Chemistry, Indian
Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| | - Sanjib Banerjee
- Department of Chemistry, Indian
Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| |
Collapse
|
3
|
Percec V, Sahoo D, Adamson J. Stimuli-Responsive Principles of Supramolecular Organizations Emerging from Self-Assembling and Self-Organizable Dendrons, Dendrimers, and Dendronized Polymers. Polymers (Basel) 2023; 15:polym15081832. [PMID: 37111979 PMCID: PMC10142069 DOI: 10.3390/polym15081832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
All activities of our daily life, of the nature surrounding us and of the entire society and its complex economic and political systems are affected by stimuli. Therefore, understanding stimuli-responsive principles in nature, biology, society, and in complex synthetic systems is fundamental to natural and life sciences. This invited Perspective attempts to organize, to the best of our knowledge, for the first time the stimuli-responsive principles of supramolecular organizations emerging from self-assembling and self-organizable dendrons, dendrimers, and dendronized polymers. Definitions of stimulus and stimuli from different fields of science are first discussed. Subsequently, we decided that supramolecular organizations of self-assembling and self-organizable dendrons, dendrimers, and dendronized polymers may fit best in the definition of stimuli from biology. After a brief historical introduction to the discovery and development of conventional and self-assembling and self-organizable dendrons, dendrimers, and dendronized polymers, a classification of stimuli-responsible principles as internal- and external-stimuli was made. Due to the enormous amount of literature on conventional dendrons, dendrimers, and dendronized polymers as well as on their self-assembling and self-organizable systems we decided to discuss stimuli-responsive principles only with examples from our laboratory. We apologize to all contributors to dendrimers and to the readers of this Perspective for this space-limited decision. Even after this decision, restrictions to a limited number of examples were required. In spite of this, we expect that this Perspective will provide a new way of thinking about stimuli in all fields of self-organized complex soft matter.
Collapse
Affiliation(s)
- Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Dipankar Sahoo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Jasper Adamson
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
- Chemical Physics Laboratory, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| |
Collapse
|
4
|
Assembling Complex Macromolecules and Self-Organizations of Biological Relevance with Cu(I)-Catalyzed Azide-Alkyne, Thio-Bromo, and TERMINI Double "Click" Reactions. Polymers (Basel) 2023; 15:polym15051075. [PMID: 36904317 PMCID: PMC10007166 DOI: 10.3390/polym15051075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
In 2022, the Nobel Prize in Chemistry was awarded to Bertozzi, Meldal, and Sharpless "for the development of click chemistry and biorthogonal chemistry". Since 2001, when the concept of click chemistry was advanced by Sharpless laboratory, synthetic chemists started to envision click reactions as the preferred choice of synthetic methodology employed to create new functions. This brief perspective will summarize research performed in our laboratories with the classic Cu(I)-catalyzed azide-alkyne click (CuAAC) reaction elaborated by Meldal and Sharpless, with the thio-bromo click (TBC) and with the less-used, irreversible TERminator Multifunctional INItiator (TERMINI) dual click (TBC) reactions, the last two elaborated in our laboratory. These click reactions will be used to assemble, by accelerated modular-orthogonal methodologies, complex macromolecules and self-organizations of biological relevance. Self-assembling amphiphilic Janus dendrimers and Janus glycodendrimers together with their biological membrane mimics known as dendrimersomes and glycodendrimersomes as well as simple methodologies to assemble macromolecules with perfect and complex architecture such as dendrimers from commercial monomers and building blocks will be discussed. This perspective is dedicated to the 75th anniversary of Professor Bogdan C. Simionescu, the son of my (VP) Ph.D. mentor, Professor Cristofor I. Simionescu, who as his father, took both science and science administration in his hands, and dedicated his life to handling them in a tandem way, to their best.
Collapse
|
5
|
Maurya DS, Adamson J, Bensabeh N, Lligadas G, Percec V. Catalytic effect of
DMSO
in metal‐catalyzed radical polymerization mediated by disproportionation facilitates living and immortal radical polymerizations. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Devendra S. Maurya
- Roy & Diana Vagelos Laboratories, Department of Chemistry University of Pennsylvania Philadelphia Pennsylvania USA
| | - Jasper Adamson
- Roy & Diana Vagelos Laboratories, Department of Chemistry University of Pennsylvania Philadelphia Pennsylvania USA
- Chemical Physics Laboratory National Institute of Chemical Physics and Biophysics Tallinn Estonia
| | - Nabil Bensabeh
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry University Rovira i Virgili Tarragona Spain
| | - Gerard Lligadas
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry University Rovira i Virgili Tarragona Spain
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry University of Pennsylvania Philadelphia Pennsylvania USA
| |
Collapse
|
6
|
Theodorou A, Gounaris D, Voutyritsa E, Andrikopoulos N, Baltzaki CIM, Anastasaki A, Velonia K. Rapid Oxygen-Tolerant Synthesis of Protein-Polymer Bioconjugates via Aqueous Copper-Mediated Polymerization. Biomacromolecules 2022; 23:4241-4253. [PMID: 36067415 DOI: 10.1021/acs.biomac.2c00726] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of protein-polymer conjugates usually requires extensive and costly deoxygenation procedures, thus limiting their availability and potential applications. In this work, we report the ultrafast synthesis of polymer-protein bioconjugates in the absence of any external deoxygenation via an aqueous copper-mediated methodology. Within 10 min and in the absence of any external stimulus such as light (which may limit the monomer scope and/or disrupt the secondary structure of the protein), a range of hydrophobic and hydrophilic monomers could be successfully grafted from a BSA macroinitiator, yielding well-defined polymer-protein bioconjugates at quantitative yields. Our approach is compatible with a wide range of monomer classes such as (meth) acrylates, styrene, and acrylamides as well as multiple macroinitiators including BSA, BSA nanoparticles, and beta-galactosidase from Aspergillus oryzae. Notably, the synthesis of challenging protein-polymer-polymer triblock copolymers was also demonstrated, thus significantly expanding the scope of our strategy. Importantly, both lower and higher scale polymerizations (from 0.2 to 35 mL) were possible without compromising the overall efficiency and the final yields. This simple methodology paves the way for a plethora of applications in aqueous solutions without the need of external stimuli or tedious deoxygenation.
Collapse
Affiliation(s)
- Alexis Theodorou
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | - Dimitris Gounaris
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | - Errika Voutyritsa
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | - Nicholas Andrikopoulos
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | | | | | - Kelly Velonia
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| |
Collapse
|
7
|
Cooze MJ, Deacon HM, Phe K, Hutchinson RA. Methacrylate and Styrene Block Copolymer Synthesis by Cu‐Mediated Chain Extension of Acrylate Macroinitiator in a Semibatch Reactor. MACROMOL REACT ENG 2021. [DOI: 10.1002/mren.202100043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Morgan J. Cooze
- Department of Chemical Engineering Queen's University Kingston ON K7L 3N6 Canada
| | - Hayden M. Deacon
- Department of Chemical Engineering Queen's University Kingston ON K7L 3N6 Canada
| | - Katrina Phe
- Department of Chemical Engineering Queen's University Kingston ON K7L 3N6 Canada
| | - Robin A. Hutchinson
- Department of Chemical Engineering Queen's University Kingston ON K7L 3N6 Canada
| |
Collapse
|
8
|
Shimizu T, Truong NP, Whitfield R, Anastasaki A. Tuning Ligand Concentration in Cu(0)-RDRP: A Simple Approach to Control Polymer Dispersity. ACS POLYMERS AU 2021; 1:187-195. [PMID: 34901951 PMCID: PMC8662723 DOI: 10.1021/acspolymersau.1c00030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022]
Abstract
Cu(0)-reversible deactivation radical polymerization (RDRP) is a versatile polymerization tool, providing rapid access to well-defined polymers while utilizing mild reaction conditions and low catalyst loadings. However, thus far, this method has not been applied to tailor dispersity, a key parameter that determines the physical properties and applications of polymeric materials. Here, we report a simple to perform method, whereby Cu(0)-RDRP can systematically control polymer dispersity (Đ = 1.07-1.72), while maintaining monomodal molecular weight distributions. By varying the ligand concentration, we could effectively regulate the rates of initiation and deactivation, resulting in polymers of various dispersities. Importantly, both low and high dispersity PMA possess high end-group fidelity, as evidenced by MALDI-ToF-MS, allowing for a range of block copolymers to be prepared with different dispersity configurations. The scope of our method can also be extended to include inexpensive ligands (i.e., PMDETA), which also facilitated the polymerization of lower propagation rate constant monomers (i.e., styrene) and the in situ synthesis of block copolymers. This work significantly expands the toolbox of RDRP methods for tailoring dispersity in polymeric materials.
Collapse
Affiliation(s)
- Takanori Shimizu
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland,Science
& Innovation Center, Mitsubishi Chemical
Corporation, 1000 Kamoshida-cho, Aoba-ku,
Yokohama-shi, Kanagawa 227-8502, Japan
| | - Nghia P. Truong
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Richard Whitfield
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland,
| | - Athina Anastasaki
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland,
| |
Collapse
|
9
|
Cooze MJ, Barr NR, Hutchinson RA. Toward an Efficient Process for the Cu(0)‐Mediated Synthesis and Chain Extension of Poly(methyl acrylate) Macroinitiator Using PMDETA as Ligand. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Morgan J. Cooze
- Department of Chemical Engineering Queen's University Kingston ON K7L 3N6 Canada
| | - Nathaniel R. Barr
- Department of Chemical Engineering Queen's University Kingston ON K7L 3N6 Canada
| | - Robin A. Hutchinson
- Department of Chemical Engineering Queen's University Kingston ON K7L 3N6 Canada
| |
Collapse
|
10
|
Long W, Ouyang H, Hu X, Liu M, Zhang X, Feng Y, Wei Y. State-of-art review on preparation, surface functionalization and biomedical applications of cellulose nanocrystals-based materials. Int J Biol Macromol 2021; 186:591-615. [PMID: 34271046 DOI: 10.1016/j.ijbiomac.2021.07.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022]
Abstract
Cellulose nanocrystals (CNCs) are a class of sustainable nanomaterials that are obtained from plants and microorganisms. These naturally derived nanomaterials are of abundant hydroxyl groups, well biocompatibility, low cost and biodegradable potential, making them suitable and promising candidates for various applications, especially in biomedical fields. In this review, the recent advances and development on the preparation, surface functionalization and biomedical applications of CNCs-based materials have been summarized and outlined. The main context of this paper could be divided into the following three parts. In the first part, the preparation strategies based on physical, chemical, enzymatic and combination techniques for preparation of CNCs have been summarized. The surface functionalization methods for synthesis CNCs-based materials with designed properties and functions were outlined in the following section. Finally, the current state about applications of CNCs-based materials for tissue engineering, medical hydrogels, biosensors, fluorescent imaging and intracellular delivery of biological agents have been highlighted. Moreover, current issues and future directions about the above aspects have also pointed out and discussed. We believe this review will attract great research attention of scientists from materials, chemistry, biomedicine and other disciplines. It will also provide some important insights on the future development of CNCs-based materials especially in biomedical fields.
Collapse
Affiliation(s)
- Wei Long
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Hui Ouyang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Xin Hu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Meiying Liu
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Yulin Feng
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polyer Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
11
|
Söder D, Garay-Sarmiento M, Rahimi K, Obstals F, Dedisch S, Haraszti T, Davari MD, Jakob F, Heß C, Schwaneberg U, Rodriguez-Emmenegger C. Unraveling the Mechanism and Kinetics of Binding of an LCI-eGFP-Polymer for Antifouling Coatings. Macromol Biosci 2021; 21:e2100158. [PMID: 34145970 DOI: 10.1002/mabi.202100158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/15/2021] [Indexed: 11/07/2022]
Abstract
The ability of proteins to adsorb irreversibly onto surfaces opens new possibilities to functionalize biological interfaces. Herein, the mechanism and kinetics of adsorption of protein-polymer macromolecules with the ability to equip surfaces with antifouling properties are investigated. These macromolecules consist of the liquid chromatography peak I peptide from which antifouling polymer brushes are grafted using single electron transfer-living radical polymerization. Surface plasmon resonance spectroscopy reveals an adsorption mechanism that follows a Langmuir-type of binding with a strong binding affinity to gold. X-ray reflectivity supports this by proving that the binding occurs exclusively by the peptide. However, the lateral organization at the surface is directed by the cylindrical eGFP. The antifouling functionality of the unimolecular coatings is confirmed by contact with blood plasma. All coatings reduce the fouling from blood plasma by 8894% with only minor effect of the degree of polymerization for the studied range (DP between 101 and 932). The excellent antifouling properties, combined with the ease of polymerization and the straightforward coating procedure make this a very promising antifouling concept for a multiplicity of applications.
Collapse
Affiliation(s)
- Dominik Söder
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Manuela Garay-Sarmiento
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | - Khosrow Rahimi
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany
| | - Fabian Obstals
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Sarah Dedisch
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | - Tamás Haraszti
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany
| | - Mehdi D Davari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | - Felix Jakob
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | - Christoph Heß
- Faculty of Technology and Bionics, Rhine-Waal University of Applied Sciences, 47533, Kleve, Germany
| | - Ulrich Schwaneberg
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | | |
Collapse
|
12
|
Bexis P, Arno MC, Bell CA, Thomas AW, Dove AP. Thermally-induced hyperbranching of bromine-containing polyesters by insertion of in situ generated chain-end carbenes. Chem Commun (Camb) 2021; 57:4275-4278. [PMID: 33913987 DOI: 10.1039/d1cc00821h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hyperbranched, biodegradable PCL-based polymers are obtained through a random but invasive migration of an in situ generated carbene end group which is unmasked via the thermolysis of its precursor diazirine moiety. These hyperbranched cores are used as macroinitiators for 'grafting-from' polymerisation using controlled radical polymerisation to achieve amphiphilic copolymers which can subsequently be self-assembled into spherical core-shell micelles.
Collapse
Affiliation(s)
- Panagiotis Bexis
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK and School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Maria C Arno
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. and Institute of Cancer and Genomic Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Craig A Bell
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK and Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Anthony W Thomas
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Andrew P Dove
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
13
|
Ramesh P, Xu WL, Sorci M, Trant C, Lee S, Kilduff J, Yu M, Belfort G. Organic solvent filtration by brush membranes: Permeability, selectivity and fouling correlate with degree of SET-LRP grafting. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Percec V, Xiao Q, Lligadas G, Monteiro MJ. Perfecting self-organization of covalent and supramolecular mega macromolecules via sequence-defined and monodisperse components. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Moreno A, Sipponen MH. Biocatalytic nanoparticles for the stabilization of degassed single electron transfer-living radical pickering emulsion polymerizations. Nat Commun 2020; 11:5599. [PMID: 33154360 PMCID: PMC7645627 DOI: 10.1038/s41467-020-19407-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/07/2020] [Indexed: 01/07/2023] Open
Abstract
Synthetic polymers are indispensable in many different applications, but there is a growing need for green processes and natural surfactants for emulsion polymerization. The use of solid particles to stabilize Pickering emulsions is a particularly attractive avenue, but oxygen sensitivity has remained a formidable challenge in controlled polymerization reactions. Here we show that lignin nanoparticles (LNPs) coated with chitosan and glucose oxidase (GOx) enable efficient stabilization of Pickering emulsion and in situ enzymatic degassing of single electron transfer-living radical polymerization (SET-LRP) without extraneous hydrogen peroxide scavengers. The resulting latex dispersions can be purified by aqueous extraction or used to obtain polymer nanocomposites containing uniformly dispersed LNPs. The polymers exhibit high chain-end fidelity that allows for production of a series of well-defined block copolymers as a viable route to more complex architectures.
Collapse
Affiliation(s)
- Adrian Moreno
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-106 91, Stockholm, Sweden.
| | - Mika H Sipponen
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
16
|
Simona P, Ulrica E. Renewable Molecules & Materials: Anselme Payen Award Symposium in Honor of Ann-Christine Albertsson. Biomacromolecules 2020; 21:1647-1652. [DOI: 10.1021/acs.biomac.0c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Percec Simona
- Chemistry, Temple University, Philadelphia, Pennsylvania, United States
- Fibre- and Polymer Technology, Kungliga Tekniska Hogskolan, Stockholm, Sweden
| | - Edlund Ulrica
- Chemistry, Temple University, Philadelphia, Pennsylvania, United States
- Fibre- and Polymer Technology, Kungliga Tekniska Hogskolan, Stockholm, Sweden
| |
Collapse
|
17
|
Navarro JRG, Rostami J, Ahlinder A, Mietner JB, Bernin D, Saake B, Edlund U. Surface-Initiated Controlled Radical Polymerization Approach to In Situ Cross-Link Cellulose Nanofibrils with Inorganic Nanoparticles. Biomacromolecules 2020; 21:1952-1961. [PMID: 32223221 DOI: 10.1021/acs.biomac.0c00210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This paper investigates a strategy to convert hydrophilic cellulose nanofibrils (CNF) into a hydrophobic highly cross-linked network made of cellulose nanofibrils and inorganic nanoparticles. First, the cellulose nanofibrils were chemically modified through an esterification reaction to produce a nanocellulose-based macroinitiator. Barium titanate (BaTiO3, BTO) nanoparticles were surface-modified by introducing a specific monomer on their outer-shell surface. Finally, we studied the ability of the nanocellulose-based macroinitiator to initiate a single electron transfer living radical polymerization of stearyl acrylate (SA) in the presence of the surface-modified nanoparticles. The BTO nanoparticles will transfer new properties to the nanocellulose network and act as a cross-linking agent between the nanocellulose fibrils, while the monomer (SA) directly influences the hydrophilic-lipophilic balance. The pristine CNF and the nanoparticle cross-linked CNF are characterized by FTIR, SEM, and solid-state 13C NMR. Rheological and dynamic mechanical analyses revealed a high dregee of cross-linking.
Collapse
Affiliation(s)
| | - Jowan Rostami
- Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44, Stockholm, Sweden
| | - Astrid Ahlinder
- Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44, Stockholm, Sweden
| | | | - Diana Bernin
- Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Bodo Saake
- Institute of Wood Science, Universität Hamburg, Hamburg, Germany
| | - Ulrica Edlund
- Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44, Stockholm, Sweden
| |
Collapse
|
18
|
Lu H, Gao M, Song R, Ye L, Zhang A, Feng Z. Hydroxypropyl β‐Cyclodextrin Solubilizing Hydrophobic Initiator to Initiate Copper‐Mediated RDRP of NIPAM in Aqueous Media. ChemistrySelect 2020. [DOI: 10.1002/slct.202000269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hang Lu
- School of Materials Science & EngineeringBeijing Institute of Technology No. 5 South Street Zhongguancun Beijing 100081 China
| | - Ming Gao
- School of Materials Science & EngineeringBeijing Institute of Technology No. 5 South Street Zhongguancun Beijing 100081 China
| | - Ronghao Song
- School of Materials Science & EngineeringBeijing Institute of Technology No. 5 South Street Zhongguancun Beijing 100081 China
| | - Lin Ye
- School of Materials Science & EngineeringBeijing Institute of Technology No. 5 South Street Zhongguancun Beijing 100081 China
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications No. 5 South Street Zhongguancun Beijing 100081 China
| | - Ai‐Ying Zhang
- School of Materials Science & EngineeringBeijing Institute of Technology No. 5 South Street Zhongguancun Beijing 100081 China
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications No. 5 South Street Zhongguancun Beijing 100081 China
| | - Zeng‐Guo Feng
- School of Materials Science & EngineeringBeijing Institute of Technology No. 5 South Street Zhongguancun Beijing 100081 China
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications No. 5 South Street Zhongguancun Beijing 100081 China
| |
Collapse
|
19
|
Wang Y, Li S, Ma L, Dong S, Liu L. Corn stalk as starting material to prepare a novel adsorbent via SET-LRP and its adsorption performance for Pb(II) and Cu(II). ROYAL SOCIETY OPEN SCIENCE 2020; 7:191811. [PMID: 32269803 PMCID: PMC7137964 DOI: 10.1098/rsos.191811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/04/2020] [Indexed: 06/11/2023]
Abstract
Corn stalk was used as the initial material to prepare a corn stalk matrix-g-polyacrylonitrile-based adsorbent. At first, the corn stalk was treated with potassium hydroxide and nitric acid to obtain the corn stalk-based cellulose (CS), and then the CS was modified by 2-bromoisobutyrylbromide (2-BiBBr) to prepare a macroinitiator. After that, polyacrylonitrile (PAN) was grafted onto the macroinitiator by single-electron transfer living radical polymerization (SET-LRP). A novel adsorbent AO CS-g-PAN was, therefore, obtained by introducing amidoxime groups onto the CS-g-PAN with hydroxylamine hydrochloride (NH2OH · HCl). FTIR, SEM and XPS were applied to characterize the structure of AO CS-g-PAN. The adsorbent was then employed to remove Pb(II) and Cu(II), and it exhibited a predominant adsorption performance on Pb(II) and Cu(II). The effect of parameters, such as temperature, adsorption time, pH and the initial concentration of metal ions on adsorption capacity, were examined in detail during its application. Results suggest that the maximum adsorption capacity of Pb(II) and Cu(II) was 231.84 mg g-1 and 94.72 mg g-1, and the corresponding removal efficiency was 72.03% and 63%, respectively. The pseudo-second order model was more suitable to depict the adsorption process. And the adsorption isotherm of Cu(II) accorded with the Langmuir model, while the Pb(II) conformed better to the Freundlich isotherm model.
Collapse
Affiliation(s)
- Yazhen Wang
- College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, Heilongjiang, People's Republic of China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
- Heilongjiang Province Key Laboratory of Polymeric Composition Material, Qiqihar 161006, Heilongjiang, People's Republic of China
| | - Shuang Li
- College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, Heilongjiang, People's Republic of China
- Heilongjiang Province Key Laboratory of Polymeric Composition Material, Qiqihar 161006, Heilongjiang, People's Republic of China
| | - Liqun Ma
- College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, Heilongjiang, People's Republic of China
| | - Shaobo Dong
- College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, Heilongjiang, People's Republic of China
- Heilongjiang Province Key Laboratory of Polymeric Composition Material, Qiqihar 161006, Heilongjiang, People's Republic of China
| | - Li Liu
- Heilongjiang Province Key Laboratory of Polymeric Composition Material, Qiqihar 161006, Heilongjiang, People's Republic of China
| |
Collapse
|
20
|
Hall KW, Sirk TW, Percec S, Klein ML, Shinoda W. Monodisperse Polymer Melts Crystallize via Structurally Polydisperse Nanoscale Clusters: Insights from Polyethylene. Polymers (Basel) 2020; 12:E447. [PMID: 32074962 PMCID: PMC7077701 DOI: 10.3390/polym12020447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 11/21/2022] Open
Abstract
This study demonstrates that monodisperse entangled polymer melts crystallize via the formation of nanoscale nascent polymer crystals (i.e., nuclei) that exhibit substantial variability in terms of their constituent crystalline polymer chain segments (stems). More specifically, large-scale coarse-grain molecular simulations are used to quantify the evolution of stem length distributions and their properties during the formation of polymer nuclei in supercooled prototypical polyethylene melts. Stems can adopt a range of lengths within an individual nucleus (e.g., ∼1-10 nm) while two nuclei of comparable size can have markedly different stem distributions. As such, the attainment of chemically monodisperse polymer specimens is not sufficient to achieve physical uniformity and consistency. Furthermore, stem length distributions and their evolution indicate that polymer crystal nucleation (i.e., the initial emergence of a nascent crystal) is phenomenologically distinct from crystal growth. These results highlight that the tailoring of polymeric materials requires strategies for controlling polymer crystal nucleation and growth at the nanoscale.
Collapse
Affiliation(s)
- Kyle Wm. Hall
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA; (S.P.); (M.L.K.)
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA 19122, USA
| | - Timothy W. Sirk
- U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA;
| | - Simona Percec
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA; (S.P.); (M.L.K.)
| | - Michael L. Klein
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA; (S.P.); (M.L.K.)
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA 19122, USA
| | - Wataru Shinoda
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan;
| |
Collapse
|
21
|
Maurya DS, Malik A, Feng X, Bensabeh N, Lligadas G, Percec V. Me6-TREN/TREN Mixed-Ligand Effect During SET-LRP in the Catalytically Active DMSO Revitalizes TREN into an Excellent Ligand. Biomacromolecules 2020; 21:1902-1919. [DOI: 10.1021/acs.biomac.9b01765] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Devendra S. Maurya
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ayesha Malik
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Xiaojing Feng
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Nabil Bensabeh
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Gerard Lligadas
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Virgil Percec
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
22
|
Percec V. Merging Macromolecular and Supramolecular Chemistry into Bioinspired Synthesis of Complex Systems. Isr J Chem 2020. [DOI: 10.1002/ijch.202000004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry and Laboratory for Research on the Structure of MatterUniversity of Pennsylvania, Philadelphia Pennsylvania 19104-6323 United States
| |
Collapse
|
23
|
Verstraete K, Zaquen N, Junkers T. Flash-synthesis of low dispersity PPV via anionic polymerization in continuous flow reactors and block copolymer synthesis. Polym Chem 2020. [DOI: 10.1039/d0py01245a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Low dispersity poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)]-1,4-phenylenevinylene (MDMO-PPV) with well-defined end-groups is made available by performing the anionic polymerization in a continuous tubular reactor under flash chemistry conditions.
Collapse
Affiliation(s)
- Kirsten Verstraete
- Polymer Reaction Design group
- Hasselt University – Institute for Materials Research
- B-3590 Diepenbeek
- Belgium
| | - Neomy Zaquen
- Polymer Reaction Design group
- Hasselt University – Institute for Materials Research
- B-3590 Diepenbeek
- Belgium
| | - Tanja Junkers
- Polymer Reaction Design group
- Hasselt University – Institute for Materials Research
- B-3590 Diepenbeek
- Belgium
- School of Chemistry
| |
Collapse
|
24
|
Chen J, Li D, Bao C, Zhang Q. Controlled synthesis of sugar-containing poly(ionic liquid)s. Chem Commun (Camb) 2020; 56:3665-3668. [DOI: 10.1039/c9cc09858e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A facile synthetic route is reported toward sugar-containing pyridinium-based poly(ionic liquid)s (PILs) for efficient killing of bacteria.
Collapse
Affiliation(s)
- Jing Chen
- Key Laboratory of New Membrane Materials
- Ministry of Industry and Information Technology
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| | - Die Li
- Key Laboratory of New Membrane Materials
- Ministry of Industry and Information Technology
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| | - Chunyang Bao
- Key Laboratory of New Membrane Materials
- Ministry of Industry and Information Technology
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| | - Qiang Zhang
- Key Laboratory of New Membrane Materials
- Ministry of Industry and Information Technology
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| |
Collapse
|
25
|
|
26
|
Pei X, Zhai K, Wang C, Deng Y, Tan Y, Zhang B, Bai Y, Xu K, Wang P. Polymer Brush Graft-Modified Starch-Based Nanoparticles as Pickering Emulsifiers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7222-7230. [PMID: 31070380 DOI: 10.1021/acs.langmuir.9b00413] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We study biosourced core-shell particles with a starch-based core and thermo-responsive polymer brush shell using surface-initiated single-electron transfer living radical polymerization (SI-SET-LRP) as a Pickering stabilizer. The shell endows the Pickering stabilizer with reversible emulsification/demulsification of oil and water properties. The initiator attached to the starch-based nanosphere (Br-SNP) core particle was first fabricated using the precipitation method. Subsequently, dense poly( N-isopropylacrylamide) (PNIPAM) brush graft-modified starch-based nanoparticles (SNP- g-PNIPAM) were obtained via the SI-SET-LRP process. Interfacial properties of the resultant particles were analyzed by interfacial tensiometer measurements, as were the effects of the grafted polymer chain length and temperature on the interfacial activity. Pickering emulsion was obtained using SNP- g-PNIPAM particles as the stabilizer. The effect of the concentration of the Pickering stabilizer on the size of emulsion droplets was analyzed. The emulsification/demulsification process of the Pickering emulsion can be reversed and easily repeated by changing the temperature.
Collapse
Affiliation(s)
- Xiaopeng Pei
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , PR China
- University of Science and Technology of China , Hefei 230026 , PR China
| | - Kankan Zhai
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , PR China
- University of Science and Technology of China , Hefei 230026 , PR China
| | - Chao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , PR China
- University of Science and Technology of China , Hefei 230026 , PR China
| | - Yukun Deng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , PR China
| | - Ying Tan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , PR China
| | - Baichao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , PR China
| | - Yungang Bai
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , PR China
| | - Kun Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , PR China
| | - Pixin Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , PR China
| |
Collapse
|
27
|
Ding L, Li J, Jiang RY, Wang LF, Song W, Zhu L. Cu(0) Wire-mediated Single-electron Transfer-living Radical Polymerization of Oligo(ethylene oxide) Methyl Ether Acrylate by Selecting the Optimal Reaction Conditions. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2263-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Bensabeh N, Moreno A, Roig A, Monaghan OR, Ronda JC, Cádiz V, Galià M, Howdle SM, Lligadas G, Percec V. Polyacrylates Derived from Biobased Ethyl Lactate Solvent via SET-LRP. Biomacromolecules 2019; 20:2135-2147. [PMID: 31013072 DOI: 10.1021/acs.biomac.9b00435] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The precise synthesis of polymers derived from alkyl lactate ester acrylates is reported for the first time. Kinetic experiments were conducted to demonstrate that Cu(0) wire-catalyzed single electron transfer-living radical polymerization (SET-LRP) in alcohols at 25 °C provides a green methodology for the LRP of this forgotten class of biobased monomers. The acrylic derivative of ethyl lactate (EL) solvent and homologous structures with methyl and n-butyl ester were polymerized with excellent control over molecular weight, molecular weight distribution, and chain-end functionality. Kinetics plots in conventional alcohols such as ethanol and methanol were first order in the monomer, with molecular weight increasing linearly with conversion. However, aqueous EL mixtures were found to be more suitable than pure EL to mediate the SET-LRP process. The near-quantitative monomer conversion and high bromine chain-end functionality, demonstrated by matrix-assisted laser desorption ionization time-of-flight analysis, further allowed the preparation of innovative biobased block copolymers containing rubbery poly(ethyl lactate acrylate) poly(ELA) sequences. For instance, the poly(ELA)- b-poly(glycerol acrylate) block copolymer self-assembled in water to form stable micelles with chiral lactic acid-derived block-forming micellar core as confirmed by the pyrene-probe-based fluorescence technique. Dynamic light scattering and transmission electron microscopy measurements revealed the nanosize spherical morphology for these biobased aggregates.
Collapse
Affiliation(s)
- Nabil Bensabeh
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain
| | - Adrian Moreno
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain
| | - Adrià Roig
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain
| | - Olivia R Monaghan
- School of Chemistry , University of Nottingham , University Park Nottingham, NG7 2RD Nottingham , U.K
| | - Juan C Ronda
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain
| | - Virginia Cádiz
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain
| | - Marina Galià
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain
| | - Steven M Howdle
- School of Chemistry , University of Nottingham , University Park Nottingham, NG7 2RD Nottingham , U.K
| | - Gerard Lligadas
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain.,Roy & Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| |
Collapse
|
29
|
Moreno A, Bensabeh N, Parve J, Ronda JC, Cádiz V, Galià M, Vares L, Lligadas G, Percec V. SET-LRP of Bio- and Petroleum-Sourced Methacrylates in Aqueous Alcoholic Mixtures. Biomacromolecules 2019; 20:1816-1827. [PMID: 30882211 DOI: 10.1021/acs.biomac.9b00257] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Single-electron transfer-living radical polymerization (SET-LRP) in "programmed" aqueous organic biphasic systems eliminates the judicious choice of solvent and also provides accelerated reaction rates. Herein, we report efforts to expand the monomer scope for these systems by targeting methacrylic monomers and polymers. Various environmentally friendly aqueous alcoholic mixtures were used in combination with Cu(0) wire catalyst, tris(2-dimethylaminoethyl)amine (Me6-TREN) ligand, and p-toluenesulfonyl chloride (Ts-Cl) initiator to deliver well-defined polymethacrylates from methyl methacrylate, butyl methacrylate, and other monomers derived from biomass feedstock (e.g., lactic acid, isosorbide, furfural, and lauric acid). The effect of water on the nature of the reaction mixture during the SET-LRP process, reaction rate, and control of the polymerization is discussed. The control retained under the reported conditions is demonstrated by synthesizing polymers of different targeted molar mass as well as quasi-block AB copolymers by "in situ" chain extension at high conversion. These results highlight the capabilities of SET-LRP to provide sustainable solutions based on renewable resources.
Collapse
Affiliation(s)
- Adrian Moreno
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43007 , Spain
| | - Nabil Bensabeh
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43007 , Spain
| | - Jaan Parve
- Department of Chemistry and Biotechnology , Tallinn University of Technology , Ehitajate tee 5 , Tallinn 19086 , Estonia
| | - Juan C Ronda
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43007 , Spain
| | - Virginia Cádiz
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43007 , Spain
| | - Marina Galià
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43007 , Spain
| | - Lauri Vares
- Institute of Technology , University of Tartu , Nooruse 1 , Tartu 50411 , Estonia
| | - Gerard Lligadas
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43007 , Spain.,Roy & Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| |
Collapse
|
30
|
Modulation of protein activity and assembled structure by polymer conjugation: PEGylation vs glycosylation. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Vorobii M, Kostina NY, Rahimi K, Grama S, Söder D, Pop-Georgievski O, Sturcova A, Horak D, Grottke O, Singh S, Rodriguez-Emmenegger C. Antifouling Microparticles To Scavenge Lipopolysaccharide from Human Blood Plasma. Biomacromolecules 2019; 20:959-968. [DOI: 10.1021/acs.biomac.8b01583] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mariia Vorobii
- DWI−Leibniz Institute for Interactive Materials and Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstrasse 50, 52074 Aachen, Germany
| | - Nina Yu. Kostina
- DWI−Leibniz Institute for Interactive Materials and Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstrasse 50, 52074 Aachen, Germany
| | - Khosrow Rahimi
- DWI−Leibniz Institute for Interactive Materials and Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstrasse 50, 52074 Aachen, Germany
| | - Silvia Grama
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16206 Prague, Czech Republic
| | - Dominik Söder
- DWI−Leibniz Institute for Interactive Materials and Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstrasse 50, 52074 Aachen, Germany
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16206 Prague, Czech Republic
| | - Adriana Sturcova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16206 Prague, Czech Republic
| | - Daniel Horak
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16206 Prague, Czech Republic
| | - Oliver Grottke
- Department of Anesthesiology, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Smriti Singh
- DWI−Leibniz Institute for Interactive Materials and Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstrasse 50, 52074 Aachen, Germany
| | - Cesar Rodriguez-Emmenegger
- DWI−Leibniz Institute for Interactive Materials and Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstrasse 50, 52074 Aachen, Germany
| |
Collapse
|
32
|
Creusen G, Roshanasan A, Garcia Lopez J, Peneva K, Walther A. Bottom-up design of model network elastomers and hydrogels from precise star polymers. Polym Chem 2019. [DOI: 10.1039/c9py00731h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Well-defined high-molecular weight star polymers based on low-Tg water-soluble polymers enable bottom-up design of model network elastomers and functional hydrogels.
Collapse
Affiliation(s)
- Guido Creusen
- A3BMS Lab – Active
- Adaptive and Autonomous Bioinspired Materials
- Institute for Macromolecular Chemistry
- University of Freiburg
- 79104 Freiburg
| | - Ardeshir Roshanasan
- A3BMS Lab – Active
- Adaptive and Autonomous Bioinspired Materials
- Institute for Macromolecular Chemistry
- University of Freiburg
- 79104 Freiburg
| | - Javier Garcia Lopez
- Institute of Organic Chemistry and Macromolecular Chemistry
- Jena Center of Soft Matter
- Friedrich Schiller University of Jena
- 07743 Jena
- Germany
| | - Kalina Peneva
- Institute of Organic Chemistry and Macromolecular Chemistry
- Jena Center of Soft Matter
- Friedrich Schiller University of Jena
- 07743 Jena
- Germany
| | - Andreas Walther
- A3BMS Lab – Active
- Adaptive and Autonomous Bioinspired Materials
- Institute for Macromolecular Chemistry
- University of Freiburg
- 79104 Freiburg
| |
Collapse
|
33
|
Terao Y, Satoh K, Kamigaito M. Controlled Radical Copolymerization of Cinnamic Derivatives as Renewable Vinyl Monomers with Both Acrylic and Styrenic Substituents: Reactivity, Regioselectivity, Properties, and Functions. Biomacromolecules 2018; 20:192-203. [PMID: 30358388 DOI: 10.1021/acs.biomac.8b01298] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of cinnamic monomers, which can be derived from naturally occurring phenylpropanoids, were radically copolymerized with vinyl monomers such as methyl acrylate (MA) and styrene (St). Although the monomer reactivity ratios were close to zero for all the cinnamic monomers, such as methyl cinnamate (CAMe), cinnamic acid (CA), N-isopropyl cinnamide (CNIPAm), cinnamaldehyde (CAld), and cinnamonitrile (CN), they were incorporated into the copolymers and significantly increased the glass transition temperatures despite the relatively low incorporation rates of up to 40 mol % due to their rigid 1,2-disubstituted structures. The regioselectivity of the radical copolymerization of CAMe was evaluated on the basis of the results of ruthenium-catalyzed atom transfer radical additions as model reactions. The obtained products suggest that the radicals of MA and St predominantly attack the vinyl carbon of the carbonyl side of CAMe and that the propagation of CAMe mainly occurs via the styrenic radical. The ruthenium-catalyzed living radical polymerization, nitroxide-mediated polymerization (NMP), and reversible addition-fragmentation chain transfer (RAFT) polymerization provided the copolymers with controlled molecular weights, narrow molecular weight distributions, and controlled comonomer compositions. The copolymers of N-isopropylacrylamide (NIPAM) and CNIPAm prepared via RAFT copolymerization showed thermoresponsivity with a lower critical solution temperature (LCST) that could be tuned by altering the comonomer incorporation and a higher LCST than the copolymers of NIPAM and St, which possessed similar molecular weights and similar NIPAM contents, due to the additional N-isopropylamide groups in the CNIPAm units compared to the St units.
Collapse
Affiliation(s)
- Yuya Terao
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8603 , Japan
| | - Kotaro Satoh
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8603 , Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8603 , Japan
| |
Collapse
|
34
|
Moreno A, Galià M, Lligadas G, Percec V. SET-LRP in Biphasic Mixtures of the Nondisproportionating Solvent Hexafluoroisopropanol with Water. Biomacromolecules 2018; 19:4480-4491. [DOI: 10.1021/acs.biomac.8b01381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Adrian Moreno
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Marina Galià
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
35
|
Christopherson CJ, Hackett ZS, Sauvé ER, Paisley NR, Tonge CM, Mayder DM, Hudson ZM. Synthesis of phosphorescent iridium-containing acrylic monomers and their room-temperature polymerization by Cu(0)-RDRP. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Cheyenne J. Christopherson
- Department of Chemistry; The University of British Columbia, 2036 Main Mall; Vancouver British Columbia V6T 1Z1 Canada
| | - Zoë S. Hackett
- Department of Chemistry; The University of British Columbia, 2036 Main Mall; Vancouver British Columbia V6T 1Z1 Canada
| | - Ethan R. Sauvé
- Department of Chemistry; The University of British Columbia, 2036 Main Mall; Vancouver British Columbia V6T 1Z1 Canada
| | - Nathan R. Paisley
- Department of Chemistry; The University of British Columbia, 2036 Main Mall; Vancouver British Columbia V6T 1Z1 Canada
| | - Christopher M. Tonge
- Department of Chemistry; The University of British Columbia, 2036 Main Mall; Vancouver British Columbia V6T 1Z1 Canada
| | - Don M. Mayder
- Department of Chemistry; The University of British Columbia, 2036 Main Mall; Vancouver British Columbia V6T 1Z1 Canada
| | - Zachary M. Hudson
- Department of Chemistry; The University of British Columbia, 2036 Main Mall; Vancouver British Columbia V6T 1Z1 Canada
| |
Collapse
|
36
|
Paisley NR, Tonge CM, Sauvé ER, Halldorson SV, Hudson ZM. Synthesis of polymeric organic semiconductors using semifluorinated polymer precursors. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Nathan R. Paisley
- Department of ChemistryThe University of British Columbia Vancouver British Columbia V6T 1Z1 Canada
| | - Christopher M. Tonge
- Department of ChemistryThe University of British Columbia Vancouver British Columbia V6T 1Z1 Canada
| | - Ethan R. Sauvé
- Department of ChemistryThe University of British Columbia Vancouver British Columbia V6T 1Z1 Canada
| | - Sarah V. Halldorson
- Department of ChemistryThe University of British Columbia Vancouver British Columbia V6T 1Z1 Canada
| | - Zachary M. Hudson
- Department of ChemistryThe University of British Columbia Vancouver British Columbia V6T 1Z1 Canada
| |
Collapse
|
37
|
Wang X, Shen L, An Z. Dispersion polymerization in environmentally benign solvents via reversible deactivation radical polymerization. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.05.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
38
|
Grace JL, Alcaraz N, Truong NP, Davis TP, Boyd BJ, Quinn JF, Whittaker MR. Lipidated polymers for the stabilization of cubosomes: nanostructured drug delivery vehicles. Chem Commun (Camb) 2018; 53:10552-10555. [PMID: 28890981 DOI: 10.1039/c7cc05842j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lipidated polymers, like their protein counterparts, may be useful in fields as diverse as biochemistry and drug delivery. As such, strategies for preparing lipidated polymers with defined molecular architecture are clearly warranted. Herein, we describe a broadly-applicable methodology for synthesizing such lipidated materials, and demonstrate how they can be applied to the preparation of nanostructured drug delivery vehicles.
Collapse
Affiliation(s)
- James L Grace
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | | | | | | | | | | | | |
Collapse
|
39
|
Bao C, Yin Y, Zhang Q. Synthesis and Assembly of Laccase-Polymer Giant Amphiphiles by Self-Catalyzed CuAAC Click Chemistry. Biomacromolecules 2018; 19:1539-1551. [PMID: 29562131 DOI: 10.1021/acs.biomac.8b00087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covalent coupling of hydrophobic polymers to the exterior of hydrophilic proteins would mediate unique macroscopic assembly of bioconjugates to generate amphiphilic superstructures as novel nanoreactors or biocompatible drug delivery systems. The main objective of this study was to develop a novel strategy for the synthesis of protein-polymer giant amphiphiles by the combination of copper-mediated living radical polymerization and azide-alkyne cycloaddition reaction (CuAAC). Azide-functionalized succinimidyl ester was first synthesized for the facile introduction of azide groups to proteins such as albumin from bovine serum (BSA) and laccase from Trametes versicolor. Alkyne-terminal polymers with varied hydrophobicity were synthesized by using commercial copper wire as the activators from a trimethylsilyl protected alkyne-functionalized initiator in DMSO under ambient temperature. The conjugation of alkyne-functionalized polymers to the azide-functionalized laccase could be conducted even without additional copper catalyst, which indicated a successful self-catalyzed CuAAC reaction. The synthesized amphiphiles were found to aggregate into spherical nanoparticles in water and showed strong relevance to the hydrophobicity of coupled polymers. The giant amphiphiles showed decreased enzyme activity yet better stability during storage after chemical modification and self-assembly. These findings will deepen our understanding on protein folding, macroscopic self-assembly, and support potential applications in bionanoreactor, enzyme immobilization, and water purification.
Collapse
|
40
|
Bensabeh N, Ronda JC, Galià M, Cádiz V, Lligadas G, Percec V. SET-LRP of the Hydrophobic Biobased Menthyl Acrylate. Biomacromolecules 2018. [DOI: 10.1021/acs.biomac.8b00090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nabil Bensabeh
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Joan C. Ronda
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Marina Galià
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Virginia Cádiz
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
41
|
Synthetic Strategies for the Fabrication of Cationic Surface-Modified Cellulose Nanocrystals. FIBERS 2018. [DOI: 10.3390/fib6010015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Liu X, Appelhans D, Zhang T, Voit B. Rapid Synthesis of Dual-Responsive Hollow Capsules with Controllable Membrane Thickness by Surface-Initiated SET-LRP Polymerization. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02347] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaoling Liu
- Leibniz-Institute
für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Organic
Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz-Institute
für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Tao Zhang
- Organic
Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institute
für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Organic
Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| |
Collapse
|
43
|
Tonge CM, Sauvé ER, Paisley NR, Heyes JE, Hudson ZM. Polymerization of acrylates based on n-type organic semiconductors using Cu(0)-RDRP. Polym Chem 2018. [DOI: 10.1039/c8py00670a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three acrylic monomers have been prepared based on organic semiconductor motifs commonly used as n-type materials in organic light-emitting diodes (OLEDs) and organic thin-film transistors (OTFTs) and polymerized by Cu(0)-RDRP.
Collapse
Affiliation(s)
| | - Ethan R. Sauvé
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| | - Nathan R. Paisley
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| | - Jordan E. Heyes
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| | - Zachary M. Hudson
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
44
|
Moreno A, Jezorek RL, Liu T, Galià M, Lligadas G, Percec V. Macromonomers, telechelics and more complex architectures of PMA by a combination of biphasic SET-LRP and biphasic esterification. Polym Chem 2018. [DOI: 10.1039/c8py00150b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Macromonomers and telechelics of PMA via biphasic SET-LRP and biphasic esterification with potassium acrylate.
Collapse
Affiliation(s)
- Adrian Moreno
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Ryan L. Jezorek
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Tong Liu
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Marina Galià
- Laboratory of Sustainable Polymers
- Department of Analytical Chemistry and Organic Chemistry
- University Rovira i Virgili
- Tarragona
- Spain
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
45
|
Moreno A, Lejnieks J, Galià M, Lligadas G, Percec V. Acetone: a solvent or a reagent depending on the addition order in SET-LRP. Polym Chem 2018. [DOI: 10.1039/c8py01331d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The importance of reagent order in biphasic SET-LRP in acetone/water mixtures is shown.
Collapse
Affiliation(s)
- Adrian Moreno
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Jānis Lejnieks
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Marina Galià
- Laboratory of Sustainable Polymers
- Department of Analytical Chemistry and Organic Chemistry
- University Rovira i Virgili
- Tarragona
- Spain
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
46
|
Jones GR, Whitfield R, Anastasaki A, Risangud N, Simula A, Keddie DJ, Haddleton DM. Cu(0)-RDRP of methacrylates in DMSO: importance of the initiator. Polym Chem 2018. [DOI: 10.1039/c7py01196b] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The controlled radical polymerization of methacrylates via Cu(0)-mediated RDRP is challenging in comparison to acrylates with most reports illustrating higher dispersities, lower monomer conversions and poorer end group fidelity relative to the acrylic analogues.
Collapse
Affiliation(s)
- Glen R. Jones
- University of Warwick
- Department of Chemistry
- Coventry
- UK
| | | | - Athina Anastasaki
- University of Warwick
- Department of Chemistry
- Coventry
- UK
- Materials Research Laboratory
| | | | - Alexandre Simula
- POLYMAT and Kimika Aplikatua Saila
- University of the Basque Country UPV/EHU
- Donostia/San Sebastián
- Spain
| | - Daniel J. Keddie
- University of Wolverhampton
- School of Biology
- Chemistry and Forensic Science
- Wolverhampton
- UK
| | | |
Collapse
|
47
|
Moreno A, Liu T, Galià M, Lligadas G, Percec V. Acrylate-macromonomers and telechelics of PBA by merging biphasic SET-LRP of BA, chain extension with MA and biphasic esterification. Polym Chem 2018. [DOI: 10.1039/c8py00156a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chain extension of PBA with MA allows the preparation of acrylate-functional PBA.
Collapse
Affiliation(s)
- Adrian Moreno
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Tong Liu
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Marina Galià
- Laboratory of Sustainable Polymers
- Department of Analytical Chemistry and Organic Chemistry
- University Rovira i Virgili
- Tarragona
- Spain
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
48
|
Moreno A, Liu T, Ding L, Buzzacchera I, Galià M, Möller M, Wilson CJ, Lligadas G, Percec V. SET-LRP in biphasic mixtures of fluorinated alcohols with water. Polym Chem 2018. [DOI: 10.1039/c8py00062j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Efficient and inexpensive SET-LRP in biphasic-mixtures of fluorinated alcohols with water.
Collapse
Affiliation(s)
- Adrian Moreno
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Tong Liu
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Liang Ding
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Irene Buzzacchera
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Marina Galià
- Laboratory of Sustainable Polymers
- Department of Analytical Chemistry and Organic Chemistry
- University Rovira i Virgili
- Tarragona
- Spain
| | - Martin Möller
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry
- RWTH Aachen University
- 52074 Aachen
- Germany
| | | | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
49
|
Shanmugam S, Matyjaszewski K. Reversible Deactivation Radical Polymerization: State-of-the-Art in 2017. ACS SYMPOSIUM SERIES 2018. [DOI: 10.1021/bk-2018-1284.ch001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Sivaprakash Shanmugam
- Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
50
|
Trindade SG, Bortolotto T, Ciolino AE, Schmidt V, Giacomelli C. One-Pot Two-Step (First ROP, Then SET-LRP) Synthesis of Polycaprolactone-Polyacrylate Star Block Copolymers. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Suelen G. Trindade
- Departamento de Química; Universidade Federal de Santa Maria; 97105-900 Santa Maria Brazil
| | - Tanize Bortolotto
- Departamento de Química; Universidade Federal de Santa Maria; 97105-900 Santa Maria Brazil
| | - Andrés E. Ciolino
- Planta Piloto de Ingeniería Química; PLAPIQUI (UNS-CONICET); Departamento de Ingeniería Química UNS; Camino La Carrindanga km. 7 (8000) Bahía Blanca Argentina
| | - Vanessa Schmidt
- Departamento de Química; Universidade Federal de Santa Maria; 97105-900 Santa Maria Brazil
| | - Cristiano Giacomelli
- Departamento de Química; Universidade Federal de Santa Maria; 97105-900 Santa Maria Brazil
| |
Collapse
|