1
|
Li Y, Li S, Yuan J, Liu Z, Song X, Zhang L, Jia L, Li X, Yu R, Zhang J, Lu Y, Lv S, Niu K, Ma NL, Chu J. The effect of acetyl structure optimization of spruce (Picea abies.) mannan on promoting enzymatic hydrolysis. Int J Biol Macromol 2025; 310:143098. [PMID: 40222530 DOI: 10.1016/j.ijbiomac.2025.143098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/31/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
In spruce, hemicelluloses containing acetyl groups hinder cellulase accessibility to cellulose, which reduces hydrolysis efficiency. This study investigated the effect of acetylation on cellulose hydrolysis. With an addition of 2-8 mg/mL, natural spruce galactoglucomannan (GGM) exhibited inhibition rates of 17.66 %-26.64 % on cellulose hydrolysis. Deacetylated galactoglucomannan (DGM) further intensified hydrolysis inhibition, reaching up to 41.95 % at 8 mg/mL. Conversely, the addition of 2 mg/mL of highly acetylated galactoglucomannan (AGM) significantly alleviated hydrolysis inhibition, thereby reducing inhibition by 76.44 %. The inhibition effect of acetylation on cellulose hydrolysis was directly proportional to AGM amount and inversely proportional to hydrolysis time, as confirmed by cellulose adsorption experiments. Infrared spectroscopy and nuclear magnetic resonance spectroscopy revealed structural changes in GGM due to acetylation and deacetylation. The effect of mannan on cellulase activity was examined via fluorescence spectroscopy. Steric hindrance and electrostatic repulsion from acetyl groups on mannan reduced enzyme adsorption. Highly acetylated mannose enhanced cellulase stability. These findings provide new insights for biorefining applications in spruce.
Collapse
Affiliation(s)
- Yibo Li
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Shulei Li
- College of Chemistry &Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - JieYing Yuan
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Zheyun Liu
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xiaozhou Song
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Li Zhang
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Lili Jia
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Xiangyu Li
- College of Material Science and Engineering, Beihua University, Jilin 132013, Jilin, PR China
| | - Ruijin Yu
- College of Chemistry &Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Jiaxing Zhang
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yunjing Lu
- North Alabama International College of Engineering and Technology, Guizhou University, Guiyang 550025, Guizhou, PR China
| | - Shanshan Lv
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Kangren Niu
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Nyuk Ling Ma
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Malaysia.
| | - Jie Chu
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
2
|
Pu J, Ma J, Zhai H, Wu S, Wang Y, Putnis CV, Wang L, Zhang W. Atomic force microscopy imaging of plant cell walls. PLANT PHYSIOLOGY 2025; 197:kiae655. [PMID: 39928583 DOI: 10.1093/plphys/kiae655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/18/2024] [Indexed: 02/12/2025]
Abstract
Plant cell walls are highly dynamic, complex structures composed of multiple biopolymers that form a scaffold surrounding the plant cell. A nanoscale understanding of their architecture, mechanical properties, and formation/degradation dynamics is crucial for revealing structure-function relationships, mechanisms of shape formation, and cell development. Although imaging techniques have been extensively used in recent decades to reveal the structural organization and chemical compositions of cell walls, observing the detailed native architecture and identifying the physicochemical properties of plant cell walls remains challenging. Atomic force microscopy (AFM) is a powerful tool for simultaneously characterizing the morphology, nanomechanical properties, single-molecule interactions, and surface potentials of living biological systems. However, studies employing AFM to investigate plant cell walls have been relatively scarce. In this review, we discuss the latest advancements in AFM for in situ imaging of the multidimensional structure of the cell wall, measuring the mechanical properties of plant tissues or single cells, specific single-molecule recognition of cell wall-related enzymes-polysaccharides, and detecting the Kelvin potential of plant cell walls. We emphasize the fundamental challenges of AFM in characterizing plant cell walls and review potential applications for state-of-the-art AFM-based infrared/Raman spectroscopy toward answering open questions in plant biology.
Collapse
Affiliation(s)
- Junbao Pu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jie Ma
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Hang Zhai
- College of Resources and Environment, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China
| | - Shanshan Wu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Youmei Wang
- Houji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taiyuan 030031, China
| | - Christine V Putnis
- Institut für Mineralogie, University of Münster, Münster 48149, Germany
- School of Molecular and Life Sciences, Curtin University, Perth 6845, Australia
| | - Lijun Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenjun Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Yuan F, Qi H, Song B, Cui Y, Zhang J, Liu H, Liu B, Lei H, Liu T. Tailorable biosensors for real-time monitoring of stress distribution in soft biomaterials and living tissues. Nat Commun 2025; 16:1081. [PMID: 39870637 PMCID: PMC11772616 DOI: 10.1038/s41467-025-56422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025] Open
Abstract
Visualizing mechanical stress distribution in soft and live biomaterials is essential for understanding biological processes and improving material design. However, it remains challenging due to their complexity, dynamic nature, and sensitivity requirements, necessitating innovative techniques. Since polysaccharides are common in various biomaterials, a biosensor integrating a Förster resonance energy transfer (FRET)-based tension sensor module and carbohydrate-binding modules (FTSM-CBM) has been designed for real-time monitoring of the stress distribution of these biomaterials. By simple dripping or soaking, FTSM-CBM enables fast, reproducible and semiquantitative detection of both 2D and 3D stress distributions in polysaccharide-based hydrogels. Additionally, it provides valuable information such as microstructure hints and fracture site warnings. FTSM-CBM can also monitor the locomotion of maggots, which is not feasible with most existing techniques. Furthermore, by changing the CBM, FTSM-CBM can be expanded for various polysaccharide-based biomaterials. This study provides a powerful tool that may promote related research in life and materials science.
Collapse
Affiliation(s)
- Fenghou Yuan
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Huitang Qi
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Binghui Song
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yuntian Cui
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Junsheng Zhang
- School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
| | - Huan Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Bo Liu
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Bio-medical Electronic System, Dalian University of Technology, Dalian, China
| | - Hai Lei
- School of Physics, Institute for Advanced Study in Physics, Zhejiang University, Hangzhou, China.
| | - Tian Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China.
| |
Collapse
|
4
|
Li S, Liu G. Harnessing cellulose-binding protein domains for the development of functionalized cellulose materials. BIORESOUR BIOPROCESS 2024; 11:74. [PMID: 39052131 PMCID: PMC11272768 DOI: 10.1186/s40643-024-00790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024] Open
Abstract
Cellulosic materials are attracting increasing research interest because of their abundance, biocompatibility, and biodegradability, making them suitable in multiple industrial and medical applications. Functionalization of cellulose is usually required to improve or expand its properties to meet the requirements of different applications. Cellulose-binding domains (CBDs) found in various proteins have been shown to be powerful tools in the functionalization of cellulose materials. In this review, we firstly introduce the structural characteristics of commonly used CBDs belonging to carbohydrate-binding module families 1, 2 and 3. Then, we summarize four main kinds of methodologies for employing CBDs to modify cellulosic materials (i.e., CBD only, genetic fusion, non-covalent linkage and covalent linkage). Via different approaches, CBDs have been used to improve the material properties of cellulose, immobilize enzymes for biocatalysis, and design various detection tools. To achieve industrial applications, researches for lowering the production cost of CBDs, improving their performance (e.g., stability), and expanding their application scenarios are still in need.
Collapse
Affiliation(s)
- Shaowei Li
- Taishan College, School of Life sciences, Shandong University, 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Guodong Liu
- Taishan College, School of Life sciences, Shandong University, 72 Binhai Road, Qingdao, Shandong, 266237, China.
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, Shandong, 266237, China.
| |
Collapse
|
5
|
Eigenfeld M, Lupp KFM, Schwaminger SP. Role of Natural Binding Proteins in Therapy and Diagnostics. Life (Basel) 2024; 14:630. [PMID: 38792650 PMCID: PMC11122601 DOI: 10.3390/life14050630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
This review systematically investigates the critical role of natural binding proteins (NBPs), encompassing DNA-, RNA-, carbohydrate-, fatty acid-, and chitin-binding proteins, in the realms of oncology and diagnostics. In an era where cancer continues to pose significant challenges to healthcare systems worldwide, the innovative exploration of NBPs offers a promising frontier for advancing both the diagnostic accuracy and therapeutic efficacy of cancer management strategies. This manuscript provides an in-depth examination of the unique mechanisms by which NBPs interact with specific molecular targets, highlighting their potential to revolutionize cancer diagnostics and therapy. Furthermore, it discusses the burgeoning research on aptamers, demonstrating their utility as 'nucleic acid antibodies' for targeted therapy and precision diagnostics. Despite the promising applications of NBPs and aptamers in enhancing early cancer detection and developing personalized treatment protocols, this review identifies a critical knowledge gap: the need for comprehensive studies to understand the diverse functionalities and therapeutic potentials of NBPs across different cancer types and diagnostic scenarios. By bridging this gap, this manuscript underscores the importance of NBPs and aptamers in paving the way for next-generation diagnostics and targeted cancer treatments.
Collapse
Affiliation(s)
- Marco Eigenfeld
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Kilian F. M. Lupp
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Sebastian P. Schwaminger
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
6
|
Gilmour KA, Arnadottir TH, James P, Scott J, Jiang Y, Dade‐Robertson M, Zhang M. Innovating fire safety with recombinant hydrophobic proteins for textile fire retardancy. Microb Biotechnol 2023; 16:2194-2199. [PMID: 37747422 PMCID: PMC10616640 DOI: 10.1111/1751-7915.14340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023] Open
Abstract
Fire retardancy for textiles is important to prevent the rapid spread of fire and minimize damage to property and harm to human life. To infer fire-resistance on textile materials such as cotton or nylon, chemical coatings are often used. These chemicals are usually toxic, and economically and environmentally unsustainable, however, some naturally produced protein-based fire retardants could be an alternative. A biofilm protein from Bacillus subtilis (BslA) was identified and recombinantly expressed in Escherichia coli with a double cellulose binding domain. It was then applied to a range of natural and synthetic fabric materials. A flame retardancy test found that use of BslA reduced fire damage by up to 51% and would pass fire retardancy testing according to British standards. It is therefore a viable and sustainable alternative to current industrial fire-retardant coatings.
Collapse
Affiliation(s)
- Katie A. Gilmour
- Hub for Biotechnology in the Built Environment, Department of Applied SciencesNorthumbria University at NewcastleNewcastle upon TyneUK
| | - Thora H. Arnadottir
- Hub for Biotechnology in the Built Environment, School of Architecture, Planning and LandscapeNewcastle UniversityNewcastle upon TyneUK
| | - Paul James
- Hub for Biotechnology in the Built Environment, Department of Applied SciencesNorthumbria University at NewcastleNewcastle upon TyneUK
| | - Jane Scott
- Hub for Biotechnology in the Built Environment, School of Architecture, Planning and LandscapeNewcastle UniversityNewcastle upon TyneUK
| | - Yunhong Jiang
- Hub for Biotechnology in the Built Environment, Department of Applied SciencesNorthumbria University at NewcastleNewcastle upon TyneUK
| | - Martyn Dade‐Robertson
- Hub for Biotechnology in the Built Environment, School of Architecture, Planning and LandscapeNewcastle UniversityNewcastle upon TyneUK
| | - Meng Zhang
- Hub for Biotechnology in the Built Environment, Department of Applied SciencesNorthumbria University at NewcastleNewcastle upon TyneUK
| |
Collapse
|
7
|
Liu Y, Ran Q, Guo J, Zhu W, Bushra R, Duan X, Huang Y, Jiang Z, Khan MR, Jin Y, Xiao H, Song J. In-situ CBM3-modified bacterial cellulose film with improved mechanical properties. Int J Biol Macromol 2023:125193. [PMID: 37285886 DOI: 10.1016/j.ijbiomac.2023.125193] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/19/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Cellulose materials have poor wet strength and are susceptible to acidic or basic environments. Herein, we developed a facile strategy to modify bacterial cellulose (BC) with a genetically engineered Family 3 Carbohydrate-Binding Module (CBM3). To assess the effect of BC films, water adsorption rate (WAR), water holding capacity (WHC), water contact angle (WCA), and mechanical and barrier properties were determined. The results showed that CBM3-modified BC film exhibited significant strength and ductility improvement, reflecting improved mechanical properties of the film. The excellent wet strength (both in the acidic and basic environment), bursting strength, and folding endurance of CBM3-BC films were due to the strong interaction between CBM3 and fiber. The toughness of CBM3-BC films reached 7.9, 28.0, 13.3, and 13.6 MJ/m3, which were 6.1, 1.3, 1.4, and 3.0 folds over the control for conditions of dry, wet, acidic, and basic, respectively. In addition, its gas permeability was reduced by 74.3 %, and folding times increased by 56.8 % compared with the control. The synthesized CBM3-BC films may hold promise for future applications in food packaging, paper straw, battery separator, and other fields. Finally, the in situ modification strategy used to BC can be successfully applied in other functional modifications for BC materials.
Collapse
Affiliation(s)
- Yena Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiuping Ran
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Wenyuan Zhu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Rani Bushra
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Xuguo Duan
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Yang Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhengbing Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China.
| | - Mohammad R Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Yongcan Jin
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.
| | - Junlong Song
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
8
|
Chen H, Jiang B, Zou C, Lou Z, Song J, Wu W, Jin Y. Exploring how lignin structure influences the interaction between carbohydrate-binding module and lignin using AFM. Int J Biol Macromol 2023; 232:123313. [PMID: 36682668 DOI: 10.1016/j.ijbiomac.2023.123313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/23/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023]
Abstract
Nonproductive adsorption of cellulase onto the residual lignin in substrate seriously hinders the enzymatic hydrolysis. To understand how lignin structure affects lignin-cellulase interaction, the carbohydrate-binding module (CBM) functionalized atomic force microscope tip was used to measure CBM-lignin interaction by single-molecule dynamic force spectroscopy in this work. The results showed that sulfonated lignin (SL) has the greatest adhesion force to CBM (4.74 nN), while those of masson pine milled wood lignin (MWL), poplar MWL and herbaceous MWLs were 2.85, 1.03 and 0.27-0.61 nN, respectively. It provides direct quantitative evidence for the significance of lignin structure on lignin-cellulase interaction. The CBM-MWLs interaction decreased sharply to 0.054-0.083 nN while SL was added, indicating the primary mechanism of SL promoting lignocellulose hydrolysis was significantly reducing the nonproductive adsorption of substrate lignin on cellulase. Finally, the "competitive adsorption" mechanism was proposed to interpret why SL effectively promotes the enzymatic hydrolysis of lignin-containing substrates.
Collapse
Affiliation(s)
- Hui Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Chunyang Zou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhichao Lou
- Joint International Research Lab of Lignocellulosic Functional Materials, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Junlong Song
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
9
|
Gilmour KA, Aljannat M, Markwell C, James P, Scott J, Jiang Y, Torun H, Dade-Robertson M, Zhang M. Biofilm inspired fabrication of functional bacterial cellulose through ex-situ and in-situ approaches. Carbohydr Polym 2023; 304:120482. [PMID: 36641190 DOI: 10.1016/j.carbpol.2022.120482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/11/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Bacterial cellulose (BC) has been explored for use in a range of applications including tissue engineering and textiles. BC can be produced from waste streams, but sustainable approaches are needed for functionalisation. To this end, BslA, a B. subtilis biofilm protein was produced recombinantly with and without a cellulose binding module (CBM) and the cell free extract was used to treat BC either ex-situ, through drip coating or in-situ, by incorporating during fermentation. The results showed that ex-situ modified BC increased the hydrophobicity and water contact angle reached 120°. In-situ experiments led to a BC film morphological change and mechanical testing demonstrated that addition of BslA with CBM resulted in a stronger, more elastic material. This study presents a nature inspired approach to functionalise BC using a biofilm hydrophobin, and we demonstrate that recombinant proteins could be effective and sustainable molecules for functionalisation of BC materials.
Collapse
Affiliation(s)
- Katie A Gilmour
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University at Newcastle, NE1 8ST, UK.
| | - Mahab Aljannat
- Hub for Biotechnology in the Built Environment, School of Architecture, Planning and Landscape, Newcastle University, NE1 7RU, UK.
| | - Christopher Markwell
- Department of Applied Sciences, Northumbria University at Newcastle, NE1 8ST, UK.
| | - Paul James
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University at Newcastle, NE1 8ST, UK.
| | - Jane Scott
- Hub for Biotechnology in the Built Environment, School of Architecture, Planning and Landscape, Newcastle University, NE1 7RU, UK.
| | - Yunhong Jiang
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University at Newcastle, NE1 8ST, UK.
| | - Hamdi Torun
- Department of Mathematics, Physics and Electrical Engineering, Faculty of Environment and Engineering, Northumbria University at Newcastle, NE1 8ST, UK.
| | - Martyn Dade-Robertson
- Hub for Biotechnology in the Built Environment, School of Architecture, Planning and Landscape, Newcastle University, NE1 7RU, UK.
| | - Meng Zhang
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University at Newcastle, NE1 8ST, UK.
| |
Collapse
|
10
|
Österberg M, Henn KA, Farooq M, Valle-Delgado JJ. Biobased Nanomaterials─The Role of Interfacial Interactions for Advanced Materials. Chem Rev 2023; 123:2200-2241. [PMID: 36720130 PMCID: PMC9999428 DOI: 10.1021/acs.chemrev.2c00492] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This review presents recent advances regarding biomass-based nanomaterials, focusing on their surface interactions. Plant biomass-based nanoparticles, like nanocellulose and lignin from industry side streams, hold great potential for the development of lightweight, functional, biodegradable, or recyclable material solutions for a sustainable circular bioeconomy. However, to obtain optimal properties of the nanoparticles and materials made thereof, it is crucial to control the interactions both during particle production and in applications. Herein we focus on the current understanding of these interactions. Solvent interactions during particle formation and production, as well as interactions with water, polymers, cells and other components in applications, are addressed. We concentrate on cellulose and lignin nanomaterials and their combination. We demonstrate how the surface chemistry of the nanomaterials affects these interactions and how excellent performance is only achieved when the interactions are controlled. We furthermore introduce suitable methods for probing interactions with nanomaterials, describe their advantages and challenges, and introduce some less commonly used methods and discuss their possible applications to gain a deeper understanding of the interfacial chemistry of biobased nanomaterials. Finally, some gaps in current understanding and interesting emerging research lines are identified.
Collapse
Affiliation(s)
- Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150Espoo, Finland
| | - K Alexander Henn
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150Espoo, Finland
| | - Muhammad Farooq
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150Espoo, Finland
| | - Juan José Valle-Delgado
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150Espoo, Finland
| |
Collapse
|
11
|
Ma H, Shi Q, Li X, Ren J, Wang Y, Li Z, Ning L. Molecular and thermodynamic insights into interfacial interactions between collagen and cellulose investigated by molecular dynamics simulation and umbrella sampling. J Comput Aided Mol Des 2023; 37:39-51. [PMID: 36427107 DOI: 10.1007/s10822-022-00489-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022]
Abstract
Cellulose/collagen composites have been widely used in biomedicine and tissue engineering. Interfacial interactions are crucial in determining the final properties of cellulose/collagen composite. Molecular dynamics simulations were carried out to gain insights into the interactions between cellulose and collagen. It has been found that the structure of collagen remained intact during adsorption. The results derived from umbrella sampling showed that (110) and ([Formula: see text]) faces exhibited the strongest affinity with collagen (100) face came the second and (010) the last, which could be attributed to the surface roughness and hydrogen-bonding linkers involved water molecules. Cellulose planes with flat surfaces and the capability to form hydrogen-bonding linkers produce stronger affinity with collagen. The occupancy of hydrogen bonds formed between cellulose and collagen was low and not significantly contributive to the binding affinity. These findings provided insights into the interactions between cellulose and collagen at the molecular level, which may guide the design and fabrication of cellulose/collagen composites.
Collapse
Affiliation(s)
- Huaiqin Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Qingwen Shi
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Junli Ren
- Information Center, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Yuhan Wang
- Xi'an Qujiang NO.1 High School, Xi'an, 710061, China
| | - Zhijian Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Lulu Ning
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| |
Collapse
|
12
|
Nascimento DM, Colombari FM, Focassio B, Schleder GR, Costa CAR, Biffe CA, Ling LY, Gouveia RF, Strauss M, Rocha GJM, Leite E, Fazzio A, Capaz RB, Driemeier C, Bernardes JS. How lignin sticks to cellulose-insights from atomic force microscopy enhanced by machine-learning analysis and molecular dynamics simulations. NANOSCALE 2022; 14:17561-17570. [PMID: 36346287 DOI: 10.1039/d2nr05541d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Elucidating cellulose-lignin interactions at the molecular and nanometric scales is an important research topic with impacts on several pathways of biomass valorization. Here, the interaction forces between a cellulosic substrate and lignin are investigated. Atomic force microscopy with lignin-coated tips is employed to probe the site-specific adhesion to a cellulose film in liquid water. Over seven thousand force-curves are analyzed by a machine-learning approach to cluster the experimental data into types of cellulose-tip interactions. The molecular mechanisms for distinct types of cellulose-lignin interactions are revealed by molecular dynamics simulations of lignin globules interacting with different cellulose Iβ crystal facets. This unique combination of experimental force-curves, data-driven analysis, and molecular simulations opens a new approach of investigation and updates the understanding of cellulose-lignin interactions at the nanoscale.
Collapse
Affiliation(s)
- Diego M Nascimento
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
| | - Felippe M Colombari
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
| | - Bruno Focassio
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), CEP 09606-070 Santo André, São Paulo, Brazil
| | - Gabriel R Schleder
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), CEP 09606-070 Santo André, São Paulo, Brazil
| | - Carlos A R Costa
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
| | - Cleyton A Biffe
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
| | - Liu Y Ling
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
| | - Rubia F Gouveia
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), CEP 09606-070 Santo André, São Paulo, Brazil
| | - Mathias Strauss
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
| | - George J M Rocha
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
| | - Edson Leite
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
- Department of Chemistry, Federal University of São Carlos (UFSCAR), CEP 13565905 São Carlos, São Paulo, Brazil
| | - Adalberto Fazzio
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), CEP 09606-070 Santo André, São Paulo, Brazil
| | - Rodrigo B Capaz
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
- Instituto de Física, Universidade Federal do Rio de Janeiro (UFRJ), CEP 21941-972 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Driemeier
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
| | - Juliana S Bernardes
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), CEP 09606-070 Santo André, São Paulo, Brazil
| |
Collapse
|
13
|
Velayutham M, Sarkar P, Sudhakaran G, Al-Ghanim KA, Maboob S, Juliet A, Guru A, Muthupandian S, Arockiaraj J. Anti-Cancer and Anti-Inflammatory Activities of a Short Molecule, PS14 Derived from the Virulent Cellulose Binding Domain of Aphanomyces invadans, on Human Laryngeal Epithelial Cells and an In Vivo Zebrafish Embryo Model. Molecules 2022; 27:7333. [PMID: 36364155 PMCID: PMC9654460 DOI: 10.3390/molecules27217333] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 08/20/2023] Open
Abstract
In this study, the anti-cancer and anti-inflammatory activities of PS14, a short peptide derived from the cellulase binding domain of pathogenic fungus, Aphanomyces invadans, have been evaluated, in vitro and in vivo. Bioinformatics analysis of PS14 revealed the physicochemical properties and the web-based predictions, which indicate that PS14 is non-toxic, and it has the potential to elicit anti-cancer and anti-inflammatory activities. These in silico results were experimentally validated through in vitro (L6 or Hep-2 cells) and in vivo (zebrafish embryo or larvae) models. Experimental results showed that PS14 is non-toxic in L6 cells and the zebrafish embryo, and it elicits an antitumor effect Hep-2 cells and zebrafish embryos. Anticancer activity assays, in terms of MTT, trypan blue and LDH assays, showed a dose-dependent inhibitory effect on cell proliferation. Moreover, in the epithelial cancer cells and zebrafish embryos, the peptide challenge (i) caused significant changes in the cytomorphology and induced apoptosis; (ii) triggered ROS generation; and (iii) showed a significant up-regulation of anti-cancer genes including BAX, Caspase 3, Caspase 9 and down-regulation of Bcl-2, in vitro. The anti-inflammatory activity of PS14 was observed in the cell-free in vitro assays for the inhibition of proteinase and lipoxygenase, and heat-induced hemolysis and hypotonicity-induced hemolysis. Together, this study has identified that PS14 has anti-cancer and anti-inflammatory activities, while being non-toxic, in vitro and in vivo. Future experiments can focus on the clinical or pharmacodynamics aspects of PS14.
Collapse
Affiliation(s)
- Manikandan Velayutham
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai 603 203, Tamil Nadu, India
| | - Purabi Sarkar
- Department of Molecular Medicine, School of Allied Healthcare and Sciences, Jain Deemed-to-be University, Bangalore 560 066, Karnataka, India
| | - Gokul Sudhakaran
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai 603 203, Tamil Nadu, India
| | | | - Shahid Maboob
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Annie Juliet
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ajay Guru
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, SIMATS, Chennai 600 077, Tamil Nadu, India
| | - Saravanan Muthupandian
- AMR and Nanomedicine Lab, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciencess (SIMATS), Chennai 600 077, Tamil Nadu, India
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai 603 203, Tamil Nadu, India
| |
Collapse
|
14
|
Acoustic force spectroscopy reveals subtle differences in cellulose unbinding behavior of carbohydrate-binding modules. Proc Natl Acad Sci U S A 2022; 119:e2117467119. [PMID: 36215467 PMCID: PMC9586272 DOI: 10.1073/pnas.2117467119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein adsorption to solid carbohydrate interfaces is critical to many biological processes, particularly in biomass deconstruction. To engineer more-efficient enzymes for biomass deconstruction into sugars, it is necessary to characterize the complex protein-carbohydrate interfacial interactions. A carbohydrate-binding module (CBM) is often associated with microbial surface-tethered cellulosomes or secreted cellulase enzymes to enhance substrate accessibility. However, it is not well known how CBMs recognize, bind, and dissociate from polysaccharides to facilitate efficient cellulolytic activity, due to the lack of mechanistic understanding and a suitable toolkit to study CBM-substrate interactions. Our work outlines a general approach to study the unbinding behavior of CBMs from polysaccharide surfaces using a highly multiplexed single-molecule force spectroscopy assay. Here, we apply acoustic force spectroscopy (AFS) to probe a Clostridium thermocellum cellulosomal scaffoldin protein (CBM3a) and measure its dissociation from nanocellulose surfaces at physiologically relevant, low force loading rates. An automated microfluidic setup and method for uniform deposition of insoluble polysaccharides on the AFS chip surfaces are demonstrated. The rupture forces of wild-type CBM3a, and its Y67A mutant, unbinding from nanocellulose surfaces suggests distinct multimodal CBM binding conformations, with structural mechanisms further explored using molecular dynamics simulations. Applying classical dynamic force spectroscopy theory, the single-molecule unbinding rate at zero force is extrapolated and found to agree with bulk equilibrium unbinding rates estimated independently using quartz crystal microbalance with dissipation monitoring. However, our results also highlight critical limitations of applying classical theory to explain the highly multivalent binding interactions for cellulose-CBM bond rupture forces exceeding 15 pN.
Collapse
|
15
|
Liu Y, Wang P, Tian J, Seidi F, Guo J, Zhu W, Xiao H, Song J. Carbohydrate-Binding Modules of Potential Resources: Occurrence in Nature, Function, and Application in Fiber Recognition and Treatment. Polymers (Basel) 2022; 14:1806. [PMID: 35566977 PMCID: PMC9100146 DOI: 10.3390/polym14091806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
Great interests have recently been aroused in the independent associative domain of glycoside hydrolases that utilize insoluble polysaccharides-carbohydrate-binding module (CBM), which responds to binding while the catalytic domain reacts with the substrate. In this mini-review, we first provide a brief introduction on CBM and its subtypes including the classifications, potential sources, structures, and functions. Afterward, the applications of CBMs in substrate recognition based on different types of CBMs have been reviewed. Additionally, the progress of CBMs in paper industry as a new type of environmentally friendly auxiliary agent for fiber treatment is summarized. At last, other applications of CBMs and the future outlook have prospected. Due to the specificity in substrate recognition and diversity in structures, CBM can be a prosperous and promising 'tool' for wood and fiber processing in the future.
Collapse
Affiliation(s)
- Yena Liu
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Peipei Wang
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Jing Tian
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Jiaqi Guo
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Wenyuan Zhu
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada;
| | - Junlong Song
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| |
Collapse
|
16
|
Barbosa M, Simões H, Pinto SN, Macedo AS, Fonte P, Prazeres DMF. Fusions of a Carbohydrate Binding Module with the Small Cationic Hexapeptide RWRWRW Confer Antimicrobial Properties to Cellulose-based Materials. Acta Biomater 2022; 143:216-232. [PMID: 35257951 DOI: 10.1016/j.actbio.2022.02.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/19/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023]
Abstract
The emergence of antibiotic-resistant bacteria is a critical worldwide healthcare problem. In the specific case of wound care, new and effective alternatives to currently available solutions are urgently needed. Cellulose-based dressings, for example, could be made more attractive if rendered antimicrobial. This work proposes a new strategy to modify cellulose-based materials with the short antimicrobial hexapeptide MP196 (RWRWRW-NH2) that relies on a biomolecular recognition approach based on carbohydrate binding modules (CBMs). Specifically, we focused on the modification of hydrogels, paper, and microfibrillated cellulose (MFC) with fusions of the CBM3 from Clostridium thermocellum (C. thermocellum) with derivatives of MP196. The fusions are prepared by promoting the formation of a disulfide bond between Cys-terminated derivatives of MP196 and a CBM3 that is pre-anchored in the materials. The CBM3-MP196-modified materials displayed antibacterial activity against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) that was significantly higher when compared with the activity of materials prepared by physical adsorption of MP196. The biomolecular strategy provides a more favorable orientation, exposure, and distancing of the peptide from the matrix. This versatile concept provides a toolbox for the functionalization of cellulose materials of different origins and architectures with a broad choice in peptides. Functionalization under mild biological conditions avoids further purification steps, allowing for translational research and multiple applications as drug delivery systems, scaffolds for tissue engineering and biomaterials. STATEMENT OF SIGNIFICANCE: The emergence of antibiotic-resistant bacteria is a critical worldwide healthcare problem. In the specific case of wound care, new and effective alternatives to currently available solutions are urgently needed. This work proposes a new strategy to modify cellulose-based materials with a short antimicrobial hexapeptide that relies on a biomolecular recognition approach based on carbohydrate binding modules. The modified materials displayed antibacterial activity against both Gram-negative and Gram-positive bacteria. The biomolecular strategy provides a favorable orientation, exposure, and distancing of the peptide from the matrix. This versatile concept offers a toolbox for the functionalization of different cellulose materials with a broad choice in peptides. Functionalization under mild biological conditions avoids further purification steps, allowing for translational research and multiple applications.
Collapse
Affiliation(s)
- Mariana Barbosa
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Hélvio Simões
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sandra N Pinto
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana S Macedo
- LAQV, REQUIMTE, Department of Chemical Sciences - Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Pedro Fonte
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Center of Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal; Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
| | - D Miguel F Prazeres
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
17
|
Shi Z, Li S, Li M, Gan L, Huang J. Surface modification of cellulose nanocrystals towards new materials development. J Appl Polym Sci 2021. [DOI: 10.1002/app.51555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhenxu Shi
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Southwest University Chongqing China
| | - Shufang Li
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Southwest University Chongqing China
| | - Mingxia Li
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Southwest University Chongqing China
| | - Lin Gan
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Southwest University Chongqing China
| | - Jin Huang
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Southwest University Chongqing China
- School of Chemistry and Chemical Engineering, and Engineering Research Center of Materials‐Oriented Chemical Engineering of Xinjiang Bintuan Shihezi University Shihezi, Xinjiang China
| |
Collapse
|
18
|
Math RK, Bharatham N, Javaregowda PK, Yun HD. Role of Cel5H protein surface amino acids in binding with clay minerals and measurements of its forces. Appl Microsc 2021; 51:17. [PMID: 34762191 PMCID: PMC8586110 DOI: 10.1186/s42649-021-00066-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/27/2021] [Indexed: 11/10/2022] Open
Abstract
Our previous study on the binding activity between Cel5H and clay minerals showed highest binding efficiency among other cellulase enzymes cloned. Here, based on previous studies, we hypothesized that the positive amino acids on the surface of Cel5H protein may play an important role in binding to clay surfaces. To examine this, protein sequences of Bacillus licheniformis Cel5H (BlCel5H) and Paenibacillus polymyxa Cel5A (PpCel5A) were analyzed and then selected amino acids were mutated. These mutated proteins were investigated for binding activity and force measurement via atomic force microscopy (AFM). A total of seven amino acids which are only present in BlCel5H but not in PpCel5A were selected for mutational studies and the positive residues which are present in both were omitted. Of the seven selected surface lysine residues, only three mutants K196A(M2), K54A(M3) and K157T(M4) showed 12%, 7% and 8% less clay mineral binding ability, respectively compared with wild-type. The probable reason why other mutants did not show altered binding efficiency might be due to relative location of amino acids on the protein surface. Meanwhile, measurement of adhesion forces on mica sheets showed a well-defined maximum at 69 ± 19 pN for wild-type, 58 ± 19 pN for M2, 53 ± 19 pN for M3, and 49 ± 19 pN for M4 proteins. Hence, our results demonstrated that relative location of surface amino acids of Cel5H protein especially positive charged amino acids are important in the process of clay mineral-protein binding interaction through electrostatic exchange of charges.
Collapse
Affiliation(s)
- Renukaradhya K Math
- SDM Research Institute for Biomedical Sciences, 5th Floor, Manjushree Building, SDM College of Medical Sciences & Hospital Campus, Shri Dharmasthala Manjunatheshwara University, Dharwad, Sattur, 580009, India. .,Division of Applied Life Sciences, Gyeongsang National University, Chinju, 660701, Republic of Korea.
| | - Nagakumar Bharatham
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka, 560064, India
| | - Palaksha K Javaregowda
- SDM Research Institute for Biomedical Sciences, 5th Floor, Manjushree Building, SDM College of Medical Sciences & Hospital Campus, Shri Dharmasthala Manjunatheshwara University, Dharwad, Sattur, 580009, India
| | - Han Dae Yun
- Division of Applied Life Sciences, Gyeongsang National University, Chinju, 660701, Republic of Korea
| |
Collapse
|
19
|
Sanjaya RE, Putri KDA, Kurniati A, Rohman A, Puspaningsih NNT. In silico characterization of the GH5-cellulase family from uncultured microorganisms: physicochemical and structural studies. J Genet Eng Biotechnol 2021; 19:143. [PMID: 34591195 PMCID: PMC8484414 DOI: 10.1186/s43141-021-00236-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/29/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Hydrolysis of cellulose-based biomass by cellulases produce fermented sugar for making biofuels, such as bioethanol. Cellulases hydrolyze the β-1,4-glycosidic linkage of cellulose and can be obtained from cultured and uncultured microorganisms. Uncultured microorganisms are a source for exploring novel cellulase genes through the metagenomic approach. Metagenomics concerns the extraction, cloning, and analysis of the entire genetic complement of a habitat without cultivating microbes. The glycoside hydrolase 5 family (GH5) is a cellulase family, as the largest group of glycoside hydrolases. Numerous variants of GH5-cellulase family have been identified through the metagenomic approach, including CelGH5 in this study. University-CoE-Research Center for Biomolecule Engineering, Universitas Airlangga successfully isolated CelGH5 from waste decomposition of oil palm empty fruit bunches (OPEFB) soil by metagenomics approach. The properties and structural characteristics of GH5-cellulases from uncultured microorganisms can be studied using computational tools and software. RESULTS The GH5-cellulase family from uncultured microorganisms was characterized using standard computational-based tools. The amino acid sequences and 3D-protein structures were retrieved from the GenBank Database and Protein Data Bank. The physicochemical analysis revealed the sequence length was roughly 332-751 amino acids, with the molecular weight range around 37-83 kDa, dominantly negative charges with pI values below 7. Alanine was the most abundant amino acid making up the GH5-cellulase family and the percentage of hydrophobic amino acids was more than hydrophilic. Interestingly, ten endopeptidases with the highest average number of cleavage sites were found. Another uniqueness demonstrated that there was also a difference in stability between in silico and wet lab. The II values indicated CelGH5 and ACA61162.1 as unstable enzymes, while the wet lab showed they were stable at broad pH range. The program of SOPMA, PDBsum, ProSA, and SAVES provided the secondary and tertiary structure analysis. The predominant secondary structure was the random coil, and tertiary structure has fulfilled the structure quality of QMEAN4, ERRAT, Ramachandran plot, and Z score. CONCLUSION This study can afford the new insights about the physicochemical and structural properties of the GH5-cellulase family from uncultured microorganisms. Furthermore, in silico analysis could be valuable in selecting a highly efficient cellulases for enhanced enzyme production.
Collapse
Affiliation(s)
- Rahmat Eko Sanjaya
- Mathematics and Natural Science Study Program, Faculty of Science and Technology, Kampus C Universitas Airlangga, Mulyorejo, Surabaya, East Java, 60115, Indonesia
- University-CoE-Research Centre for Bio-Molecule Engineering, 2nd Floor ITD Building, Kampus C Universitas Airlangga, Mulyorejo, Surabaya, East Java, 60115, Indonesia
- Chemistry Education Study Program, Faculty of Teacher Training and Education, Universitas Lambung Mangkurat, Jl. Brigjend. H. Hasan Basry, Banjarmasin, Kalimantan, 70123, Indonesia
| | - Kartika Dwi Asni Putri
- University-CoE-Research Centre for Bio-Molecule Engineering, 2nd Floor ITD Building, Kampus C Universitas Airlangga, Mulyorejo, Surabaya, East Java, 60115, Indonesia
| | - Anita Kurniati
- Mathematics and Natural Science Study Program, Faculty of Science and Technology, Kampus C Universitas Airlangga, Mulyorejo, Surabaya, East Java, 60115, Indonesia
- University-CoE-Research Centre for Bio-Molecule Engineering, 2nd Floor ITD Building, Kampus C Universitas Airlangga, Mulyorejo, Surabaya, East Java, 60115, Indonesia
- Department of Health, Faculty of Vocational Studies, Kampus B Universitas Airlangga, Surabaya, East Java, 60286, Indonesia
| | - Ali Rohman
- University-CoE-Research Centre for Bio-Molecule Engineering, 2nd Floor ITD Building, Kampus C Universitas Airlangga, Mulyorejo, Surabaya, East Java, 60115, Indonesia
- Department of Chemistry, Faculty of Science and Technology, Kampus C Universitas Airlangga, Mulyorejo, Surabaya, East Java, 60115, Indonesia
| | - Ni Nyoman Tri Puspaningsih
- University-CoE-Research Centre for Bio-Molecule Engineering, 2nd Floor ITD Building, Kampus C Universitas Airlangga, Mulyorejo, Surabaya, East Java, 60115, Indonesia.
- Department of Chemistry, Faculty of Science and Technology, Kampus C Universitas Airlangga, Mulyorejo, Surabaya, East Java, 60115, Indonesia.
| |
Collapse
|
20
|
Nie J, Tian F, Zheng B, Wang Z, Zheng P. Exploration of Metal-Ligand Coordination Bonds in Proteins by Single-molecule Force Spectroscopy. CHEM LETT 2021. [DOI: 10.1246/cl.210307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jingyuan Nie
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Fang Tian
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Bin Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Ziyi Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
21
|
Zhao X, Meng X, Ragauskas AJ, Lai C, Ling Z, Huang C, Yong Q. Unlocking the secret of lignin-enzyme interactions: Recent advances in developing state-of-the-art analytical techniques. Biotechnol Adv 2021; 54:107830. [PMID: 34480987 DOI: 10.1016/j.biotechadv.2021.107830] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/07/2021] [Accepted: 08/29/2021] [Indexed: 02/08/2023]
Abstract
Bioconversion of renewable lignocellulosics to produce liquid fuels and chemicals is one of the most effective ways to solve the problem of fossil resource shortage, energy security, and environmental challenges. Among the many biorefinery pathways, hydrolysis of lignocellulosics to fermentable monosaccharides by cellulase is arguably the most critical step of lignocellulose bioconversion. In the process of enzymatic hydrolysis, the direct physical contact between enzymes and cellulose is an essential prerequisite for the hydrolysis to occur. However, lignin is considered one of the most recalcitrant factors hindering the accessibility of cellulose by binding to cellulase unproductively, which reduces the saccharification rate and yield of sugars. This results in high costs for the saccharification of carbohydrates. The various interactions between enzymes and lignin have been explored from different perspectives in literature, and a basic lignin inhibition mechanism has been proposed. However, the exact interaction between lignin and enzyme as well as the recently reported promotion of some types of lignin on enzymatic hydrolysis is still unclear at the molecular level. Multiple analytical techniques have been developed, and fully unlocking the secret of lignin-enzyme interactions would require a continuous improvement of the currently available analytical techniques. This review summarizes the current commonly used advanced research analytical techniques for investigating the interaction between lignin and enzyme, including quartz crystal microbalance with dissipation (QCM-D), surface plasmon resonance (SPR), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM), nuclear magnetic resonance (NMR) spectroscopy, fluorescence spectroscopy (FLS), and molecular dynamics (MD) simulations. Interdisciplinary integration of these analytical methods is pursued to provide new insight into the interactions between lignin and enzymes. This review will serve as a resource for future research seeking to develop new methodologies for a better understanding of the basic mechanism of lignin-enzyme binding during the critical hydrolysis process.
Collapse
Affiliation(s)
- Xiaoxue Zhao
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Center for Renewable Carbon, Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN 37996, USA; Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Chenhuan Lai
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhe Ling
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiang Yong
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
22
|
Pedersoli WR, de Paula RG, Antoniêto ACC, Carraro CB, Taveira IC, Maués DB, Martins MP, Ribeiro LFC, Damasio ARDL, Silva-Rocha R, Filho AR, Silva RN. Analysis of the phosphorylome of trichoderma reesei cultivated on sugarcane bagasse suggests post-translational regulation of the secreted glycosyl hydrolase Cel7A. ACTA ACUST UNITED AC 2021; 31:e00652. [PMID: 34258241 PMCID: PMC8254082 DOI: 10.1016/j.btre.2021.e00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 05/05/2021] [Accepted: 06/16/2021] [Indexed: 11/27/2022]
Abstract
Phosphorylome of Trichoderma reesei reveals phosphosites in some glycosyl hydrolases. Phosphoserine and phosphothreonine is the major phosphosites identified. Protein Kinase C is the most frequently predicted kinase in phosphorylome. The cellulase Cel7A activity is affected by dephosphorylation.
Trichoderma reesei is one of the major producers of holocellulases. It is known that in T. reesei, protein production patterns can change in a carbon source-dependent manner. Here, we performed a phosphorylome analysis of T. reesei grown in the presence of sugarcane bagasse and glucose as carbon source. In presence of sugarcane bagasse, a total of 114 phosphorylated proteins were identified. Phosphoserine and phosphothreonine corresponded to 89.6% of the phosphosites and 10.4% were related to phosphotyrosine. Among the identified proteins, 65% were singly phosphorylated, 19% were doubly phosphorylated, 12% were triply phosphorylated, and 4% displayed even higher phosphorylation. Seventy-five kinases were predicted to phosphorylate the sites identified in this work, and the most frequently predicted serine/threonine kinase was PKC1. Among phosphorylated proteins, four glycosyl hydrolases were predicted to be secreted. Interestingly, Cel7A activity, the most secreted protein, was reduced to approximately 60% after in vitro dephosphorylation, suggesting that phosphorylation might alter Cel7A structure, substrate affinity, and targeting of the substrate to its carbohydrate-binding domain. These results suggest a novel post-translational regulation of Cel7A.
Collapse
Affiliation(s)
- Wellington Ramos Pedersoli
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Renato Graciano de Paula
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.,Department of Physiological Sciences, Health Sciences Centre, Federal University of Espirito Santo, Vitória, ES, 29047-105, Brazil
| | - Amanda Cristina Campos Antoniêto
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Cláudia Batista Carraro
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Iasmin Cartaxo Taveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - David Batista Maués
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Maíra Pompeu Martins
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Liliane Fraga Costa Ribeiro
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - André Ricardo de Lima Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
| | - Rafael Silva-Rocha
- Systems and Synthetic Biology Laboratory, Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049-900, Brazil
| | - Antônio Rossi Filho
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Roberto N Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| |
Collapse
|
23
|
Liu Z, Liu H, Vera AM, Bernardi RC, Tinnefeld P, Nash MA. High force catch bond mechanism of bacterial adhesion in the human gut. Nat Commun 2020; 11:4321. [PMID: 32859904 PMCID: PMC7456326 DOI: 10.1038/s41467-020-18063-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/04/2020] [Indexed: 12/28/2022] Open
Abstract
Bacterial colonization of the human intestine requires firm adhesion of bacteria to insoluble substrates under hydrodynamic flow. Here we report the molecular mechanism behind an ultrastable protein complex responsible for resisting shear forces and adhering bacteria to cellulose fibers in the human gut. Using single-molecule force spectroscopy (SMFS), single-molecule FRET (smFRET), and molecular dynamics (MD) simulations, we resolve two binding modes and three unbinding reaction pathways of a mechanically ultrastable R. champanellensis (Rc) Dockerin:Cohesin (Doc:Coh) complex. The complex assembles in two discrete binding modes with significantly different mechanical properties, with one breaking at ~500 pN and the other at ~200 pN at loading rates from 1-100 nN s-1. A neighboring X-module domain allosterically regulates the binding interaction and inhibits one of the low-force pathways at high loading rates, giving rise to a catch bonding mechanism that manifests under force ramp protocols. Multi-state Monte Carlo simulations show strong agreement with experimental results, validating the proposed kinetic scheme. These results explain mechanistically how gut microbes regulate cell adhesion strength at high shear stress through intricate molecular mechanisms including dual-binding modes, mechanical allostery and catch bonds.
Collapse
Affiliation(s)
- Zhaowei Liu
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Haipei Liu
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Andrés M Vera
- Faculty of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Rafael C Bernardi
- NIH Center for Macromolecular Modeling and Bioinformatics, Theoretical and Computational Biophysics Group, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 61801, Urbana, IL, USA
- Department of Physics, Auburn University, 36849, Auburn, AL, USA
| | - Philip Tinnefeld
- Faculty of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael A Nash
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland.
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland.
| |
Collapse
|
24
|
Yang B, Liu Z, Liu H, Nash MA. Next Generation Methods for Single-Molecule Force Spectroscopy on Polyproteins and Receptor-Ligand Complexes. Front Mol Biosci 2020; 7:85. [PMID: 32509800 PMCID: PMC7248566 DOI: 10.3389/fmolb.2020.00085] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022] Open
Abstract
Single-molecule force spectroscopy with the atomic force microscope provides molecular level insights into protein function, allowing researchers to reconstruct energy landscapes and understand functional mechanisms in biology. With steadily advancing methods, this technique has greatly accelerated our understanding of force transduction, mechanical deformation, and mechanostability within single- and multi-domain polyproteins, and receptor-ligand complexes. In this focused review, we summarize the state of the art in terms of methodology and highlight recent methodological improvements for AFM-SMFS experiments, including developments in surface chemistry, considerations for protein engineering, as well as theory and algorithms for data analysis. We hope that by condensing and disseminating these methods, they can assist the community in improving data yield, reliability, and throughput and thereby enhance the information that researchers can extract from such experiments. These leading edge methods for AFM-SMFS will serve as a groundwork for researchers cognizant of its current limitations who seek to improve the technique in the future for in-depth studies of molecular biomechanics.
Collapse
Affiliation(s)
- Byeongseon Yang
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Zhaowei Liu
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Haipei Liu
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Michael A. Nash
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
25
|
Filandr F, Kavan D, Kracher D, Laurent CV, Ludwig R, Man P, Halada P. Structural Dynamics of Lytic Polysaccharide Monooxygenase during Catalysis. Biomolecules 2020; 10:E242. [PMID: 32033404 PMCID: PMC7072406 DOI: 10.3390/biom10020242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 01/22/2023] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are industrially important oxidoreductases employed in lignocellulose saccharification. Using advanced time-resolved mass spectrometric techniques, we elucidated the structural determinants for substrate-mediated stabilization of the fungal LPMO9C from Neurosporacrassa during catalysis. LPMOs require a reduction in the active-site copper for catalytic activity. We show that copper reduction in NcLPMO9C leads to structural rearrangements and compaction around the active site. However, longer exposure to the reducing agent ascorbic acid also initiated an uncoupling reaction of the bound oxygen species, leading to oxidative damage, partial unfolding, and even fragmentation of NcLPMO9C. Interestingly, no changes in the hydrogen/deuterium exchange rate were detected upon incubation of oxidized or reduced LPMO with crystalline cellulose, indicating that the LPMO-substrate interactions are mainly side-chain mediated and neither affect intraprotein hydrogen bonding nor induce significant shielding of the protein surface. On the other hand, we observed a protective effect of the substrate, which slowed down the autooxidative damage induced by the uncoupling reaction. These observations further complement the picture of structural changes during LPMO catalysis.
Collapse
Affiliation(s)
- Frantisek Filandr
- Institute of Microbiology of the CAS, Division BioCeV, Prumyslova 595, 252 50 Vestec, Czech Republic; (F.F.); (D.K.)
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| | - Daniel Kavan
- Institute of Microbiology of the CAS, Division BioCeV, Prumyslova 595, 252 50 Vestec, Czech Republic; (F.F.); (D.K.)
| | - Daniel Kracher
- Biocatalysis and Biosensing Research Group, Department of Food Science and Technology, BOKU—University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; (D.K.); (R.L.)
| | - Christophe V.F.P. Laurent
- Biocatalysis and Biosensing Research Group, Department of Food Science and Technology, BOKU—University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; (D.K.); (R.L.)
| | - Roland Ludwig
- Biocatalysis and Biosensing Research Group, Department of Food Science and Technology, BOKU—University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; (D.K.); (R.L.)
| | - Petr Man
- Institute of Microbiology of the CAS, Division BioCeV, Prumyslova 595, 252 50 Vestec, Czech Republic; (F.F.); (D.K.)
| | - Petr Halada
- Institute of Microbiology of the CAS, Division BioCeV, Prumyslova 595, 252 50 Vestec, Czech Republic; (F.F.); (D.K.)
| |
Collapse
|
26
|
Applications of catalyzed cytoplasmic disulfide bond formation. Biochem Soc Trans 2019; 47:1223-1231. [DOI: 10.1042/bst20190088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022]
Abstract
Abstract
Disulfide bond formation is an essential post-translational modification required for many proteins to attain their native, functional structure. The formation of disulfide bonds, otherwise known as oxidative protein folding, occurs in the endoplasmic reticulum and mitochondrial inter-membrane space in eukaryotes and the periplasm of prokaryotes. While there are differences in the molecular mechanisms of oxidative folding in different compartments, it can essentially be broken down into two steps, disulfide formation and disulfide isomerization. For both steps, catalysts exist in all compartments where native disulfide bond formation occurs. Due to the importance of disulfide bonds for a plethora of proteins, considerable effort has been made to generate cell factories which can make them more efficiently and cheaper. Recently synthetic biology has been used to transfer catalysts of native disulfide bond formation into the cytoplasm of prokaryotes such as Escherichia coli. While these engineered systems cannot yet rival natural systems in the range and complexity of disulfide-bonded proteins that can be made, a growing range of proteins have been made successfully and yields of homogenously folded eukaryotic proteins exceeding g/l yields have been obtained. This review will briefly give an overview of such systems, the uses reported to date and areas of future potential development, including combining with engineered systems for cytoplasmic glycosylation.
Collapse
|