1
|
Xu S, Sun C, Qian T, Chen Y, Dong X, Wang A, Zhang Q, Ji Y, Jin Z, Liu C, Zhao K. Animal vaccine revolution: Nanoparticle adjuvants open the future of vaccinology. J Control Release 2025; 383:113827. [PMID: 40349784 DOI: 10.1016/j.jconrel.2025.113827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/04/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
In recent years, the rapid development of nanoparticle adjuvants has greatly facilitated the treatment and prevention of infectious diseases in humans and animals. The remarkable success of mRNA nanovaccines against SARS-CoV-2 has accelerated the advancement of nanoparticle adjuvant technologies in the era of precision medicine. Significant progress has been made in researching nanovaccines for major animal infectious diseases, such as porcine epidemic diarrhea, avian influenza, porcine reproductive and respiratory syndrome, bovine viral diarrhea, foot-and-mouth disease, African swine fever, and Newcastle disease. This article reviews the nanoparticle adjuvants under investigation for animal use, emphasizing their diverse mechanisms of action and immunological properties, and analyzes the physicochemical factors influencing their immune-enhancing effects. On this basis, we discuss future prospects and key challenges that need to be addressed, aiming to provide valuable references for the development of novel animal vaccine adjuvants.
Collapse
Affiliation(s)
- Shangen Xu
- Zhejiang Key Laboratory for Restoration of Dam aged Coastal Ecosystems, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, China; Zhejiang International Science and Technology Cooperation Base for Biomass Resources Development and Utilization, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, China
| | - Chenxi Sun
- Zhejiang Key Laboratory for Restoration of Dam aged Coastal Ecosystems, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, China; Zhejiang International Science and Technology Cooperation Base for Biomass Resources Development and Utilization, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, China
| | - Tianyu Qian
- Zhejiang Key Laboratory for Restoration of Dam aged Coastal Ecosystems, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, China; Zhejiang International Science and Technology Cooperation Base for Biomass Resources Development and Utilization, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, China
| | - Yao Chen
- Zhejiang Key Laboratory for Restoration of Dam aged Coastal Ecosystems, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, China; Zhejiang International Science and Technology Cooperation Base for Biomass Resources Development and Utilization, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, China
| | - Xinhui Dong
- Zhejiang Key Laboratory for Restoration of Dam aged Coastal Ecosystems, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, China; Zhejiang International Science and Technology Cooperation Base for Biomass Resources Development and Utilization, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, China
| | - Afei Wang
- Zhejiang Key Laboratory for Restoration of Dam aged Coastal Ecosystems, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, China; Zhejiang International Science and Technology Cooperation Base for Biomass Resources Development and Utilization, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, China
| | - Qihong Zhang
- Zhejiang Key Laboratory for Restoration of Dam aged Coastal Ecosystems, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, China; Zhejiang International Science and Technology Cooperation Base for Biomass Resources Development and Utilization, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, China
| | - Yile Ji
- Zhejiang Key Laboratory for Restoration of Dam aged Coastal Ecosystems, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, China; Zhejiang International Science and Technology Cooperation Base for Biomass Resources Development and Utilization, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, China
| | - Zheng Jin
- Zhejiang Key Laboratory for Restoration of Dam aged Coastal Ecosystems, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, China; Zhejiang International Science and Technology Cooperation Base for Biomass Resources Development and Utilization, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, China
| | - Chibo Liu
- Department of Clinical Laboratory, Municipal Hospital Affiliated to Taizhou University, Zhejiang, Taizhou 318000, China.
| | - Kai Zhao
- Zhejiang Key Laboratory for Restoration of Dam aged Coastal Ecosystems, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, China; Zhejiang International Science and Technology Cooperation Base for Biomass Resources Development and Utilization, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, China.
| |
Collapse
|
2
|
Yang J, Sun Y, Dong X, Li M, Qin Y, Dai L, Sun Q. Interaction of starch nanoparticles with digestive enzymes and its effect on the release of polyphenols in simulated gastrointestinal fluids. Food Chem 2025; 472:142883. [PMID: 39824084 DOI: 10.1016/j.foodchem.2025.142883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/24/2024] [Accepted: 01/10/2025] [Indexed: 01/20/2025]
Abstract
This study investigates the interaction of amino-modified starch nanoparticles (NH2-SNPs) and unmodified SNPs with pepsin and trypsin and the influence of the formation of protein coronas on the release of polyphenols. We discovered that NH2-SNPs bound loosely to pepsin, while they bound tightly to trypsin, by quartz crystal microbalance with dissipation monitoring and zeta potential measurement. SNPs did not easily bind to the two digestive enzymes. In addition, the influence of NH2-SNPs on digestive enzymes was investigated by ultraviolet-visible spectrophotometry, and circular dichroism spectroscopy, showing that the addition of NH2-SNPs had no effect on the conformational structure of pepsin and trypsin. Using NH2-SNPs and SNPs to load four polyphenols revealed that the nanoparticles had a slow-release effect on the polyphenols, but the presence of protein coronas had little effect on the release. The release was mainly related to the destruction of the starch-based carrier by the amylase in digestive enzymes.
Collapse
Affiliation(s)
- Jie Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, 266109, China
| | - Yujing Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Xuyan Dong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, 266109, China
| | - Man Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, 266109, China
| | - Yang Qin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, 266109, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, 266109, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, 266109, China.
| |
Collapse
|
3
|
Tulinska J, Kobylinska L, Lehotska Mikusova M, Babincova J, Mitina N, Rollerova E, Liskova A, Madrova N, Alacova R, Zaichenko A, Lesyk R, Horvathova M, Szabova M, Lukan N, Vari S. PEG-Polymeric Nanocarriers Alleviate the Immunosuppressive Effects of Free 4-Thiazolidinone-Based Chemotherapeutics on T Lymphocyte Function and Cytokine Production. Int J Nanomedicine 2024; 19:14021-14041. [PMID: 39742092 PMCID: PMC11687095 DOI: 10.2147/ijn.s479137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/21/2024] [Indexed: 01/03/2025] Open
Abstract
Purpose Our study aimed to assess the effects of anticancer 4-thiazolidinone-based free water-insoluble therapeutics Les-3288 and Les-3833 and their waterborne complexes with branched PEG-containing polymeric carriers (A24-PEG550 and A24-PEG750) on immune response. Methods Human peripheral blood was used to study in vitro lymphocyte proliferative function, leukocyte phagocytic activity and respiratory burst, and cytokine production. Results The binding of the polymer to the anticancer drug Les-3288, which is intended to mitigate the immunosuppressive effects of the free drug on the proliferative activity of T lymphocytes and T-dependent B cells, demonstrated comparable efficacy for both A24-PEG750 and A24-PEG550 nanocarriers. Furthermore, it was observed that the drug-polymer complex significantly increased the reduced levels of IFN-γ and TNF-α resulting from free Les-3288. Conversely, the reduced levels of IL-6 and IL-4 remained unchanged. Administration of either form of Les-3288 had no effect on the phagocytic activity of monocytes, granulocytes or the respiratory burst of granulocytes. Due to the reduced cell viability and increased cytotoxicity associated with Les-3833, tenfold lower doses were selected for the immune assays. The effects of free Les-3833 on lymphocyte proliferative function resulted in significant stimulation of T-dependent B cells. The binding of Les-3833 to the smaller carrier, A24-PEG550 was found to maintain the stimulatory effect on B lymphocytes. While no effect of free Les-3833 on the granulocyte phagocytic activity was observed, binding of Les-3833 to both polymeric carriers resulted in a decrease in granulocyte phagocytic activity and respiratory burst, with no observable effect on monocytes. Monitoring of cytokine production showed no significant effect of either form of Les-3833 on the production of IFN-γ and IL-6. In the context of TNF-α and IL-4, the positive effect of polymer binding on restoring suppressed cytokine levels induced by the Les-3833 free drug was slightly more favorable for A24-PEG750. Conclusion The drug complexation with novel PEGylated carriers is a promising way for efficient therapeutic development.
Collapse
Affiliation(s)
- Jana Tulinska
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Lesya Kobylinska
- Department of Biochemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | | | - Julia Babincova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Natalia Mitina
- Department of Organic Chemistry, Lviv Polytechnic National University, Lviv, Ukraine
| | - Eva Rollerova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Aurelia Liskova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Nikola Madrova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Radka Alacova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Alexander Zaichenko
- Department of Organic Chemistry, Lviv Polytechnic National University, Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and BioOrganic Chemistry Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Mira Horvathova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Michaela Szabova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Norbert Lukan
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Sandor Vari
- International Research and Innovation in Medicine Program, Cedars - Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
4
|
Khatua R, Bhar B, Dey S, Jaiswal C, J V, Mandal BB. Advances in engineered nanosystems: immunomodulatory interactions for therapeutic applications. NANOSCALE 2024; 16:12820-12856. [PMID: 38888201 DOI: 10.1039/d4nr00680a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Advances in nanotechnology have led to significant progress in the design and fabrication of nanoparticles (NPs) with improved therapeutic properties. NPs have been explored for modulating the immune system, serving as carriers for drug delivery or vaccine adjuvants, or acting as therapeutics themselves against a wide range of deadly diseases. The combination of NPs with immune system-targeting moieties has facilitated the development of improved targeted immune therapies. Targeted delivery of therapeutic agents using NPs specifically to the disease-affected cells, distinguishing them from other host cells, offers the major advantage of concentrating the therapeutic effect and reducing systemic side effects. Furthermore, the properties of NPs, including size, shape, surface charge, and surface modifications, influence their interactions with the targeted biological components. This review aims to provide insights into these diverse emerging and innovative approaches that are being developed and utilized for modulating the immune system using NPs. We reviewed various types of NPs composed of different materials and their specific application for modulating the immune system. Furthermore, we focused on the mechanistic effects of these therapeutic NPs on primary immune components, including T cells, B cells, macrophages, dendritic cells, and complement systems. Additionally, a recent overview of clinically approved immunomodulatory nanomedicines and potential future perspectives, offering new paradigms of this field, is also highlighted.
Collapse
Affiliation(s)
- Rupam Khatua
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Bibrita Bhar
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Souradeep Dey
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Chitra Jaiswal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Victoria J
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Biman B Mandal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| |
Collapse
|
5
|
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
6
|
Liu T, Sun W, Zhang X, Xu D, Wang M, Yan Q, Yin J, Luan S. Biomimetic, self-coacervating adhesive with tough underwater adhesion for ultrafast hemostasis and infected wound healing. Biomater Sci 2023; 11:7845-7855. [PMID: 37901969 DOI: 10.1039/d3bm01391j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Massive bleeding and wound infection due to severe traumas pose a huge threat to the life and health of sufferers; therefore, it is of clinical importance to fabricate adhesives with rapid hemostatic and superior antibacterial capabilities. However, the weak wet adhesion and insufficient function of existing bioadhesives limits their practical application. In this study, a sandcastle worm protein inspired polyelectrolyte self-coacervate adhesive of poly-γ-glutamic acid (PGA) and lysozyme (LZM) was developed. The adhesive exhibited strong underwater adhesion to various surfaces (>250 kPa for solid plates and >50 kPa for soft tissues) and maintained a 80 kPa even when soaked in water for 7 days. Rat liver and tail defect bleeding models revealed that the hemostatic efficiency was superior to that of commercial samples. The in vitro antimicrobial tests showed that the bacterial inhibition to Staphylococcus aureus and Escherichia coli reached almost 100%. Additionally, the infected wound regeneration model demonstrated that the healing rate of the adhesive group was about 100% within 15 days, which was greater than that of the control group. In vitro and in vivo experiments proved that this facilely prepared adhesive will be a promising material to fulfil the integration functions for rapid wound closure and facilitating wound healing.
Collapse
Affiliation(s)
- Tingwu Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Anhui 230026, P. R. China
| | - Wen Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Anhui 230026, P. R. China
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Donghua Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Mingzhe Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Qiuyan Yan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Anhui 230026, P. R. China
| |
Collapse
|
7
|
Zhu G, Zhang R, Xie Q, Li P, Wang F, Wang L, Li C. Shish-kebab structure fiber with nano and micro diameter regulate macrophage polarization for anti-inflammatory and bone differentiation. Mater Today Bio 2023; 23:100880. [PMID: 38149017 PMCID: PMC10750111 DOI: 10.1016/j.mtbio.2023.100880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023] Open
Abstract
Biopolymer grafts often have limited biocompatibility, triggering excessive inflammatory responses similar to foreign bodies. Macrophage phenotype shifts are pivotal in the inflammatory response and graft success. The effects of the morphology and physical attributes of the material itself on macrophage polarization should be the focus. In this study, we prepared electrospun fibers with diverse diameters and formed a shish-kebab (SK) structure on the material surface by solution-induced crystallization, forming electrospun fiber scaffolds with diverse pore sizes and roughness. In vitro cell culture experiments demonstrated that SK structure fibers could regulate macrophage differentiation toward M2 phenotype, and the results of in vitro simulation of in vivo tissue reconstruction by the microenvironment demonstrated that the paracrine role of M2 phenotype macrophages could promote bone marrow mesenchymal stem cells (BMSCs) to differentiate into osteoblasts. In rats implanted with a subcutaneous SK-structured fiber scaffold, the large-pore size and low-stiffness SK fiber scaffolds demonstrated superior immune performance, less macrophage aggregation, and easier differentiation to the anti-inflammatory M2 phenotype. Large pore sizes and low-stiffness SK fiber scaffolds guide the morphological design of biological scaffolds implanted in vivo, which is expected to be an effective strategy for reducing inflammation when applied to graft materials in clinical settings.
Collapse
Affiliation(s)
- Gaowei Zhu
- Key Laboratory of Textile Science & Technology Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Rongyan Zhang
- Key Laboratory of Textile Science & Technology Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Qianyang Xie
- Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, and Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, No. 639, Zhizaoju Rd., Shanghai, 200011, China
| | - Peilun Li
- Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, and Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, No. 639, Zhizaoju Rd., Shanghai, 200011, China
| | - Fujun Wang
- Key Laboratory of Textile Science & Technology Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Chaojing Li
- Key Laboratory of Textile Science & Technology Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
8
|
Parizi LF, Githaka NW, Logullo C, Zhou J, Onuma M, Termignoni C, da Silva Vaz I. Universal Tick Vaccines: Candidates and Remaining Challenges. Animals (Basel) 2023; 13:2031. [PMID: 37370541 DOI: 10.3390/ani13122031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/29/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Recent advancements in molecular biology, particularly regarding massively parallel sequencing technologies, have enabled scientists to gain more insight into the physiology of ticks. While there has been progress in identifying tick proteins and the pathways they are involved in, the specificities of tick-host interaction at the molecular level are not yet fully understood. Indeed, the development of effective commercial tick vaccines has been slower than expected. While omics studies have pointed to some potential vaccine immunogens, selecting suitable antigens for a multi-antigenic vaccine is very complex due to the participation of redundant molecules in biological pathways. The expansion of ticks and their pathogens into new territories and exposure to new hosts makes it necessary to evaluate vaccine efficacy in unusual and non-domestic host species. This situation makes ticks and tick-borne diseases an increasing threat to animal and human health globally, demanding an urgent availability of vaccines against multiple tick species and their pathogens. This review discusses the challenges and advancements in the search for universal tick vaccines, including promising new antigen candidates, and indicates future directions in this crucial research field.
Collapse
Affiliation(s)
- Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | | | - Carlos Logullo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Misao Onuma
- Department of Infectious Diseases, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, Brazil
| |
Collapse
|
9
|
Immunologically effective poly(D-lactic acid) nanoparticle enhances anticancer immune response. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
10
|
Zhang Y, Chen J, Shi L, Ma F. Polymeric nanoparticle-based nanovaccines for cancer immunotherapy. MATERIALS HORIZONS 2023; 10:361-392. [PMID: 36541078 DOI: 10.1039/d2mh01358d] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Therapeutic cancer vaccines, which are designed to amplify tumor-specific T cell responses, have been envisioned as one of the most powerful tools for effective cancer immunotherapy. However, increasing the potency, quality and durability of the vaccine response remains a big challenge. In recent years, materials-based delivery systems focusing on the co-delivery of antigens and adjuvants to enhance cancer vaccination therapy have attracted increasing interest. Among various materials, polymeric nanoparticles (NPs) with different physicochemical properties which can incorporate multiple immunological cues are of great interest. In this review, the recent progress in the design and construction of both ex vivo subunit and in situ cancer vaccines using polymeric NPs is summarized. Especially, we will focus on how these NPs improve the adjuvanticity of vaccines. The design principles of polymeric NPs for ex vivo subunit cancer vaccines and in situ cancer vaccination are also discussed. Finally, we want to briefly discuss molecular chaperones in cancer immunity and the applications of our unique self-assembly mixed shell polymeric micelle-based nanochaperones for cancer vaccines.
Collapse
Affiliation(s)
- Yongxin Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
| | - Jiajing Chen
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Feihe Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China.
| |
Collapse
|
11
|
Ko CN, Zang S, Zhou Y, Zhong Z, Yang C. Nanocarriers for effective delivery: modulation of innate immunity for the management of infections and the associated complications. J Nanobiotechnology 2022; 20:380. [PMID: 35986268 PMCID: PMC9388998 DOI: 10.1186/s12951-022-01582-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Innate immunity is the first line of defense against invading pathogens. Innate immune cells can recognize invading pathogens through recognizing pathogen-associated molecular patterns (PAMPs) via pattern recognition receptors (PRRs). The recognition of PAMPs by PRRs triggers immune defense mechanisms and the secretion of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6. However, sustained and overwhelming activation of immune system may disrupt immune homeostasis and contribute to inflammatory disorders. Immunomodulators targeting PRRs may be beneficial to treat infectious diseases and their associated complications. However, therapeutic performances of immunomodulators can be negatively affected by (1) high immune-mediated toxicity, (2) poor solubility and (3) bioactivity loss after long circulation. Recently, nanocarriers have emerged as a very promising tool to overcome these obstacles owning to their unique properties such as sustained circulation, desired bio-distribution, and preferred pharmacokinetic and pharmacodynamic profiles. In this review, we aim to provide an up-to-date overview on the strategies and applications of nanocarrier-assisted innate immune modulation for the management of infections and their associated complications. We first summarize examples of important innate immune modulators. The types of nanomaterials available for drug delivery, as well as their applications for the delivery of immunomodulatory drugs and vaccine adjuvants are also discussed.
Collapse
|
12
|
Mahmud N, Anik MI, Hossain MK, Khan MI, Uddin S, Ashrafuzzaman M, Rahaman MM. Advances in Nanomaterial-Based Platforms to Combat COVID-19: Diagnostics, Preventions, Therapeutics, and Vaccine Developments. ACS APPLIED BIO MATERIALS 2022; 5:2431-2460. [PMID: 35583460 PMCID: PMC9128020 DOI: 10.1021/acsabm.2c00123] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/24/2022] [Indexed: 12/12/2022]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2, a ribonucleic acid (RNA) virus that emerged less than two years ago but has caused nearly 6.1 million deaths to date. Recently developed variants of the SARS-CoV-2 virus have been shown to be more potent and expanded at a faster rate. Until now, there is no specific and effective treatment for SARS-CoV-2 in terms of reliable and sustainable recovery. Precaution, prevention, and vaccinations are the only ways to keep the pandemic situation under control. Medical and scientific professionals are now focusing on the repurposing of previous technology and trying to develop more fruitful methodologies to detect the presence of viruses, treat the patients, precautionary items, and vaccine developments. Nanomedicine or nanobased platforms can play a crucial role in these fronts. Researchers are working on many effective approaches by nanosized particles to combat SARS-CoV-2. The role of a nanobased platform to combat SARS-CoV-2 is extremely diverse (i.e., mark to personal protective suit, rapid diagnostic tool to targeted treatment, and vaccine developments). Although there are many theoretical possibilities of a nanobased platform to combat SARS-CoV-2, until now there is an inadequate number of research targeting SARS-CoV-2 to explore such scenarios. This unique mini-review aims to compile and elaborate on the recent advances of nanobased approaches from prevention, diagnostics, treatment to vaccine developments against SARS-CoV-2, and associated challenges.
Collapse
Affiliation(s)
- Niaz Mahmud
- Department of Biomedical Engineering,
Military Institute of Science and Technology, Dhaka 1216,
Bangladesh
| | - Muzahidul I. Anik
- Department of Chemical Engineering,
University of Rhode Island, Kingston, Rhode Island 02881,
United States
| | - M. Khalid Hossain
- Interdisciplinary Graduate School of Engineering
Science, Kyushu University, Fukuoka 816-8580,
Japan
- Atomic Energy Research Establishment,
Bangladesh Atomic Energy Commission, Dhaka 1349,
Bangladesh
| | - Md Ishak Khan
- Department of Neurosurgery, University of
Pennsylvania, Philadelphia, Pennsylvania 19104, United
States
| | - Shihab Uddin
- Department of Applied Chemistry, Graduate School of
Engineering, Kyushu University, Fukuoka 819-0395,
Japan
- Department of Chemical Engineering,
Massachusetts Institute of Technology, Cambridge
Massachusetts 02139, United States
| | - Md. Ashrafuzzaman
- Department of Biomedical Engineering,
Military Institute of Science and Technology, Dhaka 1216,
Bangladesh
| | - Md Mushfiqur Rahaman
- Department of Emergency Medicine, NYU
Langone Health, New York, New York 10016, United
States
| |
Collapse
|
13
|
Comparetti EJ, Lins PMP, Quitiba J, Zucolotto V. Cancer cell membrane‐derived nanoparticles block the expression of immune checkpoint proteins on cancer cells and coordinate modulatory activity on immunosuppressive macrophages. J Biomed Mater Res A 2022; 110:1499-1511. [DOI: 10.1002/jbm.a.37387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/27/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Edson J. Comparetti
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos University of São Paulo São Carlos Brazil
| | - Paula M. P. Lins
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos University of São Paulo São Carlos Brazil
| | - João Quitiba
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos University of São Paulo São Carlos Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos University of São Paulo São Carlos Brazil
- Institute of Advanced Studies University of Sao Paulo Sao Carlos Brazil
| |
Collapse
|
14
|
Kizhakkedathu JN, Conway EM. Biomaterial and cellular implants: foreign surfaces where immunity and coagulation meet. Blood 2022; 139:1987-1998. [PMID: 34415324 DOI: 10.1182/blood.2020007209] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/05/2021] [Indexed: 11/20/2022] Open
Abstract
Exposure of blood to a foreign surface in the form of a diagnostic or therapeutic biomaterial device or implanted cells or tissue elicits an immediate, evolutionarily conserved thromboinflammatory response from the host. Primarily designed to protect against invading organisms after an injury, this innate response features instantaneous activation of several blood-borne, highly interactive, well-orchestrated cascades and cellular events that limit bleeding, destroy and eliminate the foreign substance or cells, and promote healing and a return to homeostasis via delicately balanced regenerative processes. In the setting of blood-contacting synthetic or natural biomaterials and implantation of foreign cells or tissues, innate responses are robust, albeit highly context specific. Unfortunately, they tend to be less than adequately regulated by the host's natural anticoagulant or anti-inflammatory pathways, thereby jeopardizing the functional integrity of the device, as well as the health of the host. Strategies to achieve biocompatibility with a sustained return to homeostasis, particularly while the device remains in situ and functional, continue to elude scientists and clinicians. In this review, some of the complex mechanisms by which biomaterials and cellular transplants provide a "hub" for activation and amplification of coagulation and immunity, thromboinflammation, are discussed, with a view toward the development of innovative means of overcoming the innate challenges.
Collapse
Affiliation(s)
- Jayachandran N Kizhakkedathu
- Centre for Blood Research
- Department of Pathology and Laboratory Medicine
- School of Biomedical Engineering, Life Sciences Institute
- Department of Chemistry; and
| | - Edward M Conway
- Centre for Blood Research
- School of Biomedical Engineering, Life Sciences Institute
- Department of Chemistry; and
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Heydari P, Kharaziha M, Varshosaz J, Javanmard SH. Current knowledge of immunomodulation strategies for chronic skin wound repair. J Biomed Mater Res B Appl Biomater 2021; 110:265-288. [PMID: 34318595 DOI: 10.1002/jbm.b.34921] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/11/2022]
Abstract
In orchestrating the wound healing process, the immune system plays a critical role. Hence, controlling the immune system to repair skin defects is an attractive approach. The highly complex immune system includes the coordinated actions of several immune cells, which can produce various inflammatory and antiinflammatory cytokines and affect the healing of skin wounds. This process can be optimized using biomaterials, bioactive molecules, and cell delivery. The present review discusses various immunomodulation strategies for supporting the healing of chronic wounds. In this regard, following the evolution of the immune system and its role in the wound healing mechanism, the interaction between the extracellular mechanism and immune cells for acceleration wound healing will be firstly investigated. Consequently, the immune-based chronic wounds will be briefly examined and the mechanism of progression, and conventional methods of their treatment are evaluated. In the following, various biomaterials-based immunomodulation strategies are introduced to stimulate and control the immune system to treat and regenerate skin defects. Other effective methods of controlling the immune system in wound healing which is the release of bioactive agents (such as antiinflammatory, antigens, and immunomodulators) and stem cell therapy at the site of injury are reviewed.
Collapse
Affiliation(s)
- Parisa Heydari
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Jaleh Varshosaz
- School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
16
|
Shi W, Qiu Q, Feng Z, Tong Z, Guo W, Zou F, Yue N, Huang W, Qian H. Design, synthesis and immunological evaluation of self-assembled antigenic peptides from dual-antigen targets: a broad-spectrum candidate for an effective antibreast cancer therapy. J Immunother Cancer 2021; 9:jitc-2021-002523. [PMID: 34083420 PMCID: PMC8183215 DOI: 10.1136/jitc-2021-002523] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2021] [Indexed: 12/11/2022] Open
Abstract
Background Considering the narrow immune response spectrum of a single epitope, and the nanoparticles (NPs) as a novel adjuvant can achieve efficient delivery of antigenic peptides safely, a nano-system (denoted as DSPE-PEG-Man@EM-NPs) based on cathepsin B-responsive antigenic peptides was designed and synthesized. Methods Highly affinitive antigenic peptides were delivered by self-assembled NPs, and targeted erythrocyte membranes acted as a peptide carrier to improve antigenic peptides presentation and to strengthen cytotoxic T-cells reaction. Cathepsin B coupling could release antigenic peptides rapidly in dendritic cells. Results Evaluations showed that DSPE-PEG-Man@EM-NPs had obvious inhibitory effects towards both MCF-7 and MDA-MB-231 human breast cancer cell lines. Conclusion Overall, this strategy provides a novel strategy for boosting cytotoxic T lymphocytes response, thereby expanding the adaptation range of tumor antigenic peptides and improving the therapeutic effect of tumor immunotherapy with nanomedicine.
Collapse
Affiliation(s)
- Wei Shi
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Qianqian Qiu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.,School of Pharmacy, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers' University, Yancheng 224002, China
| | - Ziying Feng
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Zhenzhen Tong
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Weiwei Guo
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Feng Zou
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Na Yue
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Wenlong Huang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China .,Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| |
Collapse
|
17
|
Abstract
INTRODUCTION Proteomics, i.e. the study of the set of proteins produced in a cell, tissue, organism, or biological entity, has made possible analyses and contextual comparisons of proteomes/proteins and biological functions among the most disparate entities, from viruses to the human being. In this way, proteomic scrutiny of tumor-associated proteins, autoantigens, and pathogen antigens offers the tools for fighting cancer, autoimmunity, and infections. AREAS COVERED Comparative proteomics and immunoproteomics, the new scientific disciplines generated by proteomics, are the main themes of the present review that describes how comparative analyses of pathogen and human proteomes led to re-modulate the molecular mimicry concept of the pre-proteomic era. I.e. before proteomics, molecular mimicry - the sharing of peptide sequences between two biological entities - was considered as intrinsically endowed with immunologic properties and was related to cross-reactivity. Proteomics allowed to redefine such an assumption using physicochemical parameters according to which frequency and hydrophobicity preferentially confer an immunologic potential to shared peptide sequences. EXPERT OPINION Proteomics is outlining peptide platforms to be used for the diagnostics and management of human diseases. A Molecular Medicine targeted to obtain healing without paying the price for adverse events is on the horizon. The next step is to take up the challenge and operate the paradigm shift that the current proteomic era requires.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
18
|
Derakhshan MA, Amani A, Faridi-Majidi R. State-of-the-Art of Nanodiagnostics and Nanotherapeutics against SARS-CoV-2. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14816-14843. [PMID: 33779135 PMCID: PMC8028022 DOI: 10.1021/acsami.0c22381] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/17/2021] [Indexed: 05/02/2023]
Abstract
The pandemic outbreak of SARS-CoV-2, with millions of infected patients worldwide, has severely challenged all aspects of public health. In this regard, early and rapid detection of infected cases and providing effective therapeutics against the virus are in urgent demand. Along with conventional clinical protocols, nanomaterial-based diagnostics and therapeutics hold a great potential against coronavirus disease 2019 (COVID-19). Indeed, nanoparticles with their outstanding characteristics would render additional advantages to the current approaches for rapid and accurate diagnosis and also developing prophylactic vaccines or antiviral therapeutics. In this review, besides presenting an overview of the coronaviruses and SARS-CoV-2, we discuss the introduced nanomaterial-based detection assays and devices and also antiviral formulations and vaccines for coronaviruses.
Collapse
Affiliation(s)
- Mohammad Ali Derakhshan
- Department
of Medical Nanotechnology, School of Advanced Medical Sciences and
Technologies, Shiraz University of Medical
Sciences, Shiraz, Iran
- Nanomedicine
and Nanobiology Research Center, Shiraz
University of Medical Sciences, Shiraz Iran
| | - Amir Amani
- Natural
Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Faridi-Majidi
- Department
of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Zhang X, Dai Y, Dai G, Deng C. Advances in PEG-based ABC terpolymers and their applications. RSC Adv 2020; 10:21602-21614. [PMID: 35518773 PMCID: PMC9054495 DOI: 10.1039/d0ra03478a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
ABC terpolymers are a class of very important polymers because of their expansive molecular topologies and extensive architectures. As block A, poly(ethylene glycol) (PEG) is one of the most principal categories owing to good biocompatibility and wide commercial availability. More importantly, the synthetic approaches of ABC terpolymers using PEG as a macroinitiator are facile and varied. PEG-based ABC terpolymers from design and synthesis to applications are highlighted in this review. Linear, 3-miktoarm, and cyclic polymers as the architecture are separated. The synthetic approaches of PEG-based ABC terpolymers mainly include the sequential polymerization or coupling of polymers. PEG-based ABC terpolymers have wide applications in the fields of drug carriers, gene vectors, templates for the fabrication of inorganic hollow nanospheres, and stabilizers of metal nanoparticles.
Collapse
Affiliation(s)
- Xiaojin Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Yu Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Guofei Dai
- Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake, Jiangxi Institute of Water Sciences Nanchang 330029 China
| | - Chunhui Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis, Advanced Materials Laboratory, Fudan University Shanghai 200433 China
| |
Collapse
|
20
|
Wafa EI, Wilson-Welder JH, Hornsby RL, Nally JE, Geary SM, Bowden NB, Salem AK. Poly(diaminosulfide) Microparticle-Based Vaccine for Delivery of Leptospiral Antigens. Biomacromolecules 2020; 21:534-544. [PMID: 31895553 DOI: 10.1021/acs.biomac.9b01257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Leptospirosis is a debilitating infectious disease that detrimentally affects both animals and humans; therefore, disease prevention has become a high priority to avoid high incidence rates of disease in the herd and break the transmission cycle to humans. Thus, there remains an important unmet need for a prophylactic vaccine that can provide long-term immunity against leptospirosis in cattle. Herein, a novel vaccine formulation was developed where poly(diaminosulfide) polymer was employed to fabricate microparticles encapsulating the antigen of Leptospira borgpetersenii serovar Hardjo strain HB15B203 (L203-PNSN). A prime-boost vaccination with a L203-PNSN microparticle formulation increased the population of L203-specific CD3+ T cells and CD21+ B cells to levels that were significantly higher than those of cattle vaccinated with L203-AlOH or the vehicle control (empty PNSN microparticles and blank AlOH). In addition, L203-PNSN was demonstrated to stimulate durable humoral immune responses as evidenced by the increases in the antibody serum titers following the vaccination. It was also found that cattle vaccinated with L203-PNSN produced higher macroscopic agglutinating titers than cattle in other groups. Thus, it can be concluded that L203-PNSN is a novel first-in-class microparticle-based Leptospira vaccine that represents a powerful platform with the potential to serve as a prophylactic vaccine against leptospiral infection in cattle.
Collapse
Affiliation(s)
| | - Jennifer H Wilson-Welder
- Infectious Bacterial Disease Research Unit, National Animal Disease Center, Agriculture Research Service , United States Department of Agriculture , Ames , Iowa 50010 , United States
| | - Richard L Hornsby
- Infectious Bacterial Disease Research Unit, National Animal Disease Center, Agriculture Research Service , United States Department of Agriculture , Ames , Iowa 50010 , United States
| | - Jarlath E Nally
- Infectious Bacterial Disease Research Unit, National Animal Disease Center, Agriculture Research Service , United States Department of Agriculture , Ames , Iowa 50010 , United States
| | | | | | | |
Collapse
|