1
|
Xu S, Lee I, Kwon SJ, Kim E, Nevo L, Straight L, Murata H, Matyjaszewski K, Dordick JS. Split fluorescent protein-mediated multimerization of cell wall binding domain for highly sensitive and selective bacterial detection. N Biotechnol 2024; 82:54-64. [PMID: 38750815 DOI: 10.1016/j.nbt.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Cell wall peptidoglycan binding domains (CBDs) of cell lytic enzymes, including bacteriocins, autolysins and bacteriophage endolysins, enable highly selective bacterial binding, and thus, have potential as biorecognition molecules for nondestructive bacterial detection. Here, a novel design for a self-complementing split fluorescent protein (FP) complex is proposed, where a multimeric FP chain fused with specific CBDs ((FP-CBD)n) is assembled inside the cell, to improve sensitivity by enhancing the signal generated upon Staphylococcus aureus or Bacillus anthracis binding. Flow cytometry shows enhanced fluorescence on the cell surface with increasing FP stoichiometry and surface plasmon resonance reveals nanomolar binding affinity to isolated peptidoglycan. The breadth of function of these complexes is demonstrated through the use of CBD modularity and the ability to attach enzymatic detection modalities. Horseradish peroxidase-coupled (FP-CBD)n complexes generate a catalytic amplification, with the degree of amplification increasing as a function of FP length, reaching a limit of detection (LOD) of 103 cells/droplet (approximately 0.1 ng S. aureus or B. anthracis) within 15 min on a polystyrene surface. These fusion proteins can be multiplexed for simultaneous detection. Multimeric split FP-CBD fusions enable use as a biorecognition molecule with enhanced signal for use in bacterial biosensing platforms.
Collapse
Affiliation(s)
- Shirley Xu
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Inseon Lee
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Seok-Joon Kwon
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Eunsol Kim
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Liv Nevo
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Lorelli Straight
- Department of Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Hironobu Murata
- Department of Chemistry, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, USA
| | | | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA; Department of Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA.
| |
Collapse
|
2
|
Kapil K, Xu S, Lee I, Murata H, Kwon SJ, Dordick JS, Matyjaszewski K. Highly Sensitive Detection of Bacteria by Binder-Coupled Multifunctional Polymeric Dyes. Polymers (Basel) 2023; 15:2723. [PMID: 37376368 DOI: 10.3390/polym15122723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Infectious diseases caused by pathogens are a health burden, but traditional pathogen identification methods are complex and time-consuming. In this work, we have developed well-defined, multifunctional copolymers with rhodamine B dye synthesized by atom transfer radical polymerization (ATRP) using fully oxygen-tolerant photoredox/copper dual catalysis. ATRP enabled the efficient synthesis of copolymers with multiple fluorescent dyes from a biotin-functionalized initiator. Biotinylated dye copolymers were conjugated to antibody (Ab) or cell-wall binding domain (CBD), resulting in a highly fluorescent polymeric dye-binder complex. We showed that the unique combination of multifunctional polymeric dyes and strain-specific Ab or CBD exhibited both enhanced fluorescence and target selectivity for bioimaging of Staphylococcus aureus by flow cytometry and confocal microscopy. The ATRP-derived polymeric dyes have the potential as biosensors for the detection of target DNA, protein, or bacteria, as well as bioimaging.
Collapse
Affiliation(s)
- Kriti Kapil
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Shirley Xu
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Inseon Lee
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Hironobu Murata
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Seok-Joon Kwon
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Zha J, Li J, Su Z, Akimbekov N, Wu X. Lysostaphin: Engineering and Potentiation toward Better Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11441-11457. [PMID: 36082619 DOI: 10.1021/acs.jafc.2c03459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lysostaphin is a potent bacteriolytic enzyme with endopeptidase activity against the common pathogen Staphylococcus aureus. By digesting the pentaglycine crossbridge in the cell wall peptidoglycan of S. aureus including the methicillin-resistant strains, lysostaphin initiates rapid lysis of planktonic and sessile cells (biofilms) and has great potential for use in agriculture, food industries, and pharmaceutical industries. In the past few decades, there have been tremendous efforts in potentiating lysostaphin for better applications in these fields, including engineering of the enzyme for higher potency and lower immunogenicity with longer-lasting effects, formulation and immobilization of the enzyme for higher stability and better durability, and recombinant expression for low-cost industrial production and in situ biocontrol. These achievements are extensively reviewed in this article focusing on applications in disease control, food preservation, surface decontamination, and pathogen detection. In addition, some basic properties of lysostaphin that have been controversial and only elucidated recently are summarized, including the substrate-binding properties, the number of zinc-binding sites, the substrate range, and the cleavage site in the pentaglycine crossbridge. Resistance to lysostaphin is also highlighted with a focus on various mechanisms. This article is concluded with a discussion on the limitations and future perspectives for the actual applications of lysostaphin.
Collapse
Affiliation(s)
- Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jingyuan Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zheng Su
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Nuraly Akimbekov
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Xia Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
4
|
Zhao L, Chen Z, Lin S, Wu T, Yu S, Huo YX. In Vitro Biosynthesis of Isobutyraldehyde Through the Establishment of a One-Step Self-Assembly-Based Immobilization Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14609-14619. [PMID: 34818887 DOI: 10.1021/acs.jafc.1c05387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The in vitro biosynthesis of high-value compounds has become popular and attractive. The convenient and simple strategy of enzyme immobilization has been significant for continuous and efficient in vitro biosynthesis. On the basis of that, this work established a one-step self-assembly-based immobilization strategy to efficiently biosynthesize isobutyraldehyde in vitro. Isobutyraldehyde is a crucial precursor for the synthesis of foods and spices. The established CipA scaffold-based strategy can express and immobilize enzymes at the same time, and purification requires only one centrifugation step. Structural simulations indicated that this scaffold-dependent self-assembly did not influence the structure or catalytic mechanisms of the isobutyraldehyde production-related enzymes leucine dehydrogenase (LeuDH) and ketoisovalerate decarboxylase (Kivd). Immobilized LeuDH and Kivd displayed a higher conversion capacity and thermal stability than the free enzymes. Batch conversion experiments demonstrated that the recovered immobilized LeuDH and Kivd have similar conversion capacities to the enzymes used in the first round of reaction. The continuous production of isobutyraldehyde was achieved by filling the immobilized enzymes into the column of a constructed device. This study not only expands the application range of self-assembly systems but also provides guidance for the in vitro production of value-added compounds.
Collapse
Affiliation(s)
- Luyao Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, 100081 Beijing, China
| | - Zhenya Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, 100081 Beijing, China
| | - Sheng Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Haidian District, 100084 Beijing, China
| | - Tong Wu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, 100081 Beijing, China
| | - Shengzhu Yu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, 100081 Beijing, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, 100081 Beijing, China
| |
Collapse
|
5
|
Bae J, Kim H, Kim G, Song J, Kim H. Dendrimer-Like Supramolecular Assembly of Proteins with a Tunable Size and Valency Through Stepwise Iterative Growth. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102991. [PMID: 34719882 PMCID: PMC8693032 DOI: 10.1002/advs.202102991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/15/2021] [Indexed: 06/13/2023]
Abstract
The assembly of proteins in a programmable manner provides insight into the creation of novel functional nanomaterials for practical applications. Despite many advances, however, a rational protein assembly with an easy scalability in terms of size and valency remains a challenge. Here, a simple bottom-up approach to the supramolecular protein assembly with a tunable size and valency in a programmable manner is presented. The dendrimer-like protein assembly, simply called a "protein dendrimer," is constructed through a stepwise and alternate addition of a building block protein. Starting from zeroth-generation protein dendrimer (pG0 ) of 27 kDa, the protein dendrimer is sequentially grown to pG1 , pG2 , pG3 , to pG4 with a molecular mass of 94, 216, 483, and 959 kDa, respectively. The valency of the protein dendrimers at the periphery increases by a factor of two after each generation, allowing a tunable valency and easy functionalization. The protein dendrimers functionalizes with a targeting moiety and a cytotoxic protein cargo shows a typical feature of multi-valency in the avidity and a highly enhanced cellular cytotoxicity, exemplifying their utility as a protein delivery platform. The present approach can be effectively used in the creation of protein architectures with new functions for biotechnological and medical applications.
Collapse
Affiliation(s)
- Jin‐Ho Bae
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Korea
- Present address:
ProEn TherapeuticsSeongnam‐si13105Korea
| | - Hong‐Sik Kim
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Korea
| | - Gijeong Kim
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Korea
| | - Ji‐Joon Song
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Korea
| | - Hak‐Sung Kim
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Korea
| |
Collapse
|
6
|
Fermentative production of alternative antimicrobial peptides and enzymes. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
PhaLP: A Database for the Study of Phage Lytic Proteins and Their Evolution. Viruses 2021; 13:v13071240. [PMID: 34206969 PMCID: PMC8310338 DOI: 10.3390/v13071240] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 01/22/2023] Open
Abstract
Phage lytic proteins are a clinically advanced class of novel enzyme-based antibiotics, so-called enzybiotics. A growing community of researchers develops phage lytic proteins with the perspective of their use as enzybiotics. A successful translation of enzybiotics to the market requires well-considered selections of phage lytic proteins in early research stages. Here, we introduce PhaLP, a database of phage lytic proteins, which serves as an open portal to facilitate the development of phage lytic proteins. PhaLP is a comprehensive, easily accessible and automatically updated database (currently 16,095 entries). Capitalizing on the rich content of PhaLP, we have mapped the high diversity of natural phage lytic proteins and conducted analyses at three levels to gain insight in their host-specific evolution. First, we provide an overview of the modular diversity. Secondly, datamining and interpretable machine learning approaches were adopted to reveal host-specific design rules for domain architectures in endolysins. Lastly, the evolution of phage lytic proteins on the protein sequence level was explored, revealing host-specific clusters. In sum, PhaLP can act as a starting point for the broad community of enzybiotic researchers, while the steadily improving evolutionary insights will serve as a natural inspiration for protein engineers.
Collapse
|
8
|
Yang B, Fang D, Lv Q, Wang Z, Liu Y. Targeted Therapeutic Strategies in the Battle Against Pathogenic Bacteria. Front Pharmacol 2021; 12:673239. [PMID: 34054548 PMCID: PMC8149751 DOI: 10.3389/fphar.2021.673239] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
The emergence and rapid spread of antibiotic resistance in pathogenic bacteria constitute a global threat for public health. Despite ongoing efforts to confront this crisis, the pace of finding new potent antimicrobials is far slower than the evolution of drug resistance. The abuse of broad-spectrum antibiotics not only accelerates the formation of resistance but also imposes a burden on the intestinal microbiota, which acts a critical role in human homeostasis. As such, innovative therapeutic strategies with precision are pressingly warranted and highly anticipated. Recently, target therapies have achieved some breakthroughs by the aid of modern technology. In this review, we provide an insightful illustration of current and future medical targeted strategies, including narrow-spectrum agents, engineered probiotics, nanotechnology, phage therapy, and CRISPR-Cas9 technology. We discuss the recent advances and potential hurdles of these strategies. Meanwhile, the possibilities to mitigate the spread of resistance in these approaches are also mentioned. Altogether, a better understanding of the advantages, disadvantages, and mechanisms of action of these targeted therapies will be conducive to broadening our horizons and optimizing the existing antibacterial approaches.
Collapse
Affiliation(s)
- Bingqing Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Dan Fang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Qingyan Lv
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Mitchell SJ, Verma D, Griswold KE, Bailey-Kellogg C. Building blocks and blueprints for bacterial autolysins. PLoS Comput Biol 2021; 17:e1008889. [PMID: 33793553 PMCID: PMC8051824 DOI: 10.1371/journal.pcbi.1008889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/16/2021] [Accepted: 03/17/2021] [Indexed: 01/31/2023] Open
Abstract
Bacteria utilize a wide variety of endogenous cell wall hydrolases, or autolysins, to remodel their cell walls during processes including cell division, biofilm formation, and programmed death. We here systematically investigate the composition of these enzymes in order to gain insights into their associated biological processes, potential ways to disrupt them via chemotherapeutics, and strategies by which they might be leveraged as recombinant antibacterial biotherapies. To do so, we developed LEDGOs (lytic enzyme domains grouped by organism), a pipeline to create and analyze databases of autolytic enzyme sequences, constituent domain annotations, and architectural patterns of multi-domain enzymes that integrate peptidoglycan binding and degrading functions. We applied LEDGOs to eight pathogenic bacteria, gram negatives Acinetobacter baumannii, Klebsiella pneumoniae, Neisseria gonorrhoeae, and Pseudomonas aeruginosa; and gram positives Clostridioides difficile, Enterococcus faecium, Staphylococcus aureus, and Streptococcus pneumoniae. Our analysis of the autolytic enzyme repertoires of these pathogens reveals commonalities and differences in their key domain building blocks and architectures, including correlations and preferred orders among domains in multi-domain enzymes, repetitions of homologous binding domains with potentially complementarity recognition modalities, and sequence similarity patterns indicative of potential divergence of functional specificity among related domains. We have further identified a variety of unannotated sequence regions within the lytic enzymes that may themselves contain new domains with important functions.
Collapse
Affiliation(s)
- Spencer J. Mitchell
- Department of Computer Science, Dartmouth, Hanover, New Hampshire, United States of America
| | - Deeptak Verma
- Computational and Structural Chemistry, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Karl E. Griswold
- Thayer School of Engineering, Dartmouth, Hanover, New Hampshire, United States of America
- Lyticon LLC, Lebanon, New Hampshire, United States of America
| | - Chris Bailey-Kellogg
- Department of Computer Science, Dartmouth, Hanover, New Hampshire, United States of America
- Lyticon LLC, Lebanon, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
10
|
Bhagwat A, Zhang F, Collins CH, Dordick JS. Influence of bacterial culture medium on peptidoglycan binding of cell wall lytic enzymes. J Biotechnol 2021; 330:27-34. [PMID: 33652073 DOI: 10.1016/j.jbiotec.2021.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/18/2021] [Indexed: 10/22/2022]
Abstract
The bacteriolysin lysostaphin (Lst) and endolysin PlyPH are potent modular lytic enzymes with activity against clinically-relevant Gram-positive Staphylococcus aureus and Bacillus cereus, respectively. Both enzymes possess an N-terminal catalytic domain and C-terminal binding domain, with the latter conferring significant enzyme specificity. Lst and PlyPH show reduced activity in the presence of bacterial growth-supporting conditions, such as complex media. Here, we hypothesize that Lst and PlyPH bind poorly to their targets in growth media, which may influence their use in antimicrobial applications in the food industry, as therapeutics, and for control of microbial communities. To this end, binding of isolated Lst and PlyPH binding domains to target bacteria was quantified in the presence of three increasingly complex media - phosphate buffered saline (PBS), defined growth medium (AAM) and undefined complex medium (TSB) by surface plasmon resonance (SPR) and flow cytometry. Evaluation of binding kinetics by SPR demonstrated that PlyPH binding was particularly sensitive to medium composition, with 8-fold lower association and 3.4-fold lower dissociation rate constants to B. cereus in TSB compared to PBS. Flow cytometry studies indicated a decrease in the binding-dependent fluorescent populations of S. aureus and B. cereus, for lysostaphin binding domain and PlyPH binding domain, respectively, in TSB compared to PBS. Enzyme binding behavior was consistent with the enzymes' catalytic activity in the three media, thereby suggesting that compromised enzyme binding could be responsible for poor activity in more complex growth media.
Collapse
Affiliation(s)
- Amala Bhagwat
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States
| | - Cynthia H Collins
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States.
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States.
| |
Collapse
|
11
|
Vanderstraeten J, Briers Y. Synthetic protein scaffolds for the colocalisation of co-acting enzymes. Biotechnol Adv 2020; 44:107627. [DOI: 10.1016/j.biotechadv.2020.107627] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
|
12
|
Schmelcher M, Loessner MJ. Bacteriophage endolysins - extending their application to tissues and the bloodstream. Curr Opin Biotechnol 2020; 68:51-59. [PMID: 33126104 DOI: 10.1016/j.copbio.2020.09.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 12/25/2022]
Abstract
The rapid emergence of antibiotic-resistant bacteria and the lack of novel antibacterial agents pose a serious threat for patients and healthcare systems. Bacteriophage-encoded peptidoglycan hydrolases (endolysins) represent a promising new class of antimicrobials. Over the past two decades, research on these enzymes has evolved from basic in vitro characterization to sophisticated protein engineering approaches, including advanced preclinical and clinical testing. In recent years, increasingly specific animal models have shown efficacy of endolysins against bacterial infections of various different organs and tissues of the body. Despite these advances, some challenges with regard to systemic application of endolysins remain to be addressed. These include immunogenicity, circulation half-life, and cell and tissue-specific targeting and penetration properties.
Collapse
Affiliation(s)
- Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland.
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Lei J, Qi L, Luo Z. Pickering Emulsion-Based Microreactors for Size-Selective Interfacial Enzymatic Catalysis. Front Bioeng Biotechnol 2020; 8:950. [PMID: 32974304 PMCID: PMC7471251 DOI: 10.3389/fbioe.2020.00950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022] Open
Abstract
In this study, we have developed a mild and effective method to prepare a metal-organic framework (MOF)-based microcapsule by the self-assembly of pre-synthesized zeolite imidazolate framework-8 (ZIF-8) nanoparticles at the oil-water interface combined with deposition of a dense ZIF-8 coating outside the capsule. By introducing the enzyme Candida antarctica lipase B (CalB) directly into the stabilizer ZIF-8 or the water phase of Pickering emulsion during the preparation process, we achieved that the enzyme was immobilized within the shell (CalB@ZIF-8@cap) or in the cavity (ZIF-8@cap-CalB) of the microcapsules, respectively. The resulting CalB-loaded microcapsules were robust and had a core-shell structure proved by scanning electron microscopy. Meanwhile, Fourier transform infrared spectroscopy was conducted to confirm the encapsulation of enzymes in the microcapsules and their position in the microcapsules was confirmed by fluorescence microscopy. Furthermore, through the comparison of transesterification reactions between a pair of small substrates and a pair of larger ones, the two types of CalB-loaded microcapsules showed great catalytic activity, stability and size selectivity, and the catalytic activity of CalB@ZIF-8@cap was slightly higher than that of ZIF-8@cap-CalB. Importantly, due to the large size of the microcapsules, the catalyst could be separated from the reaction system by sedimentation, thereby reducing the energy consumption for separation. These kinds of multifunctional MOF-enzyme composites may open up new opportunities for the biocatalysis and microreactor.
Collapse
Affiliation(s)
- Jieqing Lei
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Liang Qi
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Zhigang Luo
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,South China Institute of Collaborative Innovation, Dongguan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| |
Collapse
|
14
|
Opportunities for broadening the application of cell wall lytic enzymes. Appl Microbiol Biotechnol 2020; 104:9019-9040. [DOI: 10.1007/s00253-020-10862-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/14/2020] [Accepted: 08/26/2020] [Indexed: 01/21/2023]
|