1
|
Wu T, Sugiarto S, Yang R, Sathasivam T, Weerasinghe UA, Chee PL, Yap O, Nyström G, Kai D. From 3D to 4D printing of lignin towards green materials and sustainable manufacturing. MATERIALS HORIZONS 2025; 12:2789-2819. [PMID: 39895545 DOI: 10.1039/d4mh01680g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Lignin is the second most abundant renewable and sustainable biomass resource. Developing advanced manufacturing to process lignin/lignocellulose into functional materials could reduce the consumption of petroleum-based materials. 3D printing provides a promising strategy to realize complex and customized geometries of lignin materials. The heterogeneity and complexity of lignin hinder its processing via additive manufacturing, but the recent advancement in lignin modification and polymerization provides new opportunities. Here, we summarize the recent state-of-the-art 3D printing of lignin materials, including the selection and formulation of lignin materials based on different printing techniques, the chemical modification of lignin for enhanced printability, and the related application fields. Additionally, we highlight the significant role of the 3D printing of lignocellulose biomass materials, such as wood powder and agricultural wastes. It was concluded that the most challenging part is to enhance the printability of lignin materials through modification and pretreatment of lignin while keeping the whole process green and sustainable. Beyond 3D printing, we further discuss the development of smart lignin materials and their potential for 4D printing. Ultimately, we discuss the current challenges and potential opportunities for the additive manufacturing of lignin materials. We believe this review can raise awareness among researchers about the potential of lignin materials as whole materials for constructing blocks and can promote the development of 3D/4D printing of lignin towards sustainability.
Collapse
Affiliation(s)
- Tingting Wu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island 627833, Singapore.
| | - Sigit Sugiarto
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island 627833, Singapore.
| | - Ruochen Yang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island 627833, Singapore.
| | - Thenapakiam Sathasivam
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island 627833, Singapore.
| | - Udyani Aloka Weerasinghe
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Pei Lin Chee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Odelia Yap
- School of Civil and Environmental Engineering, Nanyang Technological University, N1-01a-29, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Gustav Nyström
- Cellulose & Wood Materials Laboratory, Empa, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland.
- Department of Health Science and Technology, ETH Zürich, Schmelzbergstrasse 9, CH-8092, Zürich, Switzerland
| | - Dan Kai
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island 627833, Singapore.
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
2
|
Zhu X, Li B, Fan Y, Yu J. Direct ink writing of a bio-based ink made of low concentration cellulose nanofiber crosslinked with poly (ethylene glycol) via hydroxyl-yne click chemistry. Int J Biol Macromol 2025; 306:141267. [PMID: 39988164 DOI: 10.1016/j.ijbiomac.2025.141267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 02/25/2025]
Abstract
Achieving both low solid content and printability for cellulose nanofiber inks remains challenging. In this study, mild hydroxyl-yne click chemistry was used to chemically crosslink dipropiolate ester of polyethylene glycol (DA-PEG) with 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) oxidized cellulose nanofibers (TOCN), forming TOCN-PEG (TP) inks. This crosslinking network allowed for effective viscosity control, with TP ink viscosity increasing by 128.5 % upon PEG addition. As a result, direct ink writing (DIW) 3D printing of TOCN was feasible at low concentrations (1.0-2.0 wt%). The printed TP hydrogel scaffolds exhibited high mechanical strength, bearing loads over 500 times their weight, and fluorescence due to conjugated double bonds and carbonyl groups. Additionally, cell viability rates exceeded 96 % at 24 h and 93 % at 48 h, indicating non-cytotoxicity (viability >80 %). Thus, the easily customizable TP inks prepared via hydroxyl-yne click chemistry hold promise for various applications, especially in 3D-printed bio-cellular scaffolds.
Collapse
Affiliation(s)
- Xinyi Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Bowen Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Juan Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Aghajani M, Garshasbi HR, Naghib SM, Mozafari MR. 3D Printing of Hydrogel Polysaccharides for Biomedical Applications: A Review. Biomedicines 2025; 13:731. [PMID: 40149707 PMCID: PMC11940176 DOI: 10.3390/biomedicines13030731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Additive manufacturing, also known as 3D printing, is becoming more and more popular because of its wide range of materials and flexibility in design. Layer by layer, 3D complex structures can be generated by the revolutionary computer-aided process known as 3D bioprinting. It is particularly crucial for youngsters and elderly patients and is a useful tool for tailored pharmaceutical therapy. A lot of research has been carried out recently on the use of polysaccharides as matrices for tissue engineering and medication delivery. Still, there is a great need to create affordable, sustainable bioink materials with high-quality mechanical, viscoelastic, and thermal properties as well as biocompatibility and biodegradability. The primary biological substances (biopolymers) chosen for the bioink formulation are proteins and polysaccharides, among the several resources utilized for the creation of such structures. These naturally occurring biomaterials give macromolecular structure and mechanical qualities (biomimicry), are generally compatible with tissues and cells (biocompatibility), and are harmonious with biological digesting processes (biodegradability). However, the primary difficulty with the cell-laden printing technique (bioprinting) is the rheological characteristics of these natural-based bioinks. Polysaccharides are widely used because they are abundant and reasonably priced natural polymers. Additionally, they serve as excipients in formulations for pharmaceuticals, nutraceuticals, and cosmetics. The remarkable benefits of biological polysaccharides-biocompatibility, biodegradability, safety, non-immunogenicity, and absence of secondary pollution-make them ideal 3D printing substrates. The purpose of this publication is to examine recent developments and challenges related to the 3D printing of stimuli-responsive polysaccharides for site-specific medication administration and tissue engineering.
Collapse
Affiliation(s)
- Mohammad Aghajani
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; (M.A.)
| | - Hamid Reza Garshasbi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; (M.A.)
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; (M.A.)
| | - M. R. Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, Melbourne, VIC 3168, Australia
| |
Collapse
|
4
|
Jaime-Rodríguez M, Del Prado-Audelo ML, Sosa-Hernández NA, Anaya-Trejo DP, Villarreal-Gómez LJ, Cabrera-Ramírez ÁH, Ruiz-Aguirre JA, Núñez-Tapia I, Puskar M, Marques dos Reis E, Letasiova S, Chávez-Santoscoy RA. Evaluation of Biocompatible Materials for Enhanced Mesenchymal Stem Cell Expansion: Collagen-Coated Alginate Microcarriers and PLGA Nanofibers. Biomolecules 2025; 15:345. [PMID: 40149881 PMCID: PMC11940223 DOI: 10.3390/biom15030345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Mesenchymal stem cells (MSCs) hold significant potential in regenerative medicine, tissue engineering, and cultivated meat production. However, large-scale MSC production is limited by their need for surface adherence during growth. This study evaluates two biocompatible materials-collagen-coated alginate microcarriers and polylactic-co-glycolic acid (PLGA) nanofibers-as novel growth substrates to enhance MSC proliferation. Physicochemical characterization confirmed successful collagen integration on both materials. In vitro, bone marrow-derived MSCs (bmMSCs) cultured on collagen-coated alginate microcarriers exhibited significantly enhanced growth compared to commercial microcarriers, while PLGA nanofibers supported bmMSC growth comparable to traditional growth surfaces. Scanning Electron Microscopy (SEM) revealed that bmMSCs adhered not only to the surface but also grew within the porous structure of the alginate microcarriers. Mycoplasma testing confirmed that the bmMSCs were free from contamination. Both materials were assessed for biocompatibility using ISO-10993 guidelines, demonstrating no skin or ocular irritation, supporting their potential for in situ applications in clinical and therapeutic settings. This study highlights the promise of collagen-coated alginate microcarriers and PLGA nanofibers for scalable MSC production, offering efficient, biocompatible alternatives to traditional growth surfaces in regenerative medicine and cultivated meat manufacturing. Future research should focus on optimizing these materials for larger-scale production and exploring specific applications in therapeutic and food sectors.
Collapse
Affiliation(s)
- Manuel Jaime-Rodríguez
- Tecnológico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico; (M.J.-R.)
| | - María Luisa Del Prado-Audelo
- Tecnológico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico; (M.J.-R.)
| | - Norma Angélica Sosa-Hernández
- Biomedical Sciences Department, Universidad Nacional Autónoma de México, Av. Universidad 3004, Coyoacán, Ciudad de Mexico 04510, Mexico
| | - Dulce Patricia Anaya-Trejo
- Tecnológico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico; (M.J.-R.)
| | - Luis Jesús Villarreal-Gómez
- Engineering and Technology Science Faculty, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial, Tijuana 22424, Baja California, Mexico
| | - Ángel Humberto Cabrera-Ramírez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Parque Científico Tecnológico de Yucatán, Km.5 Carretera, Sierra Papacal-Chuburná, Chuburná, Mérida 97302, Yucatán, Mexico
| | - Jesus Augusto Ruiz-Aguirre
- Tecnológico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico; (M.J.-R.)
| | - Israel Núñez-Tapia
- Materials Research Institute, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Circuito de la Investigación Científica, Coyoacán, Ciudad de Mexico 04510, Mexico
| | - Marek Puskar
- MatTek Europe, Mlynske Nivy 73, 82105 Bratislava, Slovakia
| | | | | | - Rocío Alejandra Chávez-Santoscoy
- Tecnológico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico; (M.J.-R.)
| |
Collapse
|
5
|
Tong Y, Jiang C, Ji C, Liu W, Wang Y. Innovative Applications of Nanocellulose in 3D Printing: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407956. [PMID: 39659091 DOI: 10.1002/smll.202407956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/20/2024] [Indexed: 12/12/2024]
Abstract
Cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs) are nanoscale materials with unique mechanical properties and geometry that attract considerable interest in recent years for a wide range of applications. This review pays special attention to the recent progress of CNFs and CNCs assisted 3D printing in medicine, food, engineering, and architecture fields. Various types of CNFs and CNCs used for 3D printing are summarized. The addition of nanocellulose improves the printability and quality of printed objects in certain cases, leading to greater accuracy and durability. The created functional structures with specific properties have promising applications in various fields such as medicine and food preservation and viscosity enhancement. Finally, this work highlights the transformative potential of nanocellulose-assisted 3D printing to revolutionize a range of fields and the need for continued research and development to overcome current technical challenges.
Collapse
Affiliation(s)
- Yuqi Tong
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec, H9×3V9, Canada
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Chuang Jiang
- Tianjin Key Laboratory of Pulp & Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Chuye Ji
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec, H9×3V9, Canada
| | - Wei Liu
- Tianjin Key Laboratory of Pulp & Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec, H9×3V9, Canada
| |
Collapse
|
6
|
Fan Y, Ji H, Ji X, Tian Z, Chen J. Preparation of Alkali-Resistant Lignin Nanospheres Loaded with Silver Nanoparticles and Their Applications Toward Antibiosis and Printing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405754. [PMID: 39314048 DOI: 10.1002/smll.202405754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/04/2024] [Indexed: 09/25/2024]
Abstract
Lignin nanoparticles (LNPs) loaded with silver nanoparticles have exhibited significant application potential in antibacterial and catalytic fields. However, the high solubility of LNPs in silver ammonia solution makes it difficult to achieve the reduction of Ag+ and the adsorption of silver nanoparticles. In this study, a protecting agent, terephthalic aldehyde (TA) is used to block lignin condensation and introduce aldehyde groups onto the lignin molecular backbone during lignin extraction. Furthermore, the TA stabilized lignin (TASL) is cross-linked with bisphenol A diglycidyl ether (BADGE) to enhance its alkali resistance performance and subsequently prepared into alkali-resistance BADGE- TASL hybrid LNPs (BADGE- TASL hy-LNPs) by anti-solvent precipitation and self-assembly. Because the presence of a large number of aldehyde groups in TASL compensates for the loss of phenolic hydroxyl groups caused by crosslinking reactions, a high loading of silver nanoparticles of 54.00% is obtained after redox reaction and adsorption in silver ammonia solution. When the BADGE-TASL hy-LNPs@Ag is used as an antibacterial agent, its inhibition efficiency reached ≈99%. Besides, the BADGE-TASL hy-LNPs@Ag can serve as a printing material for the preparation of conductive printing ink. Therefore, this study provides a strategy for lignin functionalization and application in printed electronics and antimicrobial fields.
Collapse
Affiliation(s)
- Yufei Fan
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Hairui Ji
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xingxiang Ji
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zhongjian Tian
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jiachuan Chen
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| |
Collapse
|
7
|
Sever M, Škrinjar D, Maver T, Belak M, Zupanič F, Anžel I, Zidarič T. The Impact of Temperature and the Duration of Freezing on a Hydrogel Used for a 3D-Bioprinted In Vitro Skin Model. Biomedicines 2024; 12:2028. [PMID: 39335542 PMCID: PMC11428255 DOI: 10.3390/biomedicines12092028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Skin bioprinting has the potential to revolutionize treatment approaches for injuries and surgical procedures, while also providing a valuable platform for assessing and screening cosmetic and pharmaceutical products. This technology offers key advantages, including flexibility and reproducibility, which enable the creation of complex, multilayered scaffolds that closely mimic the intricate microenvironment of native skin tissue. The development of an ideal hydrogel is critical for the successful bioprinting of these scaffolds with incorporated cells. In this study, we used a hydrogel formulation developed in our laboratory to fabricate a 3D-bioprinted skin model. The hydrogel composition was carefully selected based on its high compatibility with human skin cells, incorporating alginate, methyl cellulose, and nanofibrillated cellulose. One of the critical challenges in this process, particularly for its commercialization and large-scale production, is ensuring consistency with minimal batch-to-batch variations. To address this, we explored methods with which to preserve the physicochemical properties of the hydrogels, with a focus on freezing techniques. We validated the pre-frozen hydrogels' printability, rheology, and mechanical and surface properties. Our results revealed that extended freezing times significantly reduced the viscosity of the formulations due to ice crystal formation, leading to a redistribution of the polymer chains. This reduction in viscosity resulted in a more challenging extrusion and increased macro- and microporosity of the hydrogels, as confirmed by nanoCT imaging. The increased porosity led to greater water uptake, swelling, compromised scaffold integrity, and altered degradation kinetics. The insights gained from this study lay a solid foundation for advancing the development of an in vitro skin model with promising applications in preclinical and clinical research.
Collapse
Affiliation(s)
- Maja Sever
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.S.); (D.Š.); (M.B.); (T.Z.)
| | - Dominik Škrinjar
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.S.); (D.Š.); (M.B.); (T.Z.)
| | - Tina Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.S.); (D.Š.); (M.B.); (T.Z.)
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Monika Belak
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.S.); (D.Š.); (M.B.); (T.Z.)
| | - Franc Zupanič
- Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (F.Z.); (I.A.)
| | - Ivan Anžel
- Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (F.Z.); (I.A.)
| | - Tanja Zidarič
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.S.); (D.Š.); (M.B.); (T.Z.)
| |
Collapse
|
8
|
Li K, Wang H, Yan J, Shi Z, Zhu S, Cui Z. Emulsion-Templated Gelatin/Amino Acids/Chitosan Macroporous Hydrogels with Adjustable Internal Dimensions for Three-Dimensional Stem Cell Culture. ACS Biomater Sci Eng 2024; 10:4878-4890. [PMID: 39041681 DOI: 10.1021/acsbiomaterials.4c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The demand for macroporous hydrogel scaffolds with interconnected porous and open-pore structures is crucial for advancing research and development in cell culture and tissue regeneration. Existing techniques for creating 3D porous materials and controlling their porosity are currently constrained. This study introduces a novel approach for producing highly interconnected aspartic acid-gelatin macroporous hydrogels (MHs) with precisely defined open pore structures using a one-step emulsification polymerization method with surface-modified silica nanoparticles as Pickering stabilizers. Macroporous hydrogels offer adjustable pore size and pore throat size within the ranges of 50 to 130 μm and 15 to 27 μm, respectively, achieved through variations in oil-in-water ratio and solid content. The pore wall thickness of the macroporous hydrogel can be as thin as 3.37 μm and as thick as 6.7 μm. In addition, the storage modulus of the macroporous hydrogels can be as high as 7250 Pa, and it maintains an intact rate of more than 92% after being soaked in PBS for 60 days, which is also good performance for use as a biomedical scaffold material. These hydrogels supported the proliferation of human dental pulp stem cells (hDPSCs) over a 30 day incubation period, stretching the cell morphology and demonstrating excellent biocompatibility and cell adhesion. The combination of these desirable attributes makes them highly promising for applications in stem cell culture and tissue regeneration, underscoring their potential significance in advancing these fields.
Collapse
Affiliation(s)
- Kexin Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Huimin Wang
- Department of Prosthetic Dentistry, School and Hospital of Stomatology, Jilin University, Changchun 130012, P.R. China
| | - Jing Yan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Zuosen Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Song Zhu
- Department of Prosthetic Dentistry, School and Hospital of Stomatology, Jilin University, Changchun 130012, P.R. China
| | - Zhanchen Cui
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
9
|
Hu XQ, Zhu JZ, Hao Z, Tang L, Sun J, Sun WR, Hu J, Wang PY, Basmadji NP, Pedraz JL, Vairo C, Lafuente EG, Ramalingam M, Xie S, Wang R. Renewable Electroconductive Hydrogels for Accelerated Diabetic Wound Healing and Motion Monitoring. Biomacromolecules 2024; 25:3566-3582. [PMID: 38780026 DOI: 10.1021/acs.biomac.4c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Diabetic foot ulcers (DFUs), a prevalent complication of diabetes mellitus, may result in an amputation. Natural and renewable hydrogels are desirable materials for DFU dressings due to their outstanding biosafety and degradability. However, most hydrogels are usually only used for wound repair and cannot be employed to monitor motion because of their inherent poor mechanical properties and electrical conductivity. Given that proper wound stretching is beneficial for wound healing, the development of natural hydrogel patches integrated with wound repair properties and motion monitoring was expected to achieve efficient and accurate wound healing. Here, we designed a dual-network (chitosan and sodium alginate) hydrogel embedded with lignin-Ag and quercetin-melanin nanoparticles to achieve efficient wound healing and motion monitoring. The double network formed by the covalent bond and electrostatic interaction confers the hydrogel with superior mechanical properties. Instead of the usual chemical reagents, genipin extracted from Gardenia was used as a cross-linking agent for the hydrogel and consequently improved its biosafety. Furthermore, the incorporation of lignin-Ag nanoparticles greatly enhanced the mechanical strength, antibacterial efficacy, and conductivity of the hydrogel. The electrical conductivity of hydrogels gives them the capability of motion monitoring. The motion sensing mechanism is that stretching of the hydrogel induced by motion changes the conductivity of the hydrogel, thus converting the motion into an electrical signal. Meanwhile, quercetin-melanin nanoparticles confer exceptional adhesion, antioxidant, and anti-inflammatory properties to the hydrogels. The system ultimately achieved excellent wound repair and motion monitoring performance and was expected to be used for stretch-assisted safe and accurate wound repair in the future.
Collapse
Affiliation(s)
- Xiao Qian Hu
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264000, People's Republic of China
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Jia Zhi Zhu
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Zhaokun Hao
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Letian Tang
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Jian Sun
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Wan Ru Sun
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Jiaxiang Hu
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Ping Yu Wang
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Nicola Paccione Basmadji
- NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - José Luis Pedraz
- NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Claudia Vairo
- BIOSASUN S.A., Ctra. Allo-Arroniz Km1, Navarra 31263, Spain
| | | | - Murugan Ramalingam
- NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Shuyang Xie
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264000, People's Republic of China
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Ranran Wang
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| |
Collapse
|
10
|
Yang J, An X, Lu B, Cao H, Cheng Z, Tong X, Liu H, Ni Y. Lignin: A multi-faceted role/function in 3D printing inks. Int J Biol Macromol 2024; 267:131364. [PMID: 38583844 DOI: 10.1016/j.ijbiomac.2024.131364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
3D printing technology demonstrates significant potential for the rapid fabrication of tailored geometric structures. Nevertheless, the prevalent use of fossil-derived compositions in printable inks within the realm of 3D printing results in considerable environmental pollution and ecological consequences. Lignin, the second most abundant biomass source on earth, possesses attributes such as cost-effectiveness, renewability, biodegradability, and non-toxicity. Enriched with active functional groups including hydroxyl, carbonyl, carboxyl, and methyl, coupled with its rigid aromatic ring structure and inherent anti-oxidative and thermoplastic properties, lignin emerges as a promising candidate for formulating printable inks. This comprehensive review presents the utilization of lignin, either in conjunction with functional materials or through the modification of lignin derivatives, as the primary constituent (≥50 wt%) for formulating printable inks across photo-curing-based (SLA/DLP) and extrusion-based (DIW/FDM) printing technologies. Furthermore, lignin as an additive with multi-faceted roles/functions in 3D printing inks is explored. The effects of lignin on the properties of printing inks and printed objects are evaluated. Finally, this review outlines future perspectives, emphasizing key obstacles and potential opportunities for facilitating the high-value utilization of lignin in the realm of 3D printing.
Collapse
Affiliation(s)
- Jian Yang
- Tianjin Key Laboratory of Pulp and Paper, State Key Laboratory of Food Nutrition and Safety, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, No. 29, 13th Street, TEDA, Tianjin 300457, PR China; Limerick Pulp and Paper Centre, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Xingye An
- Tianjin Key Laboratory of Pulp and Paper, State Key Laboratory of Food Nutrition and Safety, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, No. 29, 13th Street, TEDA, Tianjin 300457, PR China; Limerick Pulp and Paper Centre, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| | - Bin Lu
- Zhejiang Jingxing Paper Co., Ltd., No. 1, Jingxing Industry Zone, Jingxing First Road, Caoqiao Street, Pinghu, Zhejiang Province 314214, PR China
| | - Haibing Cao
- Zhejiang Jingxing Paper Co., Ltd., No. 1, Jingxing Industry Zone, Jingxing First Road, Caoqiao Street, Pinghu, Zhejiang Province 314214, PR China
| | - Zhengbai Cheng
- Zhejiang Jingxing Paper Co., Ltd., No. 1, Jingxing Industry Zone, Jingxing First Road, Caoqiao Street, Pinghu, Zhejiang Province 314214, PR China
| | - Xin Tong
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Hongbin Liu
- Tianjin Key Laboratory of Pulp and Paper, State Key Laboratory of Food Nutrition and Safety, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, No. 29, 13th Street, TEDA, Tianjin 300457, PR China.
| | - Yonghao Ni
- Limerick Pulp and Paper Centre, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| |
Collapse
|
11
|
Thakur MSH, Shi C, Kearney LT, Saadi MASR, Meyer MD, Naskar AK, Ajayan PM, Rahman MM. Three-dimensional printing of wood. SCIENCE ADVANCES 2024; 10:eadk3250. [PMID: 38489368 PMCID: PMC10942110 DOI: 10.1126/sciadv.adk3250] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024]
Abstract
Natural wood has served as a foundational material for buildings, furniture, and architectural structures for millennia, typically shaped through subtractive manufacturing techniques. However, this process often generates substantial wood waste, leading to material inefficiency and increased production costs. A potential opportunity arises if complex wood structures can be created through additive processes. Here, we demonstrate an additive-free, water-based ink made of lignin and cellulose, the primary building blocks of natural wood, that can be used to three-dimensional (3D) print architecturally designed wood structures via direct ink writing. The resulting printed structures, after heat treatment, closely resemble the visual, textural, olfactory, and macro-anisotropic properties, including mechanical properties, of natural wood. Our results pave the way for 3D-printed wooden construction with a sustainable pathway to upcycle/recycle natural wood.
Collapse
Affiliation(s)
| | - Chen Shi
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA
| | - Logan T. Kearney
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - M. A. S. R. Saadi
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA
| | | | - Amit K. Naskar
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Pulickel M. Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA
| | - Muhammad M. Rahman
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA
| |
Collapse
|
12
|
Li X, Jiang G, Wang G, Zhou J, Zhang Y, Zhao D. Promising cellulose-based functional gels for advanced biomedical applications: A review. Int J Biol Macromol 2024; 260:129600. [PMID: 38266849 DOI: 10.1016/j.ijbiomac.2024.129600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/03/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Novel biomedical materials provide a new horizon for the diagnosis/treatment of diseases and tissue repair in medical engineering. As the most abundant biomass polymer on earth, cellulose is characterized by natural biocompatibility, good mechanical properties, and structure-performance designability. Owing to these outstanding features, cellulose as a biomacromolecule can be designed as functional biomaterials via hydrogen bonding (H-bonding) interaction or chemical modification for human tissue repair, implantable tissue organs, and controlling drug release. Moreover, cellulose can also be used to construct medical sensors for monitoring human physiological signals. In this study, the structural characteristics, functionalization approaches, and advanced biomedical applications of cellulose are reviewed. The current status and application prospects of cellulose and its functional materials for wound dressings, drug delivery, tissue engineering, and electronic skin (e-skin) are discussed. Finally, the key technologies and methods used for designing cellulosic biomaterials and broadening their application prospects in biomedical fields are highlighted.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Geyuan Jiang
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Gang Wang
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Jianhong Zhou
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang 110142, PR China.
| | - Yuehong Zhang
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang 110142, PR China.
| | - Dawei Zhao
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang 110142, PR China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China; Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
13
|
Khadem E, Ghafarzadeh M, Kharaziha M, Sun F, Zhang X. Lignin derivatives-based hydrogels for biomedical applications. Int J Biol Macromol 2024; 261:129877. [PMID: 38307436 DOI: 10.1016/j.ijbiomac.2024.129877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/21/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Recently, numerous studies have been conducted on renewable polymers derived from different natural sources, exploring their suitability for diverse biomedical applications. Lignin as one of the main components of lignocellulosic has garnered significant attention as a promising alternative to petroleum-based polymers. This interest is primarily due to its cost-effectiveness, biocompatibility, eco-friendly nature, as well as its antioxidant and antimicrobial properties. These characteristics could be more beneficial when incorporating lignin into the formulation of value-added products. Although lignin has a chemical structure that is suitable for various applications, these characteristics require modifications to guarantee that the resultant materials display the desired biological, chemical, and physical properties when applied in the creation of biodegradable hydrogels, particularly for biomedical purposes. This study delineates the recent modification approaches that have been employed in the creation of lignin-based hydrogels. These strategies encompass both chemical and physical interactions with other polymers. Additionally, this review encompasses an examination of the current applications of lignin hydrogels, spanning their use as scaffolds for tissue engineering, carriers for pharmaceuticals, materials for wound dressings and biosensors, and elements in flexible and wearable electronics. Finally, we delve into the challenges and constraints associated with these materials, discuss the necessary steps required to attain the appropriate properties for the development of innovative lignin-based hydrogels, and derive conclusions based on the presented findings.
Collapse
Affiliation(s)
- Elham Khadem
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mohsen Ghafarzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xueming Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
14
|
Fazeli M, Mukherjee S, Baniasadi H, Abidnejad R, Mujtaba M, Lipponen J, Seppälä J, Rojas OJ. Lignin beyond the status quo: recent and emerging composite applications. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:593-630. [PMID: 38264324 PMCID: PMC10802143 DOI: 10.1039/d3gc03154c] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/30/2023] [Indexed: 01/25/2024]
Abstract
The demand for biodegradable materials across various industries has recently surged due to environmental concerns and the need for the adoption of renewable materials. In this context, lignin has emerged as a promising alternative, garnering significant attention as a biogenic resource that endows functional properties. This is primarily ascribed to its remarkable origin and structure that explains lignin's capacity to bind other molecules, reinforce composites, act as an antioxidant, and endow antimicrobial effects. This review summarizes recent advances in lignin-based composites, with particular emphasis on innovative methods for modifying lignin into micro and nanostructures and evaluating their functional contribution. Indeed, lignin-based composites can be tailored to have superior physicomechanical characteristics, biodegradability, and surface properties, thereby making them suitable for applications beyond the typical, for instance, in ecofriendly adhesives and advanced barrier technologies. Herein, we provide a comprehensive overview of the latest progress in the field of lignin utilization in emerging composite materials.
Collapse
Affiliation(s)
- Mahyar Fazeli
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University FI-00076 Aalto Finland
| | - Sritama Mukherjee
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University FI-00076 Aalto Finland
- Division of Fiber and Polymer Technology, CBH, KTH Royal Institute of Technology Teknikringen 56-58 SE-100 44 Stockholm Sweden
| | - Hossein Baniasadi
- Polymer Technology, School of Chemical Engineering, Aalto University Espoo Finland
| | - Roozbeh Abidnejad
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University FI-00076 Aalto Finland
| | - Muhammad Mujtaba
- VTT Technical Research Centre of Finland Ltd P.O. Box 1000 Espoo FI-02044 Finland
| | - Juha Lipponen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University FI-00076 Aalto Finland
| | - Jukka Seppälä
- Polymer Technology, School of Chemical Engineering, Aalto University Espoo Finland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University FI-00076 Aalto Finland
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry, Department of Wood Science, 2360 East Mall, The University of British Columbia Vancouver BC V6T 1Z3 Canada
| |
Collapse
|
15
|
Pita-Vilar M, Concheiro A, Alvarez-Lorenzo C, Diaz-Gomez L. Recent advances in 3D printed cellulose-based wound dressings: A review on in vitro and in vivo achievements. Carbohydr Polym 2023; 321:121298. [PMID: 37739531 DOI: 10.1016/j.carbpol.2023.121298] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/24/2023] [Accepted: 08/12/2023] [Indexed: 09/24/2023]
Abstract
Chronic wounds, especially diabetic ulcers, pose a significant challenge in regenerative medicine. Cellulose derivatives offer remarkable wound management properties, such as effective absorption and retention of wound exudates, maintaining an optimal moisture environment crucial for successful chronic wound regeneration. However, conventional dressings have limited efficacy in managing and healing these types of skin lesions, driving scientists to explore innovative approaches. The emergence of 3D printing has enabled personalized dressings that meet individual patient needs, improving the healing process and patient comfort. Cellulose derivatives meet the demanding requirements for biocompatibility, printability, and biofabrication necessary for 3D printing of biologically active scaffolds. However, the potential applications of nanocellulose and cellulose derivative-based inks for wound regeneration remain largely unexplored. Thus, this review provides a comprehensive overview of recent advancements in cellulose-based inks for 3D printing of personalized wound dressings. The composition and biofabrication approaches of cellulose-based wound dressings are thoroughly discussed, including the functionalization with bioactive molecules and antibiotics for improved wound regeneration. Similarly, the in vitro and in vivo performance of these dressings is extensively examined. In summary, this review aims to highlight the exceptional advantages and diverse applications of 3D printed cellulose-based dressings in personalized wound care.
Collapse
Affiliation(s)
- Maria Pita-Vilar
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Luis Diaz-Gomez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
16
|
Ferreira FV, Souza AG, Ajdary R, de Souza LP, Lopes JH, Correa DS, Siqueira G, Barud HS, Rosa DDS, Mattoso LH, Rojas OJ. Nanocellulose-based porous materials: Regulation and pathway to commercialization in regenerative medicine. Bioact Mater 2023; 29:151-176. [PMID: 37502678 PMCID: PMC10368849 DOI: 10.1016/j.bioactmat.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 06/24/2023] [Indexed: 07/29/2023] Open
Abstract
We review the recent progress that have led to the development of porous materials based on cellulose nanostructures found in plants and other resources. In light of the properties that emerge from the chemistry, shape and structural control, we discuss some of the most promising uses of a plant-based material, nanocellulose, in regenerative medicine. Following a brief discussion about the fundamental aspects of self-assembly of nanocellulose precursors, we review the key strategies needed for material synthesis and to adjust the architecture of the materials (using three-dimensional printing, freeze-casted porous materials, and electrospinning) according to their uses in tissue engineering, artificial organs, controlled drug delivery and wound healing systems, among others. For this purpose, we map the structure-property-function relationships of nanocellulose-based porous materials and examine the course of actions that are required to translate innovation from the laboratory to industry. Such efforts require attention to regulatory aspects and market pull. Finally, the key challenges and opportunities in this nascent field are critically reviewed.
Collapse
Affiliation(s)
- Filipe V. Ferreira
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation – Rua XV de Novembro, 1452, São Carlos, SP, 13560-979, Brazil
| | - Alana G. Souza
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | - Rubina Ajdary
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P. O. Box 16300, Aalto, Espoo, FIN-00076, Finland
| | - Lucas P. de Souza
- College of Engineering and Physical Sciences, Aston Institute of Materials Research, Aston University, Birmingham, UK
| | - João H. Lopes
- Department of Chemistry, Division of Fundamental Sciences (IEF), Technological Institute of Aeronautics (ITA), São Jose dos Campos, SP, Brazil
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation – Rua XV de Novembro, 1452, São Carlos, SP, 13560-979, Brazil
| | - Gilberto Siqueira
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Hernane S. Barud
- Biopolymers and Biomaterials Laboratory (BIOPOLMAT), University of Araraquara (UNIARA), Araraquara, 14801-340, São Paulo, Brazil
| | - Derval dos S. Rosa
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | - Luiz H.C. Mattoso
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation – Rua XV de Novembro, 1452, São Carlos, SP, 13560-979, Brazil
| | - Orlando J. Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P. O. Box 16300, Aalto, Espoo, FIN-00076, Finland
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and, Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
17
|
Alogla A. Enhancing antioxidant delivery through 3D printing: a pathway to advanced therapeutic strategies. Front Bioeng Biotechnol 2023; 11:1256361. [PMID: 37860625 PMCID: PMC10583562 DOI: 10.3389/fbioe.2023.1256361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
The rapid advancement of 3D printing has transformed industries, including medicine and pharmaceuticals. Integrating antioxidants into 3D-printed structures offers promising therapeutic strategies for enhanced antioxidant delivery. This review explores the synergistic relationship between 3D printing and antioxidants, focusing on the design and fabrication of antioxidant-loaded constructs. Incorporating antioxidants into 3D-printed matrices enables controlled release and localized delivery, improving efficacy while minimizing side effects. Customization of physical and chemical properties allows tailoring of antioxidant release kinetics, distribution, and degradation profiles. Encapsulation techniques such as direct mixing, coating, and encapsulation are discussed. Material selection, printing parameters, and post-processing methods significantly influence antioxidant release kinetics and stability. Applications include wound healing, tissue regeneration, drug delivery, and personalized medicine. This comprehensive review aims to provide insights into 3D printing-assisted antioxidant delivery systems, facilitating advancements in medicine and improved patient outcomes for oxidative stress-related disorders.
Collapse
Affiliation(s)
- Ageel Alogla
- Industrial Engineering Department, College of Engineering (AlQunfudhah), Umm Al-Qura University, Mecca, Saudi Arabia
| |
Collapse
|
18
|
Jayan SS, Jayan JS, Saritha A. A review on recent advances towards sustainable development of bio-inspired agri-waste based cellulose aerogels. Int J Biol Macromol 2023; 248:125928. [PMID: 37481183 DOI: 10.1016/j.ijbiomac.2023.125928] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/25/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Cellulose aerogel (CA) is considered to be the most promising material due to its extraordinary properties like unique microstructure, porosity, large specific surface area, biodegradability, renewable nature and lightweight. Cellulosic aerogels are thus found to have potential applications in different fields especially in water purification and biomedical field. Agricultural waste based cellulose aerogels are recently getting wider attention owing to its sustainability. The synthesis methods of agri-waste based cellulose aerogels, its properties and application in different fields especially in the field of water purification are detailed in a comprehensive manner. This review tries to bring light into the commercialization of value-added products from sustainable, cheap agricultural waste material and tries to motivate young researchers.
Collapse
Affiliation(s)
- Sajitha S Jayan
- Department of Chemistry, Bishop Moore College, Mavelikkara, Kerala, India
| | - Jitha S Jayan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India; Department of Chemistry, National Institute of Technology, Calicut, Kerala, India.
| | - Appukuttan Saritha
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India.
| |
Collapse
|
19
|
Hachimi Alaoui C, Réthoré G, Weiss P, Fatimi A. Sustainable Biomass Lignin-Based Hydrogels: A Review on Properties, Formulation, and Biomedical Applications. Int J Mol Sci 2023; 24:13493. [PMID: 37686299 PMCID: PMC10487582 DOI: 10.3390/ijms241713493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Different techniques have been developed to overcome the recalcitrant nature of lignocellulosic biomass and extract lignin biopolymer. Lignin has gained considerable interest owing to its attractive properties. These properties may be more beneficial when including lignin in the preparation of highly desired value-added products, including hydrogels. Lignin biopolymer, as one of the three major components of lignocellulosic biomaterials, has attracted significant interest in the biomedical field due to its biocompatibility, biodegradability, and antioxidant and antimicrobial activities. Its valorization by developing new hydrogels has increased in recent years. Furthermore, lignin-based hydrogels have shown great potential for various biomedical applications, and their copolymerization with other polymers and biopolymers further expands their possibilities. In this regard, lignin-based hydrogels can be synthesized by a variety of methods, including but not limited to interpenetrating polymer networks and polymerization, crosslinking copolymerization, crosslinking grafted lignin and monomers, atom transfer radical polymerization, and reversible addition-fragmentation transfer polymerization. As an example, the crosslinking mechanism of lignin-chitosan-poly(vinyl alcohol) (PVA) hydrogel involves active groups of lignin such as hydroxyl, carboxyl, and sulfonic groups that can form hydrogen bonds (with groups in the chemical structures of chitosan and/or PVA) and ionic bonds (with groups in the chemical structures of chitosan and/or PVA). The aim of this review paper is to provide a comprehensive overview of lignin-based hydrogels and their applications, focusing on the preparation and properties of lignin-based hydrogels and the biomedical applications of these hydrogels. In addition, we explore their potential in wound healing, drug delivery systems, and 3D bioprinting, showcasing the unique properties of lignin-based hydrogels that enable their successful utilization in these areas. Finally, we discuss future trends in the field and draw conclusions based on the findings presented.
Collapse
Affiliation(s)
- Chaymaa Hachimi Alaoui
- Chemical Science and Engineering Research Team (ERSIC), FPBM, Sultan Moulay Slimane University, Mghila, P.O. Box 592, Beni Mellal 23000, Morocco;
- Nantes Université, Oniris, Univ Angers, INSERM, Regenerative Medicine and Skeleton, RmeS, UMR 1229, F-44000 Nantes, France
| | - Gildas Réthoré
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RmeS, UMR 1229, F-44000 Nantes, France; (G.R.); (P.W.)
| | - Pierre Weiss
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RmeS, UMR 1229, F-44000 Nantes, France; (G.R.); (P.W.)
| | - Ahmed Fatimi
- Chemical Science and Engineering Research Team (ERSIC), FPBM, Sultan Moulay Slimane University, Mghila, P.O. Box 592, Beni Mellal 23000, Morocco;
| |
Collapse
|
20
|
Vasile C, Baican M. Lignins as Promising Renewable Biopolymers and Bioactive Compounds for High-Performance Materials. Polymers (Basel) 2023; 15:3177. [PMID: 37571069 PMCID: PMC10420922 DOI: 10.3390/polym15153177] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
The recycling of biomass into high-value-added materials requires important developments in research and technology to create a sustainable circular economy. Lignin, as a component of biomass, is a multipurpose aromatic polymer with a significant potential to be used as a renewable bioresource in many fields in which it acts both as promising biopolymer and bioactive compound. This comprehensive review gives brief insights into the recent research and technological trends on the potential of lignin development and utilization. It is divided into ten main sections, starting with an outlook on its diversity; main properties and possibilities to be used as a raw material for fuels, aromatic chemicals, plastics, or thermoset substitutes; and new developments in the use of lignin as a bioactive compound and in nanoparticles, hydrogels, 3D-printing-based lignin biomaterials, new sustainable biomaterials, and energy production and storage. In each section are presented recent developments in the preparation of lignin-based biomaterials, especially the green approaches to obtaining nanoparticles, hydrogels, and multifunctional materials as blends and bio(nano)composites; most suitable lignin type for each category of the envisaged products; main properties of the obtained lignin-based materials, etc. Different application categories of lignin within various sectors, which could provide completely sustainable energy conversion, such as in agriculture and environment protection, food packaging, biomedicine, and cosmetics, are also described. The medical and therapeutic potential of lignin-derived materials is evidenced in applications such as antimicrobial, antiviral, and antitumor agents; carriers for drug delivery systems with controlled/targeting drug release; tissue engineering and wound healing; and coatings, natural sunscreen, and surfactants. Lignin is mainly used for fuel, and, recently, studies highlighted more sustainable bioenergy production technologies, such as the supercapacitor electrode, photocatalysts, and photovoltaics.
Collapse
Affiliation(s)
- Cornelia Vasile
- Romanian Academy, “P. Poni” Institute of Macromolecular Chemistry, Physical Chemistry of Polymers Department 41A Grigore Ghica Voda Alley, RO700487 Iaşi, Romania
| | - Mihaela Baican
- “Grigore T. Popa” Medicine and Pharmacy University, Faculty of Pharmacy, Pharmaceutical Sciences I Department, Laboratory of Pharmaceutical Physics, 16 University Street, RO700115 Iaşi, Romania;
| |
Collapse
|
21
|
Shokrani H, Shokrani A, Seidi F, Mashayekhi M, Kar S, Nedeljkovic D, Kuang T, Saeb MR, Mozafari M. Polysaccharide-based biomaterials in a journey from 3D to 4D printing. Bioeng Transl Med 2023; 8:e10503. [PMID: 37476065 PMCID: PMC10354780 DOI: 10.1002/btm2.10503] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/31/2023] [Accepted: 02/18/2023] [Indexed: 07/22/2023] Open
Abstract
3D printing is a state-of-the-art technology for the fabrication of biomaterials with myriad applications in translational medicine. After stimuli-responsive properties were introduced to 3D printing (known as 4D printing), intelligent biomaterials with shape configuration time-dependent character have been developed. Polysaccharides are biodegradable polymers sensitive to several physical, chemical, and biological stimuli, suited for 3D and 4D printing. On the other hand, engineering of mechanical strength and printability of polysaccharide-based scaffolds along with their aneural, avascular, and poor metabolic characteristics need to be optimized varying printing parameters. Multiple disciplines such as biomedicine, chemistry, materials, and computer sciences should be integrated to achieve multipurpose printable biomaterials. In this work, 3D and 4D printing technologies are briefly compared, summarizing the literature on biomaterials engineering though printing techniques, and highlighting different challenges associated with 3D/4D printing, as well as the role of polysaccharides in the technological shift from 3D to 4D printing for translational medicine.
Collapse
Affiliation(s)
- Hanieh Shokrani
- Jiangsu Co‐Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjingChina
- Department of Chemical EngineeringSharif University of TechnologyTehranIran
| | | | - Farzad Seidi
- Jiangsu Co‐Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjingChina
| | | | - Saptarshi Kar
- College of Engineering and Technology, American University of the Middle EastKuwait
| | - Dragutin Nedeljkovic
- College of Engineering and Technology, American University of the Middle EastKuwait
| | - Tairong Kuang
- College of Material Science and Engineering, Zhejiang University of TechnologyHangzhouChina
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative MedicineIran University of Medical SciencesTehranIran
| |
Collapse
|
22
|
Shah SWA, Xu Q, Ullah MW, Zahoor, Sethupathy S, Morales GM, Sun J, Zhu D. Lignin-based additive materials: A review of current status, challenges, and future perspectives. ADDITIVE MANUFACTURING 2023; 74:103711. [DOI: 10.1016/j.addma.2023.103711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
23
|
Li Y, Peng Y, Hu Y, Liu J, Yuan T, Zhou W, Dong X, Wang C, Binks BP, Yang Z. Fabrication of Poly(ε-caprolactone)-embedded Lignin-Chitosan Nanocomposite Porous Scaffolds from Pickering Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6947-6956. [PMID: 37172292 DOI: 10.1021/acs.langmuir.2c02942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Poly(ε-caprolactone) (PCL)-incorporated lignin-chitosan biomass-based nanocomposite porous scaffolds have been effectively prepared by templating oil-in-water Pickering high internal phase emulsions (HIPEs). PCL is dissolved in oil and chitosan and lignin nanoparticles originate in water. The continuous phase of the emulsions is gelled by cross-linking of chitosan with genipin and then freeze-dried to obtain porous scaffolds. The resulting scaffolds display interconnected and tunable pore structures. An increase in PCL content increases the mechanical strength and greatly reduces the water absorption capacity of the scaffolds. Scaffolds loaded with the anti-bacterial drug enrofloxacin show a slow drug release profile, adjustable release rate, and favorable long-term anti-bacterial activity. Moreover, Pickering emulsion templates with suitable viscosity are used as 3D printing inks to construct porous scaffolds with personalized geometry. The results imply that the simplicity and versatility of the technique of combining freeze-drying with Pickering HIPE templates is a promising approach to fabricate hydrophobic biopolymer-incorporated biomass-based nanocomposite porous scaffolds for biomedical applications.
Collapse
Affiliation(s)
- Yaozong Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yingying Peng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yang Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jian Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Teng Yuan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Wuyi Zhou
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xianming Dong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Chaoyang Wang
- Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull HU6 7RX, U.K
| | - Zhuohong Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| |
Collapse
|
24
|
Mukheja Y, Kaur J, Pathania K, Sah SP, Salunke DB, Sangamwar AT, Pawar SV. Recent advances in pharmaceutical and biotechnological applications of lignin-based materials. Int J Biol Macromol 2023; 241:124601. [PMID: 37116833 DOI: 10.1016/j.ijbiomac.2023.124601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
Lignin, a versatile and abundant biomass-derived polymer, possesses a wide array of properties that makes it a promising material for biotechnological applications. Lignin holds immense potential in the biotechnology and pharmaceutical field due to its biocompatibility, high carbon content, low toxicity, ability to be converted into composites, thermal stability, antioxidant, UV-protectant, and antibiotic activity. Notably, lignin is an environmental friendly alternative to synthetic plastic and fossil-based materials because of its inherent biodegradability, safety, and sustainability potential. The most important findings related to the use of lignin and lignin-based materials are reported in this review, providing an overview of the methods and techniques used for their manufacturing and modification. Additionally, it emphasizes on recent research and the current state of applications of lignin-based materials in the biomedical and pharmaceutical fields and also highlights the challenges and opportunities that need to be overcome to fully realize the potential of lignin biopolymer. An in-depth discussion of recent developments in lignin-based material applications, including drug delivery, tissue engineering, wound dressing, pharmaceutical excipients, biosensors, medical devices, and several other biotechnological applications, is provided in this review article.
Collapse
Affiliation(s)
- Yashdeep Mukheja
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Jaspreet Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Khushboo Pathania
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Sangeeta P Sah
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | - Abhay T Sangamwar
- National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, India
| | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| |
Collapse
|
25
|
Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue engineering: A review. Int J Biol Macromol 2023; 232:123450. [PMID: 36709808 DOI: 10.1016/j.ijbiomac.2023.123450] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/26/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Sodium alginate (SA) is an inexpensive and biocompatible biomaterial with fast and gentle crosslinking that has been widely used in biological soft tissue repair/regeneration. Especially with the advent of 3D bioprinting technology, SA hydrogels have been applied more deeply in tissue engineering due to their excellent printability. Currently, the research on material modification, molding process and application of SA-based composite hydrogels has become a hot topic in tissue engineering, and a lot of fruitful results have been achieved. To better help readers have a comprehensive understanding of the development status of SA based hydrogels and their molding process in tissue engineering, in this review, we summarized SA modification methods, and provided a comparative analysis of the characteristics of various SA based hydrogels. Secondly, various molding methods of SA based hydrogels were introduced, the processing characteristics and the applications of different molding methods were analyzed and compared. Finally, the applications of SA based hydrogels in tissue engineering were reviewed, the challenges in their applications were also analyzed, and the future research directions were prospected. We believe this review is of great helpful for the researchers working in biomedical and tissue engineering.
Collapse
|
26
|
Keck S, Liske O, Seidler K, Steyrer B, Gorsche C, Knaus S, Baudis S. Synthesis of a Liquid Lignin-Based Methacrylate Resin and Its Application in 3D Printing without Any Reactive Diluents. Biomacromolecules 2023; 24:1751-1762. [PMID: 36926866 PMCID: PMC10091419 DOI: 10.1021/acs.biomac.2c01505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
3D printing of bio-based and renewable polymers such as lignin has gained research attention during the last few decades. We report on the synthesis and characterization of a liquid lignin-based photopolymer and its application in additive manufacturing (AM). Wheat straw soda lignin is liquified in an oxyalkylation reaction with propylene oxide under alkaline conditions and modified with methacryloyl chloride to obtain a lignin-based methacrylate resin. Ninety percent of the functional hydroxyl groups are grafted during the synthesis. The photopolymerization efficiency was evaluated by real-time-NIR-photorheology experiments with two different photoinitiators, leading to double bond conversions (DBC) of ≥80%. 3D-printing experiments of the methacrylated lignin were performed with the hot lithography technology. For the first time, a light-curable lignin derivative with a lignin content of over 30% was successfully 3D printed via vat photopolymerization without any reactive diluents, which is a significant improvement over current state-of-the-art solutions. This outstanding result is a motivating proof of concept and a promising starting point for the in-depth evaluation of bio-based precursors as an alternative to nonrenewable derivatives for 3D printing.
Collapse
Affiliation(s)
- Sarah Keck
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Olga Liske
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Konstanze Seidler
- Cubicure GmbH, Gutheil-Schoder-Gasse 17, Tech Park Vienna, 1230 Vienna, Austria
| | - Bernhard Steyrer
- Cubicure GmbH, Gutheil-Schoder-Gasse 17, Tech Park Vienna, 1230 Vienna, Austria
| | - Christian Gorsche
- Cubicure GmbH, Gutheil-Schoder-Gasse 17, Tech Park Vienna, 1230 Vienna, Austria
| | - Simone Knaus
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Stefan Baudis
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| |
Collapse
|
27
|
Österberg M, Henn KA, Farooq M, Valle-Delgado JJ. Biobased Nanomaterials─The Role of Interfacial Interactions for Advanced Materials. Chem Rev 2023; 123:2200-2241. [PMID: 36720130 PMCID: PMC9999428 DOI: 10.1021/acs.chemrev.2c00492] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This review presents recent advances regarding biomass-based nanomaterials, focusing on their surface interactions. Plant biomass-based nanoparticles, like nanocellulose and lignin from industry side streams, hold great potential for the development of lightweight, functional, biodegradable, or recyclable material solutions for a sustainable circular bioeconomy. However, to obtain optimal properties of the nanoparticles and materials made thereof, it is crucial to control the interactions both during particle production and in applications. Herein we focus on the current understanding of these interactions. Solvent interactions during particle formation and production, as well as interactions with water, polymers, cells and other components in applications, are addressed. We concentrate on cellulose and lignin nanomaterials and their combination. We demonstrate how the surface chemistry of the nanomaterials affects these interactions and how excellent performance is only achieved when the interactions are controlled. We furthermore introduce suitable methods for probing interactions with nanomaterials, describe their advantages and challenges, and introduce some less commonly used methods and discuss their possible applications to gain a deeper understanding of the interfacial chemistry of biobased nanomaterials. Finally, some gaps in current understanding and interesting emerging research lines are identified.
Collapse
Affiliation(s)
- Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150Espoo, Finland
| | - K Alexander Henn
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150Espoo, Finland
| | - Muhammad Farooq
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150Espoo, Finland
| | - Juan José Valle-Delgado
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150Espoo, Finland
| |
Collapse
|
28
|
Jiang B, Jiao H, Guo X, Chen G, Guo J, Wu W, Jin Y, Cao G, Liang Z. Lignin-Based Materials for Additive Manufacturing: Chemistry, Processing, Structures, Properties, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206055. [PMID: 36658694 PMCID: PMC10037990 DOI: 10.1002/advs.202206055] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The utilization of lignin, the most abundant aromatic biomass component, is at the forefront of sustainable engineering, energy, and environment research, where its abundance and low-cost features enable widespread application. Constructing lignin into material parts with controlled and desired macro- and microstructures and properties via additive manufacturing has been recognized as a promising technology and paves the way to the practical application of lignin. Considering the rapid development and significant progress recently achieved in this field, a comprehensive and critical review and outlook on three-dimensional (3D) printing of lignin is highly desirable. This article fulfils this demand with an overview on the structure of lignin and presents the state-of-the-art of 3D printing of pristine lignin and lignin-based composites, and highlights the key challenges. It is attempted to deliver better fundamental understanding of the impacts of morphology, microstructure, physical, chemical, and biological modifications, and composition/hybrids on the rheological behavior of lignin/polymer blends, as well as, on the mechanical, physical, and chemical performance of the 3D printed lignin-based materials. The main points toward future developments involve hybrid manufacturing, in situ polymerization, and surface tension or energy driven molecular segregation are also elaborated and discussed to promote the high-value utilization of lignin.
Collapse
Affiliation(s)
- Bo Jiang
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Huan Jiao
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Xinyu Guo
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Gegu Chen
- Beijing Key Laboratory of Lignocellulosic ChemistryBeijing Forestry UniversityBeijing100083China
| | - Jiaqi Guo
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Wenjuan Wu
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Yongcan Jin
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Guozhong Cao
- Department of Materials Science and EngineeringUniversity of WashingtonSeattleWA98195‐2120USA
| | - Zhiqiang Liang
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesJoint International Research Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhou215123China
| |
Collapse
|
29
|
Zhou M, Fakayode OA, Ren M, Li H, Liang J, Zhou C. Green and sustainable extraction of lignin by deep eutectic solvent, its antioxidant activity, and applications in the food industry. Crit Rev Food Sci Nutr 2023; 64:7201-7219. [PMID: 36815260 DOI: 10.1080/10408398.2023.2181762] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Lignin, an amorphous biomacromolecule abundantly distributed in the plant kingdom, has gained considerable attention due to its intrinsic bioactivities and renewable nature. Owing to its polyphenolic structure, lignin has a variety of human health activities, including antioxidant, antimicrobial, antidiabetic, antitumor, and other activities. The extraction of lignin from various sources in a green and sustainable manner is critical in the food industry. Deep eutectic solvent (DES) has recently been recognized as a class of safe and environmentally friendly media capable of efficiently extracting lignin. This article comprehensively reviews the recent advances in lignin extraction using DES, discusses the influential factors on the antioxidant activity of lignin, interprets the relationship between antioxidant activity and lignin structure, and overviews the applications of lignin in the food industry. We aim to highlight the advantages of DES in lignin extraction and valorization from the nutrition and food views.
Collapse
Affiliation(s)
- Man Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Olugbenga Abiola Fakayode
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Department of Agricultural and Food Engineering, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| | - Manni Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Haoxin Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Jiakang Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
30
|
Bazazi S, Hosseini SP, Hashemi E, Rashidzadeh B, Liu Y, Saeb MR, Xiao H, Seidi F. Polysaccharide-based C-dots and polysaccharide/C-dot nanocomposites: fabrication strategies and applications. NANOSCALE 2023; 15:3630-3650. [PMID: 36728615 DOI: 10.1039/d2nr07065k] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
C-dots are a new class of materials with vast applications. The synthesis of bio-based C-dots has attracted increasing attention in recent years. Polysaccharides being the most abundant natural materials with high biodegradability and no toxicity have been the focus of researchers for the synthesis of C-dots. C-dots obtained from polysaccharides are generally fabricated via thermal procedures, carbonization, and microwave pyrolysis. Small size, photo-induced electron transfer (PET), and highly adjustable luminosity behavior are the most important physical and chemical properties of C-dots. However, C-dot/polysaccharide composites can be introduced as a new generation of composites that combine the features of both C-dots and polysaccharides having a wide range of applications in biomedicines, biosensors, drug delivery systems, etc. This review demonstrates the features, raw materials, and methods used for the fabrication of C-dots derived from different polysaccharides. Furthermore, the properties, applications, and synthesis conditions of various C-dot/polysaccharide composites are discussed in detail.
Collapse
Affiliation(s)
- Sina Bazazi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Seyedeh Parisa Hosseini
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Esmaeil Hashemi
- Department of Chemistry, Faculty of Science, University of Guilan, PO Box 41335-1914, Rasht, Iran
| | | | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3 Canada.
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
31
|
Rosendahl J, Zarna C, Håkansson J, Chinga-Carrasco G. Gene-Expression Analysis of Human Fibroblasts Affected by 3D-Printed Carboxylated Nanocellulose Constructs. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010121. [PMID: 36671693 PMCID: PMC9854960 DOI: 10.3390/bioengineering10010121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
Three-dimensional (3D) printing has emerged as a highly valuable tool to manufacture porous constructs. This has major advantages in, for example, tissue engineering, in which 3D scaffolds provide a microenvironment with adequate porosity for cell growth and migration as a simulation of tissue regeneration. In this study, we assessed the suitability of three cellulose nanofibrils (CNF) that were obtained through 2,2,6,6-tetramethylpyperidine-1-oxyl (TEMPO)-mediated oxidation. The CNFs were obtained by applying three levels of carboxylation, i.e., 2.5, 3.8, and 6.0 mmol sodium hypochlorite (NaClO) per gram of cellulose. The CNFs exhibited different nanofibrillation levels, affecting the corresponding viscosity and 3D printability of the CNF gels (0.6 wt%). The scaffolds were manufactured by micro-extrusion and the nanomechanical properties were assessed with nanoindentation. Importantly, fibroblasts were grown on the scaffolds and the expression levels of the marker genes, which are relevant for wound healing and proliferation, were assessed in order to reveal the effect of the 3D-scaffold microenvironment of the cells.
Collapse
Affiliation(s)
- Jennifer Rosendahl
- Unit of Biological Function, Division Materials and Production, RISE Research Institutes of Sweden, P.O. Box 857, SE-50115 Borås, Sweden
| | - Chiara Zarna
- RISE PFI, Høgskoleringen 6b, 7491 Trondheim, Norway
| | - Joakim Håkansson
- Unit of Biological Function, Division Materials and Production, RISE Research Institutes of Sweden, P.O. Box 857, SE-50115 Borås, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Gothenburg University, P.O. Box 440, SE-40530 Gothenburg, Sweden
| | | |
Collapse
|
32
|
Influence of Cross-Linking Conditions on Drying Kinetics of Alginate Hydrogel. Gels 2023; 9:gels9010063. [PMID: 36661829 PMCID: PMC9858758 DOI: 10.3390/gels9010063] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Hydrogels are three-dimensional cross-linked polymeric networks capable of a large amount of fluid retention in their structure. Hydrogel outputs manufactured using additive manufacturing technologies are exposed to water loss, which may change their original shape and dimensions. Therefore, the possibility of retaining water is important in such a structure. In this manuscript, kinetic analysis of water evaporation from sodium alginate-based hydrogels exposed to different environmental conditions such as different temperatures (7 and 23 °C) and ambient humidity (45, 50 and 95%) has been carried out. The influence of the cross-linking method (different calcium chloride concentration-0.05, 0.1 and 0.5 M) of sodium alginate and cross-linking time on the water loss was also considered. Studies have shown that a decrease in the temperature and increase in the storage humidity can have a positive effect on the water retention in the structure. The storage conditions that led to the least weight and volume loss were T 7 °C and 95% humidity. These experiments may help in selecting the appropriate hydrogel preparation method for future applications, as well as their storage conditions for minimum water loss and, consequently, the least change in dimensions and shape.
Collapse
|
33
|
Pazarçeviren AE, Evis Z, Dikmen T, Altunbaş K, Yaprakçı MV, Keskin D, Tezcaner A. Alginate/gelatin/boron-doped hydroxyapatite-coated Ti implants: in vitro and in vivo evaluation of osseointegration. Biodes Manuf 2023. [DOI: 10.1007/s42242-022-00218-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
34
|
Mandal DD, Singh G, Majumdar S, Chanda P. Challenges in developing strategies for the valorization of lignin-a major pollutant of the paper mill industry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11119-11140. [PMID: 36504305 PMCID: PMC9742045 DOI: 10.1007/s11356-022-24022-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/01/2022] [Indexed: 05/27/2023]
Abstract
Apart from protecting the environment from undesired waste impacts, wastewater treatment is a crucial platform for recovery. The exploitation of suitable technology to transform the wastes from pulp and paper industries (PPI) to value-added products is vital from an environmental and socio-economic point of view that will impact everyday life. As the volume and complexity of wastewater increase in a rapidly urbanizing world, the challenge of maintaining efficient wastewater treatment in a cost-effective and environmentally friendly manner must be met. In addition to producing treated water, the wastewater treatment plant (WWTP) has a large amount of paper mill sludge (PMS) daily. Sludge management and disposal are significant problems associated with wastewater treatment plants. Applying the biorefinery concept is necessary for PPI from an environmental point of view and because of the piles of valuables contained therein in the form of waste. This will provide a renewable source for producing valuables and bio-energy and aid in making the overall process more economical and environmentally sustainable. Therefore, it is compulsory to continue inquiry on different applications of wastes, with proper justification of the environmental and economic factors. This review discusses current trends and challenges in wastewater management and the bio-valorization of paper mills. Lignin has been highlighted as a critical component for generating valuables, and its recovery prospects from solid and liquid PPI waste have been suggested.
Collapse
Affiliation(s)
- Dalia Dasgupta Mandal
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, 713209 West Bengal India
| | - Gaurav Singh
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, 713209 West Bengal India
| | - Subhasree Majumdar
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, 713209 West Bengal India
- Department of Zoology, Sonamukhi College, Sonamukhi, Bankura, 722207 West Bengal India
| | - Protik Chanda
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, 713209 West Bengal India
| |
Collapse
|
35
|
Ong XR, Chen AX, Li N, Yang YY, Luo HK. Nanocellulose: Recent Advances Toward Biomedical Applications. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xuan-Ran Ong
- Agency for Science, Technology and Research Institute of Sustainability for Chemicals, Energy and Environment 1 Pesek Road, Jurong Island Singapore 627833 Singapore
| | - Adrielle Xianwen Chen
- Agency for Science, Technology and Research Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| | - Ning Li
- Agency for Science, Technology and Research Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| | - Yi Yan Yang
- Agency for Science, Technology and Research Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| | - He-Kuan Luo
- Agency for Science, Technology and Research Institute of Sustainability for Chemicals, Energy and Environment 1 Pesek Road, Jurong Island Singapore 627833 Singapore
| |
Collapse
|
36
|
Liu Y, Wang X, Wu Q, Pei W, Teo MJ, Chen ZS, Huang C. Application of lignin and lignin-based composites in different tissue engineering fields. Int J Biol Macromol 2022; 222:994-1006. [DOI: 10.1016/j.ijbiomac.2022.09.267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/17/2022] [Accepted: 09/28/2022] [Indexed: 12/17/2022]
|
37
|
Lv W, Zhou H, Aazmi A, Yu M, Xu X, Yang H, Huang YYS, Ma L. Constructing biomimetic liver models through biomaterials and vasculature engineering. Regen Biomater 2022; 9:rbac079. [PMID: 36338176 PMCID: PMC9629974 DOI: 10.1093/rb/rbac079] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/19/2022] [Accepted: 10/08/2022] [Indexed: 04/04/2024] Open
Abstract
The occurrence of various liver diseases can lead to organ failure of the liver, which is one of the leading causes of mortality worldwide. Liver tissue engineering see the potential for replacing liver transplantation and drug toxicity studies facing donor shortages. The basic elements in liver tissue engineering are cells and biomaterials. Both mature hepatocytes and differentiated stem cells can be used as the main source of cells to construct spheroids and organoids, achieving improved cell function. To mimic the extracellular matrix (ECM) environment, biomaterials need to be biocompatible and bioactive, which also help support cell proliferation and differentiation and allow ECM deposition and vascularized structures formation. In addition, advanced manufacturing approaches are required to construct the extracellular microenvironment, and it has been proved that the structured three-dimensional culture system can help to improve the activity of hepatocytes and the characterization of specific proteins. In summary, we review biomaterials for liver tissue engineering, including natural hydrogels and synthetic polymers, and advanced processing techniques for building vascularized microenvironments, including bioassembly, bioprinting and microfluidic methods. We then summarize the application fields including transplant and regeneration, disease models and drug cytotoxicity analysis. In the end, we put the challenges and prospects of vascularized liver tissue engineering.
Collapse
Affiliation(s)
- Weikang Lv
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hongzhao Zhou
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Abdellah Aazmi
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Mengfei Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiaobin Xu
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | | | - Liang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
38
|
Wang Y, Ji X, Wang Q, Tian Z, Liu S, Yang G, Liu H. Recent advanced application of lignin nanoparticles in the functional composites: A mini-review. Int J Biol Macromol 2022; 222:2498-2511. [DOI: 10.1016/j.ijbiomac.2022.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
39
|
Polysaccharides-based nanofibrils: From tissue engineering to biosensor applications. Carbohydr Polym 2022; 291:119670. [DOI: 10.1016/j.carbpol.2022.119670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022]
|
40
|
Bonifacio MA, Cometa S, Cochis A, Scalzone A, Gentile P, Scalia AC, Rimondini L, Mastrorilli P, De Giglio E. A bioprintable gellan gum/lignin hydrogel: a smart and sustainable route for cartilage regeneration. Int J Biol Macromol 2022; 216:336-346. [PMID: 35798077 DOI: 10.1016/j.ijbiomac.2022.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022]
Abstract
In this work a hydrogel, based on a blend of two gellan gums with different acyl content embedding lignin (up to 0.4%w/v) and crosslinked with magnesium ions, was developed for cartilage regeneration. The physico-chemical characterizations established that no chemical interaction between lignin and polysaccharides was detected. Lignin achieved up to 80 % of ascorbic acid's radical scavenging activity in vitro on DPPH and ABTS radicals. Viability of hMSC onto hydrogel containing lignin resulted comparable to the lignin-free one (>70 % viable cells, p > 0.05). The presence of lignin improved the hMSC 3D-constructs chondrogenesis, bringing to a significant (p < 0.05) up-regulation of the collagen type II, aggrecan and SOX 9 chondrogenic genes, and conferred bacteriostatic properties to the hydrogel, reducing the proliferation of S. aureus and S. epidermidis. Finally, cellularized 3D-constructs were manufactured via 3D-bioprinting confirming the processability of the formulation as a bioink and its unique biological features for creating a physiological milieu for cell growth.
Collapse
Affiliation(s)
- Maria A Bonifacio
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy; INSTM, National Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Florence, Italy.
| | | | - Andrea Cochis
- Center for Translational Research on Autoimmune and Allergic Disease, CAAD, Department of Health Sciences, 28100 Novara, Italy.
| | - Annachiara Scalzone
- Newcastle University, School of Engineering, Claremont Road, NE1 7RU Newcastle upon Tyne, United Kingdom.
| | - Piergiorgio Gentile
- Newcastle University, School of Engineering, Claremont Road, NE1 7RU Newcastle upon Tyne, United Kingdom.
| | - Alessandro C Scalia
- Center for Translational Research on Autoimmune and Allergic Disease, CAAD, Department of Health Sciences, 28100 Novara, Italy.
| | - Lia Rimondini
- Center for Translational Research on Autoimmune and Allergic Disease, CAAD, Department of Health Sciences, 28100 Novara, Italy.
| | - Piero Mastrorilli
- DICATECh Department Politecnico di Bari, Via Orabona 4, 70126 Bari, Italy.
| | - Elvira De Giglio
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy; INSTM, National Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Florence, Italy.
| |
Collapse
|
41
|
Varaprasad K, Karthikeyan C, Yallapu MM, Sadiku R. The significance of biomacromolecule alginate for the 3D printing of hydrogels for biomedical applications. Int J Biol Macromol 2022; 212:561-578. [DOI: 10.1016/j.ijbiomac.2022.05.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/09/2022] [Accepted: 05/22/2022] [Indexed: 12/16/2022]
|
42
|
Polez RT, Morits M, Jonkergouw C, Phiri J, Valle-Delgado JJ, Linder MB, Maloney T, Rojas OJ, Österberg M. Biological activity of multicomponent bio-hydrogels loaded with tragacanth gum. Int J Biol Macromol 2022; 215:691-704. [PMID: 35777518 DOI: 10.1016/j.ijbiomac.2022.06.153] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 11/05/2022]
Abstract
Producing hydrogels capable of mimicking the biomechanics of soft tissue remains a challenge. We explore the potential of plant-based hydrogels as polysaccharide tragacanth gum and antioxidant lignin nanoparticles in bioactive multicomponent hydrogels for tissue engineering. These natural components are combined with TEMPO-oxidized cellulose nanofibrils, a material with known shear thinning behavior. Hydrogels presented tragacanth gum (TG) concentration-dependent rheological properties suitable for extrusion 3D printing. TG enhanced the swelling capacity up to 645 % and the degradation rate up to 1.3 %/day for hydrogels containing 75 % of TG. Young's moduli of the hydrogels varied from 5.0 to 11.6 kPa and were comparable to soft tissues like skin and muscle. In vitro cell viability assays revealed that the scaffolds were non-toxic and promoted proliferation of hepatocellular carcinoma HepG2 cells. Therefore, the plant-based hydrogels designed in this work have a significant potential for tissue engineering.
Collapse
Affiliation(s)
- Roberta Teixeira Polez
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Maria Morits
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Christopher Jonkergouw
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Josphat Phiri
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Juan José Valle-Delgado
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Markus B Linder
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Thaddeus Maloney
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland; Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland.
| |
Collapse
|
43
|
Recent Advances in 3D Bioprinting: A Review of Cellulose-Based Biomaterials Ink. Polymers (Basel) 2022; 14:polym14112260. [PMID: 35683932 PMCID: PMC9183181 DOI: 10.3390/polym14112260] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Cellulose-based biodegradable hydrogel proves to be excellently suitable for the medical and water treatment industry based on the expressed properties such as its flexible structure and broad compatibility. Moreover, their potential to provide excellent waste management from the unutilized plant has triggered further study on the advanced biomaterial applications. To extend the use of cellulose-based hydrogel, additive manufacturing is a suitable technique for hydrogel fabrication in complex designs. Cellulose-based biomaterial ink used in 3D bioprinting can be further used for tissue engineering, drug delivery, protein study, microalgae, bacteria, and cell immobilization. This review includes a discussion on the techniques available for additive manufacturing, bio-based material, and the formation of a cellulose-based hydrogel.
Collapse
|
44
|
Christou CD, Tsoulfas G. Role of three-dimensional printing and artificial intelligence in the management of hepatocellular carcinoma: Challenges and opportunities. World J Gastrointest Oncol 2022; 14:765-793. [PMID: 35582107 PMCID: PMC9048537 DOI: 10.4251/wjgo.v14.i4.765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/24/2021] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) constitutes the fifth most frequent malignancy worldwide and the third most frequent cause of cancer-related deaths. Currently, treatment selection is based on the stage of the disease. Emerging fields such as three-dimensional (3D) printing, 3D bioprinting, artificial intelligence (AI), and machine learning (ML) could lead to evidence-based, individualized management of HCC. In this review, we comprehensively report the current applications of 3D printing, 3D bioprinting, and AI/ML-based models in HCC management; we outline the significant challenges to the broad use of these novel technologies in the clinical setting with the goal of identifying means to overcome them, and finally, we discuss the opportunities that arise from these applications. Notably, regarding 3D printing and bioprinting-related challenges, we elaborate on cost and cost-effectiveness, cell sourcing, cell viability, safety, accessibility, regulation, and legal and ethical concerns. Similarly, regarding AI/ML-related challenges, we elaborate on intellectual property, liability, intrinsic biases, data protection, cybersecurity, ethical challenges, and transparency. Our findings show that AI and 3D printing applications in HCC management and healthcare, in general, are steadily expanding; thus, these technologies will be integrated into the clinical setting sooner or later. Therefore, we believe that physicians need to become familiar with these technologies and prepare to engage with them constructively.
Collapse
Affiliation(s)
- Chrysanthos D Christou
- Department of Transplantation Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54622, Greece
| | - Georgios Tsoulfas
- Department of Transplantation Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54622, Greece
| |
Collapse
|
45
|
Recent advances in biological activities of lignin and emerging biomedical applications: A short review. Int J Biol Macromol 2022; 208:819-832. [PMID: 35364209 DOI: 10.1016/j.ijbiomac.2022.03.182] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/10/2022] [Accepted: 03/26/2022] [Indexed: 12/11/2022]
Abstract
As an abundant biopolymer, lignin gains interest owing to its renewable nature and polyphenolic structure. It possesses many biological activities such as antioxidant activity, antimicrobial activity, and biocompatibility. Studies are being carried out to relate the biological activities to the polyphenolic structures. These traits present lignin as a natural compound being used in biomedical field. Lignin nanoparticles (LNPs) are being investigated for safe use in drug and gene delivery, and lignin-based hydrogels are being explored as wound dressing materials, in tissue engineering and 3D printing. In addition, lignin and its derivatives have shown the potential to treat diabetic disease. This review summarizes latest research results on the biological activities of lignin and highlights potential applications exampled by selective studies. It helps to transform lignin from a waste material into valuable materials and products.
Collapse
|
46
|
Joshi J, Homburg SV, Ehrmann A. Atomic Force Microscopy (AFM) on Biopolymers and Hydrogels for Biotechnological Applications-Possibilities and Limits. Polymers (Basel) 2022; 14:1267. [PMID: 35335597 PMCID: PMC8949482 DOI: 10.3390/polym14061267] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 02/01/2023] Open
Abstract
Atomic force microscopy (AFM) is one of the microscopic techniques with the highest lateral resolution. It can usually be applied in air or even in liquids, enabling the investigation of a broader range of samples than scanning electron microscopy (SEM), which is mostly performed in vacuum. Since it works by following the sample surface based on the force between the scanning tip and the sample, interactions have to be taken into account, making the AFM of irregular samples complicated, but on the other hand it allows measurements of more physical parameters than pure topography. This is especially important for biopolymers and hydrogels used in tissue engineering and other biotechnological applications, where elastic properties, surface charges and other parameters influence mammalian cell adhesion and growth as well as many other effects. This review gives an overview of AFM modes relevant for the investigations of biopolymers and hydrogels and shows several examples of recent applications, focusing on the polysaccharides chitosan, alginate, carrageenan and different hydrogels, but depicting also a broader spectrum of materials on which different AFM measurements are reported in the literature.
Collapse
Affiliation(s)
- Jnanada Joshi
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Sarah Vanessa Homburg
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| |
Collapse
|
47
|
Braccini S, Tacchini C, Chiellini F, Puppi D. Polymeric Hydrogels for In Vitro 3D Ovarian Cancer Modeling. Int J Mol Sci 2022; 23:3265. [PMID: 35328686 PMCID: PMC8954571 DOI: 10.3390/ijms23063265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OC) grows and interacts constantly with a complex microenvironment, in which immune cells, fibroblasts, blood vessels, signal molecules and the extracellular matrix (ECM) coexist. This heterogeneous environment provides structural and biochemical support to the surrounding cells and undergoes constant and dynamic remodeling that actively promotes tumor initiation, progression, and metastasis. Despite the fact that traditional 2D cell culture systems have led to relevant medical advances in cancer research, 3D cell culture models could open new possibilities for the development of an in vitro tumor microenvironment more closely reproducing that observed in vivo. The implementation of materials science and technology into cancer research has enabled significant progress in the study of cancer progression and drug screening, through the development of polymeric scaffold-based 3D models closely recapitulating the physiopathological features of native tumor tissue. This article provides an overview of state-of-the-art in vitro tumor models with a particular focus on 3D OC cell culture in pre-clinical studies. The most representative OC models described in the literature are presented with a focus on hydrogel-based scaffolds, which guarantee soft tissue-like physical properties as well as a suitable 3D microenvironment for cell growth. Hydrogel-forming polymers of either natural or synthetic origin investigated in this context are described by highlighting their source of extraction, physical-chemical properties, and application for 3D ovarian cancer cell culture.
Collapse
Affiliation(s)
| | | | | | - Dario Puppi
- BioLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM-Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (S.B.); (C.T.)
| |
Collapse
|
48
|
Sethupathy S, Murillo Morales G, Gao L, Wang H, Yang B, Jiang J, Sun J, Zhu D. Lignin valorization: Status, challenges and opportunities. BIORESOURCE TECHNOLOGY 2022; 347:126696. [PMID: 35026423 DOI: 10.1016/j.biortech.2022.126696] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/02/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
As an abundant aromatic biopolymer, lignin has the potential to produce various chemicals, biofuels of interest through biorefinery activities and is expected to benefit the future circular economy. However, lignin valorization is hindered by a series of constraints such as heterogeneous polymeric nature, intrinsic recalcitrance, strong smell, dark colour, challenges in lignocelluloses fractionation and the presence of high bond dissociation enthalpies in its functional groups etc. Nowadays, industrial lignin is mostly combusted for electricity production and the recycling of inorganic compounds involved in the pulping process. Given the research and development on lignin valorization in recent years, important applications such as lignin-based hydrogels, surfactants, three-dimensional printing materials, electrodes and production of fine chemicals have been systematically reviewed. Finally, this review highlights the main constraints affecting industrial lignin valorization, possible solutions and future perspectives, in the light of its abundance and its potential applications reported in the scientific literature.
Collapse
Affiliation(s)
- Sivasamy Sethupathy
- Biofuels Institute, School of Environmental Science and Safety Engineering, Jiangsu University, 212013 Zhenjiang, PR China
| | - Gabriel Murillo Morales
- Biofuels Institute, School of Environmental Science and Safety Engineering, Jiangsu University, 212013 Zhenjiang, PR China
| | - Lu Gao
- Biofuels Institute, School of Environmental Science and Safety Engineering, Jiangsu University, 212013 Zhenjiang, PR China
| | - Hongliang Wang
- College of Biomass Sciences and Engineering /College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Bin Yang
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA
| | - Jianxiong Jiang
- Biofuels Institute, School of Environmental Science and Safety Engineering, Jiangsu University, 212013 Zhenjiang, PR China
| | - Jianzhong Sun
- Biofuels Institute, School of Environmental Science and Safety Engineering, Jiangsu University, 212013 Zhenjiang, PR China
| | - Daochen Zhu
- Biofuels Institute, School of Environmental Science and Safety Engineering, Jiangsu University, 212013 Zhenjiang, PR China.
| |
Collapse
|
49
|
Ni S, Bian H, Zhang Y, Fu Y, Liu W, Qin M, Xiao H. Starch-Based Composite Films with Enhanced Hydrophobicity, Thermal Stability, and UV-Shielding Efficacy Induced by Lignin Nanoparticles. Biomacromolecules 2022; 23:829-838. [PMID: 35191679 DOI: 10.1021/acs.biomac.1c01288] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Thehighly efficient utilization of lignin is of great importance for the development of the biorefinery industry. Herein, a novel "core-shell" lignin nanoparticle (LNP) with a diameter of around 135 nm was prepared, after the lignin was isolated from the effluent of formic acid fractionation via dialysis. In an attempt to endow composite materials with vital functionalities, the LNP was added to the starch film and the starch/polyvinyl alcohol (PVA) or starch/polyethylene oxide (PEO) composite film. The results showed that the hydrophobicity performance of the synthesized films was enhanced significantly. Specifically, the dynamic water contact angle value of the starch/PVA composite film with 1% (wt) addition of LNPs could be maintained as high as 122° for 180 s; the starch/PEO composite film also achieved an excellent water contact angle above 120°. The addition of LNPs promoted the formation of some rough structures on the film surface, as shown by the scanning electron microscopy images, which could repel the water molecules efficiently and are closely related to the enhanced hydrophobicity of the starch film. What is more, the as-prepared LNP conferred strengthened thermal stability and ultraviolet blocking properties on the starch composite film. The structural combination of the polymer film with LNPs holds the promise for providing advanced functionalities to the composite material with wide applications.
Collapse
Affiliation(s)
- Shuzhen Ni
- Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, China.,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Huiyang Bian
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yongchao Zhang
- Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, China.,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Yingjuan Fu
- Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, China.,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Wenxia Liu
- Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, China.,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Menghua Qin
- Organic Chemistry Laboratory, Taishan University, Tai'an 271021, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton E3B 5A3, Canada
| |
Collapse
|
50
|
Sugiarto S, Leow Y, Tan CL, Wang G, Kai D. How far is Lignin from being a biomedical material? Bioact Mater 2022; 8:71-94. [PMID: 34541388 PMCID: PMC8424518 DOI: 10.1016/j.bioactmat.2021.06.023] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/01/2021] [Accepted: 06/21/2021] [Indexed: 12/22/2022] Open
Abstract
Lignin is a versatile biomass that possesses many different desirable properties such as antioxidant, antibacterial, anti-UV, and good biocompatibility. Natural lignin can be processed through several chemical processes. The processed lignin can be modified into functionalized lignin through chemical modifications to develop and enhance biomaterials. Thus, lignin is one of the prime candidate for various biomaterial applications such as drug and gene delivery, biosensors, bioimaging, 3D printing, tissue engineering, and dietary supplement additive. This review presents the potential of developing and utilizing lignin in the outlook of new and sustainable biomaterials. Thereafter, we also discuss on the challenges and outlook of utilizing lignin as a biomaterial.
Collapse
Affiliation(s)
- Sigit Sugiarto
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 Singapore
| | - Yihao Leow
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 Singapore
| | - Chong Li Tan
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 Singapore
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Guan Wang
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 Singapore
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 Singapore
| |
Collapse
|