1
|
Zhang J, Wang B, Ke J, Ying P. Plasticity of Metal-Organic Framework Crystals: Thermally Activated Collapse of Nanopores. J Phys Chem Lett 2024; 15:9051-9057. [PMID: 39194171 DOI: 10.1021/acs.jpclett.4c01815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Unrecoverable deformation or plasticity can be generated in crystalline metal-organic frameworks (MOFs) by compressive loading with different rates in various applications. Herein, plastic behaviors of MOF HKUST-1 crystals are investigated by a series of in situ strain-rate-dependent compression tests. The yield strength is found to significantly increase with increasing strain rate, following a logarithmic dependence. Our reactive molecular dynamics simulations illustrate that the yielding of crystalline HKUST-1 is induced by the irreversible collapse of its nanopores, which can be accelerated by thermal activation at finite temperatures. Based on this mechanism together with the reaction rate theory, we derive an analytical expression relating the yield strength of MOFs and strain rate, which fits experimental findings well. Overall, this work can expand our current understanding of MOF plasticity, which is of importance for the mechanical shaping and various applications of MOF crystals.
Collapse
Affiliation(s)
- Jin Zhang
- School of Science, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Bing Wang
- School of Science, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Jin Ke
- School of Science, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Penghua Ying
- Department of Physical Chemistry, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
2
|
Ghanavati R, Escobosa AC, Manz TA. An automated protocol to construct flexibility parameters for classical forcefields: applications to metal-organic frameworks. RSC Adv 2024; 14:22714-22762. [PMID: 39035129 PMCID: PMC11258866 DOI: 10.1039/d4ra01859a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Abstract
In this work, forcefield flexibility parameters were constructed and validated for more than 100 metal-organic frameworks (MOFs). We used atom typing to identify bond types, angle types, and dihedral types associated with bond stretches, angle bends, dihedral torsions, and other flexibility interactions. Our work used Manz's angle-bending and dihedral-torsion model potentials. For a crystal structure containing N atoms in its unit cell, the number of independent flexibility interactions is 3(N atoms - 1). Because the number of bonds, angles, and dihedrals is normally much larger than 3(N atoms - 1), these internal coordinates are redundant. To reduce (but not eliminate) this redundancy, our protocol prunes dihedral types in a way that preserves symmetry equivalency. Next, each dihedral type is classified as non-rotatable, hindered, rotatable, or linear. We introduce a smart selection method that identifies which particular torsion modes are important for each rotatable dihedral type. Then, we computed the force constants for all flexibility interactions together via LASSO regression (i.e., regularized linear least-squares fitting) of the training dataset. LASSO automatically identifies and removes unimportant forcefield interactions. For each MOF, the reference dataset was quantum-mechanically-computed in VASP via DFT with dispersion and included: (i) finite-displacement calculations along every independent atom translation mode, (ii) geometries randomly sampled via ab initio molecular dynamics (AIMD), (iii) the optimized ground-state geometry using experimental lattice parameters, and (iv) rigid torsion scans for each rotatable dihedral type. After training, the flexibility model was validated across geometries that were not part of the training dataset. For each MOF, we computed the goodness of fit (R-squared value) and the root-mean-squared error (RMSE) separately for the training and validation datasets. We compared flexibility models with and without bond-bond cross terms. Even without cross terms, the model yielded R-squared values of 0.910 (avg across all MOFs) ± 0.018 (st. dev.) for atom-in-material forces in the validation datasets. Our SAVESTEPS protocol should find widespread applications to parameterize flexible forcefields for material datasets. We performed molecular dynamics simulations using these flexibility parameters to compute heat capacities and thermal expansion coefficients for two MOFs.
Collapse
Affiliation(s)
- Reza Ghanavati
- Chemical & Materials Engineering, New Mexico State University Las Cruces NM 88001 USA
| | - Alma C Escobosa
- Chemical & Materials Engineering, New Mexico State University Las Cruces NM 88001 USA
| | - Thomas A Manz
- Chemical & Materials Engineering, New Mexico State University Las Cruces NM 88001 USA
| |
Collapse
|
3
|
Rimsza JM, Duwal S, Root HD. Impact of Vertex Functionalization on Flexibility of Porous Organic Cages. ACS OMEGA 2024; 9:29025-29034. [PMID: 38973899 PMCID: PMC11223230 DOI: 10.1021/acsomega.4c04186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024]
Abstract
Efficient carbon capture requires engineered porous systems that selectively capture CO2 and have low energy regeneration pathways. Porous liquids (PLs), solvent-based systems containing permanent porosity through the incorporation of a porous host, increase the CO2 adsorption capacity. A proposed mechanism of PL regeneration is the application of isostatic pressure in which the dissolved nanoporous host is compressed to alter the stability of gases in the internal pore. This regeneration mechanism relies on the flexibility of the porous host, which can be evaluated through molecular simulations. Here, the flexibility of porous organic cages (POCs) as representative porous hosts was evaluated, during which pore windows decreased by 10-40% at 6 GPa. POCs with sterically smaller functional groups, such as the 1,2-ethane in the CC1 POC resulted in greater imine cage flexibility relative to those with sterically larger functional groups, such as the cyclohexane in the CC3 POC that protected the imine cage from the application of pressure. Structural changes in the POC also caused CO2 adsorption to be thermodynamically unfavorable beginning at ∼2.2 GPa in the CC1 POC, ∼1.1 GPa in the CC3 POC, and ∼1.0 GPa in the CC13 POC, indicating that the CO2 would be expelled from the POC at or above these pressures. Energy barriers for CO2 desorption from inside the POC varied based on the geometry of the pore window and all the POCs had at least one pore window with a sufficiently low energy barrier to allow for CO2 desorption under ambient temperatures. The results identified that flexibility of the CC1, CC3, or CC13 POCs under compression can result in the expulsion of captured gas molecules.
Collapse
Affiliation(s)
- Jessica M. Rimsza
- Geochemistry
Department, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Sakun Duwal
- Dynamic
Material Properties Department, Sandia National
Laboratories, Albuquerque, New Mexico 87123, United States
| | - Harrison D. Root
- Advanced
Materials Laboratory, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| |
Collapse
|
4
|
Vornholt SM, Chen Z, Hofmann J, Chapman KW. Node Distortions in UiO-66 Inform Negative Thermal Expansion Mechanisms: Kinetic Effects, Frustration, and Lattice Hysteresis. J Am Chem Soc 2024; 146:16977-16981. [PMID: 38874381 DOI: 10.1021/jacs.4c05313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
In metal-organic frameworks (MOFs) the interplay between the dynamics of individual components and how these are constrained by the extended lattice can yield unusual emergent phenomena. For the archetypal Zr-MOF, UiO-66, we explore the cooperative dynamics of a Zr-node transformation that gives rise to negative thermal expansion (NTE). Using in situ synchrotron X-ray scattering, with powder diffraction and pair distribution function (PDF) analyses, we identify lattice hysteresis and a thermal ramp-rate-dependence of the thermal expansion. Specifically, kinetic trapping of distorted node states formed at high temperature, leads to broad variability in the apparent thermal expansion which ranges from large positive to large negative thermal expansion with coefficients of thermal expansion (CTE) from +45 to -80 × 10-6K-1. Time-resolved relaxation studies at selected temperatures suggest that when equilibrated UiO-66 is intrinsically NTE, with a CTE of -35 × 10-6K-1. Kinetic trapping of the node-distorted state following high temperature activation has broad implications for characterization and applications of these Zr-MOFs; the nonequilibrium node state depends on the thermal history of the sample with quench vs slow cooling likely to impact gas binding, pore volume, and accessible catalytic sites.
Collapse
Affiliation(s)
- Simon M Vornholt
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Zhihengyu Chen
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jan Hofmann
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
5
|
Boström HLB, Emmerling S, Heck F, Koschnick C, Jones AJ, Cliffe MJ, Al Natour R, Bonneau M, Guillerm V, Shekhah O, Eddaoudi M, Lopez-Cabrelles J, Furukawa S, Romero-Angel M, Martí-Gastaldo C, Yan M, Morris AJ, Romero-Muñiz I, Xiong Y, Platero-Prats AE, Roth J, Queen WL, Mertin KS, Schier DE, Champness NR, Yeung HHM, Lotsch BV. How Reproducible is the Synthesis of Zr-Porphyrin Metal-Organic Frameworks? An Interlaboratory Study. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304832. [PMID: 37669645 DOI: 10.1002/adma.202304832] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/17/2023] [Indexed: 09/07/2023]
Abstract
Metal-organic frameworks (MOFs) are a rapidly growing class of materials that offer great promise in various applications. However, the synthesis remains challenging: for example, a range of crystal structures can often be accessed from the same building blocks, which complicates the phase selectivity. Likewise, the high sensitivity to slight changes in synthesis conditions may cause reproducibility issues. This is crucial, as it hampers the research and commercialization of affected MOFs. Here, it presents the first-ever interlaboratory study of the synthetic reproducibility of two Zr-porphyrin MOFs, PCN-222 and PCN-224, to investigate the scope of this problem. For PCN-222, only one sample out of ten was phase pure and of the correct symmetry, while for PCN-224, three are phase pure, although none of these show the spatial linker order characteristic of PCN-224. Instead, these samples resemble dPCN-224 (disordered PCN-224), which has recently been reported. The variability in thermal behavior, defect content, and surface area of the synthesised samples are also studied. The results have important ramifications for field of metal-organic frameworks and their crystallization, by highlighting the synthetic challenges associated with a multi-variable synthesis space and flat energy landscapes characteristic of MOFs.
Collapse
Affiliation(s)
- Hanna L B Boström
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany
- Present address: Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Sebastian Emmerling
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany
| | - Fabian Heck
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany
| | - Charlotte Koschnick
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany
| | - Andrew J Jones
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Matthew J Cliffe
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Rawan Al Natour
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences and Engineering, Advanced Membranes & Porous Materials Center (AMPM), Functional Materials Design, Discovery & Development Research Group (FMD3), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mickaële Bonneau
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences and Engineering, Advanced Membranes & Porous Materials Center (AMPM), Functional Materials Design, Discovery & Development Research Group (FMD3), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Vincent Guillerm
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences and Engineering, Advanced Membranes & Porous Materials Center (AMPM), Functional Materials Design, Discovery & Development Research Group (FMD3), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Osama Shekhah
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences and Engineering, Advanced Membranes & Porous Materials Center (AMPM), Functional Materials Design, Discovery & Development Research Group (FMD3), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed Eddaoudi
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences and Engineering, Advanced Membranes & Porous Materials Center (AMPM), Functional Materials Design, Discovery & Development Research Group (FMD3), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Javier Lopez-Cabrelles
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - María Romero-Angel
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán-2, Paterna, 46980, Spain
| | - Carlos Martí-Gastaldo
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán-2, Paterna, 46980, Spain
| | - Minliang Yan
- Macromolecules innovation institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amanda J Morris
- Macromolecules innovation institute, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ignacio Romero-Muñiz
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Ying Xiong
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Ana E Platero-Prats
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Jocelyn Roth
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Sion, CH-1950, Switzerland
| | - Wendy L Queen
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Sion, CH-1950, Switzerland
| | - Kalle S Mertin
- Institute of Inorganic Chemistry, Christian-Albrechts-University Kiel, 24118, Kiel, Germany
| | - Danielle E Schier
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Neil R Champness
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Hamish H-M Yeung
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Bettina V Lotsch
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany
- Department of Chemistry, University of Munich (LMU), Butenandtstrasse 5-13, Haus D, 81377, Munich, Germany
| |
Collapse
|
6
|
Hoffman AJ, Temmerman W, Campbell E, Damin AA, Lezcano-Gonzalez I, Beale AM, Bordiga S, Hofkens J, Van Speybroeck V. A Critical Assessment on Calculating Vibrational Spectra in Nanostructured Materials. J Chem Theory Comput 2024; 20:513-531. [PMID: 38157404 PMCID: PMC10809426 DOI: 10.1021/acs.jctc.3c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Vibrational spectroscopy is an omnipresent spectroscopic technique to characterize functional nanostructured materials such as zeolites, metal-organic frameworks (MOFs), and metal-halide perovskites (MHPs). The resulting experimental spectra are usually complex, with both low-frequency framework modes and high-frequency functional group vibrations. Therefore, theoretically calculated spectra are often an essential element to elucidate the vibrational fingerprint. In principle, there are two possible approaches to calculate vibrational spectra: (i) a static approach that approximates the potential energy surface (PES) as a set of independent harmonic oscillators and (ii) a dynamic approach that explicitly samples the PES around equilibrium by integrating Newton's equations of motions. The dynamic approach considers anharmonic and temperature effects and provides a more genuine representation of materials at true operating conditions; however, such simulations come at a substantially increased computational cost. This is certainly true when forces and energy evaluations are performed at the quantum mechanical level. Molecular dynamics (MD) techniques have become more established within the field of computational chemistry. Yet, for the prediction of infrared (IR) and Raman spectra of nanostructured materials, their usage has been less explored and remain restricted to some isolated successes. Therefore, it is currently not a priori clear which methodology should be used to accurately predict vibrational spectra for a given system. A comprehensive comparative study between various theoretical methods and experimental spectra for a broad set of nanostructured materials is so far lacking. To fill this gap, we herein present a concise overview on which methodology is suited to accurately predict vibrational spectra for a broad range of nanostructured materials and formulate a series of theoretical guidelines to this purpose. To this end, four different case studies are considered, each treating a particular material aspect, namely breathing in flexible MOFs, characterization of defects in the rigid MOF UiO-66, anharmonic vibrations in the metal-halide perovskite CsPbBr3, and guest adsorption on the pores of the zeolite H-SSZ-13. For all four materials, in their guest- and defect-free state and at sufficiently low temperatures, both the static and dynamic approach yield qualitatively similar spectra in agreement with experimental results. When the temperature is increased, the harmonic approximation starts to fail for CsPbBr3 due to the presence of anharmonic phonon modes. Also, the spectroscopic fingerprints of defects and guest species are insufficiently well predicted by a simple harmonic model. Both phenomena flatten the potential energy surface (PES), which facilitates the transitions between metastable states, necessitating dynamic sampling. On the basis of the four case studies treated in this Review, we can propose the following theoretical guidelines to simulate accurate vibrational spectra of functional solid-state materials: (i) For nanostructured crystalline framework materials at low temperature, insights into the lattice dynamics can be obtained using a static approach relying on a few points on the PES and an independent set of harmonic oscillators. (ii) When the material is evaluated at higher temperatures or when additional complexity enters the system, e.g., strong anharmonicity, defects, or guest species, the harmonic regime breaks down and dynamic sampling is required for a correct prediction of the phonon spectrum. These guidelines and their illustrations for prototype material classes can help experimental and theoretical researchers to enhance the knowledge obtained from a lattice dynamics study.
Collapse
Affiliation(s)
| | - Wim Temmerman
- Center
for Molecular Modeling, Ghent University, 9000 Ghent, Belgium
| | - Emma Campbell
- Cardiff
Catalysis Institute, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Research
Complex at Harwell, Didcot OX11 0FA, United
Kingdom
| | | | - Ines Lezcano-Gonzalez
- Research
Complex at Harwell, Didcot OX11 0FA, United
Kingdom
- Department
of Chemistry, University College London, London WC1E 6BT, United Kingdom
| | - Andrew M. Beale
- Research
Complex at Harwell, Didcot OX11 0FA, United
Kingdom
- Department
of Chemistry, University College London, London WC1E 6BT, United Kingdom
| | - Silvia Bordiga
- Department
of Chemistry, University of Turin, 10124 Turin, Italy
| | - Johan Hofkens
- Department
of Chemistry, KU Leuven, 3000 Leuven, Belgium
- Max Planck
Institute for Polymer Research, 55128 Mainz, Germany
| | | |
Collapse
|
7
|
Majid MF, Mohd Zaid HF, Abd Shukur MF, Ahmad A, Jumbri K. Physicochemical properties and density functional theory calculation of octahedral UiO-66 with Bis(Trifluoromethanesulfonyl)imide ionic liquids. Heliyon 2023; 9:e20743. [PMID: 37867795 PMCID: PMC10585329 DOI: 10.1016/j.heliyon.2023.e20743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/24/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
In this study, the physicochemical properties and molecular interactions between zirconium-based metal-organic framework (UiO-66) and three different ionic liquids based on bis(trifluoromethanesulfonyl)imide anion (EMIM+, BMIM+ and OMIM+) was performed via a combined experimental and computational approach. The ionic liquid loaded UiO-66 or IL@UiO-66 was synthesized and characterized to understand the host-guest interaction. Density functional theory calculation was performed to analyse the electronic structure of IL@UiO-66 to provide molecular insight on the dominant interactions occurred in the hybrid material. Results showed that all ILs were successfully incorporated into the micropores of UiO-66. The 3D framework was retained even after loaded with ILs as analyzed from XRD pattern. FTIR spectrum reveals that interactions of ILs with UiO-66 influenced by the alkyl chain length of the cation. The anion has a profound affinity with the UiO-66 due to the presence of electronegative atoms. Phase transition study from DSC suggested that the incorporation of ILs has stabilized the framework of UiO-66 by shifting the endothermic peak to a higher state. These findings were further elaborated with DFT calculation. Geometrical optimizations confirmed the structural parameter changes of UiO-66 when loaded with ILs. These was mainly contributed by the non-covalent interactions which was confirmed by the reduced density gradient scattered plot. Another important findings are the strength of hydrogen bonding at the host-guest interface was influenced by the alkyl chain length. The molecular orbital analysis also shows that the size of alkyl chain influence the reactivity of the hybrid material. The present study provides fundamental insights on the molecular interaction of UiO-66 and ILs as a hybrid material, which can open new possibilities for advanced material for metal-organic framework applications in energy storage system, catalysis, gas storage and medicinal chemistry.
Collapse
Affiliation(s)
- Mohd Faridzuan Majid
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Hayyiratul Fatimah Mohd Zaid
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak Darul Ridzuan, Malaysia
- Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Muhammad Fadhlullah Abd Shukur
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Azizan Ahmad
- Department of Chemical Sciences, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
- Department of Physics, Faculty of Science and Technology, Airlangga University (Campus C), Mulyorejo Road, Surabaya, 60115, Indonesia
| | - Khairulazhar Jumbri
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Centre for Research in Ionic Liquids (CORIL), Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
8
|
Van Speybroeck V. Challenges in modelling dynamic processes in realistic nanostructured materials at operating conditions. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220239. [PMID: 37211031 PMCID: PMC10200353 DOI: 10.1098/rsta.2022.0239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/23/2023] [Indexed: 05/23/2023]
Abstract
The question is addressed in how far current modelling strategies are capable of modelling dynamic phenomena in realistic nanostructured materials at operating conditions. Nanostructured materials used in applications are far from perfect; they possess a broad range of heterogeneities in space and time extending over several orders of magnitude. Spatial heterogeneities from the subnanometre to the micrometre scale in crystal particles with a finite size and specific morphology, impact the material's dynamics. Furthermore, the material's functional behaviour is largely determined by the operating conditions. Currently, there exists a huge length-time scale gap between attainable theoretical length-time scales and experimentally relevant scales. Within this perspective, three key challenges are highlighted within the molecular modelling chain to bridge this length-time scale gap. Methods are needed that enable (i) building structural models for realistic crystal particles having mesoscale dimensions with isolated defects, correlated nanoregions, mesoporosity, internal and external surfaces; (ii) the evaluation of interatomic forces with quantum mechanical accuracy albeit at much lower computational cost than the currently used density functional theory methods and (iii) derivation of the kinetics of phenomena taking place in a multi-length-time scale window to obtain an overall view of the dynamics of the process. This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.
Collapse
|
9
|
Mhatre CV, Wardzala JJ, Shukla PB, Agrawal M, Johnson JK. Calculation of Self, Corrected, and Transport Diffusivities of Isopropyl Alcohol in UiO-66. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111793. [PMID: 37299696 DOI: 10.3390/nano13111793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
The UiO-6x family of metal-organic frameworks has been extensively studied for applications in chemical warfare agent (CWA) capture and destruction. An understanding of intrinsic transport phenomena, such as diffusion, is key to understanding experimental results and designing effective materials for CWA capture. However, the relatively large size of CWAs and their simulants makes diffusion in the small-pored pristine UiO-66 very slow and hence impractical to study directly with direct molecular simulations because of the time scales required. We used isopropanol (IPA) as a surrogate for CWAs to investigate the fundamental diffusion mechanisms of a polar molecule within pristine UiO-66. IPA can form hydrogen bonds with the μ3-OH groups bound to the metal oxide clusters in UiO-66, similar to some CWAs, and can be studied by direct molecular dynamics simulations. We report self, corrected, and transport diffusivities of IPA in pristine UiO-66 as a function of loading. Our calculations highlight the importance of the accurate modeling of the hydrogen bonding interactions on diffusivities, with about an order of magnitude decrease in diffusion coefficients when the hydrogen bonding between IPA and the μ3-OH groups is included. We found that a fraction of the IPA molecules have very low mobility during the course of a simulation, while a small fraction are highly mobile, exhibiting mean square displacements far greater than the ensemble average.
Collapse
Affiliation(s)
- Chinmay V Mhatre
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jacob J Wardzala
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Priyanka B Shukla
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - J Karl Johnson
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
10
|
Poryvaev AS, Larionov KP, Albrekht YN, Efremov AA, Kiryutin AS, Smirnova KA, Evtushok VY, Fedin MV. UiO-66 framework with an encapsulated spin probe: synthesis and exceptional sensitivity to mechanical pressure. Phys Chem Chem Phys 2023; 25:13846-13853. [PMID: 37161549 DOI: 10.1039/d3cp01063e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Probes sensitive to mechanical stress are in demand for the analysis of pressure distribution in materials, and the design of pressure sensors based on metal-organic frameworks (MOFs) is highly promising due to their structural tunability. We report a new pressure-sensing material, which is based on the UiO-66 framework with trace amounts of a spin probe (0.03 wt%) encapsulated in cavities. To obtain this material, we developed an approach for encapsulation of stable nitroxide radical TEMPO ((2,2,6,6-tetramethylpiperidin-1-yl)oxyl) into the micropores of UiO-66 during its solvothermal synthesis. Pressure read-out using electron paramagnetic resonance (EPR) spectroscopy allows monitoring the degradation of the defected MOF structure upon pressurization, where full collapse of pores occurs at as low a pressure as 0.13 GPa. The developed methodology can be used in and ex situ and provides sensitive tools for non-destructive mapping of pressure effects in various materials.
Collapse
Affiliation(s)
- Artem S Poryvaev
- International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk, 630090, Russia.
| | - Kirill P Larionov
- Boreskov Institute of Catalysis SB RAS, Lavrentiev av. 5, Novosibirsk, 630090, Russia
| | - Yana N Albrekht
- International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk, 630090, Russia.
| | - Alexander A Efremov
- International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Pirogova str. 1, Novosibirsk, 630090, Russia
| | - Alexey S Kiryutin
- International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk, 630090, Russia.
| | - Kristina A Smirnova
- International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Pirogova str. 1, Novosibirsk, 630090, Russia
| | - Vasiliy Y Evtushok
- Boreskov Institute of Catalysis SB RAS, Lavrentiev av. 5, Novosibirsk, 630090, Russia
| | - Matvey V Fedin
- International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Pirogova str. 1, Novosibirsk, 630090, Russia
| |
Collapse
|
11
|
Effect of Modulation and Functionalization of UiO-66 Type MOFs on Their Surface Thermodynamic Properties and Lewis Acid–Base Behavior. Catalysts 2023. [DOI: 10.3390/catal13010205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In this study, we investigated the surface thermodynamic properties of four MOF structures of the UiO-66 series, by employing seven molecular models, a thermal model, and three other methods using the inverse gas chromatography (IGC) technique at infinite dilution. We first determined the effect of the modulation of UiO-66 by an acid (e.g., formic acid and acetic acid) and on the other hand, we studied the effect of the functionalization of the organic linker by an amine group (NH2) on their dispersive component of the surface energy and on their Lewis acid–base properties. We found that all the studied MOFs presented an amphoteric character with a strong acidity whose acidity/basicity ratio is greater than 1 using all the models and methods in IGC. Moreover, the introduction of a modulator such as acetic acid or formic acid in the synthesis of these MOFs increased the number of structural defects and therefore increased the acidity of these MOFs. Similarly, the functionalization of the MOF by the NH2 group leads to an increase in the basicity constant of the functionalized MOF while remaining smaller than their acidity constant. In addition, the use of acids as modulators and amine groups as functional groups resulted in an increase in the dispersive component of the surface energy of the MOFs. Finally, comparing the results obtained by the different models and methods and based on the increasing order of the acidity of each MOF, it was clear that the thermal model resulted in more exact and precise values than the others. Our findings pave the way for the design and development of new acid catalysts based on UiO-66 structures.
Collapse
|
12
|
Oktavian R, Schireman R, Glasby LT, Huang G, Zanca F, Fairen-Jimenez D, Ruggiero MT, Moghadam PZ. Computational Characterization of Zr-Oxide MOFs for Adsorption Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56938-56947. [PMID: 36516445 PMCID: PMC9801377 DOI: 10.1021/acsami.2c13391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Zr-oxide secondary building units construct metal-organic framework (MOF) materials with excellent gas adsorption properties and high mechanical, thermal, and chemical stability. These attributes have led Zr-oxide MOFs to be well-recognized for a wide range of applications, including gas storage and separation, catalysis, as well as healthcare domain. Here, we report structure search methods within the Cambridge Structural Database (CSD) to create a curated subset of 102 Zr-oxide MOFs synthesized to date, bringing a unique record for all researchers working in this area. For the identified structures, we manually corrected the proton topology of hydroxyl and water molecules on the Zr-oxide nodes and characterized their textural properties, Brunauer-Emmett-Teller (BET) area, and topology. Importantly, we performed systematic periodic density functional theory (DFT) calculations comparing 25 different combinations of basis sets and functionals to calculate framework partial atomic charges for use in gas adsorption simulations. Through experimental verification of CO2 adsorption in selected Zr-oxide MOFs, we demonstrate the sensitivity of CO2 adsorption predictions at the Henry's regime to the choice of the DFT method for partial charge calculations. We characterized Zr-MOFs for their CO2 adsorption performance via high-throughput grand canonical Monte Carlo (GCMC) simulations and revealed how the chemistry of the Zr-oxide node could have a significant impact on CO2 uptake predictions. We found that the maximum CO2 uptake is obtained for structures with the heat of adsorption values >25 kJ/mol and the largest cavity diameters of ca. 6-7 Å. Finally, we introduced augmented reality (AR) visualizations as a means to bring adsorption phenomena alive in porous adsorbents and to dynamically explore gas adsorption sites in MOFs.
Collapse
Affiliation(s)
- Rama Oktavian
- Department
of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.
| | - Raymond Schireman
- Department
of Chemistry, University of Vermont, Burlington, Vermont 05405, United States
| | - Lawson T. Glasby
- Department
of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.
| | - Guanming Huang
- Department
of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.
| | - Federica Zanca
- Department
of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.
| | - David Fairen-Jimenez
- Department
of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Michael T. Ruggiero
- Department
of Chemistry, University of Vermont, Burlington, Vermont 05405, United States
| | - Peyman Z. Moghadam
- Department
of Chemical Engineering, University College
London, London WC1E 7JE, U.K.
- Department
of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.
| |
Collapse
|
13
|
|
14
|
He X, Yin F, Yi X, Yang T, Chen B, Wu X, Guo S, Li G, Li Z. Defective UiO-66-NH 2 Functionalized with Stable Superoxide Radicals toward Electrocatalytic Nitrogen Reduction with High Faradaic Efficiency. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26571-26586. [PMID: 35666991 DOI: 10.1021/acsami.1c23643] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The electrocatalytic nitrogen reduction reaction (NRR) to NH3 is limited by low Faradaic efficiency (FE). Herein, defective UiO-66-NH2 functionalized with quite stable superoxide radicals (O2•) is developed as a highly active NRR catalyst. The experimental and computational results show that one linker per Zr6 node is missed and two Zr atoms are exposed in the defective UiO-66-NH2. One of the two exposed Zr atoms can stably adsorb O2•, and thus, a Zr-OO• site forms during the preparations without light excitation or postoxidation, while the other Zr atom is activated as an active site. The synergistic effects of the two Zr sites in the defective UiO-66-NH2 suppress hydrogen and hydrazine evolutions considerably. They are as follows: (i) due to repulsion of the proton on the active Zr site and stabilization of the proton on the Zr-OO• site, the active Zr site is unfavorable for the adsorption of the proton with a high energy barrier, which is the HER rate-determining step (RDS); (ii) under the assistance of the OO• of the Zr-OO• site, the first hydrogenation step of *N2 (i.e., NRR RDS) on the active Zr site is promoted; and (iii) relying on the assistance of the OO• of the Zr-OO• site, the continuous hydrogenation of *NH2NH2 to produce NH3 on the active Zr site is spontaneously exothermic, whereas its desorption to hydrazine is blocked. Accordingly, an extremely high FE of ∼85.21% has been realized along with a high yield rate of NH3 (∼52.81 μg h-1 mgcat-1). To the best of our knowledge, it is the highest FE that has been achieved in recent years. Radical scavenging treatment of the defective UiO-66-NH2 and detailed investigations of two categories of control samples further verify the favorable effects of the O2• that closely correlates with the missed linkers on the performance of the NRR to NH3. This work opens a new way toward highly efficient NRR catalysts, i.e., stable radical-activating defective metal-organic frameworks.
Collapse
Affiliation(s)
- Xiaobo He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Fengxiang Yin
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Xuerui Yi
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Tong Yang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Biaohua Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Xiang Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Shang Guo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Guoru Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Zhichun Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
15
|
Achar SK, Wardzala JJ, Bernasconi L, Zhang L, Johnson JK. Combined Deep Learning and Classical Potential Approach for Modeling Diffusion in UiO-66. J Chem Theory Comput 2022; 18:3593-3606. [PMID: 35653218 DOI: 10.1021/acs.jctc.2c00010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modeling of diffusion of adsorbates through porous materials with atomistic molecular dynamics (MD) can be a challenging task if the flexibility of the adsorbent needs to be included. This is because potentials need to be developed that accurately account for the motion of the adsorbent in response to the presence of adsorbate molecules. In this work, we show that it is possible to use accurate machine learning atomistic potentials for metal-organic frameworks in concert with classical potentials for adsorbates to accurately compute diffusivities though a hybrid potential approach. As a proof-of-concept, we have developed an accurate deep learning potential (DP) for UiO-66, a metal-organic framework, and used this DP to perform hybrid potential simulations, modeling diffusion of neon and xenon through the crystal. The adsorbate-adsorbate interactions were modeled with Lennard-Jones (LJ) potentials, the adsorbent-adsorbent interactions were described by the DP, and the adsorbent-adsorbate interactions used LJ cross-interactions. Thus, our hybrid potential allows for adsorbent-adsorbate interactions with classical potentials but models the response of the adsorbent to the presence of the adsorbate through near-DFT accuracy DPs. This hybrid approach does not require refitting the DP for new adsorbates. We calculated self-diffusion coefficients for Ne in UiO-66 from DFT-MD, our hybrid DP/LJ approach, and from two different classical potentials for UiO-66. Our DP/LJ results are in excellent agreement with DFT-MD. We modeled diffusion of Xe in UiO-66 with DP/LJ and a classical potential. Diffusion of Xe in UiO-66 is about a factor of 30 slower than that of Ne, so it is not computationally feasible to compute Xe diffusion with DFT-MD. Our hybrid DP-classical potential approach can be applied to other MOFs and other adsorbates, making it possible to use an accurate DP generated from DFT simulations of an empty adsorbent in concert with existing classical potentials for adsorbates to model adsorption and diffusion within the porous material, including adsorbate-induced changes to the framework.
Collapse
Affiliation(s)
- Siddarth K Achar
- Computational Modeling & Simulation Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jacob J Wardzala
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Leonardo Bernasconi
- Center for Research Computing and Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Linfeng Zhang
- DP Technology, Beijing 100080, China.,AI for Science Institute, Beijing 100080, China
| | - J Karl Johnson
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
16
|
Acid Regulation of Defective Sulfonic-Acid-Functionalized UiO-66 in the Esterification of Cyclohexene with Formic Acid. Catal Letters 2022. [DOI: 10.1007/s10562-022-04028-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Xing Y, Luo L, Li Y, Wang D, Hu D, Li T, Zhang H. Exploration of Hierarchical Metal-Organic Framework as Ultralight, High-Strength Mechanical Metamaterials. J Am Chem Soc 2022; 144:4393-4402. [PMID: 35230831 DOI: 10.1021/jacs.1c11136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Due to the extraordinarily high surface to volume ratio and enormous structural and chemical diversities, metal-organic frameworks (MOFs) have drawn much attention in applications such as heterogeneous catalysis, gas storage separation, and drug delivery, and so on. However, the potential of MOF materials as mechanical metamaterials has not been investigated. In this work, we demonstrated that through the concerted effort of molecular construct and mesoscopic structural design, hierarchical MOFs can exhibit superb mechanical properties. With the cutting-edge in situ transmission and scanning electron microscope (TEM and SEM) techniques, the mechanical properties of hollow UiO-66 octahedron particles were quantitatively studied by compression on individual specimens. Results showed that the yield strength and Young's modulus of the hierarchical porous framework material presented a distinct "smaller is stronger and stiffer" size dependency, and the maximum yield strength and Young's modulus reached 580 ± 55 MPa and 4.3 ± 0.5 GPa, respectively. The specific strengths were measured as 0.15 ± 0.03 to 0.68 ± 0.11 GPa g-1 cm3, which is comparable to the previously reported state-of-the-art mechanical metamaterials like glassy carbon nanolattices and pyrolytic carbon nanolattices. This work revealed that MOF materials can be made into a new class of low-density, high-strength mechanical metamaterials and provided insight into the mechanical stability of nanoscale MOFs for practical applications.
Collapse
Affiliation(s)
- Yurui Xing
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, PR China
| | - Lianshun Luo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, PR China
| | - Yansong Li
- Department of Aircraft Airworthiness Engineering, School of Transportation Science and Engineering, Beihang University (BUAA), Beijing 100191, PR China
| | - Dongxu Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, PR China
| | - Dayong Hu
- Department of Aircraft Airworthiness Engineering, School of Transportation Science and Engineering, Beihang University (BUAA), Beijing 100191, PR China
| | - Tao Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, PR China.,Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, PR China
| | - Hongti Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, PR China.,Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, PR China
| |
Collapse
|
18
|
Tran TY, Younis SA, Heynderickx PM, Kim KH. Validation of two contrasting capturing mechanisms for gaseous formaldehyde between two different types of strong metal-organic framework adsorbents. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127459. [PMID: 34670171 DOI: 10.1016/j.jhazmat.2021.127459] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/21/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
In this research, the adsorption behavior of formaldehyde (FA) onto two types of metal-organic frameworks (MOFs: MOF-199 [M199] and UiO-66-NH2 [U6N]) is investigated against changes in the key process variables (e.g., FA partial pressure (0.5-10 Pa), temperature (30-120 °C), and relative humidity (RH: 0%, 50%, and 100%)). The results revealed that the FA adsorption behavior onto both MOFs is exothermic in nature. Besides, their relative dominance for FA uptake varies interactively with the changes in RH and FA partial pressure levels. As the FA levels increase in dry conditions, their breakthrough volumes (BTV (100% BT)) exhibit contrasting trends: The values of U6N decreased noticeably from 5232 and 3792 L·atm·g-1, while those of M199 increased from 4152 to 5772 L·atm·g-1. The superiority of U6N over M199 in the lower FA level (at<5 Pa) is supported by the Lewis acid-base interactions with amine groups (U6N) in line with kinetic/isotherm studies. Such superiority is also persistent at higher (10 Pa) FA level under all humid conditions in line with its higher moisture stability. However, in dry conditions, the reversal of relative dominance in which M199 exhibits enhanced efficacy for 10 Pa FA uptake (relative to U6N) should reflect its breathing effects with the potent role of pore-diffusion mechanism. This study offers valuable insights into the construction of tunable adsorbents with enhanced adsorptivity toward key targets.
Collapse
Affiliation(s)
- Thi Yen Tran
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sherif A Younis
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea; Analysis and Evaluation Department, Egyptian Petroleum Research Institute, 11727 Nasr City, Cairo, Egypt
| | - Philippe M Heynderickx
- Center for Environmental and Energy Research (CEER) - Engineering of Materials via Catalysis and Characterization, Ghent University Global Campus, 119-5 Songdomunhwa-Ro, Yeonsu-Gu, Incheon 406-840 Republic of Korea; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent B-9000, Belgium
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
19
|
Saidi M, Ho PH, Yadav P, Salles F, Charnay C, Girard L, Boukli-Hacene L, Trens P. Zirconium-Based Metal Organic Frameworks for the Capture of Carbon Dioxide and Ethanol Vapour. A Comparative Study. Molecules 2021; 26:7620. [PMID: 34946698 PMCID: PMC8703343 DOI: 10.3390/molecules26247620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
This paper reports on the comparison of three zirconium-based metal organic frameworks (MOFs) for the capture of carbon dioxide and ethanol vapour at ambient conditions. In terms of efficiency, two parameters were evaluated by experimental and modeling means, namely the nature of the ligands and the size of the cavities. We demonstrated that amongst three Zr-based MOFs, MIP-202 has the highest affinity for CO2 (-50 kJ·mol-1 at low coverage against around -20 kJ·mol-1 for MOF-801 and Muc Zr MOF), which could be related to the presence of amino functions borne by its aspartic acid ligands as well as the presence of extra-framework anions. On the other side, regardless of the ligand size, these three materials were able to adsorb similar amounts of carbon dioxide at 1 atm (between 2 and 2.5 µmol·m-2 at 298 K). These experimental findings were consistent with modeling studies, despite chemisorption effects, which could not be taken into consideration by classical Monte Carlo simulations. Ethanol adsorption confirmed these results, higher enthalpies being found at low coverage for the three materials because of stronger van der Waals interactions. Two distinct sorption processes were proposed in the case of MIP-202 to explain the shape of the enthalpic profiles.
Collapse
Affiliation(s)
- Meryem Saidi
- Institut Charles Gerhardt des Matériaux (ICGM), Univ. Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (M.S.); (P.H.H.); (P.Y.); (F.S.); (C.C.)
- Department of Chemistry, Tlemcen University, Tlemcen BP 119, Algeria;
| | - Phuoc Hoang Ho
- Institut Charles Gerhardt des Matériaux (ICGM), Univ. Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (M.S.); (P.H.H.); (P.Y.); (F.S.); (C.C.)
| | - Pankaj Yadav
- Institut Charles Gerhardt des Matériaux (ICGM), Univ. Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (M.S.); (P.H.H.); (P.Y.); (F.S.); (C.C.)
| | - Fabrice Salles
- Institut Charles Gerhardt des Matériaux (ICGM), Univ. Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (M.S.); (P.H.H.); (P.Y.); (F.S.); (C.C.)
| | - Clarence Charnay
- Institut Charles Gerhardt des Matériaux (ICGM), Univ. Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (M.S.); (P.H.H.); (P.Y.); (F.S.); (C.C.)
| | - Luc Girard
- Institut de Chimie Séparative de Marcoule (ICSM), Univ. Montpellier, CNRS, ENSCM, CEA, 30207 Bagnols sur Cèze, France;
| | | | - Philippe Trens
- Institut Charles Gerhardt des Matériaux (ICGM), Univ. Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (M.S.); (P.H.H.); (P.Y.); (F.S.); (C.C.)
| |
Collapse
|
20
|
Vervoorts P, Stebani J, Méndez ASJ, Kieslich G. Structural Chemistry of Metal–Organic Frameworks under Hydrostatic Pressures. ACS MATERIALS LETTERS 2021; 3:1635-1651. [DOI: 10.1021/acsmaterialslett.1c00250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Pia Vervoorts
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Julia Stebani
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Alba S. J. Méndez
- Deutsches Elektronen Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Gregor Kieslich
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
21
|
Frederick E, Appelhans L, DelRio F, Strong KT, Smith S, Dickens S, Vreeland E. Synthesis and Mechanical Properties of sub 5-µm PolyUiO-66 Thin Films on Gold Surfaces. Chemphyschem 2021; 23:e202100673. [PMID: 34861081 DOI: 10.1002/cphc.202100673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/02/2021] [Indexed: 11/09/2022]
Abstract
Metal-organic framework (MOF) thin films currently lack the mechanical stability needed for electronic device applications. Polymer-based metal-organic frameworks (polyMOFs) have been suggested to provide mechanical advantages over MOFs, however, the mechanical properties of polyMOFs have not yet been characterized. In this work, we developed a method to synthesize continuous sub-5 µm polyUiO-66(Zr) films on Au substrates, which allowed us to undertake initial mechanical property investigations. Comparisons between polyUiO-66 and UiO-66 thin films determined polyUiO-66 thin films exhibit a lower modulus but similar hardness to UiO-66 thin films. The initial mechanical characterization indicates that further development is needed to leverage the mechanical property advantages of polyMOFs over MOFs. Additionally, the demonstration in this work of a continuous surface-supported polyUiO-66 thin film also enables utilization of the emerging class of polyMOF materials in sensors and devices applications.
Collapse
Affiliation(s)
- Esther Frederick
- Sandia National Laboratories, N/A, Albuquerque, 21045, New Mexico, UNITED STATES
| | | | - Frank DelRio
- Sandia National Laboratories, New Mexico, UNITED STATES
| | | | - Sean Smith
- Sandia National Laboratories, New Mexico, UNITED STATES
| | - Sara Dickens
- Sandia National Laboratories, New Mexico, UNITED STATES
| | | |
Collapse
|
22
|
Koschnick C, Stäglich R, Scholz T, Terban MW, von Mankowski A, Savasci G, Binder F, Schökel A, Etter M, Nuss J, Siegel R, Germann LS, Ochsenfeld C, Dinnebier RE, Senker J, Lotsch BV. Understanding disorder and linker deficiency in porphyrinic zirconium-based metal-organic frameworks by resolving the Zr 8O 6 cluster conundrum in PCN-221. Nat Commun 2021; 12:3099. [PMID: 34035286 PMCID: PMC8149457 DOI: 10.1038/s41467-021-23348-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/21/2021] [Indexed: 11/09/2022] Open
Abstract
Porphyrin-based metal–organic frameworks (MOFs), exemplified by MOF-525, PCN-221, and PCN-224, are promising systems for catalysis, optoelectronics, and solar energy conversion. However, subtle differences between synthetic protocols for these three MOFs give rise to vast discrepancies in purported product outcomes and description of framework topologies. Here, based on a comprehensive synthetic and structural analysis spanning local and long-range length scales, we show that PCN-221 consists of Zr6O4(OH)4 clusters in four distinct orientations within the unit cell, rather than Zr8O6 clusters as originally published, and linker vacancies at levels of around 50%, which may form in a locally correlated manner. We propose disordered PCN-224 (dPCN-224) as a unified model to understand PCN-221, MOF-525, and PCN-224 by varying the degree of orientational cluster disorder, linker conformation and vacancies, and cluster–linker binding. Our work thus introduces a new perspective on network topology and disorder in Zr-MOFs and pinpoints the structural variables that direct their functional properties. Zirconium-based metal–organic frameworks have defective structures that are useful in catalysis and gas storage. Here, the authors study the interplay between cluster disorder and linker vacancies in PCN-221 and propose a new structure model with tilted Zr6O4(OH)4 clusters rather than Zr8O6 clusters.
Collapse
Affiliation(s)
- Charlotte Koschnick
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart, 70569, Germany.,Department of Chemistry, University of Munich, Butenandtstraße 5-13, Munich, 81377, Germany.,e-conversion, Lichtenbergstraße 4a, Garching, 85748, Germany.,Center for Nanoscience, Schellingstraße 4, Munich, 80799, Germany
| | - Robert Stäglich
- Department of Inorganic Chemistry, University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany.,North Bavarian NMR Center, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Tanja Scholz
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart, 70569, Germany
| | - Maxwell W Terban
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart, 70569, Germany
| | - Alberto von Mankowski
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart, 70569, Germany.,Department of Chemistry, University of Munich, Butenandtstraße 5-13, Munich, 81377, Germany.,e-conversion, Lichtenbergstraße 4a, Garching, 85748, Germany.,Center for Nanoscience, Schellingstraße 4, Munich, 80799, Germany
| | - Gökcen Savasci
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart, 70569, Germany.,Department of Chemistry, University of Munich, Butenandtstraße 5-13, Munich, 81377, Germany.,Center for Nanoscience, Schellingstraße 4, Munich, 80799, Germany
| | - Florian Binder
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart, 70569, Germany.,Department of Chemistry, University of Munich, Butenandtstraße 5-13, Munich, 81377, Germany
| | - Alexander Schökel
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, Hamburg, 22607, Germany
| | - Martin Etter
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, Hamburg, 22607, Germany
| | - Jürgen Nuss
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart, 70569, Germany
| | - Renée Siegel
- Department of Inorganic Chemistry, University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany.,North Bavarian NMR Center, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Luzia S Germann
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart, 70569, Germany.,Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, H3A 0B8, QC, Canada
| | - Christian Ochsenfeld
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart, 70569, Germany.,Department of Chemistry, University of Munich, Butenandtstraße 5-13, Munich, 81377, Germany.,Center for Nanoscience, Schellingstraße 4, Munich, 80799, Germany
| | - Robert E Dinnebier
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart, 70569, Germany
| | - Jürgen Senker
- Department of Inorganic Chemistry, University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany. .,North Bavarian NMR Center, Universitätsstraße 30, Bayreuth, 95447, Germany.
| | - Bettina V Lotsch
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart, 70569, Germany. .,Department of Chemistry, University of Munich, Butenandtstraße 5-13, Munich, 81377, Germany. .,e-conversion, Lichtenbergstraße 4a, Garching, 85748, Germany. .,Center for Nanoscience, Schellingstraße 4, Munich, 80799, Germany.
| |
Collapse
|
23
|
Wang S, Oliver MC, An Y, Chen E, Su Z, Kleinhammes A, Wu Y, Huang L. A Computational Study of Isopropyl Alcohol Adsorption and Diffusion in UiO-66 Metal-Organic Framework: The Role of Missing Linker Defect. J Phys Chem B 2021; 125:3690-3699. [PMID: 33797251 DOI: 10.1021/acs.jpcb.0c11252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Defect engineering leads to an effective manipulation of the physical and chemical properties of metal-organic frameworks (MOFs). Taking the common missing linker defect as an example, the defective MOF generally possesses larger pores and a greater surface area/volume ratio, both of which favor an increased amount of adsorption. When it comes to the self-diffusion of adsorbates in MOFs, however, the missing linker is a double-edged sword: the unsaturated metal sites, due to missing linkers, could interact more strongly with adsorbates and result in a slower self-diffusion. Therefore, it is of fundamental importance to evaluate the two competing factors and reveal which one is dominating, a faster self-diffusion due to larger volume or a slower self-diffusion owing to strong interactions at unsaturated sites. In this work, via Monte Carlo and molecular dynamics simulations, we investigate the behavior of isopropyl alcohol (IPA) in the Zr-based UiO-66 MOFs, with a specific focus on the missing linker effects. The results reveal that unsaturated Zr sites bind strongly with IPA molecules, which in return would significantly reduce the self-diffusion coefficient of IPA. Besides this, for the same level of missing linkers, the location of defective sites also makes a difference. We expect such a theoretical study will provide an in-depth understanding of self-diffusion under confinement, inspire better defect engineering strategics, and promote MOF based materials toward challenging real-life applications.
Collapse
Affiliation(s)
- Shanshan Wang
- College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, P. R. China.,School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Madeleine C Oliver
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Yao An
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Enyi Chen
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Zhibin Su
- State Key Laboratory of Material-Oriented Chemical Engineering, Department of Chemical Engineering, Nanjing Tech University, 211814, Nanjing, P. R. China
| | - Alfred Kleinhammes
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Yue Wu
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Liangliang Huang
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
24
|
Boström HLB, Collings IE, Daisenberger D, Ridley CJ, Funnell NP, Cairns AB. Probing the Influence of Defects, Hydration, and Composition on Prussian Blue Analogues with Pressure. J Am Chem Soc 2021; 143:3544-3554. [PMID: 33629831 PMCID: PMC8028041 DOI: 10.1021/jacs.0c13181] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
The vast compositional
space of Prussian blue analogues (PBAs),
formula AxM[M′(CN)6]y·nH2O, allows
for a diverse range of functionality. Yet, the interplay between composition
and physical properties—e.g., flexibility and propensity for
phase transitions—is still largely unknown, despite its fundamental
and industrial relevance. Here we use variable-pressure X-ray and
neutron diffraction to explore how key structural features, i.e.,
defects, hydration, and composition, influence the compressibility
and phase behavior of PBAs. Defects enhance the flexibility, manifesting
as a remarkably low bulk modulus (B0 ≈
6 GPa) for defective PBAs. Interstitial water increases B0 and enables a pressure-induced phase transition
in defective systems. Conversely, hydration does not alter the compressibility
of stoichiometric MnPt(CN)6, but changes the high-pressure
phase transitions, suggesting an interplay between low-energy distortions.
AMnCo(CN)6 (AI = Rb, Cs) transition from F4̅3m to P4̅n2 upon compression due to octahedral tilting, and the critical
pressure can be tuned by the A-site cation. At 1 GPa, the symmetry
of Rb0.87Mn[Co(CN)6]0.91 is further
lowered to the polar space group Pn by an improper
ferroelectric mechanism. These fundamental insights aim to facilitate
the rational design of PBAs for applications within a wide range of
fields.
Collapse
Affiliation(s)
- Hanna L B Boström
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany.,Department of Inorganic Chemistry, Ångström Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden.,Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, U.K
| | - Ines E Collings
- Centre for X-ray Analytics, EMPA - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | | | - Christopher J Ridley
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K
| | - Nicholas P Funnell
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K
| | - Andrew B Cairns
- Department of Materials, Imperial College London, Royal School of Mines, Exhibition Road, London SW7 2AZ, U.K.,London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
25
|
Mileo PGM, Cho KH, Chang JS, Maurin G. Water adsorption fingerprinting of structural defects/capping functions in Zr-fumarate MOFs: a hybrid computational-experimental approach. Dalton Trans 2021; 50:1324-1333. [PMID: 33409514 DOI: 10.1039/d0dt03705b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Engineering structural defects in MOFs has been intensively applied to modulate their adsorption-related properties. Zr-fumarate MOF (also known as MOF-801) is a prototypical defective MOF with proven versatile adsorption/separation performances depending on the synthetic conditions, however the relationship between the nature/concentration of both structure defects/capping functions and its adsorption features is still far from being fully understood. In this work, we first present a systematic theoretical exploration of the individual contributions of linker and cluster defects as well as of the capping functions to the overall water adsorption profile of the MOF-801 framework. This computational effort based on the construction of defective structure models and the use of Grand Canonical Monte Carlo simulations further enabled the identification of the overarching defective structure for two MOF-801 samples based on their experimental adsorption isotherms reported previously. An experimental effort was then deployed to synthesize two Zr-fumarate MOF samples with controlled nature and concentration of structural defects as well as capping functions. This computational-experimental hybrid strategy revealed the water adsorption isotherm as a fingerprint of the nature and concentration of structural defect/capping groups exhibited by the MOF adsorbent. We expect this study to deliver meaningful insights to further design MOFs with target adsorption features through a rational engineering of structural defects.
Collapse
Affiliation(s)
| | - Kyung Ho Cho
- Research Group for Nanocatalyst and Chemical Safety Research Center, Korea Research Institute of Chemical Tech-nology (KRICT), Gajeong-ro 141, Yuseong-gu, Daejeon 34114, South Korea.
| | - Jong-San Chang
- Research Group for Nanocatalyst and Chemical Safety Research Center, Korea Research Institute of Chemical Tech-nology (KRICT), Gajeong-ro 141, Yuseong-gu, Daejeon 34114, South Korea. and Department of Chemistry, Sungkyunkwan University, Suwon 440-476, South Korea
| | | |
Collapse
|
26
|
Rogge SMJ. The micromechanical model to computationally investigate cooperative and correlated phenomena in metal-organic frameworks. Faraday Discuss 2021; 225:271-285. [PMID: 33103669 DOI: 10.1039/c9fd00148d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Computational insight into the impact of cooperative phenomena and correlated spatial disorder on the macroscopic behaviour of metal-organic frameworks (MOFs) is essential in order to consciously engineer these phenomena for targeted applications. However, the spatial extent of these effects, ranging over hundreds of nanometres, limits the applicability of current state-of-the-art computational tools in this field. To obtain a fundamental understanding of these long-range effects, the micromechanical model is introduced here. This model overcomes the challenges associated with conventional coarse-graining techniques by exploiting the natural partitioning of a MOF material into unit cells. By adopting the elastic deformation energy as the central quantity, the micromechanical model hierarchically builds on experimentally accessible input parameters that are obtained from atomistic quantum mechanical or force field simulations. As a result, the here derived micromechanical equations of motion can be adopted to shed light on the effect of long-range cooperative phenomena and correlated spatial disorder on the performance of mesoscale MOF materials.
Collapse
Affiliation(s)
- Sven M J Rogge
- Center for Molecular Modeling, Ghent University, Technologiepark 46, Zwijnaarde, 9052, Belgium.
| |
Collapse
|
27
|
Fan Z, Wang J, Wang W, Burger S, Wang Z, Wang Y, Wöll C, Cokoja M, Fischer RA. Defect Engineering of Copper Paddlewheel-Based Metal-Organic Frameworks of Type NOTT-100: Implementing Truncated Linkers and Its Effect on Catalytic Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37993-38002. [PMID: 32846497 DOI: 10.1021/acsami.0c07249] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A series of new defect-engineered metal-organic frameworks (DEMOFs) were synthesized by framework doping with truncated linkers employing the mixed-linker approach. Two tritopic defective (truncated) linkers, biphenyl-3,3',5-tricarboxylates (LH) lacking a ligating group and 5-(5-carboxypyridin-3-yl)isophthalates (LPy) bearing a weaker interacting ligator site, were integrated into the framework of Cu2(BPTC) (NOTT-100, BPTC = biphenyl-3,3',5,5'-tetracarboxylates). Incorporating LH into the framework mainly generates missing metal node defects, thereby obtaining dangling COOH groups in the framework. However, introducing LPy forms more modified metal nodes featuring reduced and more accessible Cu sites. In comparison with the pristine NOTT-100, the defect-engineered NOTT-100 (DE-NOTT-100) samples show two unique features: (i) functional groups (the protonated carboxylate groups as the Brønsted acid sites or the pyridyl N atoms as the Lewis basic sites), which can act as second active sites, are incorporated into the MOF frameworks, and (ii) more modified paddlewheels, which provided extra coordinatively unsaturated sites, are generated. The cooperative functioning of the above characteristics enhances the catalytic performance of certain types of reactions. For a proof of concept, two exemplary reactions, namely, the cycloaddition of CO2 with propylene oxide to propylene carbonate and the cyclopropanation of styrene, were carried out to evaluate the catalytic activities of those DE-NOTT-100 materials depending on the defect structure.
Collapse
Affiliation(s)
- Zhiying Fan
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergtraße 4, Garching 85748, Germany
| | - Junjun Wang
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Weijia Wang
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Stefan Burger
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergtraße 4, Garching 85748, Germany
| | - Zheng Wang
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergtraße 4, Garching 85748, Germany
| | - Yuemin Wang
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Christof Wöll
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Mirza Cokoja
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergtraße 4, Garching 85748, Germany
| | - Roland A Fischer
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergtraße 4, Garching 85748, Germany
| |
Collapse
|
28
|
Bambalaza SE, Langmi HW, Mokaya R, Musyoka NM, Khotseng LE. Experimental Demonstration of Dynamic Temperature-Dependent Behavior of UiO-66 Metal-Organic Framework: Compaction of Hydroxylated and Dehydroxylated Forms of UiO-66 for High-Pressure Hydrogen Storage. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24883-24894. [PMID: 32392036 DOI: 10.1021/acsami.0c06080] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High-pressure (700 MPa or ∼100 000 psi) compaction of dehydroxylated and hydroxylated UiO-66 for H2 storage applications is reported. The dehydroxylation reaction was found to occur between 150 and 300 °C. The H2 uptake capacity of powdered hydroxylated UiO-66 reaches 4.6 wt % at 77 K and 100 bar, which is 21% higher than that of dehydroxylated UiO-66 (3.8 wt %). On compaction, the H2 uptake capacity of dehydroxylated UiO-66 pellets reduces by 66% from 3.8 to 1.3 wt %, while for hydroxylated UiO-66 the pellets show only a 9% reduction in capacity from 4.6 to 4.2 wt %. This implies that the H2 uptake capacity of compacted hydroxylated UiO-66 is at least three times higher than that of dehydroxylated UiO-66, and therefore, hydroxylated UiO-66 is more promising for hydrogen storage applications. The H2 uptake capacity is closely related to compaction-induced changes in the porosity of UiO-66. The effect of compaction is greatest in partially dehydroxylated UiO-66 samples that are thermally treated at 200 and 290 °C. These compacted samples exhibit XRD patterns indicative of an amorphous material, low porosity (surface area reduces from between 700 and 1300 m2/g to ca. 200 m2/g and pore volume from between 0.4 and 0.6 cm3/g to 0.1 and 0.15 cm3/g), and very low hydrogen uptake (0.7-0.9 wt % at 77 K and 100 bar). The observed activation-temperature-induced dynamic behavior of UiO-66 is unusual for metal-organic frameworks (MOFs) and has previously only been reported in computational studies. After compaction at 700 MPa, the structural properties and H2 uptake of hydroxylated UiO-66 remain relatively unchanged but are extremely compromised upon compaction of dehydroxylated UiO-66. Therefore, UiO-66 responds in a dynamic manner to changes in activation temperature within the range in which it has hitherto been considered stable.
Collapse
Affiliation(s)
- Sonwabo E Bambalaza
- HySA Infrastructure Centre of Competence, Energy Centre, Council for Scientific and Industrial Research (CSIR), PO Box 395, Pretoria 0001, South Africa
- Faculty of Natural Science, University of the Western Cape, Bellville, Cape Town 7535, South Africa
| | - Henrietta W Langmi
- Department of Chemistry, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Robert Mokaya
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Nicholas M Musyoka
- HySA Infrastructure Centre of Competence, Energy Centre, Council for Scientific and Industrial Research (CSIR), PO Box 395, Pretoria 0001, South Africa
| | - Lindiwe E Khotseng
- Faculty of Natural Science, University of the Western Cape, Bellville, Cape Town 7535, South Africa
| |
Collapse
|
29
|
Rogge SMJ, Yot PG, Jacobsen J, Muniz-Miranda F, Vandenbrande S, Gosch J, Ortiz V, Collings IE, Devautour-Vinot S, Maurin G, Stock N, Van Speybroeck V. Charting the Metal-Dependent High-Pressure Stability of Bimetallic UiO-66 Materials. ACS MATERIALS LETTERS 2020; 2:438-445. [PMID: 32296781 PMCID: PMC7147928 DOI: 10.1021/acsmaterialslett.0c00042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
In theory, bimetallic UiO-66(Zr:Ce) and UiO-66(Zr:Hf) metal-organic frameworks (MOFs) are extremely versatile and attractive nanoporous materials as they combine the high catalytic activity of UiO-66(Ce) or UiO-66(Hf) with the outstanding stability of UiO-66(Zr). Using in situ high-pressure powder X-ray diffraction, however, we observe that this expected mechanical stability is not achieved when incorporating cerium or hafnium in UiO-66(Zr). This observation is akin to the earlier observed reduced thermal stability of UiO-66(Zr:Ce) compounds. To elucidate the atomic origin of this phenomenon, we chart the loss-of-crystallinity pressures of 22 monometallic and bimetallic UiO-66 materials and systematically isolate their intrinsic mechanical stability from their defect-induced weakening. This complementary experimental/computational approach reveals that the intrinsic mechanical stability of these bimetallic MOFs decreases nonlinearly upon cerium incorporation but remains unaffected by the zirconium: hafnium ratio. Additionally, all experimental samples suffer from defect-induced weakening, a synthesis-controlled effect that is observed to be independent of their intrinsic stability.
Collapse
Affiliation(s)
- Sven M. J. Rogge
- Center
for Molecular Modeling (CMM), Ghent University, Technologiepark 46, B-9052 Zwijnaarde, Belgium
| | - Pascal G. Yot
- Institut
Charles Gerhardt Montpellier (ICGM), Université
de Montpellier, CNRS, ENSCM, Place Eugène Bataillon, F-34095 Montpellier cedex 05, France
| | - Jannick Jacobsen
- Institut
für Anorganische Chemie, Christian-Albrechts-Universität
zu Kiel, Max-Eyth-Straβe 2, D-24118 Kiel, Germany
| | - Francesco Muniz-Miranda
- Center
for Molecular Modeling (CMM), Ghent University, Technologiepark 46, B-9052 Zwijnaarde, Belgium
| | - Steven Vandenbrande
- Center
for Molecular Modeling (CMM), Ghent University, Technologiepark 46, B-9052 Zwijnaarde, Belgium
| | - Jonas Gosch
- Institut
für Anorganische Chemie, Christian-Albrechts-Universität
zu Kiel, Max-Eyth-Straβe 2, D-24118 Kiel, Germany
| | - Vanessa Ortiz
- Institut
Charles Gerhardt Montpellier (ICGM), Université
de Montpellier, CNRS, ENSCM, Place Eugène Bataillon, F-34095 Montpellier cedex 05, France
| | - Ines E. Collings
- European
Synchrotron Radiation Facility, 71 Avenue des Martys, F-38000 Grenoble, France
| | - Sabine Devautour-Vinot
- Institut
Charles Gerhardt Montpellier (ICGM), Université
de Montpellier, CNRS, ENSCM, Place Eugène Bataillon, F-34095 Montpellier cedex 05, France
| | - Guillaume Maurin
- Institut
Charles Gerhardt Montpellier (ICGM), Université
de Montpellier, CNRS, ENSCM, Place Eugène Bataillon, F-34095 Montpellier cedex 05, France
| | - Norbert Stock
- Institut
für Anorganische Chemie, Christian-Albrechts-Universität
zu Kiel, Max-Eyth-Straβe 2, D-24118 Kiel, Germany
| | - Veronique Van Speybroeck
- Center
for Molecular Modeling (CMM), Ghent University, Technologiepark 46, B-9052 Zwijnaarde, Belgium
| |
Collapse
|
30
|
Feng X, Hajek J, Jena HS, Wang G, Veerapandian SKP, Morent R, De Geyter N, Leyssens K, Hoffman AEJ, Meynen V, Marquez C, De Vos DE, Van Speybroeck V, Leus K, Van Der Voort P. Engineering a Highly Defective Stable UiO-66 with Tunable Lewis- Brønsted Acidity: The Role of the Hemilabile Linker. J Am Chem Soc 2020; 142:3174-3183. [PMID: 31971786 PMCID: PMC7020139 DOI: 10.1021/jacs.9b13070] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The stability of metal-organic frameworks (MOFs) typically decreases with an increasing number of defects, limiting the number of defects that can be created and limiting catalytic and other applications. Herein, we use a hemilabile (Hl) linker to create up to a maximum of six defects per cluster in UiO-66. We synthesized hemilabile UiO-66 (Hl-UiO-66) using benzene dicarboxylate (BDC) as linker and 4-sulfonatobenzoate (PSBA) as the hemilabile linker. The PSBA acts not only as a modulator to create defects but also as a coligand that enhances the stability of the resulting defective framework. Furthermore, upon a postsynthetic treatment in H2SO4, the average number of defects increases to the optimum of six missing BDC linkers per cluster (three per formula unit), leaving the Zr-nodes on average sixfold coordinated. Remarkably, the thermal stability of the materials further increases upon this treatment. Periodic density functional theory calculations confirm that the hemilabile ligands strengthen this highly defective structure by several stabilizing interactions. Finally, the catalytic activity of the obtained materials is evaluated in the acid-catalyzed isomerization of α-pinene oxide. This reaction is particularly sensitive to the Brønsted or Lewis acid sites in the catalyst. In comparison to the pristine UiO-66, which mainly possesses Brønsted acid sites, the Hl-UiO-66 and the postsynthetically treated Hl-UiO-66 structures exhibited a higher Lewis acidity and an enhanced activity and selectivity. This is further explored by CD3CN spectroscopic sorption experiments. We have shown that by tuning the number of defects in UiO-66 using PSBA as the hemilabile linker, one can achieve highly defective and stable MOFs and easily control the Brønsted to Lewis acid ratio in the materials and thus their catalytic activity and selectivity.
Collapse
Affiliation(s)
- Xiao Feng
- Department of Chemistry, Center for Ordered Materials, Organometallics and Catalysis (COMOC) , Ghent University , 281 Krijgslaan (S3) , B-9000 Ghent , Belgium
| | - Julianna Hajek
- Center for Molecular Modeling , Ghent University , Tech Lane Ghent Science Park Campus A, Technologiepark 46 , 9052 Zwijnaarde , Belgium
| | - Himanshu Sekhar Jena
- Department of Chemistry, Center for Ordered Materials, Organometallics and Catalysis (COMOC) , Ghent University , 281 Krijgslaan (S3) , B-9000 Ghent , Belgium
| | - Guangbo Wang
- Department of Chemistry, Center for Ordered Materials, Organometallics and Catalysis (COMOC) , Ghent University , 281 Krijgslaan (S3) , B-9000 Ghent , Belgium.,College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education , Shandong Normal University , Jinan 250014 , P.R. China
| | - Savita K P Veerapandian
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture , Ghent University , St-Pietersnieuwstraat 41 B4 , 9000 Ghent , Belgium
| | - Rino Morent
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture , Ghent University , St-Pietersnieuwstraat 41 B4 , 9000 Ghent , Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture , Ghent University , St-Pietersnieuwstraat 41 B4 , 9000 Ghent , Belgium
| | - Karen Leyssens
- Department of Chemistry, Lab of Adsorption & Catalysis LADCA , University of Antwerp , Universiteitsplein 1 , B-2610 Antwerp , Belgium
| | - Alexander E J Hoffman
- Center for Molecular Modeling , Ghent University , Tech Lane Ghent Science Park Campus A, Technologiepark 46 , 9052 Zwijnaarde , Belgium
| | - Vera Meynen
- Department of Chemistry, Lab of Adsorption & Catalysis LADCA , University of Antwerp , Universiteitsplein 1 , B-2610 Antwerp , Belgium
| | - Carlos Marquez
- Ctr Membrane Separation, Adsorption, Catalysis & Spectroscopy for Sustainable Chemistry , Katholieke University Leuven , Celestijnenlaan 200F Box 2454, B-3000 Leuven , Belgium
| | - Dirk E De Vos
- Ctr Membrane Separation, Adsorption, Catalysis & Spectroscopy for Sustainable Chemistry , Katholieke University Leuven , Celestijnenlaan 200F Box 2454, B-3000 Leuven , Belgium
| | - Veronique Van Speybroeck
- Center for Molecular Modeling , Ghent University , Tech Lane Ghent Science Park Campus A, Technologiepark 46 , 9052 Zwijnaarde , Belgium
| | - Karen Leus
- Department of Chemistry, Center for Ordered Materials, Organometallics and Catalysis (COMOC) , Ghent University , 281 Krijgslaan (S3) , B-9000 Ghent , Belgium
| | - Pascal Van Der Voort
- Department of Chemistry, Center for Ordered Materials, Organometallics and Catalysis (COMOC) , Ghent University , 281 Krijgslaan (S3) , B-9000 Ghent , Belgium
| |
Collapse
|
31
|
Kidanemariam A, Lee J, Park J. Recent Innovation of Metal-Organic Frameworks for Carbon Dioxide Photocatalytic Reduction. Polymers (Basel) 2019; 11:E2090. [PMID: 31847223 PMCID: PMC6960843 DOI: 10.3390/polym11122090] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 01/11/2023] Open
Abstract
The accumulation of carbon dioxide (CO2) pollutants in the atmosphere begets global warming, forcing us to face tangible catastrophes worldwide. Environmental affability, affordability, and efficient CO2 metamorphotic capacity are critical factors for photocatalysts; metal-organic frameworks (MOFs) are one of the best candidates. MOFs, as hybrid organic ligand and inorganic nodal metal with tailorable morphological texture and adaptable electronic structure, are contemporary artificial photocatalysts. The semiconducting nature and porous topology of MOFs, respectively, assists with photogenerated multi-exciton injection and adsorption of substrate proximate to void cavities, thereby converting CO2. The vitality of the employment of MOFs in CO2 photolytic reaction has emerged from the fact that they are not only an inherently eco-friendly weapon for pollutant extermination, but also a potential tool for alleviating foreseeable fuel crises. The excellent synergistic interaction between the central metal and organic linker allows decisive implementation for the design, integration, and application of the catalytic bundle. In this review, we presented recent MOF headway focusing on reports of the last three years, exhaustively categorized based on central metal-type, and novel discussion, from material preparation to photocatalytic, simulated performance recordings of respective as-synthesized materials. The selective CO2 reduction capacities into syngas or formate of standalone or composite MOFs with definite photocatalytic reaction conditions was considered and compared.
Collapse
Affiliation(s)
| | | | - Juhyun Park
- School of Chemical Engineering and Materials Science, Institute of Energy-Converting Soft Materials, Chung-Ang University, Seoul 06974, Korea; (A.K.); (J.L.)
| |
Collapse
|
32
|
Caratelli C, Hajek J, Meijer EJ, Waroquier M, Van Speybroeck V. Dynamic Interplay between Defective UiO-66 and Protic Solvents in Activated Processes. Chemistry 2019; 25:15315-15325. [PMID: 31461187 PMCID: PMC6916623 DOI: 10.1002/chem.201903178] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Indexed: 01/24/2023]
Abstract
UiO‐66, composed by Zr‐oxide inorganic bricks [Zr6(μ3‐O)4(μ3‐OH)4] and organic terephthalate linkers, is one of the most studied metal–organic frameworks (MOFs) due to its exceptional thermal, chemical, and mechanical stability. Thanks to its high connectivity, the material can withstand structural deformations during activation processes such as linker exchange, dehydration, and defect formation. These processes do alter the zirconium coordination number in a dynamic way, creating open metal sites for catalysis and thus are able to tune the catalytic properties. In this work, it is shown, by means of first‐principle molecular‐dynamics simulations at operating conditions, how protic solvents may facilitate such changes in the metal coordination. Solvent can induce structural rearrangements in the material that can lead to undercoordinated but also overcoordinated metal sites. This is demonstrated by simulating activation processes along well‐chosen collective variables. Such enhanced MD simulations are able to track the intrinsic dynamics of the framework at realistic conditions.
Collapse
Affiliation(s)
- Chiara Caratelli
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052, Zwijnaarde, Belgium
| | - Julianna Hajek
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052, Zwijnaarde, Belgium
| | - Evert Jan Meijer
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098, XH, Amsterdam, The Netherlands
| | - Michel Waroquier
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052, Zwijnaarde, Belgium
| | | |
Collapse
|
33
|
Unraveling the thermodynamic criteria for size-dependent spontaneous phase separation in soft porous crystals. Nat Commun 2019; 10:4842. [PMID: 31649249 PMCID: PMC6813293 DOI: 10.1038/s41467-019-12754-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/26/2019] [Indexed: 12/22/2022] Open
Abstract
Soft porous crystals (SPCs) harbor a great potential as functional nanoporous materials owing to their stimuli-induced and tuneable morphing between different crystalline phases. These large-amplitude phase transitions are often assumed to occur cooperatively throughout the whole material, which thereby retains its perfect crystalline order. Here, we disprove this paradigm through mesoscale first-principles based molecular dynamics simulations, demonstrating that morphological transitions do induce spatial disorder under the form of interfacial defects and give rise to yet unidentified phase coexistence within a given sample. We hypothesize that this phase coexistence can be stabilized by carefully tuning the experimental control variables through, e.g., temperature or pressure quenching. The observed spatial disorder helps to rationalize yet elusive phenomena in SPCs, such as the impact of crystal downsizing on their flexible nature, thereby identifying the crystal size as a crucial design parameter for stimuli-responsive devices based on SPC nanoparticles and thin films. Soft porous crystals hold big promise as functional nanoporous materials due to their stimuli responsive flexibility. Here, molecular dynamics simulations reveal a new type of spatial disorder in mesoscale crystals that helps to understand the size-dependency of their phase transition behavior.
Collapse
|
34
|
Feng Y, Chen Q, Jiang M, Yao J. Tailoring the Properties of UiO-66 through Defect Engineering: A Review. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03188] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yi Feng
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Qian Chen
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Minqi Jiang
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jianfeng Yao
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
35
|
Elucidation of flexible metal-organic frameworks: Research progresses and recent developments. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Evans JD, Garai B, Reinsch H, Li W, Dissegna S, Bon V, Senkovska I, Fischer RA, Kaskel S, Janiak C, Stock N, Volkmer D. Metal–organic frameworks in Germany: From synthesis to function. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.10.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Tuffnell JM, Ashling CW, Hou J, Li S, Longley L, Ríos Gómez ML, Bennett TD. Novel metal–organic framework materials: blends, liquids, glasses and crystal–glass composites. Chem Commun (Camb) 2019; 55:8705-8715. [DOI: 10.1039/c9cc01468c] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This Feature Article reviews a range of amorphisation mechanisms of Metal–Organic Frameworks (MOFs) and presents recent advances to produce novel MOF materials including porous MOF glasses, MOF crystal–glass composites, flux melted MOF glasses and blended zeolitic imidazolate framework glasses.
Collapse
Affiliation(s)
- Joshua M. Tuffnell
- Department of Materials Science and Metallurgy
- University of Cambridge
- Cambridge
- UK
| | | | - Jingwei Hou
- Department of Materials Science and Metallurgy
- University of Cambridge
- Cambridge
- UK
| | - Shichun Li
- Department of Materials Science and Metallurgy
- University of Cambridge
- Cambridge
- UK
- Institute of Chemical Materials
| | - Louis Longley
- Department of Materials Science and Metallurgy
- University of Cambridge
- Cambridge
- UK
| | - María Laura Ríos Gómez
- Department of Materials Science and Metallurgy
- University of Cambridge
- Cambridge
- UK
- Institute of Materials Research (IIM-UNAM). Circuito Exterior
| | - Thomas D. Bennett
- Department of Materials Science and Metallurgy
- University of Cambridge
- Cambridge
- UK
| |
Collapse
|
38
|
Ye C, Qi Z, Cai D, Qiu T. Design and Synthesis of Ionic Liquid Supported Hierarchically Porous Zr Metal–Organic Framework as a Novel Brønsted–Lewis Acidic Catalyst in Biodiesel Synthesis. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b04107] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Changshen Ye
- Fujian Universities Engineering Research Center of Reactive Distillation, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Zhaoyang Qi
- Fujian Universities Engineering Research Center of Reactive Distillation, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Dongren Cai
- Fujian Universities Engineering Research Center of Reactive Distillation, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Ting Qiu
- Fujian Universities Engineering Research Center of Reactive Distillation, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, Fujian, China
| |
Collapse
|
39
|
Monteagudo-Olivan R, Paseta L, Potier G, López-Ram-de-Viu P, Coronas J. Solvent-Free Encapsulation at High Pressure with Carboxylate-Based MOFs. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800985] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Rebeca Monteagudo-Olivan
- Chemical and Environmental Engineering Department and Instituto de Nanociencia de Aragón (INA); Universidad de Zaragoza; 50018 Zaragoza Spain
| | - Lorena Paseta
- Chemical and Environmental Engineering Department and Instituto de Nanociencia de Aragón (INA); Universidad de Zaragoza; 50018 Zaragoza Spain
| | - Grégory Potier
- Département Sciences des Matériaux; Polytech Nantes; 44306 Nantes France
| | - Pilar López-Ram-de-Viu
- Organic Chemistry Department; Universidad de Zaragoza, and Instituto Universitario de Catálisis Homogénea (Universidad de Zaragoza-CSIC); 50009 Zaragoza Spain
| | - Joaquín Coronas
- Chemical and Environmental Engineering Department and Instituto de Nanociencia de Aragón (INA); Universidad de Zaragoza; 50018 Zaragoza Spain
| |
Collapse
|
40
|
Dissegna S, Epp K, Heinz WR, Kieslich G, Fischer RA. Defective Metal-Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704501. [PMID: 29363822 DOI: 10.1002/adma.201704501] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/06/2017] [Indexed: 05/27/2023]
Abstract
The targeted incorporation of defects into crystalline matter allows for the manipulation of many properties and has led to relevant discoveries for optimized and even novel technological applications of materials. It is therefore exciting to see that defects are now recognized to be similarly useful in tailoring properties of metal-organic frameworks (MOFs). For instance, heterogeneous catalysis crucially depends on the number of active catalytic sites as well as on diffusion limitations. By the incorporation of missing linker and missing node defects into MOFs, both parameters can be accessed, improving the catalytic properties. Furthermore, the creation of defects allows for adding properties such as electronic conductivity, which are inherently absent in the parent MOFs. Herein, progress of the rapidly evolving field of the past two years is overviewed, putting a focus on properties that are altered by the incorporation and even tailoring of defects in MOFs. A brief account is also given on the emerging quantitative understanding of defects and heterogeneity in MOFs based on scale-bridging computational modeling and simulations.
Collapse
Affiliation(s)
- Stefano Dissegna
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Konstantin Epp
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Werner R Heinz
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Gregor Kieslich
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Roland A Fischer
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| |
Collapse
|
41
|
Burtch NC, Heinen J, Bennett TD, Dubbeldam D, Allendorf MD. Mechanical Properties in Metal-Organic Frameworks: Emerging Opportunities and Challenges for Device Functionality and Technological Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704124. [PMID: 29149545 DOI: 10.1002/adma.201704124] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/11/2017] [Indexed: 05/03/2023]
Abstract
Some of the most remarkable recent developments in metal-organic framework (MOF) performance properties can only be rationalized by the mechanical properties endowed by their hybrid inorganic-organic nanoporous structures. While these characteristics create intriguing application prospects, the same attributes also present challenges that will need to be overcome to enable the integration of MOFs with technologies where these promising traits can be exploited. In this review, emerging opportunities and challenges are identified for MOF-enabled device functionality and technological applications that arise from their fascinating mechanical properties. This is discussed not only in the context of their more well-studied gas storage and separation applications, but also for instances where MOFs serve as components of functional nanodevices. Recent advances in understanding MOF mechanical structure-property relationships due to attributes such as defects and interpenetration are highlighted, and open questions related to state-of-the-art computational approaches for quantifying their mechanical properties are critically discussed.
Collapse
Affiliation(s)
| | - Jurn Heinen
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - David Dubbeldam
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | | |
Collapse
|
42
|
Dissegna S, Vervoorts P, Hobday CL, Düren T, Daisenberger D, Smith AJ, Fischer RA, Kieslich G. Tuning the Mechanical Response of Metal–Organic Frameworks by Defect Engineering. J Am Chem Soc 2018; 140:11581-11584. [DOI: 10.1021/jacs.8b07098] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stefano Dissegna
- Chair of Inorganic and Metal−Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Pia Vervoorts
- Chair of Inorganic and Metal−Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Claire L. Hobday
- Centre for Advanced Separations Engineering, Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom
| | - Tina Düren
- Centre for Advanced Separations Engineering, Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom
| | - Dominik Daisenberger
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot, OX11 ODE Oxfordshire, United Kingdom
| | - Andrew J. Smith
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot, OX11 ODE Oxfordshire, United Kingdom
| | - Roland A. Fischer
- Chair of Inorganic and Metal−Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Gregor Kieslich
- Chair of Inorganic and Metal−Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
43
|
Vanduyfhuys L, Vandenbrande S, Wieme J, Waroquier M, Verstraelen T, Van Speybroeck V. Extension of the QuickFF force field protocol for an improved accuracy of structural, vibrational, mechanical and thermal properties of metal-organic frameworks. J Comput Chem 2018; 39:999-1011. [PMID: 29396847 PMCID: PMC5947575 DOI: 10.1002/jcc.25173] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/16/2023]
Abstract
QuickFF was originally launched in 2015 to derive accurate force fields for isolated and complex molecular systems in a quick and easy way. Apart from the general applicability, the functionality was especially tested for metal-organic frameworks (MOFs), a class of hybrid materials consisting of organic and inorganic building blocks. Herein, we launch a new release of the QuickFF protocol which includes new major features to predict structural, vibrational, mechanical and thermal properties with greater accuracy, without compromising its robustness and transparent workflow. First, the ab initio data necessary for the fitting procedure may now also be derived from periodic models for the molecular system, as opposed to the earlier cluster-based models. This is essential for an accurate description of MOFs with one-dimensional metal-oxide chains. Second, cross terms that couple internal coordinates (ICs) and anharmonic contributions for bond and bend terms are implemented. These features are essential for a proper description of vibrational and thermal properties. Third, the fitting scheme was modified to improve robustness and accuracy. The new features are tested on MIL-53(Al), MOF-5, CAU-13 and NOTT-300. As expected, periodic input data are proven to be essential for a correct description of structural, vibrational and thermodynamic properties of MIL-53(Al). Bulk moduli and thermal expansion coefficients of MOF-5 are very accurately reproduced by static and dynamic simulations using the newly derived force fields which include cross terms and anharmonic corrections. For the flexible materials CAU-13 and NOTT-300, the transition pressure is accurately predicted provided cross terms are taken into account. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Louis Vanduyfhuys
- Center for Molecular Modeling (CMM), Ghent UniversityTechnologiepark903, 9052ZwijnaardeBelgium
| | - Steven Vandenbrande
- Center for Molecular Modeling (CMM), Ghent UniversityTechnologiepark903, 9052ZwijnaardeBelgium
| | - Jelle Wieme
- Center for Molecular Modeling (CMM), Ghent UniversityTechnologiepark903, 9052ZwijnaardeBelgium
| | - Michel Waroquier
- Center for Molecular Modeling (CMM), Ghent UniversityTechnologiepark903, 9052ZwijnaardeBelgium
| | - Toon Verstraelen
- Center for Molecular Modeling (CMM), Ghent UniversityTechnologiepark903, 9052ZwijnaardeBelgium
| | | |
Collapse
|
44
|
Momeni MR, Cramer CJ. Dual Role of Water in Heterogeneous Catalytic Hydrolysis of Sarin by Zirconium-Based Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2018; 10:18435-18439. [PMID: 29774742 DOI: 10.1021/acsami.8b03544] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recent experimental studies on ZrIV-based metal-organic frameworks (MOFs) have shown the extraordinary effectiveness of these porous materials for the detoxification of phosphorus-based chemical warfare agents (CWAs). However, pressing challenges remain with respect to characterizing these catalytic processes both at the molecular and crystalline levels. We here use theory to compare the reactivity of different zirconium-based MOFs for the catalytic hydrolysis of the CWA sarin, using both periodic and cluster modeling. We consider both hydrated and dehydrated secondary building units, as well as linker functionalized MOFs, to more fully understand and rationalize available experimental findings as well as to enable concrete predictions for achieving higher activities for the decomposition of CWAs.
Collapse
Affiliation(s)
- Mohammad R Momeni
- Department of Chemistry, Minnesota Supercomputing Institute, and Chemical Theory Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Christopher J Cramer
- Department of Chemistry, Minnesota Supercomputing Institute, and Chemical Theory Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
45
|
Svane KL, Bristow JK, Gale JD, Walsh A. Vacancy defect configurations in the metal-organic framework UiO-66: energetics and electronic structure. JOURNAL OF MATERIALS CHEMISTRY. A 2018; 6:8507-8513. [PMID: 30009026 PMCID: PMC6003546 DOI: 10.1039/c7ta11155j] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/06/2018] [Indexed: 05/28/2023]
Abstract
Vacancy lattice sites in the metal-organic framework UiO-66 are known to have a profound effect on the material properties. Here we use density functional theory to compare the energies of defect arrangements containing missing linkers and missing metal clusters for different choices of charge compensation. Our results show that the preference for missing metal clusters or missing linker defects depends on the charge compensation as well as the overall concentration of defects in the crystal. Both regimes can be experimentally accessible depending on the synthesis conditions. We investigate the electronic structure of the different types of defects, showing that, despite some changes in the localisation of the frontier orbitals, the electronic energy levels are only weakly affected by the presence of point defects.
Collapse
Affiliation(s)
| | | | - Julian D Gale
- Curtin Institute for Computation , Department of Chemistry , Curtin University , PO Box U1987 , Perth , WA 6845 , Australia
| | - Aron Walsh
- Department of Materials , Imperial College London , London , UK
- Department of Materials Science and Engineering , Yonsei University , Seoul 03722 , South Korea
| |
Collapse
|
46
|
Deng M, Bo X, Guo L. Encapsulation of platinum nanoparticles into a series of zirconium-based metal-organic frameworks: Effect of the carrier structures on electrocatalytic performances of composites. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.03.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Hajek J, Caratelli C, Demuynck R, De Wispelaere K, Vanduyfhuys L, Waroquier M, Van Speybroeck V. On the intrinsic dynamic nature of the rigid UiO-66 metal-organic framework. Chem Sci 2018; 9:2723-2732. [PMID: 29732056 PMCID: PMC5911970 DOI: 10.1039/c7sc04947a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/26/2018] [Indexed: 11/21/2022] Open
Abstract
UiO-66 is a showcase example of an extremely stable metal-organic framework, which maintains its structural integrity during activation processes such as linker exchange and dehydration. The framework can even accommodate a substantial number of defects without compromising its stability. These observations point to an intrinsic dynamic flexibility of the framework, related to changes in the coordination number of the zirconium atoms. Herein we follow the dynamics of the framework in situ, by means of enhanced sampling molecular dynamics simulations such as umbrella sampling, during an activation process, where the coordination number of the bridging hydroxyl groups capped in the inorganic Zr6(μ3-O)4(μ3-OH)4 brick is reduced from three to one. Such a reduction in the coordination number occurs during the dehydration process and in other processes where defects are formed. We observe a remarkable fast response of the system upon structural changes of the hydroxyl group. Internal deformation modes are detected, which point to linker decoordination and recoordination. Detached linkers may be stabilized by hydrogen bonds with hydroxyl groups of the inorganic brick, which gives evidence for an intrinsic dynamic acidity even in the absence of protic guest molecules. Our observations yield a major step forward in the understanding on the molecular level of activation processes realized experimentally but that is hard to track on a purely experimental basis.
Collapse
Affiliation(s)
- Julianna Hajek
- Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 903 , B-9052 Zwijnaarde , Belgium .
| | - Chiara Caratelli
- Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 903 , B-9052 Zwijnaarde , Belgium .
| | - Ruben Demuynck
- Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 903 , B-9052 Zwijnaarde , Belgium .
| | - Kristof De Wispelaere
- Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 903 , B-9052 Zwijnaarde , Belgium .
| | - Louis Vanduyfhuys
- Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 903 , B-9052 Zwijnaarde , Belgium .
| | - Michel Waroquier
- Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 903 , B-9052 Zwijnaarde , Belgium .
| | - Veronique Van Speybroeck
- Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 903 , B-9052 Zwijnaarde , Belgium .
| |
Collapse
|
48
|
Caratelli C, Hajek J, Rogge SMJ, Vandenbrande S, Meijer EJ, Waroquier M, Van Speybroeck V. Influence of a Confined Methanol Solvent on the Reactivity of Active Sites in UiO-66. Chemphyschem 2018; 19:420-429. [PMID: 29239511 PMCID: PMC5838511 DOI: 10.1002/cphc.201701109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/12/2017] [Indexed: 11/21/2022]
Abstract
UiO-66, composed of Zr-oxide bricks and terephthalate linkers, is currently one of the most studied metal-organic frameworks due to its exceptional stability. Defects can be introduced in the structure, creating undercoordinated Zr atoms which are Lewis acid sites. Here, additional Brønsted sites can be generated by coordinated protic species from the solvent. In this Article, a multilevel modeling approach was applied to unravel the effect of a confined methanol solvent on the active sites in UiO-66. First, active sites were explored with static periodic density functional theory calculations to investigate adsorption of water and methanol. Solvent was then introduced in the pores with grand canonical Monte Carlo simulations, followed by a series of molecular dynamics simulations at operating conditions. A hydrogen-bonded network of methanol molecules is formed, allowing the protons to shuttle between solvent methanol, adsorbed water, and the inorganic brick. Upon deprotonation of an active site, the methanol solvent aids the transfer of protons and stabilizes charged configurations via hydrogen bonding, which could be crucial in stabilizing reactive intermediates. The multilevel modeling approach adopted here sheds light on the important role of a confined solvent on the active sites in the UiO-66 material, introducing dynamic acidity in the system at finite temperatures by which protons may be easily shuttled from various positions at the active sites.
Collapse
Affiliation(s)
- Chiara Caratelli
- Center for Molecular Modeling (CMM)Ghent UniversityTechnologiepark 9039052ZwijnaardeBelgium
| | - Julianna Hajek
- Center for Molecular Modeling (CMM)Ghent UniversityTechnologiepark 9039052ZwijnaardeBelgium
| | - Sven M. J. Rogge
- Center for Molecular Modeling (CMM)Ghent UniversityTechnologiepark 9039052ZwijnaardeBelgium
| | - Steven Vandenbrande
- Center for Molecular Modeling (CMM)Ghent UniversityTechnologiepark 9039052ZwijnaardeBelgium
| | - Evert Jan Meijer
- Amsterdam Center for Multiscale Modeling, and van “t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Michel Waroquier
- Center for Molecular Modeling (CMM)Ghent UniversityTechnologiepark 9039052ZwijnaardeBelgium
| | | |
Collapse
|
49
|
Rogge SMJ, Caroes S, Demuynck R, Waroquier M, Van Speybroeck V, Ghysels A. The Importance of Cell Shape Sampling To Accurately Predict Flexibility in Metal–Organic Frameworks. J Chem Theory Comput 2018; 14:1186-1197. [DOI: 10.1021/acs.jctc.7b01134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sven M. J. Rogge
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
| | - Senne Caroes
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
| | - Ruben Demuynck
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
| | - Michel Waroquier
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
| | - Veronique Van Speybroeck
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
| | - An Ghysels
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
| |
Collapse
|
50
|
Rogge SMJ, Waroquier M, Van Speybroeck V. Reliably Modeling the Mechanical Stability of Rigid and Flexible Metal-Organic Frameworks. Acc Chem Res 2018; 51:138-148. [PMID: 29155552 PMCID: PMC5772196 DOI: 10.1021/acs.accounts.7b00404] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Over the past two decades, metal-organic frameworks (MOFs) have matured from interesting academic peculiarities toward a continuously expanding class of hybrid, nanoporous materials tuned for targeted technological applications such as gas storage and heterogeneous catalysis. These oft-times crystalline materials, composed of inorganic moieties interconnected by organic ligands, can be endowed with desired structural and chemical features by judiciously functionalizing or substituting these building blocks. As a result of this reticular synthesis, MOF research is situated at the intriguing intersection between chemistry and physics, and the building block approach could pave the way toward the construction of an almost infinite number of possible crystalline structures, provided that they exhibit stability under the desired operational conditions. However, this enormous potential is largely untapped to date, as MOFs have not yet found a major breakthrough in technological applications. One of the remaining challenges for this scale-up is the densification of MOF powders, which is generally achieved by subjecting the material to a pressurization step. However, application of an external pressure may substantially alter the chemical and physical properties of the material. A reliable theoretical guidance that can presynthetically identify the most stable materials could help overcome this technological challenge. In this Account, we describe the recent research the progress on computational characterization of the mechanical stability of MOFs. So far, three complementary approaches have been proposed, focusing on different aspects of mechanical stability: (i) the Born stability criteria, (ii) the anisotropy in mechanical moduli such as the Young and shear moduli, and (iii) the pressure-versus-volume equations of state. As these three methods are grounded in distinct computational approaches, it is expected that their accuracy and efficiency will vary. To date, however, it is unclear which set of properties are suited and reliable for a given application, as a comprehensive comparison for a broad variety of MOFs is absent, impeding the widespread use of these theoretical frameworks. Herein, we fill this gap by critically assessing the performance of the three computational models on a broad set of MOFs that are representative for current applications. These materials encompass the mechanically rigid UiO-66(Zr) and MOF-5(Zn) as well as the flexible MIL-47(V) and MIL-53(Al), which undergo pressure-induced phase transitions. It is observed that the Born stability criteria and pressure-versus-volume equations of state give complementary insight into the macroscopic and microscopic origins of instability, respectively. However, interpretation of the Born stability criteria becomes increasingly difficult when less symmetric materials are considered. Moreover, pressure fluctuations during the simulations hamper their accuracy for flexible materials. In contrast, the pressure-versus-volume equations of state are determined in a thermodynamic ensemble specifically targeted to mitigate the effects of these instantaneous fluctuations, yielding more accurate results. The critical Account presented here paves the way toward a solid computational framework for an extensive presynthetic screening of MOFs to select those that are mechanically stable and can be postsynthetically densified before their use in targeted applications.
Collapse
Affiliation(s)
- Sven M. J. Rogge
- Center for Molecular Modeling
(CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
| | - Michel Waroquier
- Center for Molecular Modeling
(CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
| | - Veronique Van Speybroeck
- Center for Molecular Modeling
(CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
| |
Collapse
|