1
|
Lin Y, Li H, Zheng S, Han R, Wu K, Tang S, Zhong X, Chen J. Elucidating tobacco smoke-induced craniofacial deformities: Biomarker and MAPK signaling dysregulation unraveled by cross-species multi-omics analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117343. [PMID: 39549573 DOI: 10.1016/j.ecoenv.2024.117343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/27/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Tobacco smoke (TS), particularly secondhand and thirdhand smoke, poses a pervasive and intractable environmental hazard that promotes teratogenesis and the progression of craniofacial malformations, although the underlying mechanisms remain elusive. Using zebrafish larvae as a model, our research demonstrated a correlation between the increasing concentration of cigarette smoke extract (CSE) and the severity of craniofacial malformations, supported by Alcian blue staining and histological assessments. Through a combined mRNA-miRNA analysis and quantitative real-time PCR, we identified miR-96-5p, miR-152, miR-125b-2-3p, and miR-181a-3-3p as pivotal biomarkers in craniofacial cartilage development. Functional analyses revealed their association with the MAPK signaling pathway, oxidative stress (OS), and cell development, highlighting MAPK as a crucial mediator. Single-cell transcriptomics further disclosed aberrant MAPK activation in mesenchymal cells. Subsequent investigations in human embryonic palatal mesenchymal (HEPM) cells confirmed similar patterns of growth inhibition, apoptosis, and OS, and emphasized the cross-species consistency of these biomarkers and the over-activation of the MAPK signaling pathway. A comprehensive tri-omics analysis of HEPM cells identified pivotal genes, proteins, and metabolites within the MAPK pathway. This groundbreaking cross-species multi-omics study unveils novel biomarkers and MAPK pathway perturbations linked to TS-induced craniofacial developmental toxicity, promoting innovative clinical prediction, diagnosis, and interventional strategies to tackle TS-induced craniofacial malformations.
Collapse
Affiliation(s)
- Yuxin Lin
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China.
| | - Hao Li
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China.
| | - Shukai Zheng
- Shantou university medical college, Shantou, Guangdong 515041, PR China.
| | - Rui Han
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China.
| | - Kusheng Wu
- Shantou university medical college, Shantou, Guangdong 515041, PR China.
| | - Shijie Tang
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China.
| | - Xiaoping Zhong
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China.
| | - Jiasheng Chen
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China.
| |
Collapse
|
2
|
Xu C, Shi H, Tan Z, Zheng Y, Xu W, Dan Z, Liao J, Dai Z, Zhao Y. Generation, manipulation, detection and biomedical applications of magnetic droplets in microfluidic chips. Analyst 2024; 149:5591-5616. [PMID: 39523834 DOI: 10.1039/d4an01175a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Microfluidic systems incorporating magnetic droplets have emerged as a focal point of significant interest within the biomedical domain. The allure of these systems lies in their capacity to offer precise control, enable contactless operation, and accommodate minimal sample concentration requirements. Such remarkable features serve to mitigate errors arising from human operation and other factors during cell or molecular detection. By providing innovative solutions for molecular diagnostics and immunoassay applications, magnetic droplet microfluidics enhance the accuracy and efficiency of these procedures. This review undertakes a comprehensive examination of the research progress in microfluidic systems centered around magnetic droplets. It adheres to a sequential presentation approach, commencing from the fundamental operation principles, specifically the generation of magnetic droplets on the microfluidic chip, and proceeding to their transmission and mixing within the microchannel via an array of operating techniques. Additionally, the relevant detection technologies associated with magnetic drop microfluidics and their numerous applications within the biomedical field are systematically classified and reviewed. The overarching objective of this review is to spotlight key advancements and offer valuable insights into the future trajectory of this burgeoning field.
Collapse
Affiliation(s)
- Chenyang Xu
- Department of Biomedical Engineering, School of Instrument Science and Optoelectronic Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, People's Republic of China.
| | - Huanhuan Shi
- Department of Biomedical Engineering, School of Instrument Science and Optoelectronic Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, People's Republic of China.
- Key Laboratory of Nondestructive Testing (Nanchang Hangkong University), Ministry of Education, Nanchang, Jiangxi 330063, People's Republic of China
| | - Zhongjian Tan
- Key Laboratory of Nondestructive Testing (Nanchang Hangkong University), Ministry of Education, Nanchang, Jiangxi 330063, People's Republic of China
| | - Yun Zheng
- Key Laboratory of Nondestructive Testing (Nanchang Hangkong University), Ministry of Education, Nanchang, Jiangxi 330063, People's Republic of China
| | - Weizheng Xu
- Key Laboratory of Nondestructive Testing (Nanchang Hangkong University), Ministry of Education, Nanchang, Jiangxi 330063, People's Republic of China
| | - Zhengxian Dan
- Department of Biomedical Engineering, School of Instrument Science and Optoelectronic Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, People's Republic of China.
| | - Jiacong Liao
- Department of Biomedical Engineering, School of Instrument Science and Optoelectronic Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, People's Republic of China.
| | - Zhiying Dai
- Department of Biomedical Engineering, School of Instrument Science and Optoelectronic Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, People's Republic of China.
| | - Yali Zhao
- The Fourth Hospital of Changsha, Changsha Hospital of Hunan Normal University, Changsha, 410006, People's Republic of China.
| |
Collapse
|
3
|
Sharma S, Rousselle D, Parker E, Ekpruke CD, Alford R, Babayev M, Commodore S, Silveyra P. Sensitivity of Mouse Lung Nuclear Receptors to Electronic Cigarette Aerosols and Influence of Sex Differences: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:810. [PMID: 38929056 PMCID: PMC11203813 DOI: 10.3390/ijerph21060810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
The emerging concern about chemicals in electronic cigarettes, even those without nicotine, demands the development of advanced criteria for their exposure and risk assessment. This study aims to highlight the sensitivity of lung nuclear receptors (NRs) to electronic cigarette e-liquids, independent of nicotine presence, and the influence of the sex variable on these effects. Adult male and female C57BL/6J mice were exposed to electronic cigarettes with 0%, 3%, and 6% nicotine daily (70 mL, 3.3 s, 1 puff per min/30 min) for 14 days, using the inExpose full body chamber (SCIREQ). Following exposure, lung tissues were harvested, and RNA extracted. The expression of 84 NRs was determined using the RT2 profiler mRNA array (Qiagen). Results exhibit a high sensitivity to e-liquid exposure irrespective of the presence of nicotine, with differential expression of NRs, including one (females) and twenty-four (males) in 0% nicotine groups compared to non-exposed control mice. However, nicotine-dependent results were also significant with seven NRs (females), fifty-three NRs (males) in 3% and twenty-three NRs (female) twenty-nine NRs (male) in 6% nicotine groups, compared to 0% nicotine mice. Sex-specific changes were significant, but sex-related differences were not observed. The study provides a strong rationale for further investigation.
Collapse
Affiliation(s)
- Shikha Sharma
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
| | - Dustin Rousselle
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
| | - Erik Parker
- Biostatistics Consulting Center, Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN 47405, USA;
| | - Carolyn Damilola Ekpruke
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
| | - Rachel Alford
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
| | - Maksat Babayev
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
| | - Sarah Commodore
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
4
|
Yuan Y, Peng TY, Yu GY, Zou Z, Wu MZ, Zhu R, Wu S, Lv Z, Luo SX. Association between serum copper level and reproductive health of Women in the United States: a cross-sectional study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2441-2450. [PMID: 37725958 DOI: 10.1080/09603123.2023.2253753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/26/2023] [Indexed: 09/21/2023]
Abstract
Copper is an indispensable trace element in metabolism. This study aimed to investigate the relationship between copper and reproductive health, and possibly provide new insights for diagnosis and treatment. This study was based on data extracted from the NHANES database (2013-2014 and 2015-2016). The t-test, ANOVA, Chi-square test, multiple linear regression, and restricted cubic spline analysis were used. Serum copper levels were significantly higher in women with gestational diabetes than in those without gestational diabetes (P = 0.0150). Women with higher copper levels and smoking habits tended to deliver overweight babies (P = 0.028). Women with diabetes had higher serum copper and were prone to deliver overweight babies (P = 0.024). Serum copper levels showed a positive relationship with sex hormone-binding globulin (SHBG) levels (P < 0.0001). In this study, serum copper levels were found to be associated with reproductive health in women. Further studies are required to draw causal inferences.
Collapse
Affiliation(s)
- Yi Yuan
- Pediatrics College, Guangzhou Medical University, Guangzhou, China
| | - Tong-Yu Peng
- The First Clinical College, Chongqing Medical University, Chongqing, China
| | - Guang-Yuan Yu
- Department of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhao Zou
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Meng-Ze Wu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruofei Zhu
- Department of Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Gynecology, Guangzhou Women and Children's Medical Center Affiliated to Guangzhou Medical University, Guangzhou, China
| | - Shuang Wu
- Pediatrics College, Guangzhou Medical University, Guangzhou, China
| | - Zi Lv
- Department of obstetrics and gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Obstetrics, Guangzhou Women and Children's Medical Center Affiliated to Guangzhou Medical University, Guangzhou, China
| | - Su-Xin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Song W, Yue Y, Zhang Q, Wang X. Copper homeostasis dysregulation in respiratory diseases: a review of current knowledge. Front Physiol 2024; 15:1243629. [PMID: 38883186 PMCID: PMC11176810 DOI: 10.3389/fphys.2024.1243629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/22/2024] [Indexed: 06/18/2024] Open
Abstract
Cu is an essential micronutrient for various physiological processes in almost all human cell types. Given the critical role of Cu in a wide range of cellular processes, the local concentrations of Cu and the cellular distribution of Cu transporter proteins in the lung are essential for maintaining a steady-state internal environment. Dysfunctional Cu metabolism or regulatory pathways can lead to an imbalance in Cu homeostasis in the lungs, affecting both acute and chronic pathological processes. Recent studies have identified a new form of Cu-dependent cell death called cuproptosis, which has generated renewed interest in the role of Cu homeostasis in diseases. Cuproptosis differs from other known cell death pathways. This occurs through the direct binding of Cu ions to lipoylated components of the tricarboxylic acid cycle during mitochondrial respiration, leading to the aggregation of lipoylated proteins and the subsequent downregulation of Fe-S cluster proteins, which causes toxic stress to the proteins and ultimately leads to cell death. Here, we discuss the impact of dysregulated Cu homeostasis on the pathogenesis of various respiratory diseases, including asthma, chronic obstructive pulmonary disease, idiopathic interstitial fibrosis, and lung cancer. We also discuss the therapeutic potential of targeting Cu. This study highlights the intricate interplay between copper, cellular processes, and respiratory health. Copper, while essential, must be carefully regulated to maintain the delicate balance between necessity and toxicity in living organisms. This review highlights the need to further investigate the precise mechanisms of copper interactions with infections and immune inflammation in the context of respiratory diseases and explore the potential of therapeutic strategies for copper, cuproptosis, and other related effects.
Collapse
Affiliation(s)
- Wei Song
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyi Yue
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xueqing Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Zhao S, Zhang X, Wang J, Lin J, Cao D, Zhu M. Carcinogenic and non-carcinogenic health risk assessment of organic compounds and heavy metals in electronic cigarettes. Sci Rep 2023; 13:16046. [PMID: 37749131 PMCID: PMC10520052 DOI: 10.1038/s41598-023-43112-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023] Open
Abstract
E-cigarettes are now very popular in the world. Compared to traditional cigarettes, e-cigarettes are often considered safer and healthier. However, their safety remains controversial and requires further research and regulation. In this study, we aimed to understand the possible hazards to humans of four compounds (formaldehyde, acetaldehyde, acrolein, and acetone) and seven heavy metals (arsenic, cadmium, manganese, lead, copper, nickel, and chromium) contained in e-cigarette liquids and aerosols and perform a health risk assessment. We searched PubMed, CNKI, and other databases for relevant literature to obtain data on organic compounds and heavy metals in e-cigarette liquids and aerosols, and conducted acute, chronic, and carcinogenic risk assessments of various chemicals by different exposure routes. This study showed that exposure to four organic compounds and seven heavy metals in e-cigarette aerosols and e-liquids can cause varying levels of health risks in humans through different routes, with the inhalation route posing a higher overall risk than dermal exposure and oral intake. Various chemicals at high exposure doses can produce health risks beyond the acceptable range. E-cigarette designers must improve their products by changing the composition of the e-liquid and controlling the power of the device to reduce the health effects on humans.
Collapse
Affiliation(s)
- Siyuan Zhao
- School of Public Health, Ningxia Medical University, No. 1160 Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Xi Zhang
- School of Basic Medical Sciences, Ningxia Medical University, No. 1160 Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Junji Wang
- School of Public Health, Ningxia Medical University, No. 1160 Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Jianzai Lin
- School of Public Health, Ningxia Medical University, No. 1160 Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Deyan Cao
- School of Public Health, Ningxia Medical University, No. 1160 Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Meilin Zhu
- School of Public Health, Ningxia Medical University, No. 1160 Shengli Street, Xingqing District, Yinchuan, Ningxia, China.
- School of Basic Medical Sciences, Ningxia Medical University, No. 1160 Shengli Street, Xingqing District, Yinchuan, Ningxia, China.
| |
Collapse
|
7
|
Kumar N, He J, Rusling JF. Electrochemical transformations catalyzed by cytochrome P450s and peroxidases. Chem Soc Rev 2023; 52:5135-5171. [PMID: 37458261 DOI: 10.1039/d3cs00461a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Cytochrome P450s (Cyt P450s) and peroxidases are enzymes featuring iron heme cofactors that have wide applicability as biocatalysts in chemical syntheses. Cyt P450s are a family of monooxygenases that oxidize fatty acids, steroids, and xenobiotics, synthesize hormones, and convert drugs and other chemicals to metabolites. Peroxidases are involved in breaking down hydrogen peroxide and can oxidize organic compounds during this process. Both heme-containing enzymes utilize active FeIVO intermediates to oxidize reactants. By incorporating these enzymes in stable thin films on electrodes, Cyt P450s and peroxidases can accept electrons from an electrode, albeit by different mechanisms, and catalyze organic transformations in a feasible and cost-effective way. This is an advantageous approach, often called bioelectrocatalysis, compared to their biological pathways in solution that require expensive biochemical reductants such as NADPH or additional enzymes to recycle NADPH for Cyt P450s. Bioelectrocatalysis also serves as an ex situ platform to investigate metabolism of drugs and bio-relevant chemicals. In this paper we review biocatalytic electrochemical reactions using Cyt P450s including C-H activation, S-oxidation, epoxidation, N-hydroxylation, and oxidative N-, and O-dealkylation; as well as reactions catalyzed by peroxidases including synthetically important oxidations of organic compounds. Design aspects of these bioelectrocatalytic reactions are presented and discussed, including enzyme film formation on electrodes, temperature, pH, solvents, and activation of the enzymes. Finally, we discuss challenges and future perspective of these two important bioelectrocatalytic systems.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
| | - James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
- Department of Surgery and Neag Cancer Center, Uconn Health, Farmington, CT 06030, USA
- School of Chemistry, National University of Ireland at Galway, Galway, Ireland
| |
Collapse
|
8
|
Zhang Q, Wen C. The risk profile of electronic nicotine delivery systems, compared to traditional cigarettes, on oral disease: a review. Front Public Health 2023; 11:1146949. [PMID: 37255760 PMCID: PMC10226679 DOI: 10.3389/fpubh.2023.1146949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023] Open
Abstract
The use of electronic nicotine delivery systems (ENDS) has exploded, especially among teenagers and new smokers, amid widespread awareness of the dangers of traditional tobacco and restrictions on smoking. However, the risk effects of ENDS on physical health, especially oral health, are still ambiguous. The purpose of this study was to review the available evidence on risks of ENDS on oral health, and compares the differences between ENDS and traditional cigarettes. For heavy smokers, transferring the addiction of tobacco to ENDS can be less harmful to periodontal condition and physical health but is not completely without risk. The components of ENDS vapor have cytotoxic, genotoxic, and carcinogenic properties, and its usage may be associated with a wide range of oral health sequelae. The chemicals in ENDS increase the susceptibility to tooth decay, increase the risk of periodontal disease, peri-implant, and oral mucosal lesions. Nicotine aerosols from ENDS can be a potential risk factor for oral cancer due to the presence of carcinogenic components. Compared to smoking traditional cigarettes, the harm associated with ENDS use may be underestimated due to the reduced ability to control vaping behavior, ease of ENDS access, fewer vaping area restrictions, and better taste. Currently, the available evidence suggests that ENDS may be a safer alternative to traditional tobacco products. Though most oral symptoms experienced by ENDS users are relatively mild and temporary compared to traditional cigarettes, the dangers of ENDS still exist. However, further research with longer follow-up periods is required to establish the long-term safety of ENDS.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Nosocomial Infection Control, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Cai Wen
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of VIP Dental Service, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Institute of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
9
|
Mathebela P, Damane BP, Mulaudzi TV, Mkhize-Khwitshana ZL, Gaudji GR, Dlamini Z. Influence of the Microbiome Metagenomics and Epigenomics on Gastric Cancer. Int J Mol Sci 2022; 23:13750. [PMID: 36430229 PMCID: PMC9693604 DOI: 10.3390/ijms232213750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Gastric cancer (GC) is one of the major causes of cancer deaths worldwide. The disease is seldomly detected early and this limits treatment options. Because of its heterogeneous and complex nature, the disease remains poorly understood. The literature supports the contribution of the gut microbiome in the carcinogenesis and chemoresistance of GC. Drug resistance is the major challenge in GC therapy, occurring as a result of rewired metabolism. Metabolic rewiring stems from recurring genetic and epigenetic factors affecting cell development. The gut microbiome consists of pathogens such as H. pylori, which can foster both epigenetic alterations and mutagenesis on the host genome. Most of the bacteria implicated in GC development are Gram-negative, which makes it challenging to eradicate the disease. Gram-negative bacterium co-infections with viruses such as EBV are known as risk factors for GC. In this review, we discuss the role of microbiome-induced GC carcinogenesis. The disease risk factors associated with the presence of microorganisms and microbial dysbiosis are also discussed. In doing so, we aim to emphasize the critical role of the microbiome on cancer pathological phenotypes, and how microbiomics could serve as a potential breakthrough in determining effective GC therapeutic targets. Additionally, consideration of microbial dysbiosis in the GC classification system might aid in diagnosis and treatment decision-making, taking the specific pathogen/s involved into account.
Collapse
Affiliation(s)
- Precious Mathebela
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Zilungile Lynette Mkhize-Khwitshana
- School of Medicine, University of Kwa-Zulu Natal, Durban, KwaZulu-Natal 4013, South Africa
- SAMRC Research Capacity Development Division, South African Medical Research Council, Tygerberg, Cape Town 7501, South Africa
| | - Guy Roger Gaudji
- Department of Urology, Level 7, Bridge C, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia 0007, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| |
Collapse
|
10
|
Metal Peptide Conjugates in Cell and Tissue Imaging and Biosensing. Top Curr Chem (Cham) 2022; 380:30. [PMID: 35701677 PMCID: PMC9197911 DOI: 10.1007/s41061-022-00384-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/10/2022] [Indexed: 11/05/2022]
Abstract
Metal complex luminophores have seen dramatic expansion in application as imaging probes over the past decade. This has been enabled by growing understanding of methods to promote their cell permeation and intracellular targeting. Amongst the successful approaches that have been applied in this regard is peptide-facilitated delivery. Cell-permeating or signal peptides can be readily conjugated to metal complex luminophores and have shown excellent response in carrying such cargo through the cell membrane. In this article, we describe the rationale behind applying metal complexes as probes and sensors in cell imaging and outline the advantages to be gained by applying peptides as the carrier for complex luminophores. We describe some of the progress that has been made in applying peptides in metal complex peptide-driven conjugates as a strategy for cell permeation and targeting of transition metal luminophores. Finally, we provide key examples of their application and outline areas for future progress.
Collapse
|
11
|
Prasad KN, Bondy SC. Electronic cigarette aerosol increases the risk of organ dysfunction by enhancing oxidative stress and inflammation. Drug Chem Toxicol 2021; 45:2561-2567. [PMID: 34474637 DOI: 10.1080/01480545.2021.1972680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
An electronic cigarette is a rechargeable device that produces an inhaled aerosol containing varying levels of nicotine, and inorganic and organic toxicants and carcinogenic compounds. The aerosol is generated by heating a solution of propylene glycol and glycerin with nicotine and flavoring ingredients at a high temperature. The e-cigarette was developed and marketed as a safer alternative to the regular cigarette which is known to be injurious to human health. However, published studies suggest that the aerosol of e-cigarette can also have adverse health effects. The main objective of this review is to briefly describe some consequences of e-cigarette smoking, and to present data showing that the resulting increased oxidative stress and inflammation are likely to be involved in effecting to lung damage. Other organs are also likely to be affected. The aerosol contains varying amounts of organic and inorganic toxicants as well as carcinogens, which might serve as the source of such deleterious events. In addition, the aerosol also contains nicotine, which is known to be addictive. E-cigarette smoking releases these toxicants into the air leading to inhalation by nonsmokers in residential or work place areas. Unlike regular tobacco smoke, the long-term consequences of direct and secondhand exposure to e-cigarette aerosol have not been extensively studied but based on available data, e-cigarette aerosol should be considered harmful to human health.
Collapse
Affiliation(s)
| | - Stephen C Bondy
- Center for Occupational and Environmental Health, University of California, Irvine, CA, USA
| |
Collapse
|
12
|
Gkika K, Noorani S, Walsh N, Keyes TE. Os(II)-Bridged Polyarginine Conjugates: The Additive Effects of Peptides in Promoting or Preventing Permeation in Cells and Multicellular Tumor Spheroids. Inorg Chem 2021; 60:8123-8134. [PMID: 33978399 PMCID: PMC8277133 DOI: 10.1021/acs.inorgchem.1c00769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 12/05/2022]
Abstract
The preparation of two polyarginine conjugates of the complex Os(II) [bis-(4'-(4-carboxyphenyl)-2,2':6',2″-terpyridine)] [Os-(Rn)2]x+ (n = 4 and 8; x = 10 and 18) is reported, to explore whether the R8 peptide sequence that promotes cell uptake requires a contiguous amino acid sequence for membrane permeation or if this can be accomplished in a linearly bridged structure with the additive effect of shorter peptide sequences. The conjugates exhibit NIR emission centered at 754 nm and essentially oxygen-insensitive emission with a lifetime of 89 ns in phosphate-buffered saline. The uptake, distribution, and cytotoxicity of the parent complex and peptide derivatives were compared in 2D cell monolayers and a three-dimensional (3D) multicellular tumor spheroid (MCTS) model. Whereas, the bis-octaarginine sequences were impermeable to cells and spheroids, and the bis-tetraarginine conjugate showed excellent cellular uptake and accumulation in two 2D monolayer cell lines and remarkable in-depth penetration of 3D MCTSs of pancreatic cancer cells. Overall, the data indicates that cell permeability can be promoted via non-contiguous sequences of arginine residues bridged across the metal centre.
Collapse
Affiliation(s)
- Karmel
S. Gkika
- School
of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Sara Noorani
- School
of Biotechnology, National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Naomi Walsh
- School
of Biotechnology, National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Tia E. Keyes
- School
of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
13
|
Keith R, Bhatnagar A. Cardiorespiratory and Immunologic Effects of Electronic Cigarettes. CURRENT ADDICTION REPORTS 2021; 8:336-346. [PMID: 33717828 PMCID: PMC7935224 DOI: 10.1007/s40429-021-00359-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW Although e-cigarettes have become popular, especially among youth, the health effects associated with e-cigarette use remain unclear. This review discusses current evidence relating to the cardiovascular, pulmonary, and immunological effects of e-cigarettes. RECENT FINDINGS The use of e-cigarettes by healthy adults has been shown to increase blood pressure, heart rate, and arterial stiffness, as well as resistance to air flow in lungs. Inhalation of e-cigarette aerosol has been shown to elicit immune responses and increase the production of immunomodulatory cytokines in young tobacco-naïve individuals. In animal models, long-term exposure to e-cigarettes leads to marked changes in lung architecture, dysregulation of immune genes, and low-grade inflammation. Exposure to e-cigarette aerosols in mice has been shown to induce DNA damage, inhibit DNA repair, and promote carcinogenesis. Chronic exposure to e-cigarettes has also been reported to result in the accumulation of lipid-laden macrophages in the lung and dysregulation of lipid metabolism and transport in mice. Although, the genotoxic and inflammatory effects of e-cigarettes are milder than those of combustible cigarettes, some of the cardiorespiratory effects of the two insults are comparable. The toxicity of e-cigarettes has been variably linked to nicotine, as well as other e-cigarette constituents, operating conditions, and use patterns. SUMMARY The use of e-cigarettes in humans is associated with significant adverse cardiorespiratory and immunological changes. Data from animal models and in vitro studies support the notion that long-term use of e-cigarettes may pose significant health risks.
Collapse
Affiliation(s)
- Rachel Keith
- American Heart Association Tobacco Regulation and Addiction Center & The Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, 302E Muhammad Ali Blvd, Louisville, KY 40202 USA
| | - Aruni Bhatnagar
- American Heart Association Tobacco Regulation and Addiction Center & The Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, 302E Muhammad Ali Blvd, Louisville, KY 40202 USA
| |
Collapse
|