1
|
Gao S, Tahara Y, Kool E, Greenberg M. Promoter dependent RNA polymerase II bypass of the epimerizable DNA lesion, Fapy•dG and 8-Oxo-2'-deoxyguanosine. Nucleic Acids Res 2024; 52:7437-7446. [PMID: 38908029 PMCID: PMC11260475 DOI: 10.1093/nar/gkae529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024] Open
Abstract
Formamidopyrimidine (Fapy•dG) is a major lesion arising from oxidation of dG that is produced from a common chemical precursor of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodGuo). In human cells, replication of single-stranded shuttle vectors containing Fapy•dG is more mutagenic than 8-OxodGuo. Here, we present the first data regarding promoter dependent RNA polymerase II bypass of Fapy•dG. 8-OxodGuo bypass was examined side-by-side. Experiments were carried out using double-stranded shuttle vectors in HeLa cell nuclear lysates and in HEK 293T cells. The lesions do not significantly block transcriptional bypass efficiency. Less than 2% adenosine incorporation occurred in cells when the lesions were base paired with dC. Inhibiting base excision repair in HEK 293T cells significantly increased adenosine incorporation, particularly from Fapy•dG:dC bypass which yielded ∼25% adenosine incorporation. No effect was detected upon transcriptional bypass of either lesion in nucleotide excision repair deficient cells. Transcriptional mutagenesis was significantly higher when shuttle vectors containing dA opposite one of the lesions were employed. For Fapy•dG:dA bypass, adenosine incorporation was greater than 85%; whereas 8-OxodGuo:dA yielded >20% point mutations. The combination of more frequent replication mistakes and greater error-prone Pol II bypass suggest that Fapy•dG is more mutagenic than 8-OxodGuo.
Collapse
Affiliation(s)
- Shijun Gao
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yuki Tahara
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
2
|
Gao S, Hou P, Oh J, Wang D, Greenberg MM. Molecular Mechanism of RNA Polymerase II Transcriptional Mutagenesis by the Epimerizable DNA Lesion, Fapy·dG. J Am Chem Soc 2024; 146:6274-6282. [PMID: 38393762 PMCID: PMC10932878 DOI: 10.1021/jacs.3c14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Oxidative DNA lesions cause significant detrimental effects on a living species. Two major DNA lesions resulting from dG oxidation, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodGuo) and formamidopyrimidine (Fapy·dG), are produced from a common chemical intermediate. Fapy·dG is formed in comparable yields under oxygen-deficient conditions. Replicative bypass of Fapy·dG in human cells is more mutagenic than that of 8-OxodGuo. Despite the biological importance of transcriptional mutagenesis, there are no reports of the effects of Fapy·dG on RNA polymerase II (Pol II) activity. Here we perform comprehensive kinetic studies to investigate the impact of Fapy·dG on three key transcriptional fidelity checkpoint steps by Pol II: insertion, extension, and proofreading steps. The ratios of error-free versus error-prone incorporation opposite Fapy·dG are significantly reduced in comparison with undamaged dG. Similarly, Fapy·dG:A mispair is extended with comparable efficiency as that of the error-free, Fapy·dG:C base pair. The α- and β-configurational isomers of Fapy·dG have distinct effects on Pol II insertion and extension. Pol II can preferentially cleave error-prone products by proofreading. To further understand the structural basis of transcription processing of Fapy·dG, five different structures were solved, including Fapy·dG template-loading state (apo), error-free cytidine triphosphate (CTP) binding state (prechemistry), error-prone ATP binding state (prechemistry), error-free Fapy·dG:C product state (postchemistry), and error-prone Fapy·dG:A product state (postchemistry), revealing distinctive nucleotide binding and product states. Taken together, our study provides a comprehensive mechanistic framework for better understanding how Fapy·dG lesions impact transcription and subsequent pathological consequences.
Collapse
Affiliation(s)
- Shijun Gao
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Peini Hou
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Juntaek Oh
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dong Wang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
3
|
Wilkinson EM, Spenkelink LM, van Oijen AM. Observing protein dynamics during DNA-lesion bypass by the replisome. Front Mol Biosci 2022; 9:968424. [PMID: 36213113 PMCID: PMC9534484 DOI: 10.3389/fmolb.2022.968424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Faithful DNA replication is essential for all life. A multi-protein complex called the replisome contains all the enzymatic activities required to facilitate DNA replication, including unwinding parental DNA and synthesizing two identical daughter molecules. Faithful DNA replication can be challenged by both intrinsic and extrinsic factors, which can result in roadblocks to replication, causing incomplete replication, genomic instability, and an increased mutational load. This increased mutational load can ultimately lead to a number of diseases, a notable example being cancer. A key example of a roadblock to replication is chemical modifications in the DNA caused by exposure to ultraviolet light. Protein dynamics are thought to play a crucial role to the molecular pathways that occur in the presence of such DNA lesions, including potential damage bypass. Therefore, many assays have been developed to study these dynamics. In this review, we discuss three methods that can be used to study protein dynamics during replisome–lesion encounters in replication reactions reconstituted from purified proteins. Specifically, we focus on ensemble biochemical assays, single-molecule fluorescence, and cryo-electron microscopy. We discuss two key model DNA replication systems, derived from Escherichia coli and Saccharomyces cerevisiae. The main methods of choice to study replication over the last decades have involved biochemical assays that rely on ensemble averaging. While these assays do not provide a direct readout of protein dynamics, they can often be inferred. More recently, single-molecule techniques including single-molecule fluorescence microscopy have been used to visualize replisomes encountering lesions in real time. In these experiments, individual proteins can be fluorescently labeled in order to observe the dynamics of specific proteins during DNA replication. Finally, cryo-electron microscopy can provide detailed structures of individual replisome components, which allows functional data to be interpreted in a structural context. While classic cryo-electron microscopy approaches provide static information, recent developments such as time-resolved cryo-electron microscopy help to bridge the gap between static structures and dynamic single-molecule techniques by visualizing sequential steps in biochemical pathways. In combination, these techniques will be capable of visualizing DNA replication and lesion encounter dynamics in real time, whilst observing the structural changes that facilitate these dynamics.
Collapse
Affiliation(s)
- Elise M. Wilkinson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Lisanne M. Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- *Correspondence: Lisanne M. Spenkelink, ; Antoine M. van Oijen,
| | - Antoine M. van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- *Correspondence: Lisanne M. Spenkelink, ; Antoine M. van Oijen,
| |
Collapse
|
4
|
Zhu J, Chen L. Highly efficient incorporation of dATP in terminal transferase polymerization forming the ploy (A)n-DITO-1 fluorescent probe sensing terminal transferase and T4 polynucleotide kinase activity. Anal Chim Acta 2022; 1221:340080. [DOI: 10.1016/j.aca.2022.340080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/23/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022]
|
5
|
Buglione E, Salerno D, Marrano CA, Cassina V, Vesco G, Nardo L, Dacasto M, Rigo R, Sissi C, Mantegazza F. Nanomechanics of G-quadruplexes within the promoter of the KIT oncogene. Nucleic Acids Res 2021; 49:4564-4573. [PMID: 33849064 PMCID: PMC8096272 DOI: 10.1093/nar/gkab079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/07/2021] [Accepted: 04/09/2021] [Indexed: 12/31/2022] Open
Abstract
G-quadruplexes (G4s) are tetrahelical DNA structures stabilized by four guanines paired via Hoogsteen hydrogen bonds into quartets. While their presence within eukaryotic DNA is known to play a key role in regulatory processes, their functional mechanisms are still under investigation. In the present work, we analysed the nanomechanical properties of three G4s present within the promoter of the KIT proto-oncogene from a single-molecule point of view through the use of magnetic tweezers (MTs). The study of DNA extension fluctuations under negative supercoiling allowed us to identify a characteristic fingerprint of G4 folding. We further analysed the energetic contribution of G4 to the double-strand denaturation process in the presence of negative supercoiling, and we observed a reduction in the energy required for strands separation.
Collapse
Affiliation(s)
- Enrico Buglione
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, 20854 Vedano al Lambro (MB), Italy
| | - Domenico Salerno
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, 20854 Vedano al Lambro (MB), Italy
| | - Claudia Adriana Marrano
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, 20854 Vedano al Lambro (MB), Italy
| | - Valeria Cassina
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, 20854 Vedano al Lambro (MB), Italy
| | - Guglielmo Vesco
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, 20854 Vedano al Lambro (MB), Italy
| | - Luca Nardo
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, 20854 Vedano al Lambro (MB), Italy
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro (PD), Italy
| | - Riccardo Rigo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova (PD), Italy
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova (PD), Italy.,Interdepartmental Research Center for Innovative Biotechnologies (CRIBI), University of Padova, 35121 Padova (PD), Italy
| | - Francesco Mantegazza
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, 20854 Vedano al Lambro (MB), Italy
| |
Collapse
|
6
|
Girodat D, Pati AK, Terry DS, Blanchard SC, Sanbonmatsu KY. Quantitative comparison between sub-millisecond time resolution single-molecule FRET measurements and 10-second molecular simulations of a biosensor protein. PLoS Comput Biol 2020; 16:e1008293. [PMID: 33151943 PMCID: PMC7643941 DOI: 10.1371/journal.pcbi.1008293] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
Molecular Dynamics (MD) simulations seek to provide atomic-level insights into conformationally dynamic biological systems at experimentally relevant time resolutions, such as those afforded by single-molecule fluorescence measurements. However, limitations in the time scales of MD simulations and the time resolution of single-molecule measurements have challenged efforts to obtain overlapping temporal regimes required for close quantitative comparisons. Achieving such overlap has the potential to provide novel theories, hypotheses, and interpretations that can inform idealized experimental designs that maximize the detection of the desired reaction coordinate. Here, we report MD simulations at time scales overlapping with in vitro single-molecule Förster (fluorescence) resonance energy transfer (smFRET) measurements of the amino acid binding protein LIV-BPSS at sub-millisecond resolution. Computationally efficient all-atom structure-based simulations, calibrated against explicit solvent simulations, were employed for sampling multiple cycles of LIV-BPSS clamshell-like conformational changes on the time scale of seconds, examining the relationship between these events and those observed by smFRET. The MD simulations agree with the smFRET measurements and provide valuable information on local dynamics of fluorophores at their sites of attachment on LIV-BPSS and the correlations between fluorophore motions and large-scale conformational changes between LIV-BPSS domains. We further utilize the MD simulations to inform the interpretation of smFRET data, including Förster radius (R0) and fluorophore orientation factor (κ2) determinations. The approach we describe can be readily extended to distinct biochemical systems, allowing for the interpretation of any FRET system conjugated to protein or ribonucleoprotein complexes, including those with more conformational processes, as well as those implementing multi-color smFRET. Förster (fluorescence) resonance energy transfer (FRET) has been used extensively by biophysicists as a molecular-scale ruler that yields fundamental structural and kinetic insights into transient processes including complex formation and conformational rearrangements required for biological function. FRET techniques require the identification of informative fluorophore labeling sites, spaced at defined distances to inform on a reaction coordinate of interest and consideration of noise sources that have the potential to obscure quantitative interpretations. Here, we describe an approach to leverage advancements in computationally efficient all-atom structure-based molecular dynamics simulations in which structural dynamics observed via FRET can be interpreted in full atomistic detail on commensurate time scales. We demonstrate the potential of this approach using a model FRET system, the amino acid binding protein LIV-BPSS conjugated to self-healing organic fluorophores. LIV-BPSS exhibits large scale, sub-millisecond clamshell-like conformational changes between open and closed conformations associated with ligand unbinding and binding, respectively. Our findings inform on the molecular basis of the dynamics observed by smFRET and on strategies to optimize fluorophore labeling sites, the manner of fluorophore attachment, and fluorophore composition.
Collapse
Affiliation(s)
- Dylan Girodat
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Avik K Pati
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Daniel S Terry
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America.,New Mexico Consortium, Los Alamos, New Mexico, United States of America
| |
Collapse
|
7
|
Mohapatra S, Lin CT, Feng XA, Basu A, Ha T. Single-Molecule Analysis and Engineering of DNA Motors. Chem Rev 2019; 120:36-78. [DOI: 10.1021/acs.chemrev.9b00361] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | | | | | - Taekjip Ha
- Howard Hughes Medical Institute, Baltimore, Maryland 21205, United States
| |
Collapse
|
8
|
Rescuing Replication from Barriers: Mechanistic Insights from Single-Molecule Studies. Mol Cell Biol 2019; 39:MCB.00576-18. [PMID: 30886122 DOI: 10.1128/mcb.00576-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
To prevent replication failure due to fork barriers, several mechanisms have evolved to restart arrested forks independent of the origin of replication. Our understanding of these mechanisms that underlie replication reactivation has been aided through unique dynamic perspectives offered by single-molecule techniques. These techniques, such as optical tweezers, magnetic tweezers, and fluorescence-based methods, allow researchers to monitor the unwinding of DNA by helicase, nucleotide incorporation during polymerase synthesis, and replication fork progression in real time. In addition, they offer the ability to distinguish DNA intermediates after obstacles to replication at high spatial and temporal resolutions, providing new insights into the replication reactivation mechanisms. These and other highlights of single-molecule techniques and remarkable studies on the recovery of the replication fork from barriers will be discussed in this review.
Collapse
|
9
|
Gahlon HL, Walker AR, Cisneros GA, Lamers MH, Rueda DS. Reduced structural flexibility for an exonuclease deficient DNA polymerase III mutant. Phys Chem Chem Phys 2018; 20:26892-26902. [PMID: 30345999 PMCID: PMC6278910 DOI: 10.1039/c8cp04112a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
DNA synthesis, carried out by DNA polymerases, requires balancing speed and accuracy for faithful replication of the genome. High fidelity DNA polymerases contain a 3'-5' exonuclease domain that can remove misincorporated nucleotides on the 3' end of the primer strand, a process called proofreading. The E. coli replicative polymerase, DNA polymerase III, has spatially separated (∼55 Å apart) polymerase and exonuclease subunits. Here, we report on the dynamics of E. coli DNA polymerase III proofreading in the presence of its processivity factor, the β2-sliding clamp, at varying base pair termini using single-molecule FRET. We find that the binding kinetics do not depend on the base identity at the termini, indicating a tolerance for DNA mismatches. Further, our single-molecule data and MD simulations show two previously unobserved features: (1) DNA Polymerase III is a highly dynamic protein that adopts multiple conformational states while bound to DNA with matched or mismatched ends, and (2) an exonuclease-deficient DNA polymerase III has reduced conformational flexibility. Overall, our single-molecule experiments provide high time-resolution insight into a mechanism that ensures high fidelity DNA replication to maintain genome integrity.
Collapse
Affiliation(s)
- Hailey L Gahlon
- Department of Medicine, Molecular Virology, Imperial College London, Du Cane Road, London W12 0NN, UK.
| | | | | | | | | |
Collapse
|