1
|
Zhao M, Sikdar D, Zhao M, Ma Y. 3D Self-Assembly of a Bilayer Nanoparticle Metasurface for Surface-Enhanced Raman Scattering (SERS) Sensing. NANO LETTERS 2025. [PMID: 40338130 DOI: 10.1021/acs.nanolett.5c01327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Controllable periodic nanoparticle (NP) metasurfaces exhibit unique optical responses, which are crucial for applications in plasmonic sensing, photocatalysis, and nanoscale optical manipulation. Compared with monolayer NPs, bilayer NPs generate additional electromagnetic field localization effects between the layers, exhibiting enhanced light absorption and scattering. Here, we propose a novel method that assembles the monolayer NPs at a three-dimensional liquid-liquid interface (3D-LLI) into large-area two-dimensional bilayer NPs. This method not only allows for the construction of independent bilayer structures for fundamental research on metasurfaces but also enables the formation of "sandwich"-type interlayer structures for in situ SERS detection of both microparticle analytes such as polystyrene (PS), polyethylene terephthalate (PET), and poly(methyl methacrylate) (PMMA) and small molecules such as melamine, cysteine (Cys), and iminothiourazole (AMT).
Collapse
Affiliation(s)
- Mingfu Zhao
- School of Material Science and Engineering, Ocean University of China, 238 Songling Road, Qingdao, Shandong 266100, China
| | - Debabrata Sikdar
- Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Minggang Zhao
- School of Material Science and Engineering, Ocean University of China, 238 Songling Road, Qingdao, Shandong 266100, China
| | - Ye Ma
- School of Material Science and Engineering, Ocean University of China, 238 Songling Road, Qingdao, Shandong 266100, China
| |
Collapse
|
2
|
Huang Y, Ke C, Lou C, He Q. Chemically active colloidal superstructures. NANOSCALE 2025. [PMID: 40331321 DOI: 10.1039/d5nr00650c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Mimicking biological systems, artificial active colloidal motors that continuously dissipate energy can dynamically self-assemble to form active colloidal superstructures with specific spatial configurations and complex functionalities, which offers a promising pathway for developing new active soft matter materials with adaptability, self-repair, and reconfigurability. Beyond merely propelling their own motion, chemically driven colloidal motors can also induce phoretic effects and osmotic flows to affect the motion of neighboring colloidal motors through local fluid fields generated by chemical reactions, thereby achieving spontaneous chemical communication and promoting dynamic self-assembly between motors. This review summarizes the latest progress in the dynamic self-assembly of chemically driven colloidal motors, ranging from single chemically driven colloidal motors to chemically driven colloidal motors with passive colloidal particles and then to different chemically driven colloidal motors, ultimately forming active colloidal superstructures with complex dynamic behaviors. Not only are the interactions between chemically driven colloidal motors with different self-propulsion mechanisms and passive colloidal particles focused on, but also the communication behaviors between chemically driven colloidal motors are explored. We explain the fundamental physicochemical mechanisms that regulate the assembly behavior of chemically driven colloidal motors, propose general strategies for the controlled construction of active colloidal superstructures, and discuss the potential applications that may emerge from the directed dynamic self-assembly of these superstructures.
Collapse
Affiliation(s)
- Yang Huang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Changcheng Ke
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| | - Celi Lou
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| | - Qiang He
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
3
|
Li C, Ma L, Xue Z, Li X, Zhu S, Wang T. Pushing the Frontiers: Artificial Intelligence (AI)-Guided Programmable Concepts in Binary Self-Assembly of Colloidal Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501000. [PMID: 40285639 DOI: 10.1002/advs.202501000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/02/2025] [Indexed: 04/29/2025]
Abstract
Colloidal nanoparticle self-assembly is a key area in nanomaterials science, renowned for its ability to design metamaterials with tailored functionalities through a bottom-up approach. Over the past three decades, advancements in nanoparticle synthesis and assembly control methods have propelled the transition from single-component to binary assemblies. While binary assembly has been recognized as a significant concept in materials design, its potential for intelligent and customized assembly has often been overlooked. It is argued that the future trend in the assembly of binary nanocrystalline superlattices (BNLSs) can be analogous to the '0s' and '1s' in computer programming, and customizing their assembly through precise control of these basic units could significantly expand their application scope. This review briefly recaps the developmental trajectory of nanoparticle assembly, tracing its evolution from simple single-component assemblies to complex binary co-assemblies and the unique property changes they induce. Of particular significance, this review explores the future prospects of binary co-assembly, viewed through the lens of 'AI-guided programmable assembly'. Such an approach has the potential to shift the paradigm from passive assembly to active, intelligent design, leading to the creation of new materials with disruptive properties and functionalities and driving profound changes across multiple high-tech fields.
Collapse
Affiliation(s)
- Cancan Li
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, China
| | - Lindong Ma
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhenjie Xue
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, China
| | - Xiao Li
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, China
| | - Shan Zhu
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, China
| | - Tie Wang
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
4
|
Munkaila S, Torres KJ, Wang J, Weck M. Dielectrophoretic Assembly of Customized Colloidal Trimers. ACS NANOSCIENCE AU 2025; 5:100-110. [PMID: 40255981 PMCID: PMC12006858 DOI: 10.1021/acsnanoscienceau.5c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 04/22/2025]
Abstract
The controlled assembly of colloidal trimers with both shape and surface anisotropy remains a challenge. In this work, polymeric dielectric colloidal trimers selectively functionalized with gold nanoparticles are used to create four distinct particles. The shape and surface anisotropy provided by the metallodielectric particles allows for directive assembly in a dielectrophoretic field. When subjected to varied frequencies and media permittivities, the particles assemble with different packing densities and orientations. On-demand assembly and disassembly of the particles are achieved by switching on or off the applied voltage. These multicomponent colloidal particles and their subsequent assemblies presented here provide a promising platform for engineering complex structures with versatile functionalities.
Collapse
Affiliation(s)
- Samira Munkaila
- Molecular Design Institute,
Department of Chemistry, New York University, New York, New York 10003, United States
| | - Kevin J. Torres
- Molecular Design Institute,
Department of Chemistry, New York University, New York, New York 10003, United States
| | - Jennifer Wang
- Molecular Design Institute,
Department of Chemistry, New York University, New York, New York 10003, United States
| | - Marcus Weck
- Molecular Design Institute,
Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
5
|
Sedrpooshan M, Maltoni P, Peddis D, Burke AM, Messing ME, Westerström R. Single-Step Production and Self-Assembly of Magnetic Nanostructures for Magneto-Responsive Soft Films. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21682-21690. [PMID: 40148244 PMCID: PMC11986893 DOI: 10.1021/acsami.5c00992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
Magneto-responsive soft films constitute a fascinating class of smart materials and devices capable of performing various tasks, such as micromanipulation or transport, noninvasive surgery, and sensing. These components are fabricated by incorporating magnetic materials into flexible substrates. In this context, arranging magnetic particles into elongated chains exhibiting shape anisotropy has shown great potential. Here, we introduce a novel technique for fabricating magnetically responsive films using continuous single-step production and self-assembly of magnetic nanoparticles from a carrier gas at atmospheric pressure into anisotropic magnetic structures directly onto flexible polymer layers. We show that the resulting magnetic soft films exhibit significant residual magnetization and a large response to external magnetic fields. Furthermore, we investigate the magnetic properties of the nanoparticle assemblies and show that interparticle interactions play a critical role in determining the final magnetic properties of the nanostructures. Moreover, we provide experimental evidence that fusing the nanoparticles via post-annealing results in a transition from magnetostatic to exchange interactions with an ≈50% increase in the coercivity.
Collapse
Affiliation(s)
- Mehran Sedrpooshan
- NanoLund, Lund University, 118, 221 00 Lund, Sweden
- Synchrotron
Radiation Research, Lund University, 118, 221 00 Lund, Sweden
| | - Pierfrancesco Maltoni
- Department
of Chemistry and Industrial Chemistry & INSTM RU, nM2-Lab, University of Genova, 16146 Genova, Italy
- Institute
of Structure of Matter, National Research Council (CNR), nM2-Lab, Via Salaria km 29.300, Monterotondo
Scalo, 00015 Rome, Italy
| | - Davide Peddis
- Department
of Chemistry and Industrial Chemistry & INSTM RU, nM2-Lab, University of Genova, 16146 Genova, Italy
- Institute
of Structure of Matter, National Research Council (CNR), nM2-Lab, Via Salaria km 29.300, Monterotondo
Scalo, 00015 Rome, Italy
| | - Adam M. Burke
- NanoLund, Lund University, 118, 221 00 Lund, Sweden
- Solid
State Physics, Lund University, 118, 221 00 Lund, Sweden
| | - Maria E. Messing
- NanoLund, Lund University, 118, 221 00 Lund, Sweden
- Solid
State Physics, Lund University, 118, 221 00 Lund, Sweden
| | - Rasmus Westerström
- NanoLund, Lund University, 118, 221 00 Lund, Sweden
- Synchrotron
Radiation Research, Lund University, 118, 221 00 Lund, Sweden
| |
Collapse
|
6
|
Kumar PP, Nafiujjaman M, Makela AV, Hadrick K, Hill ML, Lee M, Kim T. Development of Iron Oxide Nanochains as a Sensitive Magnetic Particle Imaging Tracer for Cancer Detection. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20859-20871. [PMID: 40138469 PMCID: PMC11986898 DOI: 10.1021/acsami.5c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
The advancement of imaging technologies plays a crucial role in improving the diagnosis and monitoring of diseases, including cancer. This study introduces a new design of iron oxide-based nanoparticles specifically developed for magnetic particle imaging (MPI), aimed at tracking and diagnosing breast cancer more effectively. By precisely controlling the size, shape, and magnetic properties of these nanoparticles, we enhance the responsiveness of MPI, resulting in an increased signal. In our research, we established a novel synthetic route for fabricating iron oxide nanochains (FeONCs) characterized by their uniform shape and size, which contribute to high magnetic properties suitable for MPI applications. Initial results indicate these FeONCs exhibit superior magnetic properties compared to conventional spherical superparamagnetic iron oxide nanoparticles, nanocubes, and reported nanoworm-type structures. Magnetic relaxometry studies revealed that FeONCs provide higher sensitivity than the commonly used VivoTrax Synomag D50 and D70 in MPI. Further, the size and shape of FeONCs significantly influence cellular uptake. In vivo experiments using orthotopic breast cancer mouse models allow us to assess the biocompatibility and magnetic characteristics of the nanoparticles, confirming their imaging efficacy. Furthermore, by conjugating these nanoparticles with the RGD peptide, we enhance their ability to specifically target breast cancer, establishing them as promising tracers for in vivo MPI applications characterized by high sensitivity. Thus, our findings highlight that FeONCs significantly improve imaging quality, facilitating the early detection and accurate monitoring of breast cancer. This paves the way for innovative diagnostic strategies and personalized treatment options. Future research will focus on fine-tuning the surface chemistry of these nanoparticles to further enhance the targeting efficiency and optimization of their practice in clinical applications, particularly for MPI-based hyperthermia therapy.
Collapse
Affiliation(s)
- Panangattukara
Prabhakaran Praveen Kumar
- Department of Biomedical Engineering,
Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Md Nafiujjaman
- Department of Biomedical Engineering,
Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Ashley V. Makela
- Department of Biomedical Engineering,
Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kay Hadrick
- Department of Biomedical Engineering,
Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Meghan L. Hill
- Department of Biomedical Engineering,
Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Maggie Lee
- Department of Biomedical Engineering,
Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Taeho Kim
- Department of Biomedical Engineering,
Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
7
|
Yang Y, Jeon Y, Dong Z, Yang JKW, Haddadi Moghaddam M, Kim DS, Oh DK, Lee J, Hentschel M, Giessen H, Kang D, Kim G, Tanaka T, Zhao Y, Bürger J, Maier SA, Ren H, Jung W, Choi M, Bae G, Chen H, Jeon S, Kim J, Lee E, Kang H, Park Y, Du Nguyen D, Kim I, Cencillo-Abad P, Chanda D, Jing X, Liu N, Martynenko IV, Liedl T, Kwak Y, Nam JM, Park SM, Odom TW, Lee HE, Kim RM, Nam KT, Kwon H, Jeong HH, Fischer P, Yoon J, Kim SH, Shim S, Lee D, Pérez LA, Qi X, Mihi A, Keum H, Shim M, Kim S, Jang H, Jung YS, Rossner C, König TAF, Fery A, Li Z, Aydin K, Mirkin CA, Seong J, Jeon N, Xu Z, Gu T, Hu J, Kwon H, Jung H, Alijani H, Aharonovich I, Kim J, Rho J. Nanofabrication for Nanophotonics. ACS NANO 2025; 19:12491-12605. [PMID: 40152322 DOI: 10.1021/acsnano.4c10964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Nanofabrication, a pivotal technology at the intersection of nanoscale engineering and high-resolution patterning, has substantially advanced over recent decades. This technology enables the creation of nanopatterns on substrates crucial for developing nanophotonic devices and other applications in diverse fields including electronics and biosciences. Here, this mega-review comprehensively explores various facets of nanofabrication focusing on its application in nanophotonics. It delves into high-resolution techniques like focused ion beam and electron beam lithography, methods for 3D complex structure fabrication, scalable manufacturing approaches, and material compatibility considerations. Special attention is given to emerging trends such as the utilization of two-photon lithography for 3D structures and advanced materials like phase change substances and 2D materials with excitonic properties. By highlighting these advancements, the review aims to provide insights into the ongoing evolution of nanofabrication, encouraging further research and application in creating functional nanostructures. This work encapsulates critical developments and future perspectives, offering a detailed narrative on the state-of-the-art in nanofabrication tailored for both new researchers and seasoned experts in the field.
Collapse
Affiliation(s)
- Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Youngsun Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Zhaogang Dong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Joel K W Yang
- Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Mahsa Haddadi Moghaddam
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dai-Sik Kim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dong Kyo Oh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jihae Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Mario Hentschel
- fourth Physics Institute and Research Center SCoPE, University of Stuttgart, Stuttgart 70569, Germany
| | - Harald Giessen
- fourth Physics Institute and Research Center SCoPE, University of Stuttgart, Stuttgart 70569, Germany
| | - Dohyun Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Gyeongtae Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Takuo Tanaka
- RIKEN Center for Advanced Photonics, Wako 351-0198, Japan
- Institute of Post-LED Photonics, Tokushima University, Tokushima 770-8501, Japan
| | - Yang Zhao
- Department of Electrical and Computer Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Johannes Bürger
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Ludwig-Maximilians-Universität, Munich 80539, Germany
| | - Stefan A Maier
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
- Department of Physics, Imperial College London, London SW72AZ, United Kingdom
| | - Haoran Ren
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
| | - Wooik Jung
- Department of Creative Convergence Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Mansoo Choi
- Global Frontier Center for Multiscale Energy Systems, Seoul National University, Seoul 08826, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Gwangmin Bae
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Haomin Chen
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seokwoo Jeon
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jaekyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Eunji Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyunjung Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yujin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dang Du Nguyen
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inki Kim
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pablo Cencillo-Abad
- NanoScience Technology Center, University of Central Florida, Florida 32826, United States
| | - Debashis Chanda
- NanoScience Technology Center, University of Central Florida, Florida 32826, United States
- Department of Physics, University of Central Florida, Florida 32816, United States
- The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, United States
| | - Xinxin Jing
- Second Physics Institute, University of Stuttgart Pfaffenwaldring 57, Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart D-70569, Germany
| | - Na Liu
- Second Physics Institute, University of Stuttgart Pfaffenwaldring 57, Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart D-70569, Germany
| | - Irina V Martynenko
- Faculty of Physics and Center for NanoScience (CeNS) Ludwig-Maxim8ilians-University, Munich 80539, Germany
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience (CeNS) Ludwig-Maxim8ilians-University, Munich 80539, Germany
| | - Yuna Kwak
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Min Park
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hye-Eun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunah Kwon
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg 69120, Germany
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Peer Fischer
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg 69120, Germany
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Yonsei University, Seoul, 03722, Republic of Korea
| | - Jiwon Yoon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sangmin Shim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Dasol Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Luis A Pérez
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Xiaoyu Qi
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Agustin Mihi
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Hohyun Keum
- Digital Health Care R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Moonsub Shim
- Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, Illinois 61801, United States
| | - Seok Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hanhwi Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Christian Rossner
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, Dresden 01069, Germany
- Department of Polymers, University of Chemistry and Technology Prague, Prague 6 166 28, Czech Republic
| | - Tobias A F König
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, Dresden 01069, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden 01069, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden 01069, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Dresden 01069, Germany
| | - Zhiwei Li
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Mayland 20742, United States
| | - Koray Aydin
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Junhwa Seong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Nara Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Zhiyun Xu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tian Gu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Juejun Hu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyounghan Kwon
- Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Quantum Information, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hojoong Jung
- Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hossein Alijani
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| |
Collapse
|
8
|
Ding L, Ma W, Chen X, Wang H, Song H, Fan C, Liu X, Yao G. Prescribing DNA Origami Barrel-Directed Subtractive Patterning of Nanoparticles for Crystalline Superstructure Assembly. Angew Chem Int Ed Engl 2025; 64:e202424230. [PMID: 39887841 DOI: 10.1002/anie.202424230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/01/2025]
Abstract
Long-range ordered lattices formed by the directed arrangement of colloidal particles hold significant promise for applications such as photonic crystals, plasmonic metamaterials, and semiconductor electronics. Harnessing regioselective interactions through DNA-mediated assembly is a promising approach to advancing colloidal assembly. Despite efforts to engineer microscale patchy particles using sequence-specific binding properties of DNA, the control of patch formation on nanoscale isotropic spherical nanoparticles remains challenging. We demonstrate a subtractive patterning strategy using barrel-shaped DNA origami (DNA barrel) to selectively block surfaces of DNA-coated gold nanospheres and create regiospecific patches. By designing binding positions and geometric parameters of DNA barrels, we can achieve controlled accessibility to nanosphere surfaces, forming patchy nanoparticles with tunable patch numbers and sizes. This strategy enables the construction of multidimensional superstructures with well-defined stereo relationships, represented by an unprecedented graphane-like bilayered superlattice. Furthermore, we developed a geometrical model that accounts for anisotropic particle bonding and steric hindrance, elucidating the relationship between architectural outcomes and the structural parameters of DNA-barrel-directed patchy nanoparticles, and enabling reverse engineering designs of potential assembly symmetries. This approach opens new avenues for generating nanoparticle assemblies with distinct symmetries and properties.
Collapse
Affiliation(s)
- Longjiang Ding
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenhe Ma
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoliang Chen
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haozhi Wang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haitao Song
- The Institute of Artificial Intelligence and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guangbao Yao
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
9
|
Sedrpooshan M, Bulbucan C, J Carrad D, S Jespersen T, Burke AM, Messing ME, Westerström R. Direct device integration of single 1D nanoparticle assemblies; a magnetization reversal and magnetotransport study. NANOTECHNOLOGY 2025; 36:185601. [PMID: 40101303 DOI: 10.1088/1361-6528/adc1d0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/18/2025] [Indexed: 03/20/2025]
Abstract
Nanochains (NCs) made up of a one-dimensional arrangement of magnetic nanoparticles (NPs) exhibit anisotropic properties with potential for various applications. Herein, using a novel self-assembly method we directly integrate single NCs onto desired substrates including devices. We present a nanoscopic analysis of magnetization reversal in 1D linear NP arrays by combining x-ray microscopy, magnetoresistance (MR), and micromagnetic simulations. Imaging the local magnetization along individual NCs by scanning transmission x-ray microscopy and x-ray magnetic circular dichroism under varyingin situmagnetic fields shows that each structure undergoes distinct non-homogeneous magnetization reversal processes. The experimental observations are complemented by micromagnetic simulations, revealing that morphological inhomogeneities critically influence the reversal process where regions with parallel chains or larger multi-domain particles act as nucleation centers for the magnetization switching and smaller particles provide pinning sites for the domain propagation. Magnetotransport through single NCs reveals distinct MR behavior that is correlated with the unique magnetization reversal processes dictated by the morphology of the structures. This study provides new insights into the complex magnetization reversal mechanism inherent to one-dimensional particle assemblies and the effective parameters that govern the process.
Collapse
Affiliation(s)
- Mehran Sedrpooshan
- NanoLund, Lund University, Box 118, 221 00 Lund, Sweden
- Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund, Sweden
| | | | - Damon J Carrad
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Thomas S Jespersen
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Adam M Burke
- NanoLund, Lund University, Box 118, 221 00 Lund, Sweden
- Solid State Physics, Lund University, Box 118, 221 00 Lund, Sweden
| | - Maria E Messing
- NanoLund, Lund University, Box 118, 221 00 Lund, Sweden
- Solid State Physics, Lund University, Box 118, 221 00 Lund, Sweden
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Rasmus Westerström
- NanoLund, Lund University, Box 118, 221 00 Lund, Sweden
- Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund, Sweden
| |
Collapse
|
10
|
Tian J, Motezakker AR, Wang R, Bae AJ, Fluerasu A, Zhu H, Hsiao BS, Rosén T. Probing the Self-Assembly dynamics of cellulose nanocrystals by X-ray photon correlation spectroscopy. J Colloid Interface Sci 2025; 683:1077-1086. [PMID: 39778489 DOI: 10.1016/j.jcis.2024.12.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 10/29/2024] [Accepted: 12/29/2024] [Indexed: 01/11/2025]
Abstract
HYPOTHESIS Charge-stabilized colloidal cellulose nanocrystals (CNCs) can self-assemble into higher-ordered chiral nematic structures by varying the volume fraction. The assembly process exhibits distinct dynamics during the isotropic to liquid crystal phase transition, which can be elucidated using X-ray photon correlation spectroscopy (XPCS). EXPERIMENTS Anionic CNCs were dispersed in propylene glycol (PG) and water spanning a range of volume fractions, encompassing several phase transitions. Coupled with traditional characterization techniques, XPCS was conducted to monitor the dynamic evolution of the different phases. Additionally, simulated XPCS results were obtained using colloidal rods and compared with the experimental data, offering additional insights into the dynamic behavior of the system. FINDINGS The results indicate that the particle dynamics of CNCs undergo a stepped decay in three stages during the self-assembly process in PG, coinciding with the observed phases. The phase transitions are associated with a total drop of Brownian diffusion rates by four orders of magnitude, a decrease of more than a thousand times slower than expected in an ideal system of repulsive Brownian rods. Given the similarity in the phase behaviors in CNCs dispersed in PG and in water, we hypothesize that these dynamic behaviors can be extrapolated to other polar solvent environments. Importantly, these findings represent the direct measurement of CNC dynamics using XPCS, underscoring the feasibility of directly assessing the dynamic behavior of other rod-like colloidal suspensions.
Collapse
Affiliation(s)
- Jiajun Tian
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Ahmad Reza Motezakker
- Department of Mechanics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Ruifu Wang
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Andrew J Bae
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Andrei Fluerasu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973-5000, United States
| | - Hengwei Zhu
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States.
| | - Tomas Rosén
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
11
|
Michelson A, Shani L, Kahn JS, Redeker DC, Lee WI, DeOlivares KR, Kisslinger K, Tiwale N, Yan H, Pattammattel A, Nam CY, Pribiag VS, Gang O. Scalable fabrication of Chip-integrated 3D-nanostructured electronic devices via DNA-programmable assembly. SCIENCE ADVANCES 2025; 11:eadt5620. [PMID: 40153506 PMCID: PMC11952087 DOI: 10.1126/sciadv.adt5620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/25/2025] [Indexed: 03/30/2025]
Abstract
DNA-based self-assembly methods have demonstrated powerful and unique capabilities to encode nanomaterial structures through the prescribed placement of inorganic and biological nanocomponents. However, the challenge of selectively growing DNA superlattices on specific locations of surfaces and their integration with conventional nanofabrication has hindered the fabrication of three-dimensional (3D) DNA-assembled functional devices. Here, we present a scalable nanofabrication technique that combines bottom-up and top-down approaches for selective growth of 3D DNA superlattices on gold microarrays. This approach allows for the fabrication of self-assembled 3D-nanostructured electronic devices. DNA strands are bound onto the gold arrays, which anchor DNA origami frames and promote ordered framework growth on the specific areas of the surface, enabling control of the lateral placement and orientation of superlattices. DNA frameworks selectively grown on the pads are subsequently templated to nanoscale silica and tin oxide (SnOx) that follow the architecture, as confirmed by structural and chemical characterizations. The fabricated SnOx superlattices are integrated into devices that demonstrate photocurrent response.
Collapse
Affiliation(s)
- Aaron Michelson
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Lior Shani
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jason S. Kahn
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Daniel C. Redeker
- Department of Chemical Engineering and Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
| | - Won-Il Lee
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Katerina R. DeOlivares
- Department of Chemical Engineering and Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
| | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Nikhil Tiwale
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Hanfei Yan
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Ajith Pattammattel
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Chang-Yong Nam
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Vlad S. Pribiag
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Oleg Gang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Chemical Engineering and Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722 Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722 Republic of Korea
| |
Collapse
|
12
|
Xue X, Li B. Recent Advances in Nanostructured Perovskite Oxide Synthesis and Application for Electrocatalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:472. [PMID: 40137646 PMCID: PMC11944381 DOI: 10.3390/nano15060472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Nanostructured materials have garnered significant attention for their unique properties, such as the high surface area and enhanced reactivity, making them ideal for electrocatalysis. Among these, perovskite oxides, with compositional and structural flexibility, stand out for their remarkable catalytic performance in energy conversion and storage technologies. Their diverse composition and tunable electronic structures make them promising candidates for key electrochemical reactions, including the oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and carbon dioxide reduction (CO2RR). Nanostructured perovskites offer advantages such as high intrinsic activity and enhanced mass/charge transport, which are crucial for improving electrocatalytic performance. In view of the rapid development of nanostructured perovskites over past few decades, this review aims to provide a detailed evaluation of their synthesis methods, including the templating (soft, hard, colloidal), hydrothermal treatments, electrospinning, and deposition approaches. In addition, in-depth evaluations of the fundamentals, synthetic strategies, and applications of nanostructured perovskite oxides for OER, HER, and CO2RR are highlighted. While progress has been made, further research is needed to expand the synthetic methods to create more complex perovskite structures and improve the mass-specific activity and stability. This review offers insights into the potential of nanostructured perovskite oxides in electrocatalysis and provides potential perspectives for the ongoing research endeavor on the nanostructural engineering of perovskites.
Collapse
Affiliation(s)
| | - Bowen Li
- Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
13
|
Campos MT, Pires LS, Magalhães FD, Oliveira MJ, Pinto AM. Self-assembled inorganic nanomaterials for biomedical applications. NANOSCALE 2025; 17:5526-5570. [PMID: 39905908 DOI: 10.1039/d4nr04537h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Controlled self-assembly of inorganic nanoparticles has the potential to generate complex nanostructures with distinctive properties. The advancement of more precise techniques empowers researchers in constructing and assembling diverse building blocks, marking a pivotal evolution in nanotechnology and biomedicine. This progress enables the creation of customizable biomaterials with unique characteristics and functions. This comprehensive review takes an innovative approach to explore the current state-of-the-art self-assembly methods and the key interactions driving the self-assembly processes and provides a range of examples of biomedical and therapeutic applications involving inorganic or hybrid nanoparticles and structures. Self-assembly methods applied to bionanomaterials are presented, ranging from commonly used methods in cancer phototherapy and drug delivery to emerging techniques in bioimaging and tissue engineering. The most promising in vitro and in vivo experimental results achieved thus far are presented. Additionally, the review engages in a discourse on safety and biocompatibility concerns related to inorganic self-assembled nanomaterials. Finally, opinions on future challenges and prospects anticipated in this evolving field are provided.
Collapse
Affiliation(s)
- Miguel T Campos
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
| | - Laura S Pires
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Portugal
| | - Fernão D Magalhães
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Portugal
| | - Maria J Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
| | - Artur M Pinto
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
| |
Collapse
|
14
|
Wang W, Xu Y, Tang Y, Li Q. Self-Assembled Metal Complexes in Biomedical Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416122. [PMID: 39713915 DOI: 10.1002/adma.202416122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/29/2024] [Indexed: 12/24/2024]
Abstract
Cisplatin is widely used in clinical cancer treatment; however, its application is often hindered by severe side effects, particularly inherent or acquired resistance of target cells. To address these challenges, an effective strategy is to modify the metal core of the complex and introduce alternative coordination modes or valence states, leading to the development of a series of metal complexes, such as platinum (IV) prodrugs and cyclometalated complexes. Recent advances in nanotechnology have facilitated the development of multifunctional nanomaterials that can selectively deliver drugs to tumor cells, thereby overcoming the pharmacological limitations of metal-based drugs. This review first explores the self-assembly of metal complexes into spherical, linear, and irregular nanoparticles in the context of biomedical applications. The mechanisms underlying the self-assembly of metal complexes into nanoparticles are subsequently analyzed, followed by a discussion of their applications in biomedical fields, including detection, imaging, and antitumor research.
Collapse
Affiliation(s)
- Wenting Wang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yang Xu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yuqi Tang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
15
|
Jimidar ISM, Mālnieks K, Sotthewes K, Sherrell PC, Šutka A. Granular Interfaces in TENGs: The Role of Close-Packed Polymer Bead Monolayers for Energy Harvesters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410155. [PMID: 39910846 DOI: 10.1002/smll.202410155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/09/2025] [Indexed: 02/07/2025]
Abstract
Over the last decade, triboelectric nanogenerators (TENGs) are proposed as a viable alternative to address the impetus for affordable and clean energy. Here, a novel, cost-effective granular-based TENG comprising two electrodes covered with HCP monolayers of monodisperse polymer (PMMA, PS, and MF-resin) beads with diameters ranging between 0.5 and 10 µm is proposed. These monolayers are attained in <20 s by employing a solvent-free particle rubbing assembly technique on fluorocarbon-coated substrates. The performance of the proposed granular-based TENG is characterized using contact-separation (CS) experiments by changing the bead sizes (topography effects) and the polymer material (mechanical properties). These findings show that when identical polymer material is utilized, large beads charged negatively, and the small beads positively, coinciding with bulk polymer film reports. In addition, the MF particles always charge positively and show the highest charging due to their relatively higher Young's modulus. The results elucidate that a specific pair's surface charge density is enhanced when one of the electrodes is covered with the smaller bead with the highest Young's modulus, highlighting that mechanical properties dominate and that a substantial difference in size benefits the output. The stable performance of the TENG devices after 10 000 cycles corroborates its robustness.
Collapse
Affiliation(s)
- Ignaas S M Jimidar
- Department of Chemical Engineering CHIS, Vrije Universiteit Brussel, Brussels, 1050, Belgium
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente, P.O. Box 217, Enschede, 7500AE, The Netherlands
| | - Kaspars Mālnieks
- Institute of Materials and Surface Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, LV-1048, Latvia
| | - Kai Sotthewes
- Physics of Interfaces and Nanomaterials, MESA+ Institute, University of Twente, P.O. Box 217, Enschede, 7500AE, The Netherlands
| | - Peter C Sherrell
- Applied Chemistry & Environmental Science, School of Science, RMIT University, 124 La Trobe St, Melbourne, 3000, Australia
| | - Andris Šutka
- Institute of Materials and Surface Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, LV-1048, Latvia
| |
Collapse
|
16
|
Felsted RG, Chun J, Schenter GK, Bard AB, Xia X, Pauzauskie PJ. Mediation of Colloidal Encounter Dynamics by Surface Roughness. PHYSICAL REVIEW LETTERS 2025; 134:088201. [PMID: 40085888 DOI: 10.1103/physrevlett.134.088201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 09/03/2024] [Accepted: 10/31/2024] [Indexed: 03/16/2025]
Abstract
Rigorous understanding of assembly in colloidal systems is crucial to the development of tailored nanostructured materials. Despite extensive studies, a mechanistic understanding of the dynamics governing encounters of colloidal particles remains an ongoing challenge. We study colloidal encounter dynamics by inducing assembly through optical tweezers that impose an external attractive field for cubic-phase sodium yttrium fluoride nanocrystals. We show that surface roughness of the nanocrystals is a decisive factor for contact leading to assembly between the nanocrystals, manifested by the roughness-dependent hydrodynamic resistivity. This provides direct evidence that dynamics are equally important to energetics in understanding assembly.
Collapse
Affiliation(s)
- Robert G Felsted
- University of Washington, Department of Chemistry, Seattle, Washington 98195, USA
- Pacific Northwest National Laboratory, Physical Sciences Division, Physical and Computational Sciences Directorate, Richland, Washington 99354, USA
| | - Jaehun Chun
- Pacific Northwest National Laboratory, Physical Sciences Division, Physical and Computational Sciences Directorate, Richland, Washington 99354, USA
- CUNY City College of New York, Levich Institute and Department of Chemical Engineering, New York 10031, USA
| | - Gregory K Schenter
- Pacific Northwest National Laboratory, Physical Sciences Division, Physical and Computational Sciences Directorate, Richland, Washington 99354, USA
| | - Alexander B Bard
- University of Washington, Department of Chemistry, Seattle, Washington 98195, USA
- Pacific Northwest National Laboratory, Physical Sciences Division, Physical and Computational Sciences Directorate, Richland, Washington 99354, USA
| | - Xiaojing Xia
- University of Washington, Department of Molecular Engineering and Science, Seattle, Washington 98195, USA
| | - Peter J Pauzauskie
- Pacific Northwest National Laboratory, Physical Sciences Division, Physical and Computational Sciences Directorate, Richland, Washington 99354, USA
- University of Washington, Materials Science and Engineering Department, Seattle, Washington 98195, USA
| |
Collapse
|
17
|
Wu X, Gao Y, Wang H, Zhang Z, Xi X, Yang D, Li T, Dong A. Hydrophobized Metal-Organic Frameworks as Versatile Building Blocks for Tailored Nanocrystal Superlattices. J Am Chem Soc 2025; 147:6361-6366. [PMID: 39949178 DOI: 10.1021/jacs.4c17724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
This study introduces an effective strategy for hydrophobizing metal-organic frameworks (MOFs) using oleyl phosphate (OP) ligands. This modification makes MOF particles dispersible in nonpolar solvents and provides them with colloidal stability akin to traditional colloidal nanocrystals (NCs). The resulting OP-capped MOF particles can then be employed as building blocks for constructing various two-dimensional (2D) and 3D superlattices through self-assembly methods typically used for NCs. Additionally, binary superlattices with tailored structures can be achieved by coassembling OP-capped MOF particles with different NCs. This robust surface hydrophobization approach is adaptable to various MOFs, facilitating the rational design and creation of complex MOF-based superstructures.
Collapse
Affiliation(s)
- Xuesong Wu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Yutong Gao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Hao Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Zhebin Zhang
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Xiangyun Xi
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Dong Yang
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Tongtao Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Angang Dong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| |
Collapse
|
18
|
Liang X, Wang Y, Wang Y, Yan Q. Using Gas Molecules to Assemble Value-Added Materials through Dynamic Gas-Bridged Bond. Macromol Rapid Commun 2025:e2500053. [PMID: 39985429 DOI: 10.1002/marc.202500053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/14/2025] [Indexed: 02/24/2025]
Abstract
The conversion and utilization of greenhouse gases and other polluting gases in a green way represents a crucial strategy for developing C1 chemistry and mitigating the dual crises of energy scarcity and the greenhouse effect. As a class of polyatomic molecules with a relatively simple structure, gas molecules are directly involved in the assembled process as the building blocks, converting them into polymer assemblies under mild and low energy consumption, and constructing recyclable functional assembled materials, which is of great significance to enrich the building block of assembly and promote the sustainable value-added of gas. The dynamic gas bridge is a new way of combining gas with other molecules, it provides the possibility for gas conversion and dynamic assembly. This perspective systematically introduces the formation mechanism and unique physicochemical properties of the dynamic gas bridge, and discusses the latest research progress of dynamic gas-bridged chemistry with a particular focus on three key aspects: gas-regulated assembled system, gas-constructed assembled materials, and green and efficient catalysis. Finally, a perspective on critical challenges and future directions of assembled materials based on dynamic gas bridge chemistry are also highlighted.
Collapse
Affiliation(s)
- Xin Liang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Yangyang Wang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Yixin Wang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Qiang Yan
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
19
|
Hu H, Jiang W, Han X, Wu G, Wang H, Shi Y, He D, Ma X, Hong X. Programmable Self-Assembly from Two-Dimensional Nanosheets to Spiral, Twisted and Branched Nanostructures. Angew Chem Int Ed Engl 2025; 64:e202416624. [PMID: 39686877 DOI: 10.1002/anie.202416624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
Self-assembly of nanomaterials into hierarchical structure is of great interest to fabricate functional materials. However, programmable design of the assembled structures remains a great challenge. Herein, we reported a programmable self-assembly strategy to customize the assembled structure. The self-assembly strategy is designed to orderly transform the two-dimensional (2D) Ca ions assembled F127 nanosheets (Ca-F127 NSs) into spiral nanosheet structures (S-Ca-F127 NSs), branched nanosheet structures (B-Ca-F127 NSs), branched-spiral nanosheet structures (B-S-Ca-F127 NSs), and twisted-branched structures (T-Ca-F127 NBs). Wide-angle X-ray scattering (WAXS) and X-ray absorption spectroscopy (XAS) indicate that these different structures maintain the same orthorhombic phase and Ca-O octahedral coordination structure. Selected area electron diffraction (SAED) in the double-tilt liquid nitrogen cooling holder identifies the Eshelby twist in the twisted structures, demonstrating the spiral structure are formed by screw dislocation growth. Cryo-electron microscopy (cryo-EM) proves the oriented epitaxial growth in the B-Ca-F127 NSs. Furthermore, the formation mechanisms of spiral structure and branched structure can be recombined to form complex hierarchical structures. The epitaxial growth along screw dislocation can lead to the formation of B-S-Ca-F127 NSs, while the twisted epitaxial growth in the screw dislocation can lead to the formation of T-Ca F127 NBs.
Collapse
Affiliation(s)
- Haohui Hu
- Hefei National Research Center for Physical Science at the Microscale, Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Wei Jiang
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, 230029, Hefei, Anhui, China
| | - Xiao Han
- Hefei National Research Center for Physical Science at the Microscale, Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Geng Wu
- Hefei National Research Center for Physical Science at the Microscale, Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Haoran Wang
- Hefei National Research Center for Physical Science at the Microscale, Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Yi Shi
- Hefei National Research Center for Physical Science at the Microscale, Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Dayin He
- Hefei National Research Center for Physical Science at the Microscale, Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Xianhui Ma
- Hefei National Research Center for Physical Science at the Microscale, Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Xun Hong
- Hefei National Research Center for Physical Science at the Microscale, Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, 230026, Hefei, Anhui, China
| |
Collapse
|
20
|
Na L, Song X, Luo P, Su J, Yao Z. Innovative applications of advanced nanomaterials in cerebrovascular imaging. Front Bioeng Biotechnol 2025; 12:1456704. [PMID: 39911816 PMCID: PMC11794002 DOI: 10.3389/fbioe.2024.1456704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/24/2024] [Indexed: 02/07/2025] Open
Abstract
Cerebrovascular imaging is essential for the diagnosis, treatment, and prognosis of cerebrovascular disease, including stroke, aneurysms, and vascular malformations. Conventional imaging techniques such as MRI, CT, DSA and ultrasound have their own strengths and limitations, particularly in terms of resolution, contrast and safety. Recent advances in nanotechnology offer new opportunities for improved cerebrovascular imaging. Nanomaterials, including metallic nanoparticles, magnetic nanoparticles, quantum dots, carbon-based nanomaterials, and polymer nanoparticles, show great potential due to their unique physical, chemical, and biological properties. This review summarizes recent advances in advanced nanomaterials for cerebrovascular imaging and their applications in various imaging techniques, and discusses challenges and future research directions. The aim is to provide valuable insights for researchers to facilitate the development and clinical application of these innovative nanomaterials in cerebrovascular imaging.
Collapse
Affiliation(s)
- Li Na
- Department of Neurology, Liaoning Provincial People’s Hospital, Shenyang, China
| | - Xiaofu Song
- Department of Neurology, Liaoning Provincial People’s Hospital, Shenyang, China
| | - Ping Luo
- Liaoning Provincial People’s Hospital, China Medical University, Shenyang, China
| | - Jingqi Su
- Liaoning Provincial People’s Hospital, China Medical University, Shenyang, China
| | - Zhicheng Yao
- Department of Neurology, Liaoning Provincial People’s Hospital, Shenyang, China
| |
Collapse
|
21
|
Li Y, Li Y, Cao J, Luo P, Liu J, Ma L, Gao GL, Jiang Z. 4D-Printed Magnetic Responsive Bilayer Hydrogel. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:134. [PMID: 39852749 PMCID: PMC11767551 DOI: 10.3390/nano15020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/02/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025]
Abstract
Despite its widespread application in targeted drug delivery, soft robotics, and smart screens, magnetic hydrogel still faces challenges from lagging mechanical performance to sluggish response times. In this paper, a methodology of in situ generation of magnetic hydrogel based on 3D printing of poly-N-isopropylacrylamide (PNIPAM) is presented. A temperature-responsive PNIPAM hydrogel was prepared by 3D printing, and Fe2O3 magnetic particles were generated in situ within the PNIPAM network to generate the magnetic hydrogel. By forming uniformly distributed magnetic particles in situ within the polymer network, 3D printing of customized magnetic hydrogel materials was successfully achieved. The bilayer hydrogel structure was designed according to the different swelling ratios of temperature-sensitive hydrogel and magnetic hydrogel. Combined with the excellent mechanical properties of PNIPAM and printable magnetic hydrogel, 4D-printed remote magnetic field triggered shape morphing of bilayers of five-petal flower-shaped hydrogels was presented, and the deformation process was finished within 300 s.
Collapse
Affiliation(s)
- Yangyang Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (Y.L.); (Y.L.); (J.C.)
| | - Yuanyi Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (Y.L.); (Y.L.); (J.C.)
| | - Jiawei Cao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (Y.L.); (Y.L.); (J.C.)
- Jianghuai Advance Technology Center, Hefei 230009, China; (P.L.); (J.L.)
| | - Peng Luo
- Jianghuai Advance Technology Center, Hefei 230009, China; (P.L.); (J.L.)
| | - Jianpeng Liu
- Jianghuai Advance Technology Center, Hefei 230009, China; (P.L.); (J.L.)
| | - Lina Ma
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China;
| | - Guo-Lin Gao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (Y.L.); (Y.L.); (J.C.)
| | - Zaixing Jiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (Y.L.); (Y.L.); (J.C.)
| |
Collapse
|
22
|
Al Harraq A, Patel R, Lee JG, Owoyele O, Chun J, Bharti B. Non-Reciprocity, Metastability, and Dynamic Reconfiguration in Co-Assembly of Active and Passive Particles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409489. [PMID: 39630594 PMCID: PMC11775524 DOI: 10.1002/advs.202409489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/31/2024] [Indexed: 12/07/2024]
Abstract
Living organisms often exhibit non-reciprocal interactions where the forces acting on the objects are not equal in magnitude or opposite in direction. The combination of reciprocal and non-reciprocal interactions between synthetic building blocks remains largely unexplored. Here, out-of-equilibrium assemblies of non-motile isotropic passive and metal-patched motile active particles are formed by overlapping bulk interactions with directed self-propulsion. An external alternating current (AC) electric field generates concurrent dipolar and induced-charge electrophoretic forces between the particles which are evaluated using microscopy. The interaction force measurements allow to determine the degree of reciprocity in interactions, which is tunable by designing the active particle and its trajectory. While linearly-propelled active particles evade assembly with passive particles, helically propelled active particles form active-passive clusters with dynamic reconfiguration and long-lived metastability. Large clusters display programmable fluctuations and reconfigurability by controlling the fraction of active particles. The study establishes principles of integrating reciprocal and non-reciprocal interactions in guided colloidal assembly of reconfigurable metastable structures.
Collapse
Affiliation(s)
- Ahmed Al Harraq
- Cain Department of Chemical EngineeringLouisiana State UniversityBaton RougeLA70803USA
- Center for the Physics of Biological FunctionPrinceton UniversityPrincetonNJ08544USA
| | - Ruchi Patel
- Cain Department of Chemical EngineeringLouisiana State UniversityBaton RougeLA70803USA
| | - Jin Gyun Lee
- Cain Department of Chemical EngineeringLouisiana State UniversityBaton RougeLA70803USA
- Department of Chemical and Biological EngineeringUniversity of ColoradoBoulderCO80303USA
| | - Ope Owoyele
- Department of Mechanical and Industrial EngineeringLouisiana State UniversityBaton RougeLA70803USA
| | - Jaehun Chun
- Physical and Computational Sciences DirectoratePacific Northwest National LaboratoryRichlandWA99354USA
| | - Bhuvnesh Bharti
- Cain Department of Chemical EngineeringLouisiana State UniversityBaton RougeLA70803USA
| |
Collapse
|
23
|
Sotthewes K, Jimidar ISM. Navigating the Landscape of Dry Assembling Ordered Particle Structures: Can Solvents Become Obsolete? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405410. [PMID: 39282807 PMCID: PMC11618747 DOI: 10.1002/smll.202405410] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/02/2024] [Indexed: 12/06/2024]
Abstract
A spur on miniaturized devices led scientists to unravel the fundamental aspects of micro- and nanoparticle assembly to engineer large structures. Primarily, attention is given to wet assembly methods, whereas assembly approaches in which solvents are avoided are scarce. The "dry assembly" strategies can overcome the intrinsic disadvantages that are associated with wet assembly, e.g., the lack of versatility and scalability. This review uniquely summarizes the recent progress made to create highly ordered particle arrays without using a wet environment. Before delving into these methods, the surface interactions (e.g., van der Waals, contact mechanics, capillary, and electrostatics) are elaborated, as a profound understanding and balancing these are a critical aspect of dry assembly. To manipulate these interactions, strategies involving different forces, e.g., mechanical-based, electrical-based, or laser-induced, sometimes in conjunction with pre-templated substrates, are employed to attain ordered colloidal structures. The utilization of the ordered structures obtained without solvents is accompanied by specific examples. Dry assembly methods can aid us in achieving more sustainable assembly processes. Overall, this Review aims to provide an easily accessible resource and inspire researchers, including novices, to broaden dry assembly horizons significantly and close the remaining knowledge gap in the physical phenomena involved in this area.
Collapse
Affiliation(s)
- Kai Sotthewes
- Physics of Interfaces and NanomaterialsMESA+ InstituteUniversity of TwenteP.O. Box 217Enschede7500AEThe Netherlands
| | - Ignaas S. M. Jimidar
- Department of Chemical Engineering CHISVrije Universiteit BrusselBrussels1050Belgium
- Mesoscale Chemical SystemsMESA+ InstituteUniversity of TwenteP.O. Box 217Enschede7500AEThe Netherlands
| |
Collapse
|
24
|
Lizano-Villalobos A, Namikas B, Tang X. Siamese neural network improves the performance of a convolutional neural network in colloidal self-assembly state classification. J Chem Phys 2024; 161:204905. [PMID: 39588832 DOI: 10.1063/5.0244337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
Identifying the state of the colloidal self-assembly process is critical to monitoring and controlling the system into desired configurations. Recent application of convolutional neural networks with unsupervised clustering has shown a comparable performance to conventional approaches, in representing and classifying the states of a simulated 2D colloidal batch assembly system. Despite the early success, capturing the subtle differences among similar configurations still presents a challenge. To address this issue, we leverage a Siamese neural network to improve the accuracy of the state classification. Results from a Brownian dynamics-simulated electric field-mediated colloidal self-assembly system and a magnetic field-mediated colloidal self-assembly system demonstrate significant improvement from the original convolutional neural network-based approach. We anticipate the proposed improvement to further pave the way for automated monitoring and control of colloidal self-assembly processes in real time and real space.
Collapse
Affiliation(s)
- Andres Lizano-Villalobos
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Benjamin Namikas
- Baton Rouge Magnet High School, Baton Rouge, Louisiana, 70806, USA
| | - Xun Tang
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
25
|
Huang J, Yin Y, Liu G, Bai L. Amorphous Photonic Structure Patterns with Thin Film Interference Effects for Multilevel Anticounterfeiting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25034-25041. [PMID: 39529393 DOI: 10.1021/acs.langmuir.4c03189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Colloidal photonic structures with the ability to control and manipulate light propagation offer long-term color stability, low optical loss, and angle-dependent color properties, while combinations of different photonic structures across multiple scales provide an extensive color range and enhanced optical functionalities, presenting significant potential for advanced anticounterfeiting applications. However, the proper design or manufacture of such complex structures is still challenging. In this study, amorphous photonic structures (APSs) with thin film interference (TFI) effects were fabricated for multilevel anticounterfeiting. The APSs inherit the isotropic resonant scattering and render partial TFI effects, resulting in unprecedented dynamic specular and diffuse color-shifting features as the viewing or incident direction shifts. Additionally, incorporating a certain concentration of fluorescent microspheres into the colloidal ink adds a third layer of fluorescent anticounterfeiting mode to the APSs. Enabled by infiltration-assisted (IFAST) colloidal assembly technologies, the sophisticated color distributions and randomly arranged fluorescent microspheres on the microscale of APSs grant unique and inherent fingerprint features. The unique and unpredictable optical and structural characteristics of APSs provide physical unclonable functions (PUFs) to prevent replication and tampering, demonstrating their potential as optical PUF security labels for anticounterfeiting applications through artificial intelligence (AI) reading and authentication.
Collapse
Affiliation(s)
- Jingran Huang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yin Yin
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Guiwu Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ling Bai
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
26
|
Huang J, Liu G, Lü T, Bai L. Rapid fabrication of tunable structural color patterns by spray-coating. NANOSCALE 2024; 16:21138-21146. [PMID: 39469739 DOI: 10.1039/d4nr02739f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Structural color, a color generated based on physical principles, has broad applications such as displays, optical sensors, and anti-counterfeiting. Traditional methods for producing structural colors are often complex and time-consuming, whereas spray-coating colloidal self-assembly offers a simple and controllable alternative. However, due to the high-pressure atomization process, colloidal inks often form amorphous photonic structures (APSs), making it challenging to precisely control the assembly of colloidal particles on substrates to achieve ordered structures. By rationally designing the composition of colloidal mixed solutions, controlling particle concentration, and adjusting evaporation temperatures, it is possible to effectively regulate the assembly of colloidal particles and obtain angle-dependent iridescent colors. This work proposes a simple spray-coating process that enables the control of both ordered and disordered structures, with tunable optical properties, suitable for colloidal patterning on various substrates. This method not only simplifies the fabrication of photonic crystals (PCs) but also has broad potential, particularly in anti-counterfeiting, where it enables the creation of hard-to-replicate structured patterns with enhanced security.
Collapse
Affiliation(s)
- Jingran Huang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Guiwu Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Ting Lü
- Institute of Environmental Materials and Applications, College of Materials and Environmental Engineering, Hangzhou Dianzi University, 310018, Hangzhou, China.
| | - Ling Bai
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
27
|
Wang S, Kang L, Salamon P, Wang X, Uchida N, Araoka F, Aida T, Dogic Z, Ishida Y. Stimuli-responsive self-regulating assembly of chiral colloids for robust size and shape control. Nat Commun 2024; 15:9891. [PMID: 39543204 PMCID: PMC11564980 DOI: 10.1038/s41467-024-54217-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Most synthetic self-assemblies grow indefinitely into size-unlimited structures, whereas some biological self-assemblies autonomously regulate their size and shape. One mechanism of such self-regulation arises from the chirality of building blocks, inducing their mutual twisting that is incompatible with their long-range ordered packing and thus halts the assembly's growth at a certain stage. This self-regulation occurs robustly in thermodynamic equilibrium rather than kinetic trapping, and therefore is attractive yet elusive. Until now, studies of self-regulating assemblies have focused on non-responsive systems, whose equilibrium point and corresponding size and shape are hardly changeable. Here, we demonstrate a stimuli-responsive, self-regulating assembly. This assembly consists of chiral and magnetically orientable nanorods, where the effective chirality can be changed by balancing chirality-induced twisting and magnet-induced flattening between nanorods. Consequently, the strength of self-regulation in the assembly is modulable by magnetic field intensity, allowing robust, tunable, and reversible control of its size and shape. Our strategy would provide more biomimetic materials with precision and responsiveness.
Collapse
Affiliation(s)
- Shuxu Wang
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Louis Kang
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Péter Salamon
- HUN-REN Wigner Research Centre for Physics, P.O. Box 49, Budapest, Hungary
| | - Xiang Wang
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, Japan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, P. R. China
| | - Noriyuki Uchida
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Fumito Araoka
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Takuzo Aida
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Zvonimir Dogic
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA, USA
- Biomolecular and Engineering Science, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Yasuhiro Ishida
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, Japan.
| |
Collapse
|
28
|
Zhou Y, Muhammad I, Qiu L, Wang Y, Qiao Y, Meng Z. β-Hydroxybutyrate dehydrogenase functionalized two-dimensional photonic crystals for quantitative and visual sensing of ketone bodies. Biosens Bioelectron 2024; 264:116647. [PMID: 39173338 DOI: 10.1016/j.bios.2024.116647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024]
Abstract
β-Hydroxybutyrate (BHB) is a substantial physiological ketone body. Its elevated concentration causes ketoacidosis, which is a disorder with a high mortality rate. Therefore, there is an urgent need to develop a simple method for the in-situ monitoring of BHB in urine. In this study, a photonic crystal hydrogel (PCH) sensing material for the detection of urinary ketones was prepared by embedding a two-dimensional polystyrene photonic crystal array (PCA) in a hydrogel functionalized with β-hydroxybutyrate dehydrogenase (BHBDH). BHBDH catalyzes the interconversion between β-hydroxybutyrate and acetoacetic acid and relies on the cofactor nicotinamide adenine dinucleotide (NAD+) to participate in the reaction process. The catalytic cycle of converting β-hydroxybutyrate to acetoacetate generates H+, which reduces the electrostatic repulsion between the carboxyl groups in the hydrogel network, ultimately leading to the shrinkage of the hydrogel volume. The hydrogel volume change was detected by measuring the diameter of the Debye diffraction ring, thus reflecting the concentration of BHB. When the concentration of BHB was increased from 0 to 10 mM, the reflection spectrum of PCH shifted for 117 nm within 60 min, consequently, the structural color of PCH changed from red to green and finally to blue. The material was used for quantitative detection of BHB with a detection limit of 48.94 μM. Then it was used for detection in artificial urine samples. While, this smart and reusable sensing material could provide a more convenient and efficient strategy for the ketone body detection in clinical diagnosis and point-of-care monitoring.
Collapse
Affiliation(s)
- Yuji Zhou
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Irfan Muhammad
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Lili Qiu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yifei Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yu Qiao
- School of Design and Art, Beijing Institute of Technology, Beijing, 100081, China
| | - Zihui Meng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China; Yangtze Delta Region Academy, Bejing Institute of Technology, Jiaxing, 314000, China.
| |
Collapse
|
29
|
Yakovlev EV, Simkin IV, Shirokova AA, Kohanovskaya AV, Gursky KD, Dragun MA, Nasyrov AD, Yurchenko SO, Kryuchkov NP. Kinetically blocked self-assembly of colloidal strings with tunable interactions in magnetic fields. J Chem Phys 2024; 161:184907. [PMID: 39540451 DOI: 10.1063/5.0231645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Tunable self-assembly driven by external electric or magnetic fields is of significant interest in modern soft matter physics. While extensively studied in two-dimensional systems, it remains insufficiently explored in three-dimensional systems. In this study, we investigated the formation of vertical strings from an initial monolayer system of particles deposited on a horizontal substrate under the influence of an external magnetic field using experiments, computer simulations, and theoretical frameworks. We demonstrated that the main mechanism of string self-assembly is merging, driven by the interplay between gravity and induced tunable interparticle interactions. During this process, the system has to overcome a saddle point on the energy landscape, whose height increases with the string height. At a certain point, further self-assembly becomes kinetically blocked in a metastable state, far from equilibrium. This contrasts sharply with the typical scenario for tunable self-assembly in two dimensions, where the resulting structures usually correspond to the equilibrium state. Therefore, this finding opens up opportunities for more detailed control of three-dimensional tunable self-assembly by designing and tuning various potential barriers along the kinetic pathways.
Collapse
Affiliation(s)
- Egor V Yakovlev
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | - Ivan V Simkin
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | - Anastasia A Shirokova
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | | | - Konstantin D Gursky
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | - Maksim A Dragun
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | - Artur D Nasyrov
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | - Stanislav O Yurchenko
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | - Nikita P Kryuchkov
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| |
Collapse
|
30
|
Lu D, Bobrin VA. Scalable Macroscopic Engineering from Polymer-Based Nanoscale Building Blocks: Existing Challenges and Emerging Opportunities. Biomacromolecules 2024; 25:7058-7077. [PMID: 39470717 DOI: 10.1021/acs.biomac.4c01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Natural materials exhibit exceptional properties due to their hierarchical structures spanning from the nano- to the macroscale. Replicating these intricate spatial arrangements in synthetic materials presents a significant challenge as it requires precise control of nanometric features within large-scale structures. Addressing this challenge depends on developing methods that integrate assembly techniques across multiple length scales to construct multiscale-structured synthetic materials in practical, bulk forms. Polymers and polymer-hybrid nanoparticles, with their tunable composition and structural versatility, are promising candidates for creating hierarchically organized materials. This review highlights advances in scalable techniques for nanoscale organization of polymer-based building blocks within macroscopic structures, including block copolymer self-assembly with additive manufacturing, polymer brush nanoparticles capable of self-assembling into larger, ordered structures, and direct-write colloidal assembly. These techniques offer promising pathways toward the scalable fabrication of materials with emergent properties suited for advanced applications such as bioelectronic interfaces, artificial muscles, and other biomaterials.
Collapse
Affiliation(s)
- Derong Lu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Valentin A Bobrin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
31
|
Romain M, Elie-Caille C, Ben Elkadhi D, Heintz O, Herbst M, Maurizi L, Boireau W, Millot N. Multiplex Evaluation of Biointerface-Targeting Abilities and Affinity of Synthetized Nanoparticles-A Step Towards Improved Nanoplatforms for Biomedical Applications. Molecules 2024; 29:5270. [PMID: 39598659 PMCID: PMC11596608 DOI: 10.3390/molecules29225270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
To obtain versatile nanoplatforms comparable for various bio-applications, synthesis and functionalization of two inorganic nanoparticles (NPs), i.e., gold (AuNPs) and iron oxide (SPIONs), are described for different NP diameters. Chosen ligands have adapted chemical function to graft to the surfaces of the NPs (thiols and phosphonates, respectively) and the identical frequently used external carboxyl group for comparison of the NPs' material effect on their final behavior. To further evaluate molecular length effect, AuNPs are functionalized by different ligands. Numerous characterizations highlight the colloidal stability when grafting organic molecules on NPs. The potentiality of the functionalized NPs to react efficiently with a protein monolayer is finally evaluated by grafting them on a protein covered chip, characterized by atomic force microscopy. Comparison of the NPs' surface densities and measured heights enable observation of different NPs' reactivity and infer the influence of the inorganic core material, as well as the NPs' size and ligand length. AuNPs have higher affinities to biomolecules, especially when covered by shorter ligands. NP ligands should be chosen not only based on their length but also on their chemical chain, which affects proteic layer interactions. This original multiplex comparison method using AFM is of great interest to screen the effects of used NP materials and functionalization when developing theranostic nanoplatforms.
Collapse
Affiliation(s)
- Mélanie Romain
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS—Université de Bourgogne, 21078 Dijon, France; (M.R.); (D.B.E.); (O.H.); (M.H.); (L.M.)
| | - Céline Elie-Caille
- Institut FEMTO-ST, UMR 6174 CNRS—Université de Franche-Comté, 25030 Besançon, France;
| | - Dorra Ben Elkadhi
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS—Université de Bourgogne, 21078 Dijon, France; (M.R.); (D.B.E.); (O.H.); (M.H.); (L.M.)
| | - Olivier Heintz
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS—Université de Bourgogne, 21078 Dijon, France; (M.R.); (D.B.E.); (O.H.); (M.H.); (L.M.)
| | - Michaële Herbst
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS—Université de Bourgogne, 21078 Dijon, France; (M.R.); (D.B.E.); (O.H.); (M.H.); (L.M.)
| | - Lionel Maurizi
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS—Université de Bourgogne, 21078 Dijon, France; (M.R.); (D.B.E.); (O.H.); (M.H.); (L.M.)
| | - Wilfrid Boireau
- Institut FEMTO-ST, UMR 6174 CNRS—Université de Franche-Comté, 25030 Besançon, France;
| | - Nadine Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS—Université de Bourgogne, 21078 Dijon, France; (M.R.); (D.B.E.); (O.H.); (M.H.); (L.M.)
| |
Collapse
|
32
|
Xu W, Chen Y, Shi L, Wang L, Peng DL. Bi-magnetic Mn 3O 4@Ni core-shell binary superparticles: Self-assembly preparation and magnetic behaviors. J Colloid Interface Sci 2024; 673:517-526. [PMID: 38879993 DOI: 10.1016/j.jcis.2024.06.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Binary superparticles formed by self-assembling two different types of nanoparticles may utilize the synergistic interactions and create advanced multifunctional materials. Bi-magnetic superparticles with a core-shell structure have unique properties due to their specific spatial configurations. Herein, we built Mn3O4@Ni core-shell binary superparticles via an emulsion self-assembly technique. The superparticles are generated with a spherical morphology, and have a typical average size of about 240 nm. By altering the ratio of the two magnetic nanoparticles, the thickness of Ni shells can be adjusted. Oleic acid ligands are crucial for the formation of core-shell structure. Magnetic analysis suggests that core-shell superparticles display dual-phase magnetic interactions, contrasting with the single-phase magnetic behaviors of commonly core-shell magnetic nanoparticles. The calculation on the effective magnetic anisotropy constants indicates that the presence of Ni shell layers reduces the dipole interactions among the Mn3O4 core particles. Due to the presence of Ni nanoparticle shells, the blocking temperature of Mn3O4 is reduced, while the Curie temperature of Mn3O4 is independent on Ni content. Tunable magnetic properties can be achieved by modulating the Ni nanoparticle shell thickness. This study offers insights for the development of core-shell superparticles with varied magnetic characteristics.
Collapse
Affiliation(s)
- Wanjie Xu
- Department of Materials Science and Engineering, State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Yuanzhi Chen
- Department of Materials Science and Engineering, State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Liubin Shi
- Department of Materials Science and Engineering, State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Laisen Wang
- Department of Materials Science and Engineering, State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Dong-Liang Peng
- Department of Materials Science and Engineering, State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
33
|
Duan L, Zheng Q, Liang Y, Tu T. From Simple Probe to Smart Composites: Water-Soluble Pincer Complex With Multi-Stimuli-Responsive Luminescent Behaviors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409620. [PMID: 39300862 DOI: 10.1002/adma.202409620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Water-soluble smart materials with multi-stimuli-responsiveness and ultra-long room-temperature phosphorescence (RTP) have garnered broad attention. Herein, a water-soluble terpyridine zinc complex (MeO-Tpy-Zn-OAc), featuring a simple donor-π-acceptor (D-π-A) structure is presented, which responds to a variety of stimuli, including changes in solvents, pH, temperature, and the addition of amino acids. Notably, MeO-Tpy-Zn-OAc functions as a fluorescence probe, capable of visually and selectively discriminating aspartate or histidine among other common amino acids in water. Additionally, when incorporated into polyvinyl alcohol (PVA) to form the composite MeO-Tpy-Zn-OAc@PVA, the material exhibits reversible writing, photochromism, and a prolonged RTP with a 14 s afterglow. These unique properties enable the composite to be utilized in potential applications such as secure data encryption and inkless printing.
Collapse
Affiliation(s)
- Lixin Duan
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Qingshu Zheng
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanlin Liang
- Forensic Science Institute of Shanghai Public Security Bureau, 803 Zhongshan North 1st Road, Shanghai, 200083, China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
34
|
Qian W, Yang Y. Cellulose-Templated Nanomaterials for Nanogenerators and Self-Powered Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412858. [PMID: 39428909 DOI: 10.1002/adma.202412858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Energy crisis inspires the development of renewable and clean energy sources, along with related applications such as nanogenerators and self-powered devices. Balancing high performance and environmental sustainability in advanced material innovation is a challenging task. Addressing the global challenges of sustainable development and carbon neutrality lead to increased interest in biopolymer research. Nanocellulose materials, derived from biopolymers, demonstrate potential as template candidates for advanced materials, due to their unique properties, including high strength, high surface area, controllable pore structures and high-water retention. In recent years, cellulose-templated nanomaterials enable delicate nano-/microscale structural construction, thus promoting developments in the field of nanogenerators and self-powered sensors. However, there is still a limited number of reviews focused on cellulose-templated nanomaterials for applications in nanogenerators and self-powered sensors. This review aims to fill this research gap by introducing various cellulose-templated nanomaterials and providing a detailed analysis of their fashionable applications in nanogenerators and self-powered sensors. The goal is to present cellulose-templated nanomaterials as highly promising template and guest materials for templating technologies, offering sustainable nano-/microscale control over advanced materials for the foreseeable future. This potential is promising for new applications in the fields of nanogenerators and self-powered sensors.
Collapse
Affiliation(s)
- Weiqi Qian
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ya Yang
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Chemistry and Chemical Engineering Center on Nanoenergy Research, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| |
Collapse
|
35
|
Wang J, Wang G, Chen H, Liu Y, Wang P, Yuan D, Ma X, Xu X, Cheng Z, Ji B, Yang M, Shuai J, Ye F, Wang J, Jiao Y, Liu L. Robo-Matter towards reconfigurable multifunctional smart materials. Nat Commun 2024; 15:8853. [PMID: 39402043 PMCID: PMC11473820 DOI: 10.1038/s41467-024-53123-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/27/2024] [Indexed: 10/17/2024] Open
Abstract
Maximizing materials utilization efficiency via enhancing their reconfigurability and multifunctionality offers a promising avenue in addressing the global challenges in sustainability. To this end, significant efforts have been made in developing reconfigurable multifunctional smart materials, which can exhibit remarkable behaviors such as morphing and self-healing. However, the difficulty in efficiently manipulating and controlling matter at the building block level with manageable cost and complexity, which is crucial to achieving superior responsiveness to environmental clues and stimuli, has significantly hindered the further development of such smart materials. Here we introduce a concept of Robo-Matter, which can be activated and controlled through external information exchange at the building block level, to enable a high-level of controllability, mutability and versatility for reconfigurable multifunctional smart materials. Using specially designed micro-robot building blocks with symmetry-breaking active motion modes, tunable anisotropic interactions, and interactive coupling with a programmable spatial-temporal dynamic light field, we demonstrate an emergent Robot-Matter duality, which enables a spectrum of desirable behaviors spanning from matter-like properties such as ultra-fast self-assembly and adaptivity, to robot-like properties including active force output, smart healing, smart morphing and infiltration. Our work demonstrates a promising direction for designing next-generation smart materials and large-scale robotic swarms.
Collapse
Affiliation(s)
- Jing Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gao Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huaicheng Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang, China
| | - Yanping Liu
- College of Physics, Chongqing University, Chongqing, 401331, China
| | - Peilong Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang, China
| | - Daming Yuan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang, China
| | - Xingyu Ma
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang, China
| | - Xiangyu Xu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang, China
| | - Zhengdong Cheng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Baohua Ji
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Mingcheng Yang
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jianwei Shuai
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang, China
| | - Fangfu Ye
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jin Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang, China
- Department of Chemistry, Physics and Applied Mathematics, State University of New York at Stony Brook, New York, 11794-3400, NY, USA
| | - Yang Jiao
- Materials Science and Engineering, Arizona State University, Tempe, 85287, AZ, USA.
- Department of Physics, Arizona State University, Tempe, 85287, AZ, USA.
| | - Liyu Liu
- College of Physics, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
36
|
Spatafora-Salazar A, Lobmeyer DM, Cunha LHP, Joshi K, Biswal SL. Aligned colloidal clusters in an alternating rotating magnetic field elucidated by magnetic relaxation. Proc Natl Acad Sci U S A 2024; 121:e2404145121. [PMID: 39348534 PMCID: PMC11474040 DOI: 10.1073/pnas.2404145121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/26/2024] [Indexed: 10/02/2024] Open
Abstract
Precise control at the colloidal scale is one of the most promising bottom-up approaches to fabricating new materials and devices with tunable and precisely engineered properties. Magnetically driven colloidal assembly offers great versatility because of the ability to externally tune particle-particle interactions and to construct a host of particle arrangements. However, despite previous efforts to probe the parameter space, global orientational control in conjunction with two-dimensional microstructural control has remained out of reach. Furthermore, the magnetic relaxation time of superparamagnetic beads has been largely overlooked despite being a key feature of the magnetic response. Here, we take advantage of the magnetic relaxation time of superparamagnetic beads in an alternating rotating magnetic field and show how harnessing this feature facilitates the formation of oriented clusters. The orientation of these clusters can be controlled by field parameters. Using experiments, simulations, and theory, we probe a two-particle system (dimer) under this alternating rotating magnetic field and use its dynamics to provide insights into the collective response that forms clusters. We find that the type of field has significant implications for the dipolar interactions between the colloids because of the nonnegligible magnetic relaxation. Moreover, we find that the competing time scales of the magnetic relaxation and the alternating field generate an anisotropic interaction potential that drives cluster alignment. By exploiting the magnetic relaxation time of magnetic systems, we can tailor new types of interparticle interactions, thereby expanding the capabilities of colloidal assembly in engineering unique materials and devices.
Collapse
Affiliation(s)
| | - Dana M. Lobmeyer
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX77005
| | - Lucas H. P. Cunha
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC20057
| | - Kedar Joshi
- School of Chemical and Materials Science, Indian Institute of Technology Goa, Farmagudi, Ponda403401, Goa
| | - Sibani Lisa Biswal
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX77005
| |
Collapse
|
37
|
Pantaleone LC, Calicchia E, Martinelli J, Stuart MCA, Lopatina YY, Browne WR, Portale G, Tych KM, Kudernac T. Exerting pulling forces in fluids by directional disassembly of microcrystalline fibres. NATURE NANOTECHNOLOGY 2024; 19:1507-1513. [PMID: 39075290 PMCID: PMC11486658 DOI: 10.1038/s41565-024-01742-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/02/2024] [Indexed: 07/31/2024]
Abstract
Biomolecular polymerization motors are biochemical systems that use supramolecular (de-)polymerization to convert chemical potential into useful mechanical work. With the intent to explore new chemomechanical transduction strategies, here we show a synthetic molecular system that can generate forces via the controlled disassembly of self-organized molecules in a crystal lattice, as they are freely suspended in a fluid. An amphiphilic monomer self-assembles into rigid, high-aspect-ratio microcrystalline fibres. The assembly process is regulated by a coumarin-based pH switching motif. The microfibre crystal morphology determines the monomer reactivity at the interface, resulting in anisotropic etching. This effect exerts a directional pulling force on microscopic beads adsorbed on the crystal surface through weak multivalent interactions. We use optical-tweezers-based force spectroscopy to extract mechanistic insights into this process, quantifying a stall force of 2.3 pN (±0.1 pN) exerted by the ratcheting mechanism produced by the disassembly of the microfibres.
Collapse
Affiliation(s)
- L C Pantaleone
- Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| | - E Calicchia
- Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - J Martinelli
- Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| | - M C A Stuart
- Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Y Y Lopatina
- Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
- Institute of Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - W R Browne
- Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| | - G Portale
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - K M Tych
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.
| | - T Kudernac
- Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands.
| |
Collapse
|
38
|
Pan S, Yang L, Zhou Y, Cao H, Hu W, Zhang W, Lu Z. Active Assembly of CsPbBr 3 Nanorods into Microcolumns by Electric Field in Nonpolar Solvent. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403919. [PMID: 38845067 DOI: 10.1002/smll.202403919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 10/19/2024]
Abstract
High-precision, controllable, mass-producible assembly of nanoparticles into complex structures or devices holds immense importance in the application across various fields but it remains challenging. Here a highly controllable and reversible active assembly of colloidal CsPbBr3 nanorods, driven by an external electric field is achieved. This approach enables the nanorods dynamically orient themselves, assemble into chains, aggregate into columns, and eventually form an ordered column array, with the electric field intensity varying from 0 to 50 V µm-1 at 100 kHz. The nanorods inside the columns align parallel to the electric field, leading to a well-ordered structure. With the analysis of the interactions among the nanorods, a quantitative interpretation of the assembly is proposed. Monte Carlo calculation is also introduced to simulate the assembly process and the results prove to be in great agreement with the experimental observations. This electric field-driven assembly presents an exciting opportunity to pave the way for next-generation sensors and photonic devices based on well-developed colloidal nanoparticles.
Collapse
Affiliation(s)
- Shuhan Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Lijie Yang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Yao Zhou
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Huimin Cao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Wei Hu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Weihua Zhang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhenda Lu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
39
|
Xia Y, Hong Y, Zhang L, Chai J, Wang B, Guo Z, Li J, Huo S, Fang Z. Controllable Self-Assembly of Carbon Nanotubes on Ammonium Polyphosphate as a Game-Changer for Flame Retardancy and Thermal Conductivity in Epoxy Resin. Macromol Rapid Commun 2024; 45:e2400356. [PMID: 39137315 DOI: 10.1002/marc.202400356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/24/2024] [Indexed: 08/15/2024]
Abstract
The optimization of flame retardancy and thermal conductivity in epoxy resin (EP), utilized in critical applications such as mechanical components and electronics packaging, is a significant challenge. This study introduces a novel, ultrasound-assisted self-assembly technique to create a dual-functional filler consisting of carbon nanotubes and ammonium polyphosphate (CNTs@APP). This method, leveraging dynamic ligand interactions and strategic solvent selection, allows for precise control over the assembly and distribution of CNTs on APP surfaces, distinguishing it from conventional blending approaches. The integration of 7.5 wt.% CNTs@APP10 into EP nanocomposites results in substantial improvements in flame retardancy, as evidenced by a limiting oxygen index (LOI) value of 31.8% and achievement of the UL-94 V-0 rating. Additionally, critical fire hazard indicators, including total heat release (THR), total smoke release (TSR), and the peak intensity of CO yield (PCOY), are significantly reduced by 45.9% to 77.5%. This method also leads to a remarkable 3.6-fold increase in char yield, demonstrating its game-changing potential over traditional blending techniques. Moreover, despite minimal CNTs addition, thermal conductivity is notably enhanced, showing a 53% increase. This study introduces a novel approach in the development of multifunctional EP nanocomposites, offering potential for wide range of applications.
Collapse
Affiliation(s)
- Yan Xia
- Institute of Fire Safety Materials, School of Materials Science and Engineering, NingboTech University, Ningbo, 315100, China
- Ningbo Dacheng New Material Company Limited, Ningbo, 315300, China
| | - Yutong Hong
- Institute of Fire Safety Materials, School of Materials Science and Engineering, NingboTech University, Ningbo, 315100, China
| | - Li Zhang
- Institute of Fire Safety Materials, School of Materials Science and Engineering, NingboTech University, Ningbo, 315100, China
| | - Juan Chai
- Institute of Fire Safety Materials, School of Materials Science and Engineering, NingboTech University, Ningbo, 315100, China
| | - Bingtao Wang
- Institute of Fire Safety Materials, School of Materials Science and Engineering, NingboTech University, Ningbo, 315100, China
| | - Zhenghong Guo
- Institute of Fire Safety Materials, School of Materials Science and Engineering, NingboTech University, Ningbo, 315100, China
| | - Juan Li
- Institute of Fire Safety Materials, School of Materials Science and Engineering, NingboTech University, Ningbo, 315100, China
| | - Siqi Huo
- School of Engineering, Center for Future Materials, University of Southern Queensland, Springfield, 4300, Australia
| | - Zhengping Fang
- Institute of Fire Safety Materials, School of Materials Science and Engineering, NingboTech University, Ningbo, 315100, China
| |
Collapse
|
40
|
Shneidman AV, Zhang CTY, Mandsberg NK, Picece VCTM, Shirman E, Paink GK, Nicolas NJ, Aizenberg J. Functional supraparticles produced by the evaporation of binary colloidal suspensions on superhydrophobic surfaces. SOFT MATTER 2024; 20:7502-7511. [PMID: 39268682 DOI: 10.1039/d4sm00458b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Hierarchically structured supraparticles can be produced by drying droplets of colloidal suspensions. Using binary suspensions provides degrees of structural and functional control beyond those possible for single components, while remaining tractable for fundamental mechanistic studies. Here, we implement evaporative co-assembly of two distinct particle types - 'large' polystyrene microparticles and 'small' inorganic oxide nanoparticles (silica, titania, zirconia, or ceria) - dried on superhydrophobic surfaces to produce bowl-shaped supraparticles. We extend this method to raspberry colloid templating, in which the binary suspension consists of titania nanoparticles together with gold-decorated polystyrene colloids. Following removal of the polymer particles, we demonstrate catalytic oxidative coupling of methanol to methyl formate using the resulting mesoporous supraparticles, showcasing their practical application.
Collapse
Affiliation(s)
- Anna V Shneidman
- Harvard John A. Paulson School of Engineering and Applied Sciences, 150 Western Ave., Boston MA 02134, USA.
| | - Cathy T Y Zhang
- Harvard John A. Paulson School of Engineering and Applied Sciences, 150 Western Ave., Boston MA 02134, USA.
| | - Nikolaj K Mandsberg
- Karlsruhe Institute of Technology (KIT) Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS) Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Vittoria C T M Picece
- Harvard John A. Paulson School of Engineering and Applied Sciences, 150 Western Ave., Boston MA 02134, USA.
- Department of Chemistry, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
- Department of Materials, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093 Zurich, Switzerland
| | - Elijah Shirman
- Harvard John A. Paulson School of Engineering and Applied Sciences, 150 Western Ave., Boston MA 02134, USA.
| | - Gurminder K Paink
- Harvard John A. Paulson School of Engineering and Applied Sciences, 150 Western Ave., Boston MA 02134, USA.
| | - Natalie J Nicolas
- Harvard John A. Paulson School of Engineering and Applied Sciences, 150 Western Ave., Boston MA 02134, USA.
| | - Joanna Aizenberg
- Harvard John A. Paulson School of Engineering and Applied Sciences, 150 Western Ave., Boston MA 02134, USA.
- Department of Chemistry and Chemical Biology, Harvard Univeristy 12 Oxford St, Cambridge, MA 02138, USA
| |
Collapse
|
41
|
Kalapurakal RAM, Jha PK, Vashisth H. Theory and simulations of light-induced self-assembly in colloids with quantum chemistry derived empirical potentials. SOFT MATTER 2024; 20:7367-7378. [PMID: 39086325 DOI: 10.1039/d4sm00459k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Light-induced self-assembly (LISA) is a non-invasive method for tuning material properties. Photoresponsive ligands coated on the surfaces of nanoparticles are often used to achieve LISA. We report simulation studies for a photoresponsive ligand, azobenzene dithiol (ADT), which switches from a trans-to-cis configuration on exposure to ultraviolet light, allowing self-assembly in ADT-coated gold nanoparticles (NPs). This is attributed to a higher dipole moment of cis-ADT over trans-ADT which leads to a dipole-dipole attraction facilitating self-assembly. Singh and Jha [Comput. Theor. Chem., 2021, 1206, 113492] used quantum-chemistry calculations to quantify the interaction energy of a pair of ADT ligands in their cis and trans conformations. The interaction energy between ligands was fit to a potential energy function of the Lennard-Jones (LJ) form having distinct exponents for attractive and repulsive contributions. Using this generalized equation for the ligand-ligand interaction energy, we calculated the total effective interaction energy between a pair of cis as well as trans ADT-coated NPs. Specifically, we calculated the effective interaction energies between cis/trans-NPs using discrete as well as continuous approaches. Given the limitations of experiments in probing individual ligand conformations, we also studied the effect of varying the functional ligand length on the interaction energy between NPs and identified the optimal functional ligand length to capture the steric and conformational effects. Finally, using the effective interaction energy, we obtained a generalized potential energy function, which was applied in Langevin dynamics simulations to capture self-assembly in NPs.
Collapse
Affiliation(s)
| | - Prateek K Jha
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee 247667, India.
| | - Harish Vashisth
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH 03824, USA.
- Department of Chemistry, University of New Hampshire, Durham, NH 03824, USA
- Integrated Applied Mathematics Program, University of New Hampshire, Durham, NH 03824, USA
- Molecular and Cellular Biotechnology Program, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
42
|
Liang K, Liang Y, Tang M, Liu J, Tang ZB, Liu Z. π-Diamond: A Diamondoid Superstructure Driven by π-Interactions. Angew Chem Int Ed Engl 2024; 63:e202409507. [PMID: 38896433 DOI: 10.1002/anie.202409507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
Modulating the arrangement of superstructures through noncovalent interactions has a significant impact on macroscopic shape and the expression of unique properties. Constructing π-interaction-driven hierarchical three-dimensional (3D) superstructures poses challenges on account of limited directional control and weak intermolecular interactions. Here we report the construction of a 3D diamondoid superstructure, named π-Diamond, employing a ditopic strained Z-shaped building block comprising a porphyrin unit as bow-limb double-strapped with two m-xylylene units as bowstrings. This superstructure, reminiscent of diamond's tetrahedral carbon composition, is composed of double-walled tetrahedron (DWT) driven solely by π-interactions. Hetero-π-stacking interactions between porphyrin and m-xylylene panels drive the assembly of four building blocks predominantly into a DWT, which undergoes extension to create an adamantane unit and eventually a diamondoid superstructure wherein each porphyrin panel is shared by two neighboring tetrahedra through hetero-π-stacking. π-Diamond exhibits a solid-state fluorescent quantum yield 44 times higher than that of tetraphenylporphyrin along with excellent photocatalytic performance. The precise 3D directionality of π-interactions, achieved through strained multipanel building blocks, revolutionizes the assembly of hierarchical 3D superstructures driven by π-interactions.
Collapse
Affiliation(s)
- Kejiang Liang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Yimin Liang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Min Tang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Jiali Liu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Zheng-Bin Tang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Zhichang Liu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
- International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
43
|
Yang L, Grzeschik R, Schlücker S, Xie W. Contact Electrification as an Emerging Strategy for Controlling the Performance of Metal Nanoparticle Catalysts. Chemistry 2024; 30:e202401718. [PMID: 38945833 DOI: 10.1002/chem.202401718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Contact electrification (CE) is an emerging strategy for controlling the performance of metal nanoparticle (NP) catalysts. The underlying physical principle of this control is the sensitivity of the Fermi level to metal-metal contacts. This change in electronic structure has a direct impact on surface properties and chemical reactivity. The concept article briefly introduces the basic theory of CE and its relationship to catalytic performance. We then highlight selected recent examples of advances in the preparation of hybrid metal NP assemblies, experimental techniques for characterizing CE, and finally applications of CE for altering catalytic performance.
Collapse
Affiliation(s)
- Ling Yang
- Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Biosensing and Molecular Recognition College of Chemistry, Nankai University, Weijin Rd. 94, 300071, Tianjin, China
| | - Roland Grzeschik
- Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen (UDE), Universitätsstrasse 5, 45141, Essen, Germany
| | - Sebastian Schlücker
- Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen (UDE), Universitätsstrasse 5, 45141, Essen, Germany
| | - Wei Xie
- Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Biosensing and Molecular Recognition College of Chemistry, Nankai University, Weijin Rd. 94, 300071, Tianjin, China
| |
Collapse
|
44
|
Wei J, Xu H, Sun Y, Liu Y, Yan R, Chen Y, Zhang Z. Magnetite Nanoparticle Assemblies and Their Biological Applications: A Review. Molecules 2024; 29:4160. [PMID: 39275008 PMCID: PMC11397167 DOI: 10.3390/molecules29174160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Magnetite nanoparticles (Fe3O4 NPs) have garnered significant attention over the past twenty years, primarily due to their superparamagnetic properties. These properties allow the NPs to respond to external magnetic fields, making them particularly useful in various technological applications. One of the most fascinating aspects of Fe3O4 NPs is their ability to self-assemble into complex structures. Research over this period has focused heavily on how these nanoparticles can be organized into a variety of superstructures, classified by their dimensionality-namely one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) configurations. Despite a wealth of studies, the literature lacks a systematic review that synthesizes these findings. This review aims to fill that gap by providing a thorough overview of the recent progress made in the fabrication and organization of Fe3O4 NP assemblies via a bottom-up self-assembly approach. This methodology enables the controlled construction of assemblies at the nanoscale, which can lead to distinctive functionalities compared to their individual counterparts. Furthermore, the review explores the diverse applications stemming from these nanoparticle assemblies, particularly emphasizing their contributions to important areas such as imaging, drug delivery, and the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Jinjian Wei
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Hong Xu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Yating Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Yingchun Liu
- Jinan Guoke Medical Technology Development Co., Ltd., Jinan 250000, China
| | - Ran Yan
- Jinan Petrochemical Design Institute, Jinan 250100, China
| | - Yuqin Chen
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Zhide Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
45
|
Hueckel T, Woo S, Macfarlane RJ. Controlling the thermally-driven crystallization of DNA-coated nanoparticles with formamide. SOFT MATTER 2024; 20:6723-6729. [PMID: 39140263 DOI: 10.1039/d4sm00854e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
DNA-coated nanoparticles, also known as programmable atom equivalents (PAEs), facilitate the construction of materials with nanoscopic precision. Thermal annealing plays a pivotal role by controlling DNA hybridization kinetics and thermodynamics, which ensures the formation of intended structures. While various design handles such as particle size, DNA design, and salt concentration influence the stability of the DNA duplexes linking PAEs in a lattice, their influence on the system's melting temperature (Tm) often follows complicated trends that make rational tuning of self-assembly challenging. In this work, the denaturant formamide is used to precisely tune the thermal response of PAEs. Our results reveal a clear and predictable trend in the PAEs' response to formamide, enabling rational control over the Tm of a diverse set of PAE systems. Unlike adjustments made through alterations to PAE design or solution parameters such as ionic strength, formamide achieves its temperature shift without impacting the kinetics of assembly. As a result, PAEs can be rapidly crystallized at ambient temperatures, producing superlattices with similar quality to PAE crystals assembled through standard protocols that use higher temperatures. This study therefore positions formamide as a useful tool for enhancing the synthesis of complex nanostructures under mild conditions.
Collapse
Affiliation(s)
- Theodore Hueckel
- Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| | - Seungyeon Woo
- Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| | - Robert J Macfarlane
- Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
46
|
Bandaru S, Arora D, Ganesh KM, Umrao S, Thomas S, Bhaskar S, Chakrabortty S. Recent Advances in Research from Nanoparticle to Nano-Assembly: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1387. [PMID: 39269049 PMCID: PMC11397018 DOI: 10.3390/nano14171387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024]
Abstract
The careful arrangement of nanomaterials (NMs) holds promise for revolutionizing various fields, from electronics and biosensing to medicine and optics. This review delves into the intricacies of nano-assembly (NA) techniques, focusing on oriented-assembly methodologies and stimuli-dependent approaches. The introduction provides a comprehensive overview of the significance and potential applications of NA, setting the stage for review. The oriented-assembly section elucidates methodologies for the precise alignment and organization of NMs, crucial for achieving desired functionalities. The subsequent section delves into stimuli-dependent techniques, categorizing them into chemical and physical stimuli-based approaches. Chemical stimuli-based self-assembly methods, including solvent, acid-base, biomolecule, metal ion, and gas-induced assembly, are discussed in detail by presenting examples. Additionally, physical stimuli such as light, magnetic fields, electric fields, and temperature are examined for their role in driving self-assembly processes. Looking ahead, the review outlines futuristic scopes and perspectives in NA, highlighting emerging trends and potential breakthroughs. Finally, concluding remarks summarize key findings and underscore the significance of NA in shaping future technologies. This comprehensive review serves as a valuable resource for researchers and practitioners, offering insights into the diverse methodologies and potential applications of NA in interdisciplinary research fields.
Collapse
Affiliation(s)
- Shamili Bandaru
- Department of Chemistry, SRM University AP─Andhra Pradesh, Mangalagiri 522240, Andhra Pradesh, India
| | - Deepshika Arora
- Engineering Product Development, Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
| | - Kalathur Mohan Ganesh
- Star Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Sri Sathya Sai, Puttaparthi 515134, Andhra Pradesh, India
| | - Saurabh Umrao
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India
| | - Seemesh Bhaskar
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sabyasachi Chakrabortty
- Department of Chemistry, SRM University AP─Andhra Pradesh, Mangalagiri 522240, Andhra Pradesh, India
| |
Collapse
|
47
|
Yang N, Wang Y, Yan Q. Dynamic Gas-Bridged Bond: An Opportunity of Fabricating Dynamic Assembled Materials with Gas. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43093-43101. [PMID: 39116111 DOI: 10.1021/acsami.4c11420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Gas molecules, as a family of unique polyatomic building blocks, have long been considered hard to involve in molecular assembly or construct assembled materials due to their structural simplicity yet paucity of defined interacting sites. To solve this non-trivial challenge, a core idea is to break the limit of current ways of bonding gas molecules, endowing them with new modes of interactions that match the basic requirements of molecular assembly. In recent years, a new concept, named the dynamic gas-bridged bond (DGB), has emerged, which allows for gas molecules to constitute a dynamic bridging structure between other building blocks with the aid of frustrated Lewis pairs. This makes it possible to harness gas in a supramolecular or dynamic manner. Herein, this perspective discusses distinct dynamic natures of DGBs and manifests their particular functions in various fields, including the control of molecular/polymeric self-assembly nanostructures, creation of multidimensional assembled materials, and recyclable catalysts. The future research direction and challenges of dynamic gas-bridged chemistry toward gas-programmed self-assembly and gas-constructed adaptive materials are highlighted.
Collapse
Affiliation(s)
- Nan Yang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Yangyang Wang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Qiang Yan
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
48
|
Arai N, Katayama Y, Kunimitsu H, Miyahara MT, Watanabe S. Modeling order-disorder boundaries of colloidal dispersions in organic solvents using interaction force measurements. J Colloid Interface Sci 2024; 668:599-606. [PMID: 38691968 DOI: 10.1016/j.jcis.2024.04.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
HYPOTHESIS The formation of soft colloidal crystals, which are nonclose-packed ordered arrays of colloidal particles suspended in a solvent, is dictated by a single physical factor that yields a fixed threshold at order-disorder boundaries for different experimental conditions such as ion concentration, solvent type, and particle size. Identifying the determinant factor and its threshold value should enable the prediction of the critical concentrations of colloidal particles to form soft colloidal crystals. EXPERIMENTS Soft colloidal crystals were fabricated using a series of monohydric alcohols as dispersion media and reflectance spectra were measured to locate order-disorder boundaries. The interaction forces acting between particles were also measured by employing atomic force microscopy. FINDINGS The interparticle forces at the order-disorder boundaries exhibited a universal threshold that was independent of the solvent types including alcohols and water. Therefore, the determinant factor for the formation of soft colloidal crystals was determined to be the force acting between the particles. Furthermore, a priori calculation of this critical force and consequently the critical particle concentration in colloidal systems was demonstrated by referring to the pressure at the liquid-to-solid transition in a hard sphere system (Alder transition).
Collapse
Affiliation(s)
- Nozomi Arai
- Department of Chemical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Yu Katayama
- Department of Chemical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Hayato Kunimitsu
- Department of Chemical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Minoru T Miyahara
- Department of Chemical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Satoshi Watanabe
- Department of Chemical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan.
| |
Collapse
|
49
|
Meng L, Fonseca J, Sánchez-Naya R, Ghadiri AM, Imaz I, Maspoch D. Coassembly of Complementary Polyhedral Metal-Organic Framework Particles into Binary Ordered Superstructures. J Am Chem Soc 2024; 146:21225-21230. [PMID: 39058575 PMCID: PMC11311218 DOI: 10.1021/jacs.4c07194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Here we report the formation of a 3D NaCl-type binary porous superstructure via coassembly of two colloidal polyhedral metal-organic framework (MOF) particles having complementary sizes, shapes, and charges. We employed a polymeric-attenuated Coulombic self-assembly approach, which also facilitated the coassembly of these MOF particles with spherical polystyrene particles to form 2D binary superstructures. Our results pave the way for using MOFs to create sophisticated superstructures comprising particles of various sizes, shapes, porosities, and chemical compositions.
Collapse
Affiliation(s)
- Lingxin Meng
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC,
and Barcelona Institute of Science and Technology Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Javier Fonseca
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC,
and Barcelona Institute of Science and Technology Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Roberto Sánchez-Naya
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC,
and Barcelona Institute of Science and Technology Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Amir Mohammad Ghadiri
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC,
and Barcelona Institute of Science and Technology Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Inhar Imaz
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC,
and Barcelona Institute of Science and Technology Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Daniel Maspoch
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC,
and Barcelona Institute of Science and Technology Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
50
|
Jin H, Wu P, Liu Z, Sun Z, Feng W, Ding Y, Cao H, Lin Z, Lin S. Robust Multifunctional Ultrathin 2 Nanometer Organic Nanofibers. ACS NANO 2024. [PMID: 39094189 DOI: 10.1021/acsnano.4c08229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Ultrathin organic nanofibers (UTONFs) represent an emerging class of nanomaterials as they carry a set of favorable attributes, including ultrahigh specific surface area, lightweight, and mechanical flexibility, over inorganic counterparts, for use in biomedicine and nanotechnology. However, precise synthesis of uniform UTONFs (diameter ≤ 2 nm) with tailored functionalities remained challenging. Herein, we report robust multifunctional UTONFs using hydrophobic interaction-driven self-assembly of amphiphilic alternating peptoids containing hydrophobic photoresponsive azobenzene and hydrophilic hydroxyl moieties periodically arranged along the peptoid backbone. Notably, the as-crafted UTONFs are approximately 2 nm in diameter and tens of micrometers in length (an aspect ratio, AR, of ∼10000), exemplifying the UTONFs with the smallest diameter yielded via self-assembly. Intriguingly, UTONFs were disassembled into short-segmented nanofibers and controllably reassembled into UTONFs, resembling "step-growth polymerization". Photoisomerization of azobenzene moieties leads to reversible transformation between UTONFs and spherical micelles. Such meticulously engineered UTONFs demonstrate potential for catalysis, bioimaging, and antibacterial therapeutics. Our study highlights the significance of the rational design of amphiphiles containing alternating hydrophobic and hydrophilic moieties in constructing otherwise unattainable extremely thin UTONFs with ultrahigh AR and stimuli-responsive functionalities for energy and bionanotechnology.
Collapse
Affiliation(s)
- Haibao Jin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Pengchao Wu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenghui Liu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zichao Sun
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weisheng Feng
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanhuai Ding
- School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Huiliang Cao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|