1
|
Li C, Yue Q, Gao Y, Li Z, Zhang J, Zhang M, He S, Wu Z, Yang Y, Gan J, Li C, Xue X, Qi F, She L, Zheng C, Miao J, Zhang D, Xia Z, Pan H. Toward Rational Design of Carbon-Based Electrodes for High-Performance Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40256903 DOI: 10.1021/acsami.4c21036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Supercapacitors are electrical energy storage devices renowned for their high power density and long cycle life. However, their low energy density has limited their broader application, particularly in electric vehicles. Carbon nanomaterials, including carbon nanotubes and graphene, are among the most promising electrode materials for enhancing energy density due to their unique structures, excellent electrical, mechanical, and thermal properties, large specific surface area, and chemical inertness in both acidic and alkaline environments. Significant progress has been made in the development of high-performance carbon-based supercapacitors. In this Review, we begin by exploring the origin and mechanisms of charge storage in supercapacitors. We then summarize the current advancements in enhancing the capacitive performance. The theory and primary strategies for designing high-performance supercapacitors are discussed to provide guidance on electrode material selection and design. Finally, future research directions and perspectives are presented with the aim of advancing the development of efficient carbon-based supercapacitors.
Collapse
Affiliation(s)
- Chao Li
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, China
| | - Qiuyan Yue
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, China
| | - Yong Gao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, China
| | - Zhenglong Li
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, China
| | - Jing Zhang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Mingchang Zhang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, China
| | - Shengnan He
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, China
| | - Zhijun Wu
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, China
| | - Jiantuo Gan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, China
| | - Chenchen Li
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, China
| | - Xu Xue
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, China
| | - Fulai Qi
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, China
| | - Liaona She
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, China
| | - Chao Zheng
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, China
| | - Jian Miao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, China
| | - Detao Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhenhai Xia
- Australian Carbon Materials Centre, School of Chemical Engineering, University of New South Wales, Sydney NSW 2052, Australia
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, China
| |
Collapse
|
2
|
Harimoto T, Ishigaki Y. Recent Advances in NIR-Switchable Multi-Redox Systems Based on Organic Molecules. Chemistry 2025; 31:e202403273. [PMID: 39503432 DOI: 10.1002/chem.202403273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Indexed: 11/24/2024]
Abstract
Electrochromic systems capable of switching absorption in the near-infrared (NIR) region (750-2500 nm) are attractive from the viewpoint of applications for material and life science, and thus several examples have been reported to date. In general, the development of organic-based systems is needed to reduce the environmental impact and improve biocompatibility. Although extending the switchable spectral range is crucial for the application of organic electrochromic molecules, the switching of NIR absorption based on redox interconversion is still a challenging issue regarding reversibility and durability during interconversion. To overcome this potential instability, the introduction of heteroatoms into the molecular backbone and/or π-extension could be useful strategies in terms of effective delocalization of charge and spin in the corresponding redox states. In this review, we focus on redox-active well-defined small molecules that enable ON/OFF switching of NIR absorption based on precise control of the redox states, and present recent studies on their intrinsic electrochemical and spectroscopic properties and/or structural characterization of their charged states.
Collapse
Affiliation(s)
- Takashi Harimoto
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
- Present address: Institute for Molecular Science, Myodaiji, Okazaki, 444-8787, Japan
| | - Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
3
|
Belotti M, Hurtado C, Kelly S, MacGregor M, Darwish N, Ciampi S. Toward the Electrostatic Catalysis of Nucleophilic Substitutions: A Surface Chemistry Study of the Menshutkin Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26633-26639. [PMID: 39630487 DOI: 10.1021/acs.langmuir.4c03635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The catalysis of nonredox reactions by external electric fields is one of the most rapidly expanding areas of chemistry. The Menshutkin reaction, a classic example of bimolecular nucleophilic substitution (SN2), involves the conversion of a tertiary amine to a quaternary ammonium salt by coupling it with an alkyl halide. The reaction barrier of the Menshutkin reaction is theoretically predicted to be highly sensitive to the magnitude and direction of an external electric field experienced by the transition state. In this study, we investigate how near-surface electric fields can drive this prototypical nucleophilic substitution by examining the coupling of a diffusive redox-tagged tertiary amine with an electrode-tethered alkyl bromide under a variable external bias. Our findings reveal a competition between electrostatically assisted reactions, solvent effects, and electrochemically triggered side reactions involving radical intermediates. We estimate that only about 5% of the coupling events are attributable to the external field, while the majority of the reaction products originate from electrochemically generated radical intermediates.
Collapse
Affiliation(s)
- Mattia Belotti
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Carlos Hurtado
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Sophia Kelly
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Melanie MacGregor
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
4
|
Hurtado C, MacGregor M, Chen K, Ciampi S. Schottky Diode Leakage Current Fluctuations: Electrostatically Induced Flexoelectricity in Silicon. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403524. [PMID: 39119931 PMCID: PMC11481228 DOI: 10.1002/advs.202403524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/17/2024] [Indexed: 08/10/2024]
Abstract
Nearly four decades have passed since IBM scientists pioneered atomic force microscopy (AFM) by merging the principles of a scanning tunneling microscope with the features of a stylus profilometer. Today, electrical AFM modes are an indispensable asset within the semiconductor and nanotechnology industries, enabling the characterization and manipulation of electrical properties at the nanoscale. However, electrical AFM measurements suffer from reproducibility issues caused, for example, by surface contaminations, Joule heating, and hard-to-minimize tip drift and tilt. Using as experimental system nanoscale Schottky diodes assembled on oxide-free silicon crystals of precisely defined surface chemistry, it is revealed that voltage-dependent adhesion forces lead to significant rotation of the AFM platinum tip. The electrostatics-driven tip rotation causes a strain gradient on the silicon surface, which induces a flexoelectric reverse bias term. This directional flexoelectric internal-bias term adds to the external (instrumental) bias, causing both an increased diode leakage as well as a shift of the diode knee voltage to larger forward biases. These findings will aid the design and characterization of silicon-based devices, especially those that are deliberately operated under large strain or shear, such as in emerging energy harvesting technologies including Schottky-based triboelectric nanogenerators (TENGs).
Collapse
Affiliation(s)
- Carlos Hurtado
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern Australia6102Australia
| | - Melanie MacGregor
- Flinders Institute for Nanoscale Science and TechnologyFlinders UniversityBedford ParkSouth Australia5042Australia
| | - Kai Chen
- School of Molecular SciencesThe University of Western AustraliaCrawleyWestern Australia6009Australia
| | - Simone Ciampi
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern Australia6102Australia
| |
Collapse
|
5
|
Mancini K, Khatib Y, Shahine L, O’Neil GD. Photoelectrochemistry of Redox-Active Self-Assembled Monolayers Formed on n-Si/Au Nanoparticle Photoelectrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17536-17546. [PMID: 39110768 PMCID: PMC11340028 DOI: 10.1021/acs.langmuir.4c01751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024]
Abstract
Controlling the chemistry of the electrode-solution interface is critically important for applications in sensing, energy storage, corrosion prevention, molecular electronics, and surface patterning. While numerous methods of chemically modifying electrodes exist, self-assembled monolayers (SAMs) containing redox-active moieties are particularly important because they are easy to prepare, have well-defined interfaces, and can exhibit textbook photoelectrochemistry. Here, we investigate the photoelectrochemistry of redox-active SAMs on semiconductor/metal interfaces, where the SAM is attached to the metal site instead of the semiconductor. n-Si/Au photoelectrodes were fabricated using a benchtop electrodeposition procedure and subsequently modified by immersion in aqueous solutions of (ferrocenyl)hexanethiol and mercaptohexanol. We explored the relevant preparation conditions, finding that after optimization, we were able to obtain canonical cyclic voltammetry for a surface-bound redox molecule that could be turned on and off using light. We then characterized the optimized electrodes under varying illumination intensities, finding that the heterogeneous electron transfer kinetics improved under higher illumination intensities. These results lay the foundation for future studies of semiconductor/metal/molecule interfaces relevant to sensing and electrocatalysis.
Collapse
Affiliation(s)
- Kayla
M. Mancini
- Department
of Chemistry and Biochemistry, Montclair
State University, Montclair, New Jersey 07043, United States
| | - Yousef Khatib
- Department
of Chemistry and Biochemistry, Montclair
State University, Montclair, New Jersey 07043, United States
| | - Lauren Shahine
- Department
of Chemistry and Biochemistry, Montclair
State University, Montclair, New Jersey 07043, United States
| | - Glen D. O’Neil
- Department
of Chemistry and Biochemistry, Montclair
State University, Montclair, New Jersey 07043, United States
- Sokol
Institute for Pharmaceutical Life Sciences, Montclair State University, Montclair, New Jersey 07043, United States
| |
Collapse
|
6
|
Huffman BL, Bredar ARC, Dempsey JL. Origins of non-ideal behaviour in voltammetric analysis of redox-active monolayers. Nat Rev Chem 2024:10.1038/s41570-024-00629-8. [PMID: 39039210 DOI: 10.1038/s41570-024-00629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2024] [Indexed: 07/24/2024]
Abstract
Disorder in redox-active monolayers convolutes electrochemical characterization. This disorder can come from pinhole defects, loose packing, heterogeneous distribution of redox-active headgroups, and lateral interactions between immobilized redox-active molecules. Identifying the source of non-ideal behaviour in cyclic voltammograms can be challenging as different types of disorder often cause similar non-ideal cyclic voltammetry behaviour such as peak broadening, large peak-to-peak separation, peak asymmetry and multiple peaks for single redox processes. This Review provides an overview of ideal voltammetric behaviour for redox-active monolayers, common manifestations of disorder on voltammetric responses, common experimental parameters that can be varied to interrogate sources of disorder, and finally, examples of different types of disorder and how they impact electrochemical responses.
Collapse
Affiliation(s)
- Brittany L Huffman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandria R C Bredar
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jillian L Dempsey
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
de Moura CEV, Sokolov AY. Efficient Spin-Adapted Implementation of Multireference Algebraic Diagrammatic Construction Theory. I. Core-Ionized States and X-ray Photoelectron Spectra. J Phys Chem A 2024; 128:5816-5831. [PMID: 38962857 DOI: 10.1021/acs.jpca.4c03161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
We present an efficient implementation of multireference algebraic diagrammatic construction theory (MR-ADC) for simulating core-ionized states and X-ray photoelectron spectra (XPS). Taking advantage of spin adaptation, automatic code generation, and density fitting, our implementation can perform calculations for molecules with more than 1500 molecular orbitals, incorporating static and dynamic correlation in the ground and excited electronic states. We demonstrate the capabilities of MR-ADC methods by simulating the XPS spectra of substituted ferrocene complexes and azobenzene isomers. For the ground electronic states of these molecules, the XPS spectra computed using the extended second-order MR-ADC method (MR-ADC(2)-X) are in a very good agreement with available experimental results. We further show that MR-ADC can be used as a tool for interpreting or predicting the results of time-resolved XPS measurements by simulating the core ionization spectra of azobenzene along its photoisomerization, including the XPS signatures of excited states and the minimum energy conical intersection. This work is the first in a series of publications reporting the efficient implementations of MR-ADC methods.
Collapse
Affiliation(s)
- Carlos E V de Moura
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alexander Yu Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
8
|
Wei S, Xia X, Bi S, Hu S, Wu X, Hsu HY, Zou X, Huang K, Zhang DW, Sun Q, Bard AJ, Yu ET, Ji L. Metal-insulator-semiconductor photoelectrodes for enhanced photoelectrochemical water splitting. Chem Soc Rev 2024; 53:6860-6916. [PMID: 38833171 DOI: 10.1039/d3cs00820g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Photoelectrochemical (PEC) water splitting provides a scalable and integrated platform to harness renewable solar energy for green hydrogen production. The practical implementation of PEC systems hinges on addressing three critical challenges: enhancing energy conversion efficiency, ensuring long-term stability, and achieving economic viability. Metal-insulator-semiconductor (MIS) heterojunction photoelectrodes have gained significant attention over the last decade for their ability to efficiently segregate photogenerated carriers and mitigate corrosion-induced semiconductor degradation. This review discusses the structural composition and interfacial intricacies of MIS photoelectrodes tailored for PEC water splitting. The application of MIS heterostructures across various semiconductor light-absorbing layers, including traditional photovoltaic-grade semiconductors, metal oxides, and emerging materials, is presented first. Subsequently, this review elucidates the reaction mechanisms and respective merits of vacuum and non-vacuum deposition techniques in the fabrication of the insulator layers. In the context of the metal layers, this review extends beyond the conventional scope, not only by introducing metal-based cocatalysts, but also by exploring the latest advancements in molecular and single-atom catalysts integrated within MIS photoelectrodes. Furthermore, a systematic summary of carrier transfer mechanisms and interface design principles of MIS photoelectrodes is presented, which are pivotal for optimizing energy band alignment and enhancing solar-to-chemical conversion efficiency within the PEC system. Finally, this review explores innovative derivative configurations of MIS photoelectrodes, including back-illuminated MIS photoelectrodes, inverted MIS photoelectrodes, tandem MIS photoelectrodes, and monolithically integrated wireless MIS photoelectrodes. These novel architectures address the limitations of traditional MIS structures by effectively coupling different functional modules, minimizing optical and ohmic losses, and mitigating recombination losses.
Collapse
Affiliation(s)
- Shice Wei
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Xuewen Xia
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Shuai Bi
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Shen Hu
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Xuefeng Wu
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Hsien-Yi Hsu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Xingli Zou
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Kai Huang
- Department of Physics, Xiamen University, Xiamen 361005, China.
| | - David W Zhang
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Qinqqing Sun
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Allen J Bard
- Department of Chemistry, The University of Texas at Austin, Texas 78713, USA
| | - Edward T Yu
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Texas 78758, USA.
| | - Li Ji
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| |
Collapse
|
9
|
Pach GF, Adhikari PR, Quinn J, Wang C, Singh A, Verma A, Colclasure A, Kim JH, Teeter G, Veith GM, Neale NR, Carroll GM. Boron-Silicon Alloy Nanoparticles as a Promising New Material in Lithium-Ion Battery Anodes. ACS ENERGY LETTERS 2024; 9:2492-2499. [PMID: 38911534 PMCID: PMC11190990 DOI: 10.1021/acsenergylett.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 06/25/2024]
Abstract
Silicon's potential as a lithium-ion battery (LIB) anode is hindered by the reactivity of the lithium silicide (Li x Si) interface. This study introduces an innovative approach by alloying silicon with boron, creating boron/silicon (BSi) nanoparticles synthesized via plasma-enhanced chemical vapor deposition. These nanoparticles exhibit altered electronic structures as evidenced by optical, structural, and chemical analysis. Integrated into LIB anodes, BSi demonstrates outstanding cycle stability, surpassing 1000 lithiation and delithiation cycles with minimal capacity fade or impedance growth. Detailed electrochemical and microscopic characterization reveal very little SEI growth through 1000 cycles, which suggests that electrolyte degradation is virtually nonexistent. This unconventional strategy offers a promising avenue for high-performance LIB anodes with the potential for rapid scale-up, marking a significant advancement in silicon anode technology.
Collapse
Affiliation(s)
- Gregory F. Pach
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Pashupati R. Adhikari
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Joseph Quinn
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99342, United States
| | - Chongmin Wang
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99342, United States
| | - Avtar Singh
- Energy
Conversion and Storage Systems Center, National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Ankit Verma
- Energy
Conversion and Storage Systems Center, National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Andrew Colclasure
- Energy
Conversion and Storage Systems Center, National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Jae Ho Kim
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
- Department
of Nanoenergy Engineering, Pusan National
University, Busan 46241, Republic of Korea
| | - Glenn Teeter
- Materials
Sciences Center, National Renewable Energy
Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Gabriel M. Veith
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Nathan R. Neale
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
- Renewable
and Sustainable Energy Institute, University
of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Gerard M. Carroll
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
10
|
Tanaka Y. Organometallics in molecular junctions: conductance, functions, and reactions. Dalton Trans 2024; 53:8512-8523. [PMID: 38712999 DOI: 10.1039/d4dt00668b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Molecular junctions, which involve sandwiching molecular structures between electrodes, play a crucial role in molecular electronics. Recent advances in this field have revealed the vital role of organometallic chemistry in the investigation of molecular junctions, which has added to their well-known contributions to catalysis and materials chemistry. This review summarizes the recent examples of organometallic chemistry applications in molecular junctions, which can be categorized into three types, i.e., class I encompassing molecular junctions with bridging organometallic complexes, class II involving molecular junctions with covalent and noncovalent metal electrode-carbon bonds, and class III comprising organometallic reactions within molecular junctions.
Collapse
Affiliation(s)
- Yuya Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
- School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
11
|
Claveau EE, Sader S, Jackson BA, Khan SN, Miliordos E. Transition metal oxide complexes as molecular catalysts for selective methane to methanol transformation: any prospects or time to retire? Phys Chem Chem Phys 2023; 25:5313-5326. [PMID: 36723253 DOI: 10.1039/d2cp05480a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Transition metal oxides have been extensively used in the literature for the conversion of methane to methanol. Despite the progress made over the past decades, no method with satisfactory performance or economic viability has been detected. The main bottleneck is that the produced methanol oxidizes further due to its weaker C-H bond than that of methane. Every improvement in the efficiency of a catalyst to activate methane leads to reduction of the selectivity towards methanol. Is it therefore prudent to keep studying (both theoretically and experimentally) metal oxides as catalysts for the quantitative conversion of methane to methanol? This perspective focuses on molecular metal oxide complexes and suggests strategies to bypass the current bottlenecks with higher weight on the computational chemistry side. We first discuss the electronic structure of metal oxides, followed by assessing the role of the ligands in the reactivity of the catalysts. For better selectivity, we propose that metal oxide anionic complexes should be explored further, while hydrophylic cavities in the vicinity of the metal oxide can perturb the transition-state structure for methanol increasing appreciably the activation barrier for methanol. We also emphasize that computational studies should target the activation reaction of methanol (and not only methane), the study of complete catalytic cycles (including the recombination and oxidation steps), and the use of molecular oxygen as an oxidant. The titled chemical conversion is an excellent challenge for theory and we believe that computational studies should lead the field in the future. It is finally shown that bottom-up approaches offer a systematic way for exploration of the chemical space and should still be applied in parallel with the recently popular machine learning techniques. To answer the question of the title, we believe that metal oxides should still be considered provided that we change our focus and perform more systematic investigations on the activation of methanol.
Collapse
Affiliation(s)
- Emily E Claveau
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Safaa Sader
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Benjamin A Jackson
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Shahriar N Khan
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| |
Collapse
|
12
|
De Sousa JA, Pfattner R, Gutiérrez D, Jutglar K, Bromley ST, Veciana J, Rovira C, Mas-Torrent M, Fabre B, Crivillers N. Stable Organic Radical for Enhancing Metal-Monolayer-Semiconductor Junction Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4635-4642. [PMID: 36642951 PMCID: PMC9949700 DOI: 10.1021/acsami.2c15690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
The preparation of monolayers based on an organic radical and its diamagnetic counterpart has been pursued on hydrogen-terminated silicon surfaces. The functional monolayers have been investigated as solid-state metal/monolayer/semiconductor (MmS) junctions showing a characteristic diode behavior which is tuned by the electronic characteristics of the organic molecule. The eutectic gallium-indium liquid metal is used as a top electrode to perform the transport measurements and the results clearly indicate that the SOMO-SUMO molecular orbitals impact the device performance. The junction incorporating the radical shows an almost two orders of magnitude higher rectification ratio (R(|J1V/J-1V|) = 104.04) in comparison with the nonradical one (R(|J1V/J-1V|) = 102.30). The high stability of the fabricated MmS allows the system to be interrogated under irradiation, evidencing that at the wavelength where the photon energy is close to the band gap of the radical there is a clear enhancement of the photoresponse. This is translated into an increase of the photosensitivity (Sph) value from 68.7 to 269.0 mA/W for the nonradical and radical based systems, respectively.
Collapse
Affiliation(s)
- J. Alejandro De Sousa
- Institut
de Ciència de Materials de Barcelona (ICMAB, CSIC), Campus de la UAB s/n, Bellaterra 081093, Spain
- Laboratorio
de Electroquímica, Departamento de Química, Facultad
de Ciencias, Universidad de los Andes, 5101 Mérida, Venezuela
| | - Raphael Pfattner
- Institut
de Ciència de Materials de Barcelona (ICMAB, CSIC), Campus de la UAB s/n, Bellaterra 081093, Spain
| | - Diego Gutiérrez
- Institut
de Ciència de Materials de Barcelona (ICMAB, CSIC), Campus de la UAB s/n, Bellaterra 081093, Spain
| | - Kilian Jutglar
- Departament
de Ciència de Materials i Química Física &
Institut de Química Teòrica i Computacional (IQTC), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Stefan T. Bromley
- Departament
de Ciència de Materials i Química Física &
Institut de Química Teòrica i Computacional (IQTC), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), E-08010 Barcelona, Spain
| | - Jaume Veciana
- Institut
de Ciència de Materials de Barcelona (ICMAB, CSIC), Campus de la UAB s/n, Bellaterra 081093, Spain
| | - Concepció Rovira
- Institut
de Ciència de Materials de Barcelona (ICMAB, CSIC), Campus de la UAB s/n, Bellaterra 081093, Spain
| | - Marta Mas-Torrent
- Institut
de Ciència de Materials de Barcelona (ICMAB, CSIC), Campus de la UAB s/n, Bellaterra 081093, Spain
| | - Bruno Fabre
- Univ
Rennes, CNRS, ISCR (Institut
des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Núria Crivillers
- Institut
de Ciència de Materials de Barcelona (ICMAB, CSIC), Campus de la UAB s/n, Bellaterra 081093, Spain
| |
Collapse
|
13
|
Huffman BL, Bein GP, Atallah H, Donley CL, Alameh RT, Wheeler JP, Durand N, Harvey AK, Kessinger MC, Chen CY, Fakhraai Z, Atkin JM, Castellano FN, Dempsey JL. Surface Immobilization of a Re(I) Tricarbonyl Phenanthroline Complex to Si(111) through Sonochemical Hydrosilylation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:984-996. [PMID: 36548441 DOI: 10.1021/acsami.2c17078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A sonochemical-based hydrosilylation method was employed to covalently attach a rhenium tricarbonyl phenanthroline complex to silicon(111). fac-Re(5-(p-Styrene)-phen)(CO)3Cl (5-(p-styrene)-phen = 5-(4-vinylphenyl)-1,10-phenanthroline) was reacted with hydrogen-terminated silicon(111) in an ultrasonic bath to generate a hybrid photoelectrode. Subsequent reaction with 1-hexene enabled functionalization of remaining atop Si sites. Attenuated total reflectance-Fourier transform infrared spectroscopy confirms attachment of the organometallic complex to silicon without degradation of the organometallic core, supporting hydrosilylation as a strategy for installing coordination complexes that retain their molecular integrity. Detection of Re(I) and nitrogen by X-ray photoelectron spectroscopy (XPS) further support immobilization of fac-Re(5-(p-styrene)-phen)(CO)3Cl. Cyclic voltammetry and electrochemical impedance spectroscopy under white light illumination indicate that fac-Re(5-(p-styrene)-phen)(CO)3Cl undergoes two electron reductions. Mott-Schottky analysis indicates that the flat band potential is 239 mV more positive for p-Si(111) co-functionalized with both fac-Re(5-(p-styrene)-phen)(CO)3Cl and 1-hexene than when functionalized with 1-hexene alone. XPS, ultraviolet photoelectron spectroscopy, and Mott-Schottky analysis show that functionalization with fac-Re(5-(p-styrene)-phen)(CO)3Cl and 1-hexene introduces a negative interfacial dipole, facilitating reductive photoelectrochemistry.
Collapse
Affiliation(s)
- Brittany L Huffman
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| | - Gabriella P Bein
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| | - Hala Atallah
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Carrie L Donley
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| | - Reem T Alameh
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jonathan P Wheeler
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Nicolas Durand
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Alexis K Harvey
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| | - Matthew C Kessinger
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| | - Cindy Y Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zahra Fakhraai
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joanna M Atkin
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jillian L Dempsey
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
14
|
Fabre B, Falaise C, Cadot E. Polyoxometalates-Functionalized Electrodes for (Photo)Electrocatalytic Applications: Recent Advances and Prospects. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bruno Fabre
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Clément Falaise
- Institut Lavoisier de Versailles (UMR-CNRS 8180), UVSQ, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78000 Versailles, France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles (UMR-CNRS 8180), UVSQ, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78000 Versailles, France
| |
Collapse
|
15
|
A Gauss's law analysis of redox active adsorbates on semiconductor electrodes: The charging and faradaic currents are not independent. Proc Natl Acad Sci U S A 2022; 119:e2202395119. [PMID: 36037382 PMCID: PMC9456767 DOI: 10.1073/pnas.2202395119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A detailed framework for modeling and interpreting the data in totality from a cyclic voltammetric measurement of adsorbed redox monolayers on semiconductor electrodes has been developed. A three-layer model consisting of the semiconductor space-charge layer, a surface layer, and an electrolyte layer is presented that articulates the interplay between electrostatic, thermodynamic, and kinetic factors in the electrochemistry of a redox adsorbate on a semiconductor. Expressions are derived that describe the charging and faradaic current densities individually, and an algorithm is demonstrated that allows for the calculation of the total current density in a cyclic voltammetry measurement as a function of changes in the physical properties of the system (e.g., surface recombination, dielectric property of the surface layer, and electrolyte concentration). The most profound point from this analysis is that the faradaic and charging current densities can be coupled. That is, the common assumption that these contributions to the total current are always independent is not accurate. Their interrelation can influence the interpretation of the charge-transfer kinetics under certain experimental conditions. More generally, this work not only fills a long-standing knowledge gap in electrochemistry but also aids practitioners advancing energy conversion/storage strategies based on redox adsorbates on semiconductor electrodes.
Collapse
|
16
|
Mukhopadhyay A, Liu K, Paulino V, Olivier JH. Modulating the Conduction Band Energies of Si Electrode Interfaces Functionalized with Monolayers of a Bay-Substituted Perylene Bisimide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4266-4275. [PMID: 35353503 DOI: 10.1021/acs.langmuir.1c03423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The confinement of π-conjugated chromophores on silicon (Si) electrode surfaces is a powerful approach to engineer electroresponsive monolayers relevant to microelectronics, electrocatalysis, and information storage and processing. While common strategies to functionalize Si interfaces exploit molecularly dissolved building blocks, only a handful number of studies have leveraged the structure-function relationships of π-aggregates to tune the electronic structures of hybrid monolayers at Si interfaces. Herein, we show that the semiconducting properties of n-type monolayers constructed on Si electrodes are intimately correlated to the initial aggregation state of π-conjugated chromophore precursors derived from bay-substituted perylene bisimide (PBI) units. Specifically, our study unravels that for n-type monolayers engineered using PBI π-aggregates, the cathodic reduction potentials required to inject negative charge carriers into the conduction bands can be stabilized by 295 mV through reversible switching of the maximum anodic potential (MAP) that is applied during the oxidative cycles (+0.5 or +1.5 V vs Ag/AgCl). This redox-assisted stabilization effect is not observed with n-type monolayers derived from molecularly dissolved PBI cores and monolayers featuring a low surface density of the redox-active probes. These findings unequivocally point to the crucial role played by PBI π-aggregates in modulating the conduction band energies of n-type monolayers where a high MAP of +1.5 V enables the formation of electronic trap states that facilitate electron injection when sweeping back to cathodic potentials. Because the structure-function relationships of PBI π-aggregates are shown to modulate the semiconducting properties of hybrid n-type monolayers constructed at Si interfaces, our results hold promising opportunities to develop redox-switchable monolayers for engineering nonvolatile electronic memory devices.
Collapse
Affiliation(s)
- Arindam Mukhopadhyay
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Kaixuan Liu
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Victor Paulino
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Jean-Hubert Olivier
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| |
Collapse
|
17
|
Harimoto T, Ishigaki Y. Redox‐Active Hydrocarbons: Isolation and Structural Determination of Cationic States toward Advanced Response Systems. Chempluschem 2022; 87:e202200013. [DOI: 10.1002/cplu.202200013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/17/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Takashi Harimoto
- Hokkaido University: Hokkaido Daigaku Department of Chemistry, Faculty of Science JAPAN
| | - Yusuke Ishigaki
- Hokkaido University: Hokkaido Daigaku Department of Chemistry, Faculty of Science North 10, West 8, North-ward 060-0810 Sapporo JAPAN
| |
Collapse
|
18
|
Zhang S, Lyu X, Hurtado Torres C, Darwish N, Ciampi S. Non-Ideal Cyclic Voltammetry of Redox Monolayers on Silicon Electrodes: Peak Splitting is Caused by Heterogeneous Photocurrents and Not by Molecular Disorder. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:743-750. [PMID: 34989574 DOI: 10.1021/acs.langmuir.1c02723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the last three decades, research on redox-active monolayers has consolidated their importance as advanced functional material. For widespread monolayer systems, such as alkanethiols on gold, non-ideal multiple peaks in cyclic voltammetry are generally taken as indication of heterogeneous intermolecular interactions─namely, disorder in the monolayer. Our findings show that, contrary to metals, peak multiplicity of silicon photoelectrodes is not diagnostic of heterogeneous intermolecular microenvironments but is more likely caused by photocurrent being heterogeneous across the monolayer. This work is an important step toward understanding the cause of electrochemical non-idealities in semiconductor electrodes so that these can be prevented and the redox behavior of molecular monolayers, as photocatalytic systems, can be optimized.
Collapse
Affiliation(s)
- Song Zhang
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Xin Lyu
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Carlos Hurtado Torres
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
19
|
Xu L, Lu L, Cai J, Feng Y, Cui X. Construction of Diaminobenzoquinone Imines through Radical Coupling of Aminophenols with Amine under UV-Light. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Fabre B, Camerel F, Ababou-Girard S. Photoactive silicon surfaces functionalized with high-quality and redox-active platinum diimine complex monolayers. NEW J CHEM 2022. [DOI: 10.1039/d1nj05805c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Platinum diimine complexes can covalently be grafted onto oxide-free, hydrogen-terminated silicon(111) surfaces into clean and high-quality monolayers. The so modified surfaces offer great prospects as photocathodes for solar-driven electrocatalysis.
Collapse
Affiliation(s)
- Bruno Fabre
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Franck Camerel
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Soraya Ababou-Girard
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000 Rennes, France
| |
Collapse
|
21
|
Gupta R, Jash P, Sachan P, Bayat A, Singh V, Mondal PC. Electrochemical Potential‐Driven High‐Throughput Molecular Electronic and Spintronic Devices: From Molecules to Applications. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ritu Gupta
- Department of Chemistry Indian Institute of Technology Kanpur Uttar Pradesh 208016 India
| | - Priyajit Jash
- Department of Chemistry Indian Institute of Technology Kanpur Uttar Pradesh 208016 India
| | - Pradeep Sachan
- Department of Chemistry Indian Institute of Technology Kanpur Uttar Pradesh 208016 India
| | - Akhtar Bayat
- Laboratoire Photonique Numérique et Nanosciences, UMR 5298 Université de Bordeaux 33400 Talence France
| | - Vikram Singh
- Department of Chemistry and National Science Research Institute Korea Advanced Institute of Science and Technology 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Prakash Chandra Mondal
- Department of Chemistry Indian Institute of Technology Kanpur Uttar Pradesh 208016 India
| |
Collapse
|
22
|
Soliman AIA, Wu CT, Utsunomiya T, Ichii T, Sugimura H. Controlled Growth of Organosilane Micropatterns on Hydrophilic and Hydrophobic Surfaces Templated by Vacuum Ultraviolet Photolithography. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13932-13940. [PMID: 34780193 DOI: 10.1021/acs.langmuir.1c02516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this report, micropatterns of (3-aminopropyl)trimethoxysilane (APTMS) were developed on hydrophilic and hydrophobic surfaces after patterning using 172 nm vacuum ultraviolet (VUV) photolithography. Self-assembled monolayers (SAMs) formed on Si substrates through UV hydrosilylation of 1-hexadecene (HD) and 10-undecenoic acid (UDA) were used as hydrophilic and hydrophobic surfaces, respectively. For templating the HD- and UDA-SAMs, the VUV light was exposed to HD- and UDA-SAMs from the slits of photomasks in atmospheric and evacuated environments, respectively. Various oxygenated groups were generated at the exposed domains of HD-SAM, while the COOH groups were trimmed from the irradiated domains of UDA-SAM. The APTMS molecules were immobilized on the domains that were terminated by oxygenated groups after chemical vapor deposition (CVD). The thicknesses of the developed APTMS micropatterns increased significantly by raising the CVD temperature and in the presence of ambient air in the CVD Teflon container as well. The increase in thicknesses was ascribed to the formation of APTMS multilayers, which were mediated by H3N+ ions. Also, the developed APTMS micropatterns on the UDA-SAM patterned by VUV light irradiation in a high-vacuum environment (HV-VUV) were thicker than those on the VUV/(O) patterned HD-SAM due to the presence of inactive oxygenated groups at the surface of VUV/(O)-terminated domains of HD-SAM such as COO-C and C-O-C groups. The presence of water or ambient air facilitated the silane coupling between the silyl groups with the oxygenated and amino groups The combination of VUV photolithography and the CVD method with control of the conditions would enable us to control the thicknesses and shapes of the developed APTMS micropatterns. These findings illustrate the applicability of VUV photolithography for templating hydrophobic and hydrophobic surfaces toward the development of organosilane architectures, which can be feasible for several applications.
Collapse
Affiliation(s)
- Ahmed I A Soliman
- Department of Materials Science and Engineering, Kyoto University, Yoshida-hommachi, Sakyo-Ku, Kyoto 606-8501, Japan
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Cheng-Tse Wu
- Department of Materials Science and Engineering, Kyoto University, Yoshida-hommachi, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Toru Utsunomiya
- Department of Materials Science and Engineering, Kyoto University, Yoshida-hommachi, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Takashi Ichii
- Department of Materials Science and Engineering, Kyoto University, Yoshida-hommachi, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Hiroyuki Sugimura
- Department of Materials Science and Engineering, Kyoto University, Yoshida-hommachi, Sakyo-Ku, Kyoto 606-8501, Japan
| |
Collapse
|
23
|
Brousses R, Maurel V, Mouesca JM, César V, Lugan N, Valyaev DA. Half-sandwich manganese complexes Cp(CO) 2Mn(NHC) as redox-active organometallic fragments. Dalton Trans 2021; 50:14264-14272. [PMID: 34553709 DOI: 10.1039/d1dt02182f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oxidation of the half-sandwich MnI complexes Cp(CO)2Mn(NHC) bearing dialkyl-, arylalkyl- and diarylsubstituted N-heterocyclic carbene ligands (NHC = IMe, IMeMes, IMes) affords the corresponding stable MnII radical cations [Cp(CO)2Mn(NHC)](BF4) isolated in 92-95% yield. Systematic X-ray diffraction studies of the series of MnI and MnII NHC complexes revealed the expected characteristic structural changes upon oxidation, namely the elongation of the Mn-CO and Mn-NHC bonds as well as the diminution of the OC-Mn-CO angle. ESR spectra of [Cp(CO)2Mn(IMes)](BF4) in frozen solution (CH2Cl2/toluene 1 : 1, 70 K) allowed the identification of two conformers for this complex and their structural assignment using DFT calculations. The stability of these NHC complexes in both metal oxidation states, moderate oxidation potentials and the ease of detection of MnII species by a variety of spectroscopic techniques (UV-Vis, IR, paramagnetic 1H NMR, and ESR) make these compounds promising objects for applications as redox-active organometallic fragments.
Collapse
Affiliation(s)
- Rémy Brousses
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France.
| | - Vincent Maurel
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES, F-38000 Grenoble, France.
| | - Jean-Marie Mouesca
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES, F-38000 Grenoble, France.
| | - Vincent César
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France.
| | - Noël Lugan
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France.
| | | |
Collapse
|
24
|
Hladík M, Fejfar A, Vázquez H. Doping of the hydrogen-passivated Si(100) electronic structure through carborane adsorption studied using density functional theory. Phys Chem Chem Phys 2021; 23:20379-20387. [PMID: 34491256 DOI: 10.1039/d1cp01654g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adsorption of molecular materials with tailored chemical properties represents a new and promising avenue to non-destructively dope silicon. Dithiocarboranes possess large permanent dipoles and readily form stable monolayers on a variety of substrates. Here we use density functional theory to investigate the doping of hydrogen-passivated Si(100) substrates through the adsorption of dithiocarborane molecules. We find that dithiocarboranes can both physisorb and chemisorb on the substrate. Chemisorbed structures arise when a S atom in the molecular linker group replaces a surface H atom. We establish the formation of these Si-molecule bonds and characterize their mechanical and thermal stability. Analysis of the calculated electronic structure of adsorbed interfaces shows that carborane adsorption does not result in interface gap states. The band gap in adsorbed junctions is defined by Si states and its magnitude is almost unchanged with respect to the clean Si slab. The large carborane electrostatic dipole results in the downwards shift of Si spectral features by 0.3 eV, reducing the hole injection barrier by this amount with respect to the pristine Si substrate. Molecular dynamics simulations reveal these structural and electronic features to be stable at room temperature. Our work shows that molecular adsorbates having large electrostatic dipoles are a promising strategy to non-destructively dope semiconductor substrates.
Collapse
Affiliation(s)
- Martin Hladík
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 00 Prague, Czech Republic.
| | - Antonín Fejfar
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 00 Prague, Czech Republic.
| | - Héctor Vázquez
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 00 Prague, Czech Republic.
| |
Collapse
|
25
|
Rahpeima S, Dief EM, Ciampi S, Raston CL, Darwish N. Impermeable Graphene Oxide Protects Silicon from Oxidation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38799-38807. [PMID: 34342425 DOI: 10.1021/acsami.1c06495] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The presence of a natural silicon oxide (SiOx) layer over the surface of silicon (Si) has been a roadblock for hybrid semiconductor and organic electronics technology. The presence of an insulating oxide layer is a limiting operational factor, which blocks charge transfer and therefore electrical signals for a range of applications. Etching the SiOx layer by fluoride solutions leaves a reactive Si-H surface that is only stable for few hours before it starts reoxidizing under ambient conditions. Controlled passivation of silicon is also of key importance for improving Si photovoltaic efficiency. Here, we show that a thin layer of graphene oxide (GOx) prevents Si surfaces from oxidation under ambient conditions for more than 30 days. In addition, we show that the protective GOx layer can be modified with molecules enabling a functional surface that allows for further chemical conjugation or connections with upper electrodes, while preserving the underneath Si in a nonoxidized form. The GOx layer can be switched electrochemically to reduced graphene oxide, allowing the development of a dynamic material for molecular electronics technologies. These findings demonstrate that 2D materials are alternatives to organic self-assembled monolayers that are typically used to protect and tune the properties of Si and open a realm of possibilities that combine Si and 2D materials technologies.
Collapse
Affiliation(s)
- Soraya Rahpeima
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Perth, Western Australia 6102, Australia
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Essam M Dief
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| |
Collapse
|
26
|
Gupta R, Jash P, Sachan P, Bayat A, Singh V, Mondal PC. Electrochemical Potential-Driven High-Throughput Molecular Electronic and Spintronic Devices: From Molecules to Applications. Angew Chem Int Ed Engl 2021; 60:26904-26921. [PMID: 34313372 DOI: 10.1002/anie.202104724] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 01/25/2023]
Abstract
Molecules are fascinating candidates for constructing tunable and electrically conducting devices by the assembly of either a single molecule or an ensemble of molecules between two electrical contacts followed by current-voltage (I-V) analysis, which is often termed "molecular electronics". Recently, there has been also an upsurge of interest in spin-based electronics or spintronics across the molecules, which offer additional scope to create ultrafast responsive devices with less power consumption and lower heat generation using the intrinsic spin property rather than electronic charge. Researchers have been exploring this idea of utilizing organic molecules, organometallics, coordination complexes, polymers, and biomolecules (proteins, enzymes, oligopeptides, DNA) in integrating molecular electronics and spintronics devices. Although several methods exist to prepare molecular thin-films on suitable electrodes, the electrochemical potential-driven technique has emerged as highly efficient. In this Review we describe recent advances in the electrochemical potential driven growth of nanometric various molecular films on technologically relevant substrates, including non-magnetic and magnetic electrodes to investigate the stimuli-responsive charge and spin transport phenomena.
Collapse
Affiliation(s)
- Ritu Gupta
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016, India
| | - Priyajit Jash
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016, India
| | - Pradeep Sachan
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016, India
| | - Akhtar Bayat
- Laboratoire Photonique Numérique et Nanosciences, UMR 5298, Université de Bordeaux, 33400, Talence, France
| | - Vikram Singh
- Department of Chemistry and National Science Research Institute, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Prakash Chandra Mondal
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016, India
| |
Collapse
|
27
|
Ueda H, Yoshimoto S. Multi-Redox Active Carbons and Hydrocarbons: Control of their Redox Properties and Potential Applications. CHEM REC 2021; 21:2411-2429. [PMID: 34128316 DOI: 10.1002/tcr.202100088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/19/2021] [Indexed: 12/23/2022]
Abstract
Precise control over redox properties is essential for high-performance organic electronic devices such as organic batteries, electrochromic devices, and information storage devices. In this context, multi-redox active carbons and hydrocarbons, represented as Cx Hy molecules (x≥1, y≥0), are highly sought after, because they can switch between multiple redox states. Herein, we outline the redox properties of Cx Hy molecules as solutes and adsorbed species. Furthermore, the limitations of evaluating their redox properties and the possible solutions are summarized. Additionally, the theoretical capacity (mAh/g) and gravimetric energy density (Wh/kg) of secondary batteries were estimated based on the redox properties of 185 Cx Hy molecules, which have primarily been reported in the last decade. Among them, seven Cx Hy molecules were found to have the potential to surpass the energy density of LiNi0.6 Mn0.2 Co0.2 O2 /graphite batteries. The use of Cx Hy molecules in multielectrochromic devices and multi-bit memory is also explained. We believe that this review will encourage further utilization of Cx Hy molecules thereby promoting its applications in organic electronic devices.
Collapse
Affiliation(s)
- Hiroyuki Ueda
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Soichiro Yoshimoto
- Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
28
|
Al-Yasari A, El Moll H, Purdy R, Vincent KB, Spence P, Malval JP, Fielden J. Optical, third order non-linear optical and electrochemical properties of dipolar, centrosymmetric and C 2v organoimido polyoxometalate derivatives. Phys Chem Chem Phys 2021; 23:11807-11817. [PMID: 33987634 DOI: 10.1039/d0cp06610a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A family comprising seven arylimido-polyoxometalate (POM) hybrid chromophores (three of which are new), with linear dipolar, C2v and linear centrosymmetric geometries have been synthesised and studied by electronic absorption spectroscopy, electrochemistry, Z-scans (two photon absorption, TPA) and computation (DFT/TD-DFT). These reveal that POM acceptor units are an effective basis for TPA materials: the centrosymmetric bis-POM chromophores produce significant cross sections (δ up to 82 GM) from a single aryl bridge, a similar performance to larger dipolar π-systems combining carbazole or diphenylamino donors with the imido-POM acceptor. DFT/TD-DFT calculations indicate strong communication between POM and organic components is responsible for the linear and non-linear optical behaviour of these compounds, while electrochemical measurements reveal class II mixed valence behaviour resulting from an interplay of through-bond and through-space effects.
Collapse
Affiliation(s)
- Ahmed Al-Yasari
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK.
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Surface modification is recognized as one of the fundamental techniques to fabricate biosensing interfaces. This review focuses on the surface modification of carbon substrates (GC and HOPG) and silica with a close-packed monolayer, in particular. In the cases of carbon substrates, GC and HOPG, it was demonstrated that surface modification of carbon substrates with diazonium derivatives could create a close-packed monolayer similar to the self-assembled monolayer (SAM) formation with mercapto derivatives. Similarly, the potential of trialkoxysilanes to form a close-packed monolayer was evaluated, and modification with a close-packed monolayer tended to occur under milder conditions when the trialkoxysilanes had a longer alkyl chain. In these studies, we synthesized surface modification materials having ferrocene as a redox active moiety to explore features of the modified surfaces by an electrochemical method using cyclic voltammetry, where surface concentrations of immobilized molecules and blocking effect were studied to obtain insight for density leading to a close-packed layer. Based on those findings, fabrication of a biosensing interface on the silica sensing chip of the waveguide-mode sensor was carried out using triethoxysilane derivatives bearing succinimide ester and oligoethylene glycol moieties to immobilize antibodies and to suppress nonspecific adsorption of proteins, respectively. The results demonstrate that the waveguide-mode sensor powered by the biosensing interface fabricated with those triethoxysilane derivatives and antibody has the potential to detect several tens ng/mL of biomarkers in human serum with unlabeled detection method.
Collapse
Affiliation(s)
- Mutsuo Tanaka
- Department of Life Science & Green Chemistry, Saitama Institute of Technology
| | - Osamu Niwa
- Advanced Science Research Laboratory, Saitama Institute of Technology
| |
Collapse
|
30
|
Cheng HW, Wang S, Porter MD, Zhong CJ. Molecularly-tunable nanoelectrode arrays created by harnessing intermolecular interactions. Chem Sci 2021; 12:6081-6090. [PMID: 33996004 PMCID: PMC8098684 DOI: 10.1039/d0sc06955h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intermolecular interactions play a critical role in the binding strength of molecular assemblies on surfaces. The ability to harness them enables molecularly-tunable interfacial structures and properties. Herein we report the tuning of the intermolecular interactions in monolayer assemblies derived from organothiols of different structures for the creation of nanoelectrode arrays or ensembles with effective mass transport by a molecular-level perforation strategy. The homo- and hetero-intermolecular interactions can be fully controlled, which is demonstrated not only by thermodynamic analysis of the fractional coverage but also by surface infrared reflection absorption and X-ray photoelectron spectroscopic characterizations. This understanding enables controllable electrochemical perforation for the creation of ensembles or arrays of channels across the monolayer thickness with molecular and nanoscale dimensions. Redox reactions on the nanoelectrode array display molecular tunability with a radial diffusion characteristic in good agreement with theoretical simulation results. These findings have implications for designing membrane-type ion-gating, electrochemical sensing, and electrochemical energy storage devices with molecular level tunability. Intermolecular interactions in monolayer assembly are harnessed for creating molecularly-tunable nanoelectrode arrays or ensembles.![]()
Collapse
Affiliation(s)
- Han-Wen Cheng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China .,Department of Chemistry, State University of New York at Binghamton Binghamton New York 13902 USA
| | - Shan Wang
- Department of Chemistry, State University of New York at Binghamton Binghamton New York 13902 USA
| | - Marc D Porter
- Department of Chemistry and Chemical Engineering, University of Utah Salt Lake City Utah 84112 USA
| | - Chuan-Jian Zhong
- Department of Chemistry, State University of New York at Binghamton Binghamton New York 13902 USA
| |
Collapse
|
31
|
Dief EM, Darwish N. Ultrasonic Generation of Thiyl Radicals: A General Method of Rapidly Connecting Molecules to a Range of Electrodes for Electrochemical and Molecular Electronics Applications. ACS Sens 2021; 6:573-580. [PMID: 33355460 DOI: 10.1021/acssensors.0c02413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report ultrasonic generation of thiyl radicals as a general method for functionalizing a range of surfaces with organic molecules. The method is simple, rapid, can be utilized at ambient conditions and involves sonicating a solution of disulfide molecules, homolytically cleaving S-S bonds and generating thiyl radicals that react with the surfaces by forming covalently bound monolayers. Full molecular coverages on conducting oxides (ITO), semiconductors (Si-H), and carbon (GC) electrode surfaces can be achieved within a time scale of 15-90 min. The suitability of this method to connect the same molecule to different electrodes enabled comparing the conductivity of single molecules and the electrochemical electron transfer kinetics of redox active monolayers as a function of the molecule-electrode contact. We demonstrate, using STM break-junction technique, single-molecule heterojunction comprising Au-molecule-ITO and Au-molecule-carbon circuits. We found that despite using the same molecule, the single-molecule conductivity of Au-molecule-carbon circuits is about an order of magnitude higher than that of Au-molecule-ITO circuits. The same trend was observed for electron transfer kinetics, measured using electrochemical impedance spectroscopy for ferrocene-terminated monolayers on carbon and ITO. This suggests that the interfacial bond between different electrodes and the same molecule can be used to tune the conductivity of single-molecule devices and to control the rate of charge transport in redox active monolayers, opening prospects for relating various types of interfacial charge-transfer rate processes.
Collapse
Affiliation(s)
- Essam M. Dief
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
32
|
Zhang S, Ferrie S, Peiris CR, Lyu X, Vogel YB, Darwish N, Ciampi S. Common Background Signals in Voltammograms of Crystalline Silicon Electrodes are Reversible Silica-Silicon Redox Chemistry at Highly Conductive Surface Sites. J Am Chem Soc 2021; 143:1267-1272. [PMID: 33373229 DOI: 10.1021/jacs.0c10713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The electrochemical reduction of bulk silica, due to its high electrical resistance, is of limited viability, namely, requiring temperatures in excess of 850 °C. By means of electrochemical and electrical measurements in atomic force microscopy, we demonstrate that at a buried interface, where silica has grown on highly conductive Si(110) crystal facets, the silica-silicon conversion becomes reversible at room temperature and accessible within a narrow potential window. We conclude that parasitic signals commonly observed in voltammograms of silicon electrodes originate from silica-silicon redox chemistry. While these findings do not remove the requirement of high temperature toward bulk silica electrochemical reduction, they redefine for silicon the potential window free from parasitic signals and, as such, significantly restrict the conditions where electroanalytical methods can be applied to the study of silicon surface reactivity.
Collapse
Affiliation(s)
- Song Zhang
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia
| | - Stuart Ferrie
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia
| | - Chandramalika R Peiris
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia
| | - Xin Lyu
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia
| | - Yan B Vogel
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
33
|
Mukhopadhyay A, Paulino V, Liu K, Donley CL, Bernard B, Shomar A, Liu C, Olivier JH. Leveraging the Assembly of a Rylene Dye to Tune the Semiconducting Properties of Functionalized n-Type, Hybrid Si Interfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4665-4675. [PMID: 33443396 DOI: 10.1021/acsami.0c18222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The functionalization of silicon electrodes with π-conjugated chromophores opens new avenues to engineer hybrid semiconducting interfaces relevant to information storage and processing. Notably, molecularly dissolved π-conjugated units, such as ferrocene derivatives, are traditionally exploited as building blocks to construct well-defined interfaces that establish electrochemically addressable platforms with which to investigate electron transfer properties and charge storage capabilities. In contrast, planar π-conjugated building blocks such as naphthalene diimide (NDI) cores enable the formation of solvated aggregates equipped with emergent electronic structures not manifested by the parent, molecularly dissolved building blocks. To interrogate the extent to which the aggregated states of π-conjugated chromophores can be leveraged to regulate the n-type semiconducting properties of functionalized electrodes, we have devised an amphiphilic rylene core (NDI) that demonstrates a non-negligible degree of aggregation in an aqueous medium. Characterization of the electronic structures of the NDI-derived aggregates using a combination of electrochemistry, reductive titration experiments, and spectroelectrochemistry unveils the existence of π-anion stacks, the formation of which is contingent on the initial concentration of NDI building blocks. We show that grafting n-doped NDI aggregates on silicon electrode precursors equipped with a high density of anchoring groups by means of "click" reaction enables the formation of the hybrid Si-NDI electrode (Si-NDI-15@1) that facilitates electron injection by more than 400 mV when compared to Si interfaces constructed from molecularly dissolved NDI units. Furthermore, the engineering of a Si precursor surface characterized by a low density of anchoring groups provides additional proof to highlight that the potentiometric properties recorded for Si-NDI-15@1 originate from NDI units, evidencing a non-negligible degree of aggregation. The present work delivers tools to manipulate the potentiometric properties of functionalized electrodes by leveraging on the electronic structures of aggregated, π-conjugated precursors.
Collapse
Affiliation(s)
- Arindam Mukhopadhyay
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Victor Paulino
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Kaixuan Liu
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Carrie L Donley
- Chapel Hill Analytical and Nanofabrication Laboratory, Department of Applied Physical Sciences, University of North Carolina, 243 Chapman Hall, Chapel Hill, North Carolina 27599, United States
| | - Brianna Bernard
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Alfred Shomar
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Chuan Liu
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Jean-Hubert Olivier
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| |
Collapse
|
34
|
Vasquez RM, Hlynchuk S, Maldonado S. Effect of Covalent Surface Functionalization of Si on the Activity of Trifluoromethanesulfonic Anhydride for Suppressing Surface Recombination. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57560-57568. [PMID: 33307671 DOI: 10.1021/acsami.0c16878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An examination of the efficacy of combining physisorbed and chemisorbed passivation strategies on crystalline Si has been performed. This report compares the influence of a linear alkyl adsorbate tethered by either a Si-C or Si-Si linkage, prepared by reaction of Si(111) with organometallic Grignard reagents or organosilanes, respectively. These modified surfaces are first analyzed and compared by IR and X-ray photoelectron spectroscopies. Their behavior toward a known potent physisorbate, trifluoromethanesulfonic anhydride (Tf2O), is then examined. Microwave photoconductivity measurements were obtained which indicate that, while Tf2O shows a beneficial lowering of surface recombination on both surface types initially, only surfaces featuring Si-C linkages exhibit long-lasting suppressed surface recombination. The data for Grignard-treated Si after exposure to Tf2O in fact represent the longest known report of surface recombination suppression by a physisorbate. Conversely, the data for the Si surfaces prepared by dehydrogenative coupling suggest that these passivating groups themselves introduce defect states that cannot be ameliorated by Tf2O physisorption.
Collapse
|
35
|
Tahara K, Ashihara Y, Ikeda T, Kadoya T, Fujisawa JI, Ozawa Y, Tajima H, Toyoda N, Haruyama Y, Abe M. Immobilizing a π-Conjugated Catecholato Framework on Surfaces of SiO 2 Insulator Films via a One-Atom Anchor of a Platinum Metal Center to Modulate Organic Transistor Performance. Inorg Chem 2020; 59:17945-17957. [PMID: 33169615 DOI: 10.1021/acs.inorgchem.0c02163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chemical modification of insulating material surfaces is an important methodology to improve the performance of organic field-effect transistors (OFETs). However, few redox-active self-assembled monolayers (SAMs) have been constructed on gate insulator film surfaces, in contrast to the numerous SAMs formed on many types of conducting electrodes. In this study, we report a new approach to introduce a π-conjugated organic fragment in close proximity to an insulating material surface via a transition metal center acting as a one-atom anchor. On the basis of the reported coordination chemistry of a catecholato complex of Pt(II) in solution, we demonstrate that ligand exchange can occur on an insulating material surface, affording SAMs on the SiO2 surface derived from a newly synthesized Pt(II) complex containing a benzothienobenzothiophene (BTBT) framework in the catecholato ligand. The resultant SAMs were characterized in detail by water contact angle measurements, X-ray photoelectron spectroscopy, atomic force microscopy, and cyclic voltammetry. The SAMs served as good scaffolds of π-conjugated pillars for forming thin films of a well-known organic semiconductor C8-BTBT (2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene), accompanied by the engagements of the C8-BTBT molecules with the SAMs containing the common BTBT framework at the first layer on SiO2. OFETs containing the SAMs displayed improved performance in terms of hole mobility and onset voltage, presumably because of the unique interfacial structure between the organic semiconducting and inorganic insulating layers. These findings provide important insight into creating new elaborate interfaces through installing coordination chemistry in solution to solid surfaces, as well as OFET design by considering the compatibility between SAMs and organic semiconductors.
Collapse
Affiliation(s)
- Keishiro Tahara
- Graduate School of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Ako, Hyogo 6781297, Japan
| | - Yuya Ashihara
- Graduate School of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Ako, Hyogo 6781297, Japan
| | - Takashi Ikeda
- Graduate School of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Ako, Hyogo 6781297, Japan
| | - Tomofumi Kadoya
- Graduate School of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Ako, Hyogo 6781297, Japan
| | - Jun-Ichi Fujisawa
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin, Kiryu, Gunma 3768515, Japan
| | - Yoshiki Ozawa
- Graduate School of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Ako, Hyogo 6781297, Japan
| | - Hiroyuki Tajima
- Graduate School of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Ako, Hyogo 6781297, Japan
| | - Noriaki Toyoda
- Graduate School of Engineering, University of Hyogo, 2167, Shosha, Himeji, Hyogo 6712280, Japan
| | - Yuichi Haruyama
- Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori, Ako, Hyogo 6781205, Japan
| | - Masaaki Abe
- Graduate School of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Ako, Hyogo 6781297, Japan
| |
Collapse
|
36
|
Dief EM, Vogel YB, Peiris CR, Le Brun AP, Gonçales VR, Ciampi S, Reimers JR, Darwish N. Covalent Linkages of Molecules and Proteins to Si-H Surfaces Formed by Disulfide Reduction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14999-15009. [PMID: 33271017 DOI: 10.1021/acs.langmuir.0c02391] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Thiols and disulfide contacts have been, for decades, key for connecting organic molecules to surfaces and nanoclusters as they form self-assembled monolayers (SAMs) on metals such as gold (Au) under mild conditions. In contrast, they have not been similarly deployed on Si owing to the harsh conditions required for monolayer formation. Here, we show that SAMs can be simply formed by dipping Si-H surfaces into dilute solutions of organic molecules or proteins comprising disulfide bonds. We demonstrate that S-S bonds can be spontaneously reduced on Si-H, forming covalent Si-S bonds in the presence of traces of water, and that this grafting can be catalyzed by electrochemical potential. Cyclic disulfide can be spontaneously reduced to form complete monolayers in 1 h, and the reduction can be catalyzed electrochemically to form full surface coverages within 15 min. In contrast, the kinetics of SAM formation of the cyclic disulfide molecule on Au was found to be three-fold slower than that on Si. It is also demonstrated that dilute thiol solutions can form monolayers on Si-H following oxidation to disulfides under ambient conditions; the supply of too much oxygen, however, inhibits SAM formation. The electron transfer kinetics of the Si-S-enabled SAMs on Si-H is comparable to that on Au, suggesting that Si-S contacts are electrically transmissive. We further demonstrate the prospect of this spontaneous disulfide reduction by forming a monolayer of protein azurin on a Si-H surface within 1 h. The direct reduction of disulfides on Si electrodes presents new capabilities for a range of fields, including molecular electronics, for which highly conducting SAM-electrode contacts are necessary and for emerging fields such as biomolecular electronics as disulfide linkages could be exploited to wire proteins between Si electrodes, within the context of the current Si-based technologies.
Collapse
Affiliation(s)
- Essam M Dief
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia
| | - Yan B Vogel
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia
| | - Chandramalika R Peiris
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization (ANSTO), Lucas Heights, New South Wales 2234, Australia
| | - Vinicius R Gonçales
- School of Chemistry, Australia Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia
| | - Jeffrey R Reimers
- International Centre for Quantum and Molecular Structures, School of Physics, Shanghai University, Shanghai 200444, China
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
37
|
Marri I, Amato M, Bertocchi M, Ferretti A, Varsano D, Ossicini S. Surface chemistry effects on work function, ionization potential and electronic affinity of Si(100), Ge(100) surfaces and SiGe heterostructures. Phys Chem Chem Phys 2020; 22:25593-25605. [PMID: 33164017 DOI: 10.1039/d0cp04013d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We combine density functional theory and many body perturbation theory to investigate the electronic properties of Si(100) and Ge(100) surfaces terminated with halogen atoms (-I, -Br, -Cl, -F) and other chemical functionalizations (-H, -OH, -CH3) addressing the absolute values of their work function, electronic affinity and ionization potential. Our results point out that electronic properties of functionalized surfaces strongly depend on the chemisorbed species and much less on the surface crystal orientation. The presence of halogens at the surface always leads to an increment of the work function, ionization potential and electronic affinity with respect to fully hydrogenated surfaces. On the contrary, the presence of polar -OH and -CH3 groups at the surface leads to a reduction of the aforementioned quantities with respect to the H-terminated system. Starting from the work functions calculated for the Si and Ge passivated surfaces, we apply a simple model to estimate the properties of functionalized SiGe surfaces. The possibility of modulating the work function by changing the chemisorbed species and composition is predicted. The effects induced by different terminations on the band energy line-up profile of SiGe surfaces are then analyzed. Interestingly, our calculations predict a type-II band offset for the H-terminated systems and a type-I band offset for the other cases.
Collapse
Affiliation(s)
- Ivan Marri
- Department of Sciences and Methods for Engineering, University of Modena e Reggio Emilia, 42122 Reggio Emilia, Italy.
| | | | | | | | | | | |
Collapse
|
38
|
Kennedy N, Garvey S, Maccioni B, Eaton L, Nolan M, Duffy R, Meaney F, Kennedy M, Holmes JD, Long B. Monolayer Doping of Germanium with Arsenic: A New Chemical Route to Achieve Optimal Dopant Activation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9993-10002. [PMID: 32787047 DOI: 10.1021/acs.langmuir.0c00408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Reported here is a new chemical route for the wet chemical functionalization of germanium (Ge), whereby arsanilic acid is covalently bound to a chlorine (Cl)-terminated surface. This new route is used to deliver high concentrations of arsenic (As) dopants to Ge, via monolayer doping (MLD). Doping, or the introduction of Group III or Group V impurity atoms into the crystal lattice of Group IV semiconductors, is essential to allow control over the electronic properties of the material to enable transistor devices to be switched on and off. MLD is a diffusion-based method for the introduction of these impurity atoms via surface-bound molecules, which offers a nondestructive alternative to ion implantation, the current industry doping standard, making it suitable for sub-10 nm structures. Ge, given its higher carrier mobilities, is a leading candidate to replace Si as the channel material in future devices. Combining the new chemical route with the existing MLD process yields active carrier concentrations of dopants (>1 × 1019 atoms/cm3) that rival those of ion implantation. It is shown that the dose of dopant delivered to Ge is also controllable by changing the size of the precursor molecule. X-ray photoelectron spectroscopy (XPS) data and density functional theory (DFT) calculations support the formation of a covalent bond between the arsanilic acid and the Cl-terminated Ge surface. Atomic force microscopy (AFM) indicates that the integrity of the surface is maintained throughout the chemical procedure, and electrochemical capacitance voltage (ECV) data shows a carrier concentration of 1.9 × 1019 atoms/cm3 corroborated by sheet resistance measurements.
Collapse
Affiliation(s)
- Noel Kennedy
- School of Chemistry & AMBER Centre, University College Cork, Cork, T12 YN60, Ireland
| | - Shane Garvey
- School of Chemistry & AMBER Centre, University College Cork, Cork, T12 YN60, Ireland
- Tyndall National Institute, Lee Maltings, University College Cork, Cork, T12 R5CP, Ireland
| | - Barbara Maccioni
- Tyndall National Institute, Lee Maltings, University College Cork, Cork, T12 R5CP, Ireland
| | - Luke Eaton
- School of Chemistry & AMBER Centre, University College Cork, Cork, T12 YN60, Ireland
- Tyndall National Institute, Lee Maltings, University College Cork, Cork, T12 R5CP, Ireland
| | - Michael Nolan
- Tyndall National Institute, Lee Maltings, University College Cork, Cork, T12 R5CP, Ireland
| | - Ray Duffy
- Tyndall National Institute, Lee Maltings, University College Cork, Cork, T12 R5CP, Ireland
| | - Fintan Meaney
- Tyndall National Institute, Lee Maltings, University College Cork, Cork, T12 R5CP, Ireland
| | - Mary Kennedy
- Scientific Process Development Services, Tarbert, Kerry V31 X640, Ireland
| | - Justin D Holmes
- School of Chemistry & AMBER Centre, University College Cork, Cork, T12 YN60, Ireland
| | - Brenda Long
- School of Chemistry & AMBER Centre, University College Cork, Cork, T12 YN60, Ireland
| |
Collapse
|
39
|
Mattiuzzi A, Lenne Q, Carvalho Padilha J, Troian-Gautier L, Leroux YR, Jabin I, Lagrost C. Strategies for the Formation of Monolayers From Diazonium Salts: Unconventional Grafting Media, Unconventional Building Blocks. Front Chem 2020; 8:559. [PMID: 32766206 PMCID: PMC7381217 DOI: 10.3389/fchem.2020.00559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/02/2020] [Indexed: 01/08/2023] Open
Abstract
Pioneered by J. Pinson and coll. in 1990s, the reductive grafting of aryldiazonium salts has become a powerful method for surface functionalization. Highly robust interfaces result from this surface attachment, resistant to heat, chemical degradation and ultrasonication. Importantly, this approach can be applied to many materials, ranging from conducting, semi-conducting, oxides to insulating substrates. In addition, either massive, flat surfaces or nanomaterials can be functionalized. The method is easy to process and fast. The grafting process involves the formation of highly reactive aryl radicals able to attack the substrate. However, the generated radicals can also react with already-grafted aryl species, leading to the formation of loosely-packed polyaryl multilayer films, typically of 10-15 nm thick. It is thus highly challenging to control the vertical extension of the deposited layer and to form well-ordered monolayers from aryldiazonium salts. In this mini review, we briefly describe the different strategies that have been developed to prepare well-ordered monolayers. We especially focus on two strategies successfully used in our laboratories, namely the use of unconventional solvents, i.e., room temperature ionic liquids (RTILs), as grafting media and the use of calixarene macrocycles by taking benefit of their pre-organized structure. These strategies give large possibilities for the structuring of interfaces with the widest choice of materials and highlight the potential of aryldiazonium grafting as a competitive alternative to self-assembled monolayers (SAMs) of alkyl thiols.
Collapse
Affiliation(s)
| | | | - Janine Carvalho Padilha
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Brazil
| | | | | | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Brussels, Belgium
| | | |
Collapse
|
40
|
Ben Amara F, Dionne ER, Kassir S, Pellerin C, Badia A. Molecular Origin of the Odd-Even Effect of Macroscopic Properties of n-Alkanethiolate Self-Assembled Monolayers: Bulk or Interface? J Am Chem Soc 2020; 142:13051-13061. [PMID: 32597648 DOI: 10.1021/jacs.0c04288] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Elucidating the influence of the monolayer interface versus bulk on the macroscopic properties (e.g., surface hydrophobicity, charge transport, and electron transfer) of organic self-assembled monolayers (SAMs) chemically anchored to metal surfaces is a challenge. This article reports the characterization of prototypical SAMs of n-alkanethiolates on gold (CH3(CH2)nSAu, n = 6-19) at the macroscopic scale by electrochemical impedance spectroscopy and contact angle goniometry, and at the molecular level, by infrared reflection absorption spectroscopy. The SAM capacitance, dielectric constant, and surface hydrophobicity exhibit dependencies on both the length (n) and parity (nodd or neven) of the polymethylene chain. The peak positions of the CH2 stretching modes indicate a progressive increase in the chain conformational order with increasing n between n = 6 and 16. SAMs of nodd have a greater degree of structural gauche defects than SAMs of neven. The peak intensities and positions of the CH3 stretching modes are chain length independent but show an odd-even alternation of the spatial orientation of the terminal CH3. The correlations between the different data trends establish that the chain length dependencies of the dielectric constant and surface hydrophobicity originate from changes in the polymethylene chain conformation (bulk), while the odd-even variation arises primarily from a difference in the chemical composition of the interface related to the terminal group orientation. These findings provide new physical insights into the structure-property relation of SAMs for the design of ultrathin film dielectrics as well as the understanding of stereostructural effects on the electrical characteristics of tunnel junctions.
Collapse
Affiliation(s)
- Fadwa Ben Amara
- Département de chimie, FRQNT Quebec Centre for Advanced Materials, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Eric R Dionne
- Département de chimie, FRQNT Quebec Centre for Advanced Materials, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Sahar Kassir
- Département de chimie, FRQNT Quebec Centre for Advanced Materials, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Christian Pellerin
- Département de chimie, FRQNT Quebec Centre for Advanced Materials, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Antonella Badia
- Département de chimie, FRQNT Quebec Centre for Advanced Materials, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
41
|
Danos L, Halcovitch NR, Wood B, Banks H, Coogan MP, Alderman N, Fang L, Dzurnak B, Markvart T. Silicon photosensitisation using molecular layers. Faraday Discuss 2020; 222:405-423. [PMID: 32115600 DOI: 10.1039/c9fd00095j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Silicon photosensitisation via energy transfer from molecular dye layers is a promising area of research for excitonic silicon photovoltaics. We present the synthesis and photophysical characterisation of vinyl and allyl terminated Si(111) surfaces decorated with perylene molecules. The functionalised silicon surfaces together with Langmuir-Blodgett (LB) films based on perylene derivatives were studied using a wide range of steady-state and time resolved spectroscopic techniques. Fluorescence lifetime quenching experiments performed on the perylene modified monolayers revealed energy transfer efficiencies to silicon of up to 90 per cent. We present a simple model to account for the near field interaction of a dipole emitter with the silicon surface and distinguish between the 'true' FRET region (<5 nm) and a different process, photon tunnelling, occurring for distances between 10-50 nm. The requirements for a future ultra-thin crystalline solar cell paradigm include efficient surface passivation and keeping a close distance between the emitter dipole and the surface. These are discussed in the context of existing limitations and questions raised about the finer details of the emitter-silicon interaction.
Collapse
Affiliation(s)
- Lefteris Danos
- Department of Chemistry, Energy Lancaster, Lancaster University, Lancaster, LA1 4YB, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Gonçales VR, Lian J, Gautam S, Tilley RD, Gooding JJ. Functionalized Silicon Electrodes in Electrochemistry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:135-158. [PMID: 32289237 DOI: 10.1146/annurev-anchem-091619-092506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Avoiding the growth of SiOx has been an enduring task for the use of silicon as an electrode material in dynamic electrochemistry. This is because electrochemical assays become unstable when the SiOx levels change during measurements. Moreover, the silicon electrode can be completely passivated for electron transfer if a thick layer of insulating SiOx grows on the surface. As such, the field of silicon electrochemistry was mainly developed by electron-transfer studies in nonaqueous electrolytes and by applications employing SiOx-passivated silicon-electrodes where no DC currents are required to cross the electrode/electrolyte interface. A solution to this challenge began by functionalizing Si-H electrodes with monolayers based on Si-O-Si linkages. These monolayers have proven very efficient to avoid SiOx formation but are not stable for a long-term operation in aqueous electrolytes due to hydrolysis. It was only with the development of self-assembled monolayers based on Si-C linkages that a reliable protection against SiOx formation was achieved, particularly with monolayers based on α,ω-dialkynes. This review discusses in detail how this surface chemistry achieves such protection, the electron-transfer behavior of these monolayer-modified silicon surfaces, and the new opportunities for electrochemical applications in aqueous solution.
Collapse
Affiliation(s)
- Vinicius R Gonçales
- School of Chemistry, Australia Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia; ,
| | - Jiaxin Lian
- School of Chemistry, Australia Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia; ,
| | - Shreedhar Gautam
- School of Chemistry, Australia Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia; ,
| | - Richard D Tilley
- School of Chemistry, Australia Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia; ,
| | - J Justin Gooding
- School of Chemistry, Australia Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia; ,
| |
Collapse
|
43
|
Ikeda T, Tahara K, Kadoya T, Tajima H, Toyoda N, Yasuno S, Ozawa Y, Abe M. Ferrocene on Insulator: Silane Coupling to a SiO 2 Surface and Influence on Electrical Transport at a Buried Interface with an Organic Semiconductor Layer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5809-5819. [PMID: 32407106 DOI: 10.1021/acs.langmuir.0c00515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A silane coupling-based procedure for decoration of an insulator surface containing abundant hydroxy groups by constructing redox-active self-assembled monolayers (SAMs) is described. A newly synthesized ferrocene (Fc) derivative containing a triethoxysilyl group designated FcSi was immobilized on SiO2/Si by a simple operation that involved immersing the substrate in a toluene solution of the Fc silane coupling reagent and then rinsing the resulting substrate. X-ray photoelectron spectroscopy (XPS) measurements confirmed that the Fc group was immobilized on SiO2/Si in the Fe(II) state. Cyclic voltammetry measurements showed that the Fc groups were electrically insulated from the Si electrode by the SiO2 layer. The FcSi on SiO2/Si structures were found to serve as a good scaffold for formation of organic semiconductor thin films by vacuum thermal evaporation of C8-BTBT (2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene), which is well-known as an organic field-effect transistor (OFET) material. The X-ray diffraction profile indicated that the conventional standing-up conformation of the C8-BTBT molecules perpendicular to the substrates was maintained in the thin films formed on FcSi@SiO2/Si. Further vacuum thermal evaporation of Au provided an FcSi-based OFET structure with good transfer characteristics. The FcSi-based OFET showed pronounced source-drain current hysteresis between the forward and backward scans. The degree of this hysteresis was varied reversibly via gate bias manipulation, which was presumably accompanied by trapping and detrapping of hole carriers at the Fc-decorated SiO2 surface. These findings provide new insights into application of redox-active SAMs to nonvolatile OFET memories while also creating new interfaces through junctions with functional thin films, in which the underlying redox-active SAMs play supporting roles.
Collapse
Affiliation(s)
- Takashi Ikeda
- Graduate School of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Keishiro Tahara
- Graduate School of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Tomofumi Kadoya
- Graduate School of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Hiroyuki Tajima
- Graduate School of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Noriaki Toyoda
- Graduate School of Engineering, University of Hyogo, 2167, Shosha, Himeji, Hyogo 671-2280, Japan
| | - Satoshi Yasuno
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo, Hyogo 679-5198, Japan
| | - Yoshiki Ozawa
- Graduate School of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Masaaki Abe
- Graduate School of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| |
Collapse
|
44
|
Peiris CR, Ciampi S, Dief EM, Zhang J, Canfield PJ, Le Brun AP, Kosov DS, Reimers JR, Darwish N. Spontaneous S-Si bonding of alkanethiols to Si(111)-H: towards Si-molecule-Si circuits. Chem Sci 2020; 11:5246-5256. [PMID: 34122981 PMCID: PMC8159313 DOI: 10.1039/d0sc01073a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report the synthesis of covalently linked self-assembled monolayers (SAMs) on silicon surfaces, using mild conditions, in a way that is compatible with silicon-electronics fabrication technologies. In molecular electronics, SAMs of functional molecules tethered to gold via sulfur linkages dominate, but these devices are not robust in design and not amenable to scalable manufacture. Whereas covalent bonding to silicon has long been recognized as an attractive alternative, only formation processes involving high temperature and/or pressure, strong chemicals, or irradiation are known. To make molecular devices on silicon under mild conditions with properties reminiscent of Au–S ones, we exploit the susceptibility of thiols to oxidation by dissolved O2, initiating free-radical polymerization mechanisms without causing oxidative damage to the surface. Without thiols present, dissolved O2 would normally oxidize the silicon and hence reaction conditions such as these have been strenuously avoided in the past. The surface coverage on Si(111)–H is measured to be very high, 75% of a full monolayer, with density-functional theory calculations used to profile spontaneous reaction mechanisms. The impact of the Si–S chemistry in single-molecule electronics is demonstrated using STM-junction approaches by forming Si–hexanedithiol–Si junctions. Si–S contacts result in single-molecule wires that are mechanically stable, with an average lifetime at room temperature of 2.7 s, which is five folds higher than that reported for conventional molecular junctions formed between gold electrodes. The enhanced “ON” lifetime of this single-molecule circuit enables previously inaccessible electrical measurements on single molecules. Spontaneously formed Si–S bonds enable monolayer and single-molecule Si–molecule–Si circuits.![]()
Collapse
Affiliation(s)
- Chandramalika R Peiris
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University Bentley WA 6102 Australia
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University Bentley WA 6102 Australia
| | - Essam M Dief
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University Bentley WA 6102 Australia
| | - Jinyang Zhang
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University Bentley WA 6102 Australia
| | - Peter J Canfield
- International Centre for Quantum and Molecular Structures, School of Physics, Shanghai University Shanghai 200444 China.,School of Chemistry, The University of Sydney NSW 2006 Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization (ANSTO) Lucas Heights NSW 2234 Australia
| | - Daniel S Kosov
- College of Science and Engineering, James Cook University Townsville QLD 4811 Australia
| | - Jeffrey R Reimers
- International Centre for Quantum and Molecular Structures, School of Physics, Shanghai University Shanghai 200444 China.,School of Mathematical and Physical Sciences, University of Technology Sydney NSW 2007 Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University Bentley WA 6102 Australia
| |
Collapse
|
45
|
Welden R, Schöning MJ, Wagner PH, Wagner T. Light-Addressable Electrodes for Dynamic and Flexible Addressing of Biological Systems and Electrochemical Reactions. SENSORS 2020; 20:s20061680. [PMID: 32192226 PMCID: PMC7147159 DOI: 10.3390/s20061680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 01/25/2023]
Abstract
In this review article, we are going to present an overview on possible applications of light-addressable electrodes (LAE) as actuator/manipulation devices besides classical electrode structures. For LAEs, the electrode material consists of a semiconductor. Illumination with a light source with the appropiate wavelength leads to the generation of electron-hole pairs which can be utilized for further photoelectrochemical reaction. Due to recent progress in light-projection technologies, highly dynamic and flexible illumination patterns can be generated, opening new possibilities for light-addressable electrodes. A short introduction on semiconductor–electrolyte interfaces with light stimulation is given together with electrode-design approaches. Towards applications, the stimulation of cells with different electrode materials and fabrication designs is explained, followed by analyte-manipulation strategies and spatially resolved photoelectrochemical deposition of different material types.
Collapse
Affiliation(s)
- Rene Welden
- Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Heinrich-Mußmann-Str. 1, 52428 Jülich, Germany; (R.W.); (M.J.S.)
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Michael J. Schöning
- Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Heinrich-Mußmann-Str. 1, 52428 Jülich, Germany; (R.W.); (M.J.S.)
- Institute of Complex Systems (ICS-8), Research Center Jülich GmbH, 52428 Jülich, Germany
| | - Patrick H. Wagner
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Torsten Wagner
- Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Heinrich-Mußmann-Str. 1, 52428 Jülich, Germany; (R.W.); (M.J.S.)
- Institute of Complex Systems (ICS-8), Research Center Jülich GmbH, 52428 Jülich, Germany
- Correspondence: ; Tel.: +49-241-6009-53766
| |
Collapse
|
46
|
Berger G, Frangville P, Meyer F. Halogen bonding for molecular recognition: new developments in materials and biological sciences. Chem Commun (Camb) 2020; 56:4970-4981. [DOI: 10.1039/d0cc00841a] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review highlights recent developments of halogen bonding in materials and biological sciences with a short discussion on the nature of the interaction.
Collapse
Affiliation(s)
- Gilles Berger
- Microbiology, Bioorganic and Macromolecular Chemistry
- Faculty of Pharmacy
- Université Libre de Bruxelles (ULB)
- Bruxelles
- Belgium
| | - Pierre Frangville
- Microbiology, Bioorganic and Macromolecular Chemistry
- Faculty of Pharmacy
- Université Libre de Bruxelles (ULB)
- Bruxelles
- Belgium
| | - Franck Meyer
- Microbiology, Bioorganic and Macromolecular Chemistry
- Faculty of Pharmacy
- Université Libre de Bruxelles (ULB)
- Bruxelles
- Belgium
| |
Collapse
|
47
|
The aggregation and micellization of ionic surfactants in aqueous solution detected using surface-confined redox and ion-pairing reactions. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Mukhopadhyay A, Bernard B, Liu K, Paulino V, Liu C, Donley C, Olivier JH. Molecular Strategies to Modulate the Electrochemical Properties of P-Type Si(111) Surfaces Covalently Functionalized with Ferrocene and Naphthalene Diimide. J Phys Chem B 2019; 123:11026-11041. [DOI: 10.1021/acs.jpcb.9b09812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Arindam Mukhopadhyay
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Brianna Bernard
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Kaixuan Liu
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Victor Paulino
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Chuan Liu
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Carrie Donley
- Chapel Hill Analytical and Nanofabrication Laboratory, Department of Applied Physical Sciences, University of North Carolina, 243 Chapman Hall, Chapel Hill, North Carolina 27599, United States
| | - Jean-Hubert Olivier
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| |
Collapse
|
49
|
de Sousa JA, Bejarano F, Gutiérrez D, Leroux YR, Nowik-Boltyk EM, Junghoefer T, Giangrisostomi E, Ovsyannikov R, Casu MB, Veciana J, Mas-Torrent M, Fabre B, Rovira C, Crivillers N. Exploiting the versatile alkyne-based chemistry for expanding the applications of a stable triphenylmethyl organic radical on surfaces. Chem Sci 2019; 11:516-524. [PMID: 32190271 PMCID: PMC7067255 DOI: 10.1039/c9sc04499j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
The incorporation of terminal alkynes into the chemical structure of persistent organic perchlorotriphenylmethyl (PTM) radicals provides new chemical tools to expand their potential applications. In this work, this is demonstrated by the chemical functionalization of two types of substrates, hydrogenated SiO2-free silicon (Si-H) and gold, and, by exploiting the click chemistry, scarcely used with organic radicals, to synthesise multifunctional systems. On one hand, the one-step functionalization of Si-H allows a light-triggered capacitance switch to be successfully achieved under electrochemical conditions. On the other hand, the click reaction between the alkyne-terminated PTM radical and a ferrocene azide derivative, used here as a model azide system, leads to a multistate electrochemical switch. The successful post-surface modification makes the self-assembled monolayers reported here an appealing platform to synthesise multifunctional systems grafted on surfaces.
Collapse
Affiliation(s)
- J Alejandro de Sousa
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) , Campus de la UAB , 08193 Bellaterra , Spain . .,Laboratorio de Electroquímica , Departamento de Química , Facultad de Ciencias , Universidad de los Andes , 5101 Mérida , Venezuela
| | - Francesc Bejarano
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) , Campus de la UAB , 08193 Bellaterra , Spain .
| | - Diego Gutiérrez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) , Campus de la UAB , 08193 Bellaterra , Spain .
| | - Yann R Leroux
- Univ Rennes , CNRS , ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226 , F-35000 Rennes , France
| | | | - Tobias Junghoefer
- Institute of Physical and Theoretical Chemistry , University of Tübingen , 72076 Tübingen , Germany
| | - Erika Giangrisostomi
- Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) , Albert-Einstein-Str 15 , 12489 Berlin , Germany
| | - Ruslan Ovsyannikov
- Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) , Albert-Einstein-Str 15 , 12489 Berlin , Germany
| | - Maria Benedetta Casu
- Institute of Physical and Theoretical Chemistry , University of Tübingen , 72076 Tübingen , Germany
| | - Jaume Veciana
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) , Campus de la UAB , 08193 Bellaterra , Spain .
| | - Marta Mas-Torrent
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) , Campus de la UAB , 08193 Bellaterra , Spain .
| | - Bruno Fabre
- Univ Rennes , CNRS , ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226 , F-35000 Rennes , France
| | - Concepció Rovira
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) , Campus de la UAB , 08193 Bellaterra , Spain .
| | - Núria Crivillers
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) , Campus de la UAB , 08193 Bellaterra , Spain .
| |
Collapse
|
50
|
Gayfulin YM, Brylev KA, Ryzhikov MR, Samsonenko DG, Kitamura N, Mironov YV. Luminescent twelve-nuclear rhenium clusters. Dalton Trans 2019; 48:12522-12530. [PMID: 31364655 DOI: 10.1039/c9dt02352f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The first luminescent twelve-nuclear rhenium cluster complexes were obtained. Three new clusters, namely, [Re12CS14(μ-Cl)3Cl6]5-, [Re12CS14(μ-Br)3Cl6]5- and [Re12CS14(μ-Br)3Br6]5-, were synthesized using the non-isovalent substitution of μ-O ligands within the {Re12CS14(μ-O)3}0 cluster core by halide anions. The geometry of the new clusters was investigated by X-ray structural analysis, and the electronic structures were evaluated by the use of DFT calculations. It was found that compounds based on these anions showed red luminescence in both the solid state and solution that was never observed before for previously studied twelve-nuclear rhenium clusters.
Collapse
Affiliation(s)
- Yakov M Gayfulin
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3, Acad. Lavrentiev ave., 630090 Novosibirsk, Russia.
| | - Konstantin A Brylev
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3, Acad. Lavrentiev ave., 630090 Novosibirsk, Russia. and Novosibirsk State University, 2, Pirogova str., 630090 Novosibirsk, Russia
| | - Maxim R Ryzhikov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3, Acad. Lavrentiev ave., 630090 Novosibirsk, Russia. and Novosibirsk State University, 2, Pirogova str., 630090 Novosibirsk, Russia
| | - Denis G Samsonenko
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3, Acad. Lavrentiev ave., 630090 Novosibirsk, Russia. and Novosibirsk State University, 2, Pirogova str., 630090 Novosibirsk, Russia
| | - Noboru Kitamura
- Department of Chemistry, Faculty of Science, Hokkaido University, 060-0810 Sapporo, Japan
| | - Yuri V Mironov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3, Acad. Lavrentiev ave., 630090 Novosibirsk, Russia. and Novosibirsk State University, 2, Pirogova str., 630090 Novosibirsk, Russia
| |
Collapse
|