1
|
Long Y, Zhang J, Bian H, Xu T, Wang S, Dai H, Gao Y. In-situ synthesis of magnetic nanoparticles/wood-structural holocellulose hybrid for metal ions adsorption. Carbohydr Polym 2025; 357:123436. [PMID: 40158974 DOI: 10.1016/j.carbpol.2025.123436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 04/02/2025]
Abstract
Effective removal of metal ions from water is crucial for reducing pollution during manufacturing processes. To address this issue, we have developed a block Fe3O4/wood-structural holocellulose hybrids (MW) for removing heavy metal ions from industrial wastewater. By employing chemical pretreatment, solvent-induced self-impregnation, and in-situ deposition, Fe3O4 nanoparticles were attached into the cell's lumen while also embedded within the cell walls, achieving a loading capacity of 35.89 %. The MW exhibited notable magnetic responsiveness. Adsorption experiments were then conducted to evaluate the performance of MW in adsorbing Pb2+, and the adsorption mechanism was elucidated based on density functional theory (DFT) calculations. The results demonstrated that MW exhibited high adsorption efficiency for Pb2+ (537.63 mg/g), This is primarily attributed to the porous structure of MW and the interactions among -COOH, -OH, and FeO groups within the structure with Pb2+. The adsorption process followed the pseudo-second-order kinetic model and the Langmuir isotherm model. After three consecutive reuse cycles, the adsorption capacity remaining at 77.62 % after three cycles. Furthermore, DFT calculations indicated that the composite of Fe3O4 and cellulose could enhance the adsorption energy between Pb2+ and MW. This indicates that MW offers high adsorption, recyclability, and magnetic control, making it a promising material for wastewater treatment.
Collapse
Affiliation(s)
- Yiyu Long
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jingxiang Zhang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730000, PR China.
| | - Huiyang Bian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Tingting Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shumei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Hongqi Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Ying Gao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China; School of Materials and Energy, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
2
|
Zhang Y, Zhao X, Jin L, Xu W, Shao X, Liu Y, Chen Y, Rosei F. Gold nanoparticles-wood nanohybrid as peroxidase-like for simple and selective detection of mercury ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 332:125804. [PMID: 39923707 DOI: 10.1016/j.saa.2025.125804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/01/2025] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
We present the design and synthesis of a gold nanoparticle-wood nanohybrid (AuNPs@Wood), synthesized via the in-situ growth of gold nanoparticles (AuNPs) within a hierarchical wood flour nanostructure under mild conditions. The AuNPs@Wood exhibited remarkable peroxidase-like activity, attributed to the unique hierarchical architecture of the wood flour. Furthermore, the use of AuNPs@Wood in conjunction with T-rich DNA (P1) results in the development of a label-free colorimetric approach for detecting mercury ions. The peroxidase-like activity of the AuNPs@Wood-P1 system was found to increase with rising concentrations of Hg (II), demonstrating a linear response to Hg (II) concentration with a correlation coefficient of 0.9917. The detection limit for Hg (II) was determined to be 0.016 μM based on three times the standard deviation (σ). Additionally, sensing Hg2+ ions remained unaffected by other metal ions, underscoring the exceptional selectivity of AuNPs@Wood-P1. In comparison to traditional methods, this approach offers advantages such as high selectivity, sensitivity, cost-effectiveness, and ease of operation without requiring complex instrumentation, thereby presenting significant potential for biosensing applications.
Collapse
Affiliation(s)
- Yuanfu Zhang
- Key Laboratory of Food Safety and Life Analysis in Universities of Shandong, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China.
| | - Xue Zhao
- Key Laboratory of Food Safety and Life Analysis in Universities of Shandong, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Lei Jin
- Centre for Energy, Materials and Telecommunications, Institut National de la recherche scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC J3X 1P7, Canada; Institute of Nanoscience and Applications, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Wenyu Xu
- Key Laboratory of Food Safety and Life Analysis in Universities of Shandong, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Xianfeng Shao
- Key Laboratory of Food Safety and Life Analysis in Universities of Shandong, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yaqi Liu
- Key Laboratory of Food Safety and Life Analysis in Universities of Shandong, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yawei Chen
- Key Laboratory of Food Safety and Life Analysis in Universities of Shandong, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Federico Rosei
- Centre for Energy, Materials and Telecommunications, Institut National de la recherche scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC J3X 1P7, Canada.
| |
Collapse
|
3
|
Sultana S, Rahaman M, Hassan A, Parvez MA, Chandan MR. Biomass-Based Sustainable Graphene for Advanced Electronic Technology: A Review. Chem Asian J 2025:e202500128. [PMID: 40256841 DOI: 10.1002/asia.202500128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/11/2025] [Accepted: 04/02/2025] [Indexed: 04/22/2025]
Abstract
Through its remarkable mechanical, electrical, and thermal qualities, graphene has become a revolutionary material in electronics. Sustainable graphene synthesis from biomass residues offers a possible path toward adhering to the demand for economical and ecologically friendly graphene production methods. The present study thoroughly examines the numerous biomass sources used for graphene synthesis, such as plant-derived materials, agricultural waste, and other organic leftovers. The benefits and drawbacks of several synthesis methods are examined, including pyrolysis, chemical exfoliation, and hydrothermal carbonization. The study also explores the possible uses of graphene produced from biomass in electronics, including sensors, energy storage devices, electronic devices with flexibility, and electromagnetic interference (EMI) shielding. This review highlights how biomass-based graphene can revolutionize the electronics sector by bridging the gap between electronic applications, synthesis techniques, and biomass supplies.
Collapse
Affiliation(s)
- Salma Sultana
- School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abul Hassan
- Department of Finance, School of Business, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mohammad Anwar Parvez
- Department of Chemical Engineering, College of Engineering, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mohammed Rehaan Chandan
- Colloids and Polymers Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
4
|
Han ZW, Wang HM, Chen X, Wu YC, Hou QX. Lignin reinforced eco-friendly and functional nanoarchitectonics materials with tailored interfacial barrier performance. J Colloid Interface Sci 2025; 684:735-757. [PMID: 39818034 DOI: 10.1016/j.jcis.2025.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/01/2025] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
Exploring innovative and sustainable routes for the production of biodegradable biomass-based materials is critical to promote a circular carbon economy and carbon neutrality goals. Fossil-based non-biodegradable plastic waste poses a nonnegligible threat to humans and the ecological environment, and biomass-based functional materials are becoming increasingly viable alternatives. Lignin, a naturally occurring macromolecular polymer, is green and renewable resource rich in aromatic rings, with biodegradability, biocompatibility, and excellent processability for eco-friendly composites. Moreover, versatile and high tunable lignins can be valorized into functional materials, which are crucial building blocks in the fabrication of biomass-derived composites. Lignin's unique chemical structure, solvent resistance, anti-aging, and anti-ultraviolet functional properties make it highly potential for the fabrication of sustainable biobased barrier materials. This review systematically summarizes the progress in the fabrication and application of lignin-based functional composites, with a particular focus on barrier materials. First, the structural diversity of lignins from different sources and fractionation methods, and the structural modification strategies of lignins are briefly introduced. Then, the multiple barrier performances of lignin-based composites are listed, and the fabrication methods of different composites based on the polymer matrix systems are elaborated. In terms of diverse applications, this review highlights the multifaceted barrier properties of lignin-based composites in oxygen barrier, water vapor barrier, ultraviolet barrier, flame retardant and antibacterial applications. These functional barrier materials are widely used in food/pharmaceutical packaging, agricultural protection, construction, etc., providing an excellent option for sustainable materials with high barrier performance requirements. Finally, the main challenges faced by lignin-based barrier materials and the future directions are proposed.
Collapse
Affiliation(s)
- Zhong-Wei Han
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Han-Min Wang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; Shanying International Holdings Co., Ltd., Maanshan 243021, China.
| | - Xu Chen
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yu-Chun Wu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qing-Xi Hou
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
5
|
Huo H, Xu J, Hou H, Yu Y, Feng W, Lu M, Wang S, Min D. Valorizing wood to toxic heavy metal ions biosorbent through in situ sulfation of its cellulose. Int J Biol Macromol 2025; 309:142835. [PMID: 40187469 DOI: 10.1016/j.ijbiomac.2025.142835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/23/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
In this work, H2SO4, ClHSO3, and NH2SO3H were used to prepare the sulfated wood (SW), respectively, which can be applied as biosorbent for removing heavy metal ions from wastewater. The accessibility of wood for sulfation was improved by using molten urea as a protective agent. The sulfate groups amount of SW-H2SO4, SW-ClHSO3 and SW-NH2SO3H was determined as 0.98, 1.37, and 1.71 mmol g-1, respectively, and the corresponding maximum adsorption of Ni2+ was 37.3, 51.3 and 66.2 mg g-1. The efficient modification of SW-NH2SO3H was attributed to the stronger nucleophilic property of -NH2. The kinetic and thermodynamic studies showed that the adsorption process of SW for Ni2+ followed the second order kinetic models and Freundlich model, which was a spontaneous adsorption process. The adsorption process of SW was elucidated as the coordination of Ni2+ by O, N, and S of SW, with the sulfate group playing a major role. A simple and effective method was proposed for the preparation of SW, realizing the valorization of wood into biosorbent for the wastewater remediation.
Collapse
Affiliation(s)
- Huashuang Huo
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Jiali Xu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Hewei Hou
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Yuanyuan Yu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Wenyao Feng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Minsheng Lu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Shuangfei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Douyong Min
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
6
|
Antu UB, Roy TK, Roshid MM, Mitu PR, Barman MK, Tazry J, Trisha ZF, Bairagi G, Hossain SA, Uddin MR, Islam MS, Mahiddin NA, Al Bakky A, Ismail Z, Idris AM. Perspective of nanocellulose production, processing, and application in sustainable agriculture and soil fertility enhancement: A potential review. Int J Biol Macromol 2025; 303:140570. [PMID: 39904432 DOI: 10.1016/j.ijbiomac.2025.140570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/18/2025] [Accepted: 01/31/2025] [Indexed: 02/06/2025]
Abstract
Nanocellulose, a promising green material derived from various bio-sources, has potentiality on and off-site in the agricultural sector. Due to its special qualities, which include high strength, hydrophilicity, and biocompatibility, it is a material that may be used in a variety of industries, especially agriculture. This review explores in this article production processes, post-processing procedures, and uses of nanocellulose in soil fertility increment and sustainable agriculture. A variety of plant materials, agricultural waste, and even microbes can be used to isolate nanocellulose. Nanocellulose is produced using both top-down and bottom-up methods, each of which has benefits and limitations of its own. It can be applied as nano-biofertilizer in agriculture to enhance beneficial microbial activity, increase nutrient availability, and improve soil health. Moreover, nanocellulose can be used in fertilizer and pesticide formulations with controlled releases to increase efficacy and lessen environmental effects. Innovative approaches to sustainable agriculture are provided by nanocellulose technologies, which also support the UN's Sustainable Development Goals (SDGs), especially those pertaining to eradicating hunger and encouraging responsible consumption. Nanocellulose promotes climate action and ecosystem preservation by increasing resource efficiency and decreasing dependency on hazardous chemicals, ultimately leading to the development of a circular bioeconomy. Nonetheless, there are still issues with the high cost of production and the energy-intensive isolation procedures. Despite its various potentialities, challenges such as high production costs, environmental concerns, and regulatory issues must be addressed for nanocellulose to be widely adopted and effectively integrated into farming practices.
Collapse
Affiliation(s)
- Uttam Biswas Antu
- Department of Soil Science, Patuakhali Science and Technology University, Dumki-8602, Patuakhali, Bangladesh.
| | - Tusar Kanti Roy
- Department of Agricultural Chemistry, Khulna Agricultural University, Khulna 9100, Bangladesh.
| | - Md Mustaqim Roshid
- Department of Management Studies, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Puja Rani Mitu
- Department of Botany, Khulna Govt., Mahila College, Khulna 0312, Bangladesh
| | - Manoj Kumar Barman
- Faculty of Agriculture, Patuakhali Science and Technology University, Dumki-8602, Patuakhali, Bangladesh
| | - Jannatun Tazry
- Faculty of Agriculture, Patuakhali Science and Technology University, Dumki-8602, Patuakhali, Bangladesh
| | - Zannatul Ferdause Trisha
- Faculty of Agriculture, Patuakhali Science and Technology University, Dumki-8602, Patuakhali, Bangladesh
| | - Goutam Bairagi
- Department of Agronomy, Patuakhali Science and Technology University, Dumki-8602, Patuakhali, Bangladesh
| | - Sk Arafat Hossain
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Rafiq Uddin
- Department of Soil Science, Patuakhali Science and Technology University, Dumki-8602, Patuakhali, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki-8602, Patuakhali, Bangladesh; East Coast Environmental Research Institute (ESERI), Gong Badak Campus, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus Terengganu, Malaysia.
| | - Nor Aida Mahiddin
- East Coast Environmental Research Institute (ESERI), Gong Badak Campus, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus Terengganu, Malaysia
| | - Abdullah Al Bakky
- Agricultural wing, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.
| | - Zulhilmi Ismail
- Centre for River and Coastal Engineering (CRCE), Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Malaysia; Department of Water & Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Malaysia.
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia.
| |
Collapse
|
7
|
Li N, Yu X, Yang DP, He J. Natural polysaccharides-based smart sensors for health monitoring, diagnosis and rehabilitation: A review. Int J Biol Macromol 2025; 304:140966. [PMID: 39952503 DOI: 10.1016/j.ijbiomac.2025.140966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/27/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
With the rapid growth of multi-level health needs, precise and real-time health sensing systems have become increasingly pivotal in personal health management and disease prevention. Natural polysaccharides demonstrate immense potential in healthcare sensors by leveraging their superior biocompatibility, biodegradability, environmental sustainability, as well as diverse structural designs and surface functionalities. This review begins by introducing a variety of natural polysaccharides, including cellulose, alginates, chitosan, hyaluronic acid, and starch, and analyzing their structural and functional distinctions, which offer extensive possibilities for sensor design and construction. Further, we summarize several principal sensing mechanisms, such as piezoresistivity, piezoelectricity, capacitance, triboelectricity, and hygroelectricity, which provide a theoretical and technological foundation for developing high-performance healthcare sensing devices. Additionally, the review discusses the most recent applications of natural polysaccharide-based sensors in diverse healthcare contexts, including human body motion tracking, respiratory and heartbeat monitoring, electrophysiological signal recording, body temperature variation detection, and biomarker analysis. Finally, prospective development directions are proposed, such as the integration of artificial intelligence for real-time data analysis, the design of multifunctional devices that combine sensing with therapeutic functionalities, and advancements in remote monitoring and smart wearable technologies. This review aims to provide valuable insights into the development of next-generation healthcare sensors and propose novel research directions for personalized medicine and remote health management.
Collapse
Affiliation(s)
- Na Li
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Xiao Yu
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Da-Peng Yang
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| | - Jintao He
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China; College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
8
|
Meng W, Sun J, Wang Y, Chen Y, Wang L, Feng X, Liao X, Ying J, Gao P. Extraction and characterization of natural cellulosic fiber from the bark of the Wikstroemia monnula plant as potential reinforcement in composites. Int J Biol Macromol 2025; 308:142523. [PMID: 40147648 DOI: 10.1016/j.ijbiomac.2025.142523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/07/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
The aim of this paper is to study the possibility of using of Wikstroemia monnula (W. monnula) fibers as reinforcement in composites. The fibers are extracted from the stem bark of W. monnula plant, which are notable for their strength and length. To use these cellulosic fibers as reinforcement in composites, it is necessary to investigate their intrinsic properties. Through multi-scale characterization, the fibers demonstrate exceptional structural and functional properties. The low density (1.32 g·cm-3) combined with the fiber porosity of 49.22 %, provides lightweight advantages while reducing energy consumption during composite processing. The high cellulose content (46.25 %) and crystallinity index (63.22 %) work synergistically to enhance mechanical strength. The fibers demonstrate superior thermal stability, with a maximum degradation temperature of 345 °C and a kinetic activation energy of 94.64 kJ·mol-1, ensuring thermal resistance during processing. The fiber bundles achieve a tensile strength of 305.31 MPa and a Young's modulus of 15.76 GPa, surpassing that of conventional plant fibers. The fibers are hydrophobic, with a contact angle of 133.4°, which minimizes the risk of moisture absorption. The smooth fracture morphology eliminates sharp edges, addressing safety concerns. These findings indicate that W. monnula fiber is a potential reinforcement for composites.
Collapse
Affiliation(s)
- Wenjun Meng
- Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Jiayi Sun
- Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Yanming Wang
- Kaihua County Forestry Development Co., Ltd., Quzhou 324309, PR China
| | - Yonghui Chen
- Kaihua County Forestry Development Co., Ltd., Quzhou 324309, PR China
| | - Luqi Wang
- Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Xudong Feng
- Kaihua County Forestry Development Co., Ltd., Quzhou 324309, PR China
| | - Xiaofei Liao
- Kaihua County Forestry Development Co., Ltd., Quzhou 324309, PR China
| | - Jun Ying
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Peijun Gao
- Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, PR China.
| |
Collapse
|
9
|
Vural M, Demirel MC. Biocomposites of 2D layered materials. NANOSCALE HORIZONS 2025; 10:664-680. [PMID: 39815818 DOI: 10.1039/d4nh00530a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Molecular composites, such as bone and nacre, are everywhere in nature and play crucial roles, ranging from self-defense to carbon sequestration. Extensive research has been conducted on constructing inorganic layered materials at an atomic level inspired by natural composites. These layered materials exfoliated to 2D crystals are an emerging family of nanomaterials with extraordinary properties. These biocomposites are great for modulating electron, photon, and phonon transport in nanoelectronics and photonic devices but are challenging to translate into bulk materials. Combining 2D crystals with biomolecules enables various 2D nanocomposites with novel characteristics. This review has provided an overview of the latest biocomposites, including their structure, composition, and characterization. Layered biocomposites have the potential to improve the performance of many devices. For example, biocomposites use macromolecules to control the organization of 2D crystals, allowing for new capabilities such as flexible electronics and energy storage. Other applications of 2D biocomposites include biomedical imaging, tissue engineering, chemical and biological sensing, gas and liquid filtration, and soft robotics. However, some fundamental questions need to be answered, such as self-assembly and kinetically limited states of organic-inorganic phases in soft matter physics.
Collapse
Affiliation(s)
- Mert Vural
- Center for Research on Advanced Fiber Technologies (CRAFT), Materials Research Institute and Huck Institute of Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | - Melik C Demirel
- Center for Research on Advanced Fiber Technologies (CRAFT), Materials Research Institute and Huck Institute of Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| |
Collapse
|
10
|
Xu W, Cheng H, Zhu S, Wang C, Cheng J, Guo M, Elsheery NI, Lan X, Cheng Y. Genetic manipulation of a COBRA gene, PtrCOB11, substantially alters wood properties in poplar. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40120125 DOI: 10.1111/pbi.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/18/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025]
Affiliation(s)
- Wenjing Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Hao Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Siran Zhu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Chong Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Jiyao Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Mengjie Guo
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | | | - Xingguo Lan
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yuxiang Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
11
|
Zheng S, Sun S, Manker LP, Luterbacher JS. Aldehyde-Stabilization Strategies for Building Biobased Consumer Products around Intact lignocellulosic Structures. Acc Chem Res 2025; 58:877-892. [PMID: 40048243 DOI: 10.1021/acs.accounts.4c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Dwindling fossil resources and their associated environmental concerns have increased interest in biobased products. In particular, many approaches to convert lignocellulosic biomass into small-molecule building blocks are being explored via thermal, chemical, and biological processes. Depending on their structure, these molecules can be used as direct (i.e., drop-in) or indirect (different molecule from what is used today) substitutes for petrochemicals. In all such cases, biomass must be deconstructed, which involves the depolymerization of lignin and polysaccharides as well as their further transformation to produce these substitutes. Deconstruction often requires harsh conditions that cause degradation, and further upgrading implies multiple conversion steps, especially for drop-in molecules, all of which lead to low atom economy. Our group has developed an aldehyde-stabilization strategy that facilitates the depolymerization of lignocellulose to monomers in high yields by stabilizing intermediates under biomass deconstruction conditions. This strategy has now been adapted to prepare indirect substitutes for petrochemicals with very high atom economy including biobased solvents, plastic precursors, adhesives, and surfactants, which have widespread applications in modern society.In this Account, we first introduce the function of aldehydes using formaldehyde (FA) as an example. Specifically, we discuss their role in assisting lignin isolation and their ability to stabilize lignin by looking at the lignin monomer yields that can be obtained after hydrogenolysis of the associated aldehyde-functionalized lignin. Highly selective production of lignin monomers was achieved using acetaldehyde (AA) or propionaldehyde (PPA) as a stabilization reagent via either reductive or oxidative depolymerization. In a typical FA-assisted fractionation, hemicellulose was directly converted into diformylxylose (DFX), while cellulose with properties similar to those obtained by organosolv was isolated but could be converted to diformyl-glucose isomers (DFGs) by further hydrolysis. These stable molecules provide us a new method to preserve sugar molecules that often degrade during acidic fractionation, which will be discussed in Section 3. Besides, DFX can also be used as a green solvent (Section 4), while FA-lignin exhibits excellent adhesion properties for plywood preparation (Section 5). Biobased glyoxylic acid (GA) was used to convert hemicellulose into a high yield of dimethylglyoxylic-acid-xylose (DMGX), a terephthalic acid (TA) substitute for bioplastics production (Section 6), while GA-lignin demonstrates great amphiphilic properties and finds applications as surfactants in cosmetic products (Section 7). When fatty aldehydes were used as stabilization reagents, both lignin and hemicellulose were converted to surfactants by downstream defunctionalization (Section 7). We will also discuss the current limitations of this aldehyde-stabilization strategy for biomass utilization as well as potential solutions and improvements to said limitations. With this Account, we hope to spur further interest in aldehyde stabilization as a tool to deconstruct biomass and build new consumer products around functionalized and thus largely preserved natural structures.
Collapse
Affiliation(s)
- Shasha Zheng
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Songlan Sun
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Lorenz P Manker
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Jeremy S Luterbacher
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
12
|
Bao W, Tan Y, Ying Z, Xue R, Xu X, Duan S, Lin H, Chen H. An Investigation of the Mechanical Properties of Ti Films Reinforced with Wood Composites by Growing Ti Particles on a Wood Substrate. Polymers (Basel) 2025; 17:583. [PMID: 40076075 PMCID: PMC11902493 DOI: 10.3390/polym17050583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Table tennis racquet blades (TTRBs) are specialized wood materials known for their excellent mechanical properties. As one of the widely used physical vapor deposition technologies, magnetron sputtering has become the most effective method for preparing various thin film materials. In this study, the surface of the TTRB is coated with a Ti film with different thicknesses by magnetron sputtering to improve the performance of the TTRB. The surface roughness, crystal structure, viscoelasticity of the TTRB were analyzed by means of non-contact surface profilometry, X-ray diffraction (XRD), and dynamic mechanical analysis (DMA). In order to effectively test TTRB properties, three types of testing devices were designed, including free-fall rebound, laser vibration measurement, and the dynamic rebound test. The results reveal that the deposition of a Ti film on the surface of the TTRB improves the rigidity and rebound efficiency of the TTRB. Under optimized conditions, the initial amplitude, vertical rebound distance, and rebound rate can reach 2.1 μm, 23.7 cm, 13.7%, respectively, when the deposition thickness is 5 μm. It is anticipated that the modification and the corresponding detection methods developed in this study can foster innovative product development, standardize the TTRB industry, and contribute to the advancement of table tennis.
Collapse
Affiliation(s)
- Wenhui Bao
- College of Architecture and Energy Engineering, Wenzhou University of Technology, Wenzhou 325035, China; (W.B.); (H.L.)
- Wenzhou Key Laboratory of Intelligent Lifeline Protection and Emergency Technology for Resilient City, Wenzhou 325035, China
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin 150040, China
| | - Yini Tan
- College of Architecture and Energy Engineering, Wenzhou University of Technology, Wenzhou 325035, China; (W.B.); (H.L.)
| | - Ziyi Ying
- College of Architecture and Energy Engineering, Wenzhou University of Technology, Wenzhou 325035, China; (W.B.); (H.L.)
| | - Rui Xue
- College of Architecture and Energy Engineering, Wenzhou University of Technology, Wenzhou 325035, China; (W.B.); (H.L.)
| | - Xiaojiang Xu
- College of Architecture and Energy Engineering, Wenzhou University of Technology, Wenzhou 325035, China; (W.B.); (H.L.)
| | - Shuangping Duan
- College of Architecture and Energy Engineering, Wenzhou University of Technology, Wenzhou 325035, China; (W.B.); (H.L.)
- Wenzhou Key Laboratory of Intelligent Lifeline Protection and Emergency Technology for Resilient City, Wenzhou 325035, China
| | - Haizhuan Lin
- College of Architecture and Energy Engineering, Wenzhou University of Technology, Wenzhou 325035, China; (W.B.); (H.L.)
- Wenzhou Key Laboratory of Intelligent Lifeline Protection and Emergency Technology for Resilient City, Wenzhou 325035, China
| | - Hui Chen
- College of Architecture and Energy Engineering, Wenzhou University of Technology, Wenzhou 325035, China; (W.B.); (H.L.)
- Wenzhou Key Laboratory of Intelligent Lifeline Protection and Emergency Technology for Resilient City, Wenzhou 325035, China
| |
Collapse
|
13
|
Do TA, Phung Thi AT, Le TH, Do Van D, Nguyen Kim T, Nguyen QV. Cellulose Nanomaterials Functionalized with Carboxylic Group Extracted from Lignocellulosic Agricultural Waste: Isolation and Cu(II) Adsorption for Antimicrobial Application. ACS OMEGA 2025; 10:6234-6243. [PMID: 39989824 PMCID: PMC11840778 DOI: 10.1021/acsomega.4c11464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
Abstract
In this study, we reported the isolation of COOH-functionalized nanocrystal cellulose from agricultural waste, particularly dragon fruit foliage (DFF), by two methods, the citric acid/HCl acid (CA) method and the (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO)-mediated oxidation method. Chemical component quantification and physiochemical characterization techniques, such as FT-IR spectroscopy, XRD, TGA, XPS, and AFM, were employed to analyze DFF, bleached cellulose, and extracted CNs. We determined the contents of lignin and hemicellulose removed, while the signals for the cellulose contents remain the same for DFF-CA and DFF-TEMPO. The DLS, AFM, and SEM results indicated that the DFF-CA sample has a smaller average particle size (250 ± 50 nm) with a rod-like shape, compared to the DFF-TEMPO sample (600 ± 100 nm) with a fiber-like shape. Importantly, CNs extracted from DFF, including DFF-TEMPO, DFF-CA, and DFF-bleached, exhibited excellent properties for Cu (II) adsorption with a maximum adsorption of 227 mg·g-1 (for DFF-CA samples), and the adsorption is almost independent of the -COOH content. Notably, we were also able to prepare Cu-containing cellulose gels showing promising antimicrobial activity. Our work opens new possibilities for the use of unexplored cellulosic byproducts in the agricultural industry as well as potential applications of Cu-containing cellulose gels as antimicrobials.
Collapse
Affiliation(s)
- Thai Anh Do
- Department
of Advanced Materials Science and Nanotechnology, University of Science and Technology of Hanoi (USTH), Vietnam Academy
of Science and Technology, 18 Hoang Quoc Viet, Cau Giay,11307 Hanoi, Vietnam
| | - Anh Tuyet Phung Thi
- Institute
of Chemistry, Vietnam Academy of Science
and Technology, 18 Hoang Quoc Viet, Cau Giay,11307 Hanoi, Vietnam
| | - Thi Huong Le
- Department
of Advanced Materials Science and Nanotechnology, University of Science and Technology of Hanoi (USTH), Vietnam Academy
of Science and Technology, 18 Hoang Quoc Viet, Cau Giay,11307 Hanoi, Vietnam
| | - Dang Do Van
- Faculty
of Chemistry, University of Science, 19 Le Thanh Tong, Hoan Kiem ,11021 Hanoi, Vietnam
| | - Thoa Nguyen Kim
- Institute
of Biotechnology, Vietnam Academy of Science
and Technology, 18 Hoang Quoc Viet, Cau Giay, 11307 Hanoi, Vietnam
| | - Quyen Van Nguyen
- Department
of Advanced Materials Science and Nanotechnology, University of Science and Technology of Hanoi (USTH), Vietnam Academy
of Science and Technology, 18 Hoang Quoc Viet, Cau Giay,11307 Hanoi, Vietnam
| |
Collapse
|
14
|
Zong S, Feng C, Lei F, Zhu L, Jiang J, Duan J. Construction of Nanocellulose Aerogels with Environmental Drying Strategy without Organic Solvent Displacement for High-Efficiency Solar Steam Generation. ACS NANO 2025; 19:5305-5315. [PMID: 39882760 DOI: 10.1021/acsnano.4c12228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Solar desalination is one of the effective means to alleviate water scarcity, in which aerogel-like evaporators have attracted extensive attention in the field of efficient desalination. However, the current preparation methods for aerogels still mainly rely on high-cost solutions, such as freeze-drying or supercritical drying. Herein, a preparation scheme for aerogels that can be realized under atmospheric pressure conditions is reported. In this paper, a foam skeleton template (FST) strategy is proposed, in which flake graphite is entangled by cellulose nanofibers (CNFs) and codispersed between the foam cell walls, and subsequently connected with the nascent Ca2+ in the inner wall to form a tough and stable three-dimensional network structure, which can effectively avoid the structural collapse caused by atmospheric drying. The cellulose/graphite aerogel (CGA) prepared using the FST strategy possesses lightweight (36 mg cm-3) and porous (porosity >97%) properties. The 3D porous structure and wetting characteristics of the CGA provided excellent energy management, rapid water transport capability, and a reduced enthalpy of evaporation, which enabled it to achieve a fast water evaporation rate of 3.8 kg m-2 h-1 with 98.4% energy efficiency. This FST strategy provides a solution for the low-cost development of aerogel and desalination.
Collapse
Affiliation(s)
- Shiyu Zong
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Chi Feng
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Fuhou Lei
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Liwei Zhu
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Jiufang Duan
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
15
|
Turossi TC, Júnior HLO, Monticeli FM, Dias OT, Zattera AJ. Cellulose-Derived Battery Separators: A Minireview on Advances Towards Environmental Sustainability. Polymers (Basel) 2025; 17:456. [PMID: 40006118 PMCID: PMC11859250 DOI: 10.3390/polym17040456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Cellulose-derived battery separators have emerged as a viable sustainable alternative to conventional synthetic materials like polypropylene and polyethylene. Sourced from renewable and biodegradable materials, cellulose derivatives-such as nanofibers, nanocrystals, cellulose acetate, bacterial cellulose, and regenerated cellulose-exhibit a reduced environmental footprint while enhancing battery safety and performance. One of the key advantages of cellulose is its ability to act as a hybrid separator, using its unique properties to improve the performance and durability of battery systems. These separators can consist of cellulose particles combined with supporting polymers, or even a pure cellulose membrane enhanced by the incorporation of additives. Nevertheless, the manufacturing of cellulose separators encounters obstacles due to the constraints of existing production techniques, including electrospinning, vacuum filtration, and phase inversion. Although these methods are effective, they pose challenges for large-scale industrial application. This review examines the characteristics of cellulose and its derivatives, alongside various processing techniques for fabricating separators and assessing their efficacy in battery applications. Additionally, it will consider the environmental implications and the primary challenges and opportunities associated with the use of cellulose separators in energy storage systems. Ultimately, the review underscores the significance of cellulose-based battery separators as a promising approach that aligns with the increasing demand for sustainable technologies in the energy storage domain.
Collapse
Affiliation(s)
- Tayse Circe Turossi
- Post-Graduate in Process Engineering and Technologies Program, University of Caxias do Sul, Francisco Getúlio Vargas St., Caxias do Sul 1130, RS, Brazil; (T.C.T.); (H.L.O.J.); (A.J.Z.)
| | - Heitor Luiz Ornaghi Júnior
- Post-Graduate in Process Engineering and Technologies Program, University of Caxias do Sul, Francisco Getúlio Vargas St., Caxias do Sul 1130, RS, Brazil; (T.C.T.); (H.L.O.J.); (A.J.Z.)
| | - Francisco Maciel Monticeli
- Department of Aerospace Structures and Materials, Faculty of Aerospace Engineering, Delft University of Technology, 2629 HS Delft, The Netherlands
| | - Otávio Titton Dias
- Centre for Biocomposites and Biomaterials Processing, Faculty of Forestry, University of Toronto, WillCocks St., 33, Toronto, ON M5S 3B3, Canada;
| | - Ademir José Zattera
- Post-Graduate in Process Engineering and Technologies Program, University of Caxias do Sul, Francisco Getúlio Vargas St., Caxias do Sul 1130, RS, Brazil; (T.C.T.); (H.L.O.J.); (A.J.Z.)
| |
Collapse
|
16
|
Wei P, Zhang Z, Cheng S, Meng Y, Tong M, Emu L, Yan W, Zhang Y, Wang Y, Zhao J, Xu C, Zhai F, Lu J, Wang L, Jiang H. Biodegradable origami enables closed-loop sustainable robotic systems. SCIENCE ADVANCES 2025; 11:eads0217. [PMID: 39919175 PMCID: PMC11804903 DOI: 10.1126/sciadv.ads0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/09/2025] [Indexed: 02/09/2025]
Abstract
Robots are increasingly integral across various sectors due to their efficiency and superior capabilities, which enable performance beyond human potential. However, the development of robotic systems often conflicts with the sustainable development goals set by the United Nations, as they generate considerable nondegradable waste and organic/inorganic pollutants throughout their life cycle. In this paper, we introduce a dual closed-loop robotic system that integrates biodegradable, sustainable materials such as plasticized cellulose films and NaCl-infused ionic conductive gelatin organogels. These materials undergo a closed-loop ecological cycle from processing to biodegradation, contributing to new growth, while the self-sensing, origami-based robot supports a seamless human-in-the-loop teleoperation system. This innovative approach represents a paradigm shift in the application of soft robotic systems, offering a path toward a more sustainable future by aligning advanced robotic functionalities with environmental stewardship.
Collapse
Affiliation(s)
- Pingdong Wei
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Zhuang Zhang
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Shaoru Cheng
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Yao Meng
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Mengjie Tong
- College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang 321000, China
| | - Luoqian Emu
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Wei Yan
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Yanlin Zhang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Yunjie Wang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Jingyang Zhao
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Changyu Xu
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Feng Zhai
- College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang 321000, China
| | - Junqiang Lu
- School of Mathematics Information, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Lei Wang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
- Zhejiang Key Laboratory of Low-Carbon Intelligent Synthetic Biology, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Hanqing Jiang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| |
Collapse
|
17
|
Hu W, Liu H, Fan X, Tian X, Pang L. Nitrogen-Doped Porous Nanofiber Aerogel-Encapsulated Staphylo-Ni 3S 2 Accelerating Polysulfide Conversion for Efficient Li-S Batteries. ACS APPLIED MATERIALS & INTERFACES 2025; 17:6304-6314. [PMID: 39828995 DOI: 10.1021/acsami.4c18229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The low conductivity of sulfur substances and the fussy effect of lithium polysulfides (LPS) limit the practical application of lithium-sulfur batteries (LSBs). In this work, Ni3S2 is in situ synthesized on N-doped 3D carbon nanofibers with an optimized pore structure as a cathode material for LSBs. The conductive carbon nanofiber skeleton with a hierarchical (micropore-mesopore-macropore) structure etched by Cd2+ can reduce the interface resistance of the cathode and remiss volume expansion during charge-discharge progress. The Ni was vulcanized and nitrogen-doped successively during the annealing process. In addition, the polar Ni3S2 and N-doped carbon structure can promote the catalytic conversion of LPS and regulate the 3D nucleation of Li2S, which could reduce the reaction energy barrier. Therefore, the NCF-Cd-Ni3S2-NC cathode can maintain a high initial capacity (1080.2 mAh g-1) and excellent stability at 0.1C. This work provides an important basis for the synthesis of high efficiency and inexpensive cathode carrier materials for LSBs.
Collapse
Affiliation(s)
- Weihang Hu
- College of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xian 710021, China
| | - Hui Liu
- College of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xian 710021, China
| | - Xiuyi Fan
- College of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xian 710021, China
| | - Xin Tian
- College of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xian 710021, China
| | - Lingyan Pang
- College of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xian 710021, China
| |
Collapse
|
18
|
Lu Q, Yang C, Xu Y, Jiang Z, Ke D, Meng R, Hu S, Chen Y, Zhang C, Yang J, Zhou T. Controllable reconstruction of lignified biomass with molecular scissors to form carbon frameworks for highly stable Li metal batteries. Chem Sci 2025; 16:1791-1801. [PMID: 39720146 PMCID: PMC11664423 DOI: 10.1039/d4sc07374f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024] Open
Abstract
Lithium metal batteries (LMBs) promise high-energy-density storage but face safety issues due to dendrite-induced lithium deposition, irreversible electrolyte consumption, and large volume changes, which hinder their practical applications. To address these issues, tuning lithium deposition by structuring a host for the lithium metal anode has been recognized as an efficient method. Herein, we report a supercritical water molecular scissor-controlled strategy to form a carbon framework derived from biomass wood. Proximate-supercritical water treatment is used to selectively cleave the β-O-4 bonds in lignin, with the extent of degradation controlled by adjusting the treatment environment's acidity. The enhanced thermal power of supercritical water molecules significantly accelerates the etching rate of lignin, increasing the porosity and permeability of the transformed carbon framework. Experimental results and multi-physics simulations show that the interconnected carbon-based pores and inner skeletal multilevel hierarchical structure facilitate rapid electron and ion transfer during battery operation and enhance electrolyte infiltration. Impressively, the as-obtained lithium metal anode exhibits long-term cycling stability for over 2000 hours at 0.5 mA cm-2 with low voltage overpotential. The water-treated Pinus (WTP)-Li//LiCoO2 full cells maintain a high capacity retention rate of 93.3% and a specific capacity of 142 mA h g-1 at 0.5C for 100 cycles.
Collapse
Affiliation(s)
- Qi Lu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Chenyu Yang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Yang Xu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Zhan Jiang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Da Ke
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Runze Meng
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Sijiang Hu
- Guangxi Key Laboratory of Low Carbon Energy Material, Guangxi Normal University Guilin 541004 China
| | - Yuanzhen Chen
- The State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Chaofeng Zhang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Tengfei Zhou
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| |
Collapse
|
19
|
Sun S, Hao S, Liu Y, Sun S, Xu Y, Jiang M, Shao C, Wen J, Sun R. Mechanically Resilient, Self-Healing, and Environmentally Adaptable Eutectogel-Based Triboelectric Nanogenerators for All-Weather Energy Harvesting and Human-Machine Interaction. ACS NANO 2025; 19:811-825. [PMID: 39700480 DOI: 10.1021/acsnano.4c12130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Triboelectric nanogenerators (TENGs) have garnered significant attention for mechanical energy harvesting, self-powered sensing, and human-machine interaction. However, their performance is often constrained by materials that lack sufficient mechanical robustness, self-healing capability, and adaptability to environmental extremes. Eutectogels, with their inherent ionic conductivity, thermal stability, and sustainability, offer an appealing alternative as flexible TENG electrodes, yet they typically suffer from weak damage endurance and insufficient self-healing capability. To overcome these challenges, here, we introduce an internal-external dual reinforcement strategy (IEDRS) that enhances internal bonding dynamics within the eutectogel matrix, composed of glycidyl methacrylate and deep eutectic solvent, and integrates plant-derived lignin as an external reinforcer. Notably, the resultant eutectogel, named GLCL, exhibits appealing collection merits including superior mechanical robustness (1.53 MPa tensile stress and 1.85 MJ/m3 toughness), ultrastrong adhesion (4.76 MPa), high self-healing efficiency (84.7%), and significant environmental adaptability (-40 to 100 °C). These improvements ensure that the assembled triboelectric nanogenerator (GLCL-TENG) produces stable and robust electrical outputs, maintained even under dynamic and postdamage conditions. Additionally, the GLCL-TENG exhibits significant extreme environmental tolerance and durability, maintaining high and consistent electrical outputs over a wide temperature range (-40 to 100 °C) and throughout 10,000 cycles of repeated contact-separation. Leveraging these robust performances, the GLCL-TENG excels in all-weather biomechanical energy harvesting and accurate individual motion detection and functions as a self-powered interface for wireless vehicular control. This work presents a viable material design strategy for developing tough and self-healing eutectogel electrodes, emphasizing the potential application of TENGs in all-weather smart vehicles.
Collapse
Affiliation(s)
- Shaochao Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing100083, P. R. China
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian116034, P. R. China
| | - Sanwei Hao
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing100083, P. R. China
| | - Yongquan Liu
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian116034, P. R. China
| | - Shaofei Sun
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian116034, P. R. China
| | - Ying Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing100083, P. R. China
| | - Ming Jiang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei230601, P. R. China
| | - Changyou Shao
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian116034, P. R. China
| | - Jialong Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing100083, P. R. China
| | - Runcang Sun
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian116034, P. R. China
| |
Collapse
|
20
|
Korotcenkov G. Paper-Based Sensors: Fantasy or Reality? NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:89. [PMID: 39852704 PMCID: PMC11767538 DOI: 10.3390/nano15020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025]
Abstract
This article analyzes the prospects for the appearance of paper-based sensors on the sensor market. It is concluded that paper-based sensors are not a fantasy but a reality. It is shown that paper has properties that make it possible to develop a wide variety of paper-based sensors, such as SERS, colorimetric, fluorescent, conductometric, capacitive, fiber-optic, electrochemical, microfluidic, shape-deformation, microwave, and various physical sensors. The use of paper in the manufacturing of various sensors opens up new possibilities both in terms of new approaches to their manufacturing and in terms of new areas of their application. However, it must be recognized that for the widespread use of paper and the appearance of paper-based sensors on the sensor market, many obstacles must be overcome.
Collapse
Affiliation(s)
- Ghenadii Korotcenkov
- Department of Physics and Engineering, Moldova State University, MD-2009 Chisinau, Moldova
| |
Collapse
|
21
|
Yang L, Wang H, Yang Y, Li Y. Self-healing cellulose-based hydrogels: From molecular design to multifarious applications. Carbohydr Polym 2025; 347:122738. [PMID: 39486967 DOI: 10.1016/j.carbpol.2024.122738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 11/04/2024]
Abstract
Self-healing cellulose-based hydrogels (SHCHs) exhibit wide-ranging potential applications in the fields of biomedicine, environmental management, energy storage, and smart materials due to their unique physicochemical properties and biocompatibility. This review delves into the molecular design principles, performance characteristics, and diverse applications of SHCHs. Firstly, the molecular structure and physicochemical properties of cellulose are analyzed, along with strategies for achieving self-healing properties through molecular design, with particular emphasis on the importance of self-healing mechanisms. Subsequently, methods for optimizing the performance of SHCHs through chemical modification, composite reinforcement, stimulus responsiveness, and functional integration technologies are discussed in detail. Furthermore, applications of SHCHs in drug delivery, tissue engineering, wound healing, smart sensing, supercapacitors, electronic circuits, anti-counterfeiting systems, oil/water separation, and food packaging are explored. Finally, future research directions for SHCHs are outlined, including the innovative development of new SHCHs, in-depth elucidation of cooperative strengthening mechanisms, a further expansion of application scope, and the establishment of intelligent systems. This review provides researchers with a comprehensive overview of SHCHs and serves as a reference and guide for future research and development.
Collapse
Affiliation(s)
- Liang Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Hong Wang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China.
| | - Yanning Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Yanpeng Li
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| |
Collapse
|
22
|
Asadian E, Abbaszadeh S, Ghorbani-Bidkorpeh F, Rezaei S, Xiao B, Santos HA, Shahbazi MA. Hijacking plant skeletons for biomedical applications: from regenerative medicine and drug delivery to biosensing. Biomater Sci 2024; 13:9-92. [PMID: 39534968 DOI: 10.1039/d4bm00982g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The field of biomedical engineering continually seeks innovative technologies to address complex healthcare challenges, ranging from tissue regeneration to drug delivery and biosensing. Plant skeletons offer promising opportunities for these applications due to their unique hierarchical structures, desirable porosity, inherent biocompatibility, and adjustable mechanical properties. This review comprehensively discusses chemical principles underlying the utilization of plant-based scaffolds in biomedical engineering. Highlighting their structural integrity, tunable properties, and possibility of chemical modification, the review explores diverse preparation strategies to tailor plant skeleton properties for bone, neural, cardiovascular, skeletal muscle, and tendon tissue engineering. Such applications stem from the cellulosic three-dimensional structure of different parts of plants, which can mimic the complexity of native tissues and extracellular matrices, providing an ideal environment for cell adhesion, proliferation, and differentiation. We also discuss the application of plant skeletons as carriers for drug delivery due to their structural diversity and versatility in encapsulating and releasing therapeutic agents with controlled kinetics. Furthermore, we present the emerging role played by plant-derived materials in biosensor development for diagnostic and monitoring purposes. Challenges and future directions in the field are also discussed, offering insights into the opportunities for future translation of sustainable plant-based technologies to address critical healthcare needs.
Collapse
Affiliation(s)
- Elham Asadian
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, 19689-17313, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 19689-17313, Tehran, Iran
| | - Samin Abbaszadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatemeh Ghorbani-Bidkorpeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saman Rezaei
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Bo Xiao
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands.
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands.
| |
Collapse
|
23
|
Tran VC, Mastantuoni G, Garemark J, Dreimol CH, Wang X, Berggren M, Zhou Q, Kroon R, Engquist I. Interconnecting EDOT-Based Polymers with Native Lignin toward Enhanced Charge Storage in Conductive Wood. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68416-68425. [PMID: 39625283 DOI: 10.1021/acsami.4c16298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The 3D micro- and nanostructure of wood has extensively been employed as a template for cost-effective and renewable electronic technologies. However, other electroactive components, in particular native lignin, have been overlooked due to the absence of an approach that allows access of the lignin through the cell wall. In this study, we introduce an approach that focuses on establishing conjugated-polymer-based electrical connections at various length scales within the wood structure, aiming to leverage the charge storage capacity of native lignin in wood-based energy storage electrodes. We demonstrate that poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) PEDOT/PSS, integrated within the cell wall lumen, can be interfaced with native lignin through the wood cell wall through in situ polymerization of a water-soluble S-EDOT monomer. This approach increases the capacitance of the conductive wood to 315 mF cm-2 at a scan rate of 5 mV s-1, which is seven and, respectively, two times higher compared to the capacitance of conductive wood made with the single components PEDOT/PSS or S-PEDOT. Moreover, we show that the capacitance is contributed by both the electroactive polymers and native lignin, with native lignin accounting for over 70% of the total charge storage capacity. We show that accessing native lignin through in situ creation of electrical interconnections within the wood structure offers a pathway toward sustainable, wood-based electrodes with improved charge-storage capacity for applications in electronics and energy storage.
Collapse
Affiliation(s)
- Van Chinh Tran
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Gabriella Mastantuoni
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden
- Wallenberg Wood Science Center, Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Jonas Garemark
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Christopher H Dreimol
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093 Zürich, Switzerland
- Cellulose & Wood Materials Laboratory, Empa, 8600 Dübendorf, Switzerland
| | - Xin Wang
- Division Digital Systems, Department Smart Hardware, Unit Bio- and Organic Electronics, RISE Research Institutes of Sweden, 602 33, Norrköping, Sweden
- Digital Cellulose Center, RISE, 602 33 Norrköping, Sweden
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
- Wallenberg Initiative Material Science for Sustainability, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
| | - Qi Zhou
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden
- Wallenberg Wood Science Center, Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Renee Kroon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
| | - Isak Engquist
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
| |
Collapse
|
24
|
Liza AA, Wang S, Zhu Y, Wu H, Guo L, Qi Y, Zhang F, Song J, Ren H, Guo J. Ultraviolet (UV) assisted fabrication and characterization of lignin containing cellulose nanofibrils (LCNFs) from wood residues. Int J Biol Macromol 2024; 283:137973. [PMID: 39581419 DOI: 10.1016/j.ijbiomac.2024.137973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/28/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
This study aimed to explore the synergistic mechanism of lignin chromophore modifications via UV treatment and to analyze the effects of mechanical treatments on LCNF properties for future uses. The procedure involved two steps: first, lignin's chromophore modification via UV illumination, and then the ball milling process was proceeded for 1 h, followed by high-intensity ultrasonic for 15-135 min. Characterization included preserved lignin content percentage, FTIR, UV-vis NMR, and color analysis for UV-modified samples, and to access the influence of mechanical treatment on LCNF samples further yield, zeta potential analysis, XRD, thermogravimetric analysis, atomic force microscopy, and scanning electron microscopy were performed. LCNFs S-120 demonstrated a zeta potential of -21.7 mV, indicating enhanced stability compared to the S-135 sample (-10.95 mV). The S-120 sample also showed the highest yield (74.02 %) and TGA at 391 °C. In XRD analysis, the S-120 sample demonstrated the highest CrI 64.3 %, than the S-15 sample (48.2 %). Preserved lignin in the LCNFs led to a slight reduction in crystallinity across all samples but improved thermal stability for all the prepared LCNFs samples. The UV and ultrasonication improved the homogeneity and durability of the LCNF samples, enabling a process that may be used to industries.
Collapse
Affiliation(s)
- Afroza Akter Liza
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Provincial Key Lab of Sustainable Pulp and Paper Technology and Biomass Materials and College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shihao Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yanchen Zhu
- Jiangsu Provincial Key Lab of Sustainable Pulp and Paper Technology and Biomass Materials and College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hao Wu
- Jiangsu Provincial Key Lab of Sustainable Pulp and Paper Technology and Biomass Materials and College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Lukuan Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yungeng Qi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; Liaoning Key Lab of Lignocellulose Chemistry and Bio Materials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd., Shandong Yellow Triangle Biotechnology Industry Research Institute Co. LTD, Dongying 257000, China
| | - Junlong Song
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Hao Ren
- Jiangsu Provincial Key Lab of Sustainable Pulp and Paper Technology and Biomass Materials and College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Provincial Key Lab of Sustainable Pulp and Paper Technology and Biomass Materials and College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
25
|
Yan G, Hu X, Miao Z, Liu Y, Zeng X, Lin L, Ikkala O, Peng B. Alphabet Handwriting Recognition: From Wood-Framed Hydrogel Arrays Design to Machine Learning Decoding. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404437. [PMID: 39494625 DOI: 10.1002/advs.202404437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/10/2024] [Indexed: 11/05/2024]
Abstract
Handwriting recognition is a highly integrated system, demanding hardware to collect handwriting signals and software to deal with input data. Nonetheless, the design of such a system from scratch with sustainable materials and an easily accessible computing network presents significant challenges. In pursuit of this goal, a flexible, and electrically conductive wood-derived hydrogel array is developed as a handwriting input panel, enabling recognizing alphabet handwriting assisted by machine learning technique. For this, lignin extraction-refill, polypyrrole coating, and polyacrylic acid filling, endowing flexibility, and electrical conduction to wood are sequentially implemented. Subsequently, these woods are manufactured into a 5 × 5 array, creating a matrix of signals upon handwriting. Efficient handwritten recognition is then achieved through appropriate manual feature extraction and algorithms with low complexity within a computing network, as demonstrated in this work, the strategic choice of expertise-based feature engineering and simplified algorithms effectively boost the overall model performance on handwriting recognition. With potential adaptability, further applications in customized wearable devices and hands-on healthcare appliances are envisioned.
Collapse
Affiliation(s)
- Guihua Yan
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China
- Department of Applied Physics, Aalto University, Aalto, FI-00076, Finland
- College of Energy, Xiamen University, Xiamen, 361102, China
| | - Xichen Hu
- Department of Applied Physics, Aalto University, Aalto, FI-00076, Finland
- Department of Materials Science, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai, 200433, China
| | - Ziyue Miao
- Department of Applied Physics, Aalto University, Aalto, FI-00076, Finland
- Department of Materials Science, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai, 200433, China
| | - Yongde Liu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Xianhai Zeng
- College of Energy, Xiamen University, Xiamen, 361102, China
| | - Lu Lin
- College of Energy, Xiamen University, Xiamen, 361102, China
| | - Olli Ikkala
- Department of Applied Physics, Aalto University, Aalto, FI-00076, Finland
| | - Bo Peng
- Department of Applied Physics, Aalto University, Aalto, FI-00076, Finland
- Department of Materials Science, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai, 200433, China
| |
Collapse
|
26
|
Han J, Tian Y, Jeon I. Natural and Nature-Inspired Biomaterial Additives for Metal Halide Perovskite Optoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2410327. [PMID: 39523718 DOI: 10.1002/adma.202410327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/09/2024] [Indexed: 11/16/2024]
Abstract
This comprehensive review meticulously categorizes and discusses the applications of diverse biomaterials, specifically natural and nature-inspired synthetic materials in metal halide perovskite optoelectronics. Applications range from solar cells to light-emitting diodes, photodetectors, and X-ray detectors. Emphasis is placed on the intricate interactions between bio-additives and perovskite crystals, highlighting their influence on the grain size, crystal orientation, grain boundaries, and surface passivation. This review also explores the advantages and disadvantages of each natural or nature-inspired material and their unique properties compared with conventional additives. Special attention is given to the mechanistic and functional viewpoints, showing how these biomaterials enhance device performance. Through additive engineering with ecofriendly biomaterials, defects in metal halide perovskite thin films can be effectively passivated, thus extending the photostability or in some cases mechanical flexibility of devices. This review provides valuable insights for selecting and designing next-generation biomaterial additives, offering new prospects for achieving high-performance perovskite layers and advancing the field of peorvskite- based optoelectronics.
Collapse
Affiliation(s)
- Jiye Han
- Department of Nano Engineering, Department of Nano Science and Technology, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ying Tian
- Department of Nano Engineering, Department of Nano Science and Technology, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Il Jeon
- Department of Nano Engineering, Department of Nano Science and Technology, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
27
|
Zhang J, Zhang X, Zhu Y, Chen H, Chen Z, Hu Z. Recent advances in moisture-induced electricity generation based on wood lignocellulose: Preparation, properties, and applications. Int J Biol Macromol 2024; 279:135258. [PMID: 39233166 DOI: 10.1016/j.ijbiomac.2024.135258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Moisture-induced electricity generation (MEG), which can directly harvest electricity from moisture, is considered as an effective strategy for alleviating the growing energy crisis. Recently, tremendous efforts have been devoted to developing MEG active materials from wood lignocellulose (WLC) due to its excellent properties including environmental friendliness, sustainability, and biodegradability. This review comprehensively summarizes the recent advances in MEG based on WLC (wood, cellulose, lignin, and woody biochar), covering its principles, preparation, performances, and applications. In detail, the basic working mechanisms of MEG are discussed, and the natural features of WLC and their significant advantages in the fabrication of MEG active materials are emphasized. Furthermore, the recent advances in WLC-based MEG for harvesting electrical energy from moisture are specifically discussed, together with their potential applications (sensors and power sources). Finally, the main challenges of current WLC-based MEG are presented, as well as the potential solutions or directions to develop highly efficient MEG from WLC.
Collapse
Affiliation(s)
- Jinchao Zhang
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China.
| | - Xuejin Zhang
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Yachong Zhu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Hua Chen
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Zhuo Chen
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Zhijun Hu
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China.
| |
Collapse
|
28
|
Yang P, Li Z, Zhang D, Yang K, Ling Y, Zhang T, Quan Q, Liu C, Chen W, Zhou X. MXene film electrodes with high mechanical strength, graded ion channels and high pseudocapacitive activity enabled by lignin-containing cellulose fibers. Int J Biol Macromol 2024; 279:135476. [PMID: 39260646 DOI: 10.1016/j.ijbiomac.2024.135476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Cellulose nanofiber (CNF) has been widely used in MXene film electrodes to improve its mechanical properties and rate capability for supercapacitors. However, all the above enhancements are obtained with inevitably sacrificing the capacitance, because of the non-electrochemically-active characteristic of CNF. Herein, to address this issue, lignin-containing cellulose fibers (LCNF) is innovatively used to substitute CNF. Specifically, LCNF play a role as a bridge to significantly reinforce mechanical strength of LCNF/MXene film electrode (LM) by binding the adjacent MXene nanosheets, reaching a tensile strength of 34.2 MPa. Lignin in LCNF contributes to pseudocapacitance through the reversible conversion of its quinone/hydro-quinone (Q/QH2), thus yielding an excellent capacitance of 364.4 F g-1 at 1 A g-1. Meanwhile, LCNF has different diameters in which microfibers form a loose structure for LM, nanofibers enlarge d-spacing between adjacent MXene nanosheets, and fibers self-crosslinking creates abundant pores, thus constructing graded channels to achieve an outstanding rate capability of 87 % at 15 A g-1. The fabricated supercapacitor demonstrates a large energy density of 1.8 Wh g-1 at 71.3 W g-1. This work provides a promising approach to decouple the trade-off between electrochemical performance and mechanical properties of MXene film electrodes caused by using CNF, thus obtaining high-performance supercapacitors.
Collapse
Affiliation(s)
- Pei Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Zhao Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Daotong Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Kai Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Yiying Ling
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Tao Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Qi Quan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Chaozheng Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China.
| | - Weimin Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China.
| | - Xiaoyan Zhou
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China.
| |
Collapse
|
29
|
Ling R, Lian Q, Shan L, Xiang S, Peng O, Li D, Amini A, Wang N, Yang H, Cheng C. Pristine Wood-Supported Electrodes With Intrinsic Superhydrophilic/Superaerophobic Surface Intensify Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404420. [PMID: 39308234 DOI: 10.1002/smll.202404420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/24/2024] [Indexed: 11/28/2024]
Abstract
Wood, as a renewable material, has been regarded as an emerging substrate for self-supporting electrodes in large-scale water electrolysis due to numerous merits such as rich pore structure, abundant hydroxyl groups, etc. However, poor conductivity of wood can greatly suppress the performance of wood-based electrodes. Carbonization process can improve wood's conductivity, but the loss of hydroxyl groups and the required high energy consumption are the drawbacks of such a process. Here, a facile strategy is developed to prepare pristine wood-supported electrode (Ni-NiP/W) for enhanced hydrogen evolution reaction (HER); this improves electrical conductivity of wood while retaining its excellent intrinsic properties. The preparation process involves the deposition of copper on the untreated wood followed with the loading of Ni-NiP catalyst at room temperature. Encouragingly, the Ni-NiP/W exhibits conductive and inherited pristine wood's superhydrophilic and superaerophobic properties, that effectively boost mass and charge transfer. It demonstrates high activity and excellent stability in acidic, alkali, and seawater conditions as well as high current densities of up to 2000 mA cm-2; particularly a record-low HER overpotential of 206 mV in acidic conditions at 1000 mA cm-2. This work fully unlocks the admiring potential of pristine wood as superior substrate for high-performance electrochemical electrodes.
Collapse
Affiliation(s)
- Ruihua Ling
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Qing Lian
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lianwei Shan
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Shengling Xiang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Physics and Center for Quantum Materials, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ouwen Peng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dongyang Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Abbas Amini
- Center for Infrastructure Engineering, Western Sydney University, New South Wales, 2751, Australia
| | - Ning Wang
- Department of Physics and Center for Quantum Materials, Hong Kong University of Science and Technology, Hong Kong, China
| | - Hao Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Chun Cheng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
30
|
Yuan M, Cao H, Shang S, Du J, Song Z, Liu W, Wang Q, Yang L, You Q, Cui S. One-step green synthesis of melamine-modified cellulose nanofiber composite aerogels for efficient removal of Pb(II) and Cu(II): Experiments and DFT calculations. Int J Biol Macromol 2024; 281:136305. [PMID: 39374712 DOI: 10.1016/j.ijbiomac.2024.136305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/09/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
A composite aerogel (CGMA) with high porosity (98.32 %) and multiple active sites was prepared for the adsorption of Pb(II) and Cu(II) by sol-gel combined with freeze-drying process using melamine and (3-Glycidyloxypropyl)trimethoxysilane as cellulose nanofiber modifying materials. Characterized by SEM-EDS, XPS, FTIR, BET, MIP and TG, CGMA has a hierarchical pore structure and abundant adsorption sites. At pH = 6, the adsorption reached equilibrium within 120 min, following the Pseudo second-order kinetic model and the Langmuir model, with maximum capacities of 268.1 mg/g for Pb(II) and 152.6 mg/g for Cu(II). The process was primarily governed by homogeneous chemisorption. The coexisting ion, organic matter, and water quality experiments confirmed the excellent anti-interference properties of CGMA. Competitive adsorption experiments showed that CGMA has excellent selective adsorption performance for Pb(II). After 5 cycles, Pb(II) and Cu(II) adsorption performance decreased to 79.21 % and 83.40 %, respectively. FTIR, XPS, DFT and RDG analysis showed that amino groups and oxygen-containing groups were the main sites of adsorption. CGMA forms coordination bonds and complexes with Pb(II) and Cu(II) via amine and oxygen groups and adsorbs via electron transfer, hydrogen bonding, and van der Waals forces, with Pb(II) being more selective. CGMA has good prospects for application in heavy metal ion treatment.
Collapse
Affiliation(s)
- Man Yuan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, 211800 Nanjing, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, 211800 Nanjing, China
| | - Hairun Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, 211800 Nanjing, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, 211800 Nanjing, China
| | - Sisi Shang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, 211800 Nanjing, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, 211800 Nanjing, China
| | - Jiangping Du
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, 211800 Nanjing, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, 211800 Nanjing, China
| | - Zihao Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, 211800 Nanjing, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, 211800 Nanjing, China
| | - Wei Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, 211800 Nanjing, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, 211800 Nanjing, China
| | - Qinxin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, 211800 Nanjing, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, 211800 Nanjing, China
| | - Lei Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, 211800 Nanjing, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, 211800 Nanjing, China
| | - Qi You
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, 211800 Nanjing, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, 211800 Nanjing, China
| | - Sheng Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, 211800 Nanjing, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, 211800 Nanjing, China.
| |
Collapse
|
31
|
Liu IT, Meemai P, Lin YH, Fang CJ, Huang CC, Li CY, Phisalaphong M, You JL, Tung SH, Balaji R, Liao YC. Bacterial cellulose materials in sustainable energy devices: A review. Int J Biol Macromol 2024; 281:135804. [PMID: 39414529 DOI: 10.1016/j.ijbiomac.2024.135804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/18/2024]
Abstract
This article provides a comprehensive review of the processing and applications of bacterial cellulose (BC) for energy conversion and storage devices. These emerging technologies enable the transformation of sustainable energy sources into electricity. Once converted, energy storage devices are vital for stable energy supply. To promote green manufacturing practices in this field, bio-based materials are explored as alternative materials for energy devices, addressing the growing demand for sustainable solutions. From a research and development perspective, the materials chosen for energy devices must exhibit exceptional mechanical, electrical, and thermal properties, along with the necessary chemical reactivity to unlock new applications. Furthermore, for successful commercialization and industrialization, these materials must be suitable for large-scale production within practical timeframes. BC fulfills all of these requirements. The review begins with an overview of BC growth, detailing the composition and operating parameters of the culture medium and the design of bioreactors for large-scale production. It then defines and summarizes both in-situ and ex-situ modifications and processing strategies, offering a comprehensive perspective on these techniques. Unique and interesting properties linking BC's structure to its properties are reviewed to demonstrate its potential as a substitute for benchmark materials. The exceptional performance and synergistic effects of BC-derived hybrid materials highlight their potential for state-of-the-art applications in energy devices, and are suitable for the next-generation energy devices. The papers reviewed in this work have gained significant attention and been widely cited over the past 10 years for their relevance to various practical applications, allowing readers to have a better understanding in development of BC based materials for energy conversion and conversion devices.
Collapse
Affiliation(s)
- I-Tseng Liu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Puttakhun Meemai
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yun-Hsuan Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Jan Fang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chia-Ching Huang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Ying Li
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Muenduen Phisalaphong
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jhu-Lin You
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical & Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan 335, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ramachandran Balaji
- Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Andhra Pradesh 522302, India.
| | - Ying-Chih Liao
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
32
|
Carrascosa A, Sánchez JS, Morán-Aguilar MG, Gabriel G, Vilaseca F. Advanced Flexible Wearable Electronics from Hybrid Nanocomposites Based on Cellulose Nanofibers, PEDOT:PSS and Reduced Graphene Oxide. Polymers (Basel) 2024; 16:3035. [PMID: 39518244 PMCID: PMC11548421 DOI: 10.3390/polym16213035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 11/16/2024] Open
Abstract
The need for responsible electronics is leading to great interest in the development of new bio-based devices that are environmentally friendly. This work presents a simple and efficient process for the creation of conductive nanocomposites using renewable materials such as cellulose nanofibers (CNF) from enzymatic pretreatment, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), and/or reduced graphene oxide (rGO). Different combinations of CNF, rGo, and PEDOT:PSS were considered to generate homogeneous binary and ternary nanocomposite formulations. These formulations were characterized through SEM, Raman spectroscopy, mechanical, electrical, and electrochemical analysis. The binary formulation containing 40 wt% of PEDOT:PSS resulted in nanocomposite formulations with tensile strength, Young's modulus, and a conductivity of 70.39 MPa, 3.87 GPa, and 0.35 S/cm, respectively. The binary formulation with 15 wt% of rGO reached 86.19 MPa, 4.41 GPa, and 13.88 S/cm of the same respective properties. A synergy effect was observed for the ternary formulations between both conductive elements; these nanocomposite formulations reached 42.11 S/cm of conductivity and kept their strength as nanocomposites. The 3D design strategy provided a highly conductive network maintaining the structural integrity of CNF, which generated homogenous nanocomposites with rGO and PEDOT:PSS. These formulations can be considered as greatly promising for the next generation of low-cost, eco-friendly, and energy storage devices, such as batteries or electrochemical capacitors.
Collapse
Affiliation(s)
- Ana Carrascosa
- Polymer Materials and Composites, Department of Industrial and Materials Science, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden;
| | - Jaime S. Sánchez
- Materials and Manufacture, Department of Industrial and Materials Science, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden;
- R&D Department, China Three Gorges (Europe) S.A., C. del Príncipe de Vergara, 112, Planta 7, 28002 Madrid, Spain
| | - María Guadalupe Morán-Aguilar
- Advanced Biomaterials and Nanotechnology, Department of Chemical and Agricultural Engineering, and Agrifood Technology, University of Girona, 17003 Girona, Spain;
| | - Gemma Gabriel
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Fabiola Vilaseca
- Polymer Materials and Composites, Department of Industrial and Materials Science, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden;
- Advanced Biomaterials and Nanotechnology, Department of Chemical and Agricultural Engineering, and Agrifood Technology, University of Girona, 17003 Girona, Spain;
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Centre, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
33
|
Ma H, Liu C, Yang Z, Wu S, Jiao Y, Feng X, Xu B, Ou R, Mei C, Xu Z, Lyu J, Xie Y, Fu Q. Programmable and flexible wood-based origami electronics. Nat Commun 2024; 15:9272. [PMID: 39468092 PMCID: PMC11519615 DOI: 10.1038/s41467-024-53708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Natural polymer substrates are gaining attention as substitutes for plastic substrates in electronics, aiming to combine high performance, intricate shape deformation, and environmental sustainability. Herein, natural wood veneer is converted into a transparent wood film (TWF) substrate. The combination of 3D printing and origami technique is established to create programmable wood-based origami electronics, which exhibit superior flexibility with high tensile strength (393 MPa) due to the highly aligned cellulose fibers and the formation of numerous intermolecular hydrogen bonds between them. Moreover, the flexible TWF electronics exhibit editable multiplexed configurations and maintain stable conductivity. This is attributed to the strong adhesion between the cellulose-based ink and TWF substrate by non-covalent bonds. Benefiting from its anisotropic structure, the programmability of TWF electronics is achieved through sequentially folding into predesigned shapes. This design not only promotes environmental sustainability but also introduces its customizable shapes with potential applications in sensors, microfluidics, and wearable electronics.
Collapse
Affiliation(s)
- Huashuo Ma
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Chaozheng Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Zhi Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Shuai Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Yue Jiao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Xinhao Feng
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing, PR China
| | - Bo Xu
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Rongxian Ou
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou, PR China
| | - Changtong Mei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Zhaoyang Xu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Jianxiong Lyu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Yanjun Xie
- Engineering and Engineering Research Center of Advanced Wooden Materials, College of Materials Science and Engineering, Northeast Forestry University, Harbin, PR China.
| | - Qiliang Fu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, PR China.
- Scion, Te Papa Tipu Innovation Park, Rotorua, New Zealand.
| |
Collapse
|
34
|
Chaudhary HK, Singh P, Niveria K, Yadav M, Malik A, Verma AK. Microcrystalline cellulose and itaconic acid pH sensitive semi-interpenetrating network hydrogel for oral insulin delivery. Int J Biol Macromol 2024; 282:136804. [PMID: 39447806 DOI: 10.1016/j.ijbiomac.2024.136804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Diabetes mellitus is one of the important causes of death worldwide. Generally, a subcutaneous route is used for insulin administration, but has showen low patient compliance. Extensive research has been conducted to identify molecules capable of delivering insulin orally, for this hydrogel based on microcrystalline cellulose and itaconic acid have been produced and explored. Free radical polymerization as a technique was employed for manufacturing the hydrogels using potassium persulphate as initiator and N, N'-methylene bisacrylamide (NNMBA) as a crosslinker. These pH-sensitive exhibited a swelling capacity of up to 20.38 g/g in distilled water and also revealed stronger swelling in glucose solutions than saline solutions. The pH sensitivity of the hydrogels was confirmed by studying the swelling in different pH solutions. Alkaline solutions showed higher swelling than acidic solutions. SEM established the porous nature, and the structure was examined by FTIR analysis. Thermal degradation was examined using TGA. In-vitro release study was done by Bradford assay at 595 nm. The result was further confirmed by in-vivo investigations on male Wistar adult rats and hence is an excellent vehicle for oral insulin administration.
Collapse
Affiliation(s)
- Harish Kumar Chaudhary
- Department of Chemistry, Dyal Singh College, University of Delhi, 110003 New Delhi, India.
| | - Priyanka Singh
- Nanobiotech lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Karishma Niveria
- Nanobiotech lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Monika Yadav
- Nanobiotech lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Amita Malik
- Department of Chemistry, Dyal Singh College, University of Delhi, 110003 New Delhi, India.
| | - Anita Kamra Verma
- Nanobiotech lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi 110007, India; Fellow, Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi 11007, India.
| |
Collapse
|
35
|
Ghamari M, Sun D, Dai Y, See CH, Yu H, Edirisinghe M, Sundaram S. Valorization of diverse waste-derived nanocellulose for multifaceted applications: A review. Int J Biol Macromol 2024:136130. [PMID: 39443179 DOI: 10.1016/j.ijbiomac.2024.136130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024]
Abstract
The study underscores the urgent need for sustainable waste management by focusing on circular economy principles, government regulations, and public awareness to combat ecological threats, pollution, and climate change effects. It explores extracting nanocellulose from waste streams such as textile, paper, agricultural matter, wood, animal, and food waste, providing a detailed process framework. The emphasis is on waste-derived nanocellulose as a promising material for eco-friendly products. The research evaluates the primary mechanical and thermal properties of nanocellulose from various waste sources. For instance, cotton-derived nanocellulose has a modulus of 2.04-2.71 GPa, making it flexible for lightweight applications. Most waste-derived nanocelluloses have densities between 1550 and 1650 kg/m3, offering strong, lightweight packaging support while enhancing biodegradability and moisture control. Crystallinity influences material usage: high crystallinity is ideal for packaging (e.g., softwood, hardwood), while low crystallinity suits textiles (e.g., cotton, bamboo). Nanocelluloses exhibit excellent thermal stability above 200 °C, useful for flame-retardant coatings, insulation, and polymer reinforcement. The research provides a comprehensive guide for selecting nanocellulose materials, highlighting their potential across industries like packaging, biomedical, textiles, apparel, and electronics, promoting sustainable innovation and a more eco-conscious future.
Collapse
Affiliation(s)
- Mehrdad Ghamari
- Cybersecurity and Systems Engineering, School of Computing, Engineering and the Built Environment, Edinburgh Napier University, Merchiston Campus, Edinburgh EH10 5DT, United Kingdom
| | - Dongyang Sun
- Cybersecurity and Systems Engineering, School of Computing, Engineering and the Built Environment, Edinburgh Napier University, Merchiston Campus, Edinburgh EH10 5DT, United Kingdom
| | - Yanqi Dai
- Department of Mechanical Engineering, University College London UCL, London WC1E 7JE, United Kingdom
| | - Chan Hwang See
- Cybersecurity and Systems Engineering, School of Computing, Engineering and the Built Environment, Edinburgh Napier University, Merchiston Campus, Edinburgh EH10 5DT, United Kingdom
| | - Hongnian Yu
- Cybersecurity and Systems Engineering, School of Computing, Engineering and the Built Environment, Edinburgh Napier University, Merchiston Campus, Edinburgh EH10 5DT, United Kingdom
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London UCL, London WC1E 7JE, United Kingdom
| | - Senthilarasu Sundaram
- School of Computing, Engineering and Digital Technologies, Teesside University, Tees Valley, Middlesbrough TS1 3BX, United Kingdom.
| |
Collapse
|
36
|
Nath N, Chakroborty S, Vishwakarma DP, Goga G, Yadav AS, Mohan R. Recent advances in sustainable nature-based functional materials for biomedical sensor technologies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57289-57313. [PMID: 36857000 PMCID: PMC9975880 DOI: 10.1007/s11356-023-26135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The lightweight, low-density, and low-cost natural polymers like cellulose, chitosan, and silk have good chemical and biodegradable properties due to their individually unique structural and functional elements. However, the mechanical properties of these polymers differ from each other. In this scenario, chitosan lacks good mechanical properties than cellulose and silk. The synthesis of nano natural polymer and reinforcement with suitable chemical compounds as the development of nanocomposite gives them promising multidisciplinary applications. Many kinds of research are already published with innovative bio-derived polymeric functional materials (Bd-PFM) applications. Most research interest is carried out on health concerns. Lots of attention has been paid to biomedical applications of Bd-PFM as biosensors. This review aims to provide a glimpse of the nanostructures Bd-PFM biosensors.
Collapse
Affiliation(s)
- Nibedita Nath
- Department of Chemistry, D.S Degree College, Laida, Sambalpur, Odisha, India
| | | | | | - Geetesh Goga
- Department of Mechanical Engineering, Bharat Group of Colleges, Sardulgarh, Punjab, 151507, India
| | - Anil Singh Yadav
- Department of Mechanical Engineering, IES College of Technology, Bhopal, Madhya Pradesh, India
| | - Ravindra Mohan
- Department of Mechanical Engineering, IES College of Technology, Bhopal, Madhya Pradesh, India
| |
Collapse
|
37
|
Qureshi SS, Nizamuddin S, Xu J, Vancov T, Chen C. Cellulose nanocrystals from agriculture and forestry biomass: synthesis methods, characterization and industrial applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58745-58778. [PMID: 39340607 PMCID: PMC11513767 DOI: 10.1007/s11356-024-35127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Agricultural and forestry biomass wastes, often discarded or burned without adequate management, lead to significant environmental harm. However, cellulose nanocrystals (CNCs), derived from such biomass, have emerged as highly promising materials due to their unique properties, including high tensile strength, large surface area, biocompatibility, and renewability. This review provides a detailed analysis of the lignocellulosic composition, as well as the elemental and proximate analysis of different biomass sources. These assessments help determine the yield and characteristics of CNCs. Detailed discussion of CNC synthesis methods -ranging from biomass pretreatment to hydrolysis techniques such as acid, mineral, solid acid, ionic liquid, and enzymatic methods-are provided. The key physical, chemical, and thermal properties of CNCs are also highlighted, particularly in relation to their industrial applications. Recommendations for future research emphasize the need to optimize CNC synthesis processes, identify suitable biomass feedstocks, and explore new industrial applications.
Collapse
Affiliation(s)
- Sundus Saeed Qureshi
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan Campus, Brisbane, Queensland, 4111, Australia
- Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia
| | - Sabzoi Nizamuddin
- Water Regulation Division, Grampians Wimmera Mallee Water (GWMWater) Corporation, Horsham, Victoria, 3400, Australia
| | - Jia Xu
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan Campus, Brisbane, Queensland, 4111, Australia
- Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia
| | - Tony Vancov
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, 2568, Australia
| | - Chengrong Chen
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan Campus, Brisbane, Queensland, 4111, Australia.
- Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia.
| |
Collapse
|
38
|
Khan P, Ali S, Jan R, Kim KM. Lignin Nanoparticles: Transforming Environmental Remediation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1541. [PMID: 39330697 PMCID: PMC11435067 DOI: 10.3390/nano14181541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
In the face of escalating environmental challenges driven by human activities, the quest for innovative solutions to counter pollution, contamination, and ecological degradation has gained paramount importance. Traditional approaches to environmental remediation often fall short in addressing the complexity and scale of modern-day environmental problems. As industries transition towards sustainable paradigms, the exploration of novel materials and technologies becomes crucial. Lignin nanoparticles have emerged as a promising avenue of exploration in this context. Once considered a mere byproduct, lignin's unique properties and versatile functional groups have propelled it to the forefront of environmental remediation research. This review paper delves into the resurgence of lignin from an environmental perspective, examining its pivotal role in carbon cycling and its potential to address various environmental challenges. The paper extensively discusses the synthesis, properties, and applications of lignin nanoparticles in diverse fields such as water purification and soil remediation. Moreover, it highlights the challenges associated with nanoparticle deployment, ranging from Eco toxicological assessments to scalability issues. Multidisciplinary collaboration and integration of research findings with real-world applications are emphasized as critical factors for unlocking the transformative potential of lignin nanoparticles. Ultimately, this review underscores lignin nanoparticles as beacons of hope in the pursuit of cleaner, healthier, and more harmonious coexistence between humanity and nature through innovative environmental remediation strategies.
Collapse
Affiliation(s)
- Pirzada Khan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Rahmatullah Jan
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Min Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
39
|
Ke Z, Yu J, Liao L, Rao X. Application progress of rosin in food packaging: A review. Int J Biol Macromol 2024; 280:135900. [PMID: 39313057 DOI: 10.1016/j.ijbiomac.2024.135900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Foodborne illness caused by Gram bacteria is the most important food safety issue worldwide. Food packaging film is a very important means to extend the shelf life of food. It reduces microbial contamination and provides food safety assurance during the sales process. However, the food packaging material is derived from plastic. Most plastics are not only non-degradable but also harmful to human health. Biodegradable natural polymers are an ideal substitute, but their poor mechanical properties, hydrophilicity and weak antibacterial properties limit their applications. Rosin is an oily pine ester in the pine family, which is a natural renewable resource with a wide range of sources. It is widely used in various fields, such as surfactants, adhesives, drug loading, antibacterial, etc. However, there are only a few reports on the application of rosin in food packaging. It is worth noting that the unique hydrogenated phenanthrene ring structure of rosin can enhance the thermal stability, hydrophobicity and antibacterial properties of food packaging. More importantly, rosin has a wide range of sources, good biocompatibility, and can be degraded in nature. These advantages are conducive to the application of rosin in food packaging. However, previous reviews focused on resins, silicone rubbers and surfactants. In this review we will focus on the application of rosin in food packaging.
Collapse
Affiliation(s)
- Zhijun Ke
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, Fujian Province 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion (Huaqiao University), Xiamen, Fujian Province 361021, China
| | - Jinxuan Yu
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China
| | - Lirong Liao
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, Fujian Province 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion (Huaqiao University), Xiamen, Fujian Province 361021, China
| | - Xiaoping Rao
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, Fujian Province 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion (Huaqiao University), Xiamen, Fujian Province 361021, China.
| |
Collapse
|
40
|
Yang M, Su T, Zhao J, Gao Z, Song YY, Guo J, Zhao C. Electrochemical identification of reductive enantiomers in wood channels: A low-cost and scalable platform for chiral sensing. Anal Chim Acta 2024; 1322:342995. [PMID: 39182984 DOI: 10.1016/j.aca.2024.342995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/27/2024]
Abstract
Chirality, an inherent characteristic of natural substances (such as sugars, peptides, proteins, and nucleic acid), plays a vital role in human metabolism and exerts substantial impacts. In general, chiral drugs can display diverse pharmacological and pharmacokinetic properties. One enantiomer may exhibit therapeutic effects, while the other could cause adverse reactions. Selective recognition of enantiomers is thus a significant task in the biomolecular and pharmaceutical fields. Despite the development of several chiral identification techniques, low-cost enantioselective sensing methods remain highly desirable. Here, we designed and developed an electrochemical sensing device for reductive enantiomer identification using natural wood channels as the substrate. The wood channels were endowed with oxidase-like activity through the in-situ growth of cerium oxide nanoparticles (CeO2). Chiral recognition capability was further introduced by incorporating a layer of chiral ZIF-8 (L-ZIF) as the chiral selector. To demonstrate the enantioselective sensing performance, 3,4-dihydroxyphenylalanine (DOPA) enantiomers were employed as model analytes. Due to the oxidase-like activity and the confinement effect of the proposed channels, the captured DOPA enantiomers were effectively oxidized to their quinone structure, and the Ce(IV) in CeO2 was reduced to Ce(III). These changes led to alterations in the surface charge of the channels, thereby modulating their ionic transport properties. This sensing mechanism also proved useful for the identification of other reductive enantiomers. The limits of detection for l-DOPA and d-DOPA were determined as 2.41 nM and 1.56 nM, respectively. The resulting wood channel-based sensing device not only can be used for the recognition and detection of reductive enantiomers, but also is expected to be applied to the non-electochemically active substances. Moreover, this study offers a novel type of solid-state channel material with low cost, reproducibility, and easy accessibility for electrochemical chiral sensing.
Collapse
Affiliation(s)
- Mei Yang
- College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Tiantian Su
- College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Junjian Zhao
- College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Zhida Gao
- College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Yan-Yan Song
- College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Junli Guo
- College of Sciences, Northeastern University, Shenyang, 110819, China; Foshan Graduate School of Innovation, Northeastern University, Foshan, 528311, China.
| | - Chenxi Zhao
- School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
41
|
Surov OV, Voronova MI. Sulfuric acid solvolysis of cellulose in a butanol-1/benzene mixture for isolating cellulose nanocrystals. Int J Biol Macromol 2024; 280:135606. [PMID: 39276901 DOI: 10.1016/j.ijbiomac.2024.135606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/26/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
The absence of a universal method for isolating cellulose nanocrystals (CNCs) has prompted researchers to explore alternative approaches to traditional sulfuric acid hydrolysis. In this study, the authors continue their previous research by investigating CNC synthesis through cellulose solvolysis in an alcoholic environment. The CNCs were successfully obtained utilizing controlled sulfuric acid solvolysis of sulfate cellulose in a butanol-1/benzene mixture. The highest CNC yield (over 60 %) was achieved at strictly controlled acid-to-benzene ratios in a butanol-1/benzene/sulfuric acid reaction mixture, with a significant reduction in the optimal acid concentration. The study also analyzes the physicochemical properties of the isolated CNCs. No surface alkylation of the synthesized CNCs was observed during the cellulose solvolysis in the butanol-1/benzene mixture. Besides, the properties of these CNCs closely resembled those obtained through traditional sulfuric acid hydrolysis. The paper also discusses the potential mechanism of cellulose solvolysis in the process of CNC production.
Collapse
Affiliation(s)
- Oleg V Surov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo 153045, Russian Federation.
| | - Marina I Voronova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo 153045, Russian Federation.
| |
Collapse
|
42
|
Kumar Chaudhary H, Singh P, Niveria K, Yadav M, Malik A, Kamra Verma A. pH-sensitive semi-interpenetrating network of microcrystalline cellulose and methacrylic acid hydrogel for the oral delivery of insulin. Int J Pharm 2024; 662:124452. [PMID: 38996826 DOI: 10.1016/j.ijpharm.2024.124452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024]
Abstract
Insulin is commonly administered to diabetic patients subcutaneously and has shown poor patient compliance. Due to this, research has been carried out extensively to find molecules that could deliver insulin orally. In this context, a new type of pH-responsive hydrogel, composed of microcrystalline cellulose and methacrylic acid-based hydrogels, has been developed and studied for the oral delivery of insulin. These hydrogels were prepared by free radical polymerization using potassium persulphate as initiator and N, N'-methylenebisacrylamide as a cross-linker. These pH-sensitive hydrogels showed swelling in distilled water as high as 5800 %. The hydrogels were investigated for swelling in saline and glucose solutions, and pH sensitivity was confirmed by swelling in solutions of different pH. The morphological shape was established by SEM, and the structure was analyzed by FTIR. Thermal degradation was investigated by TGA. In vitro release studies have confirmed pH sensitivity, showing lower insulin release at pH 1.2 than at pH 6.8. The encapsulation efficiency was determined to be 56.00 ± 0.04 %. It was further validated by in-vivo investigations for which insulin was loaded into hydrogels and administered orally to healthy and diabetic Wistar rats at 40 IU/kg, showing maximum hypoglycemic effect at 6 h, which was sustained for 24 h. In the stomach's acidic environment, the gels remained unaffected due to the formation of intermolecular polymer complexes. Insulin remained in the gel and was protected from proteolytic degradation. Thus, pH-responsive methacrylic acid-based hydrogels are promising for biomedical applications, especially oral drug delivery.
Collapse
Affiliation(s)
- Harish Kumar Chaudhary
- Department of Chemistry, Dyal Singh College, University of Delhi, 110003, New Delhi, India
| | - Priyanka Singh
- Nanobiotech Lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Karishma Niveria
- Nanobiotech Lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Monika Yadav
- Nanobiotech Lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Amita Malik
- Department of Chemistry, Dyal Singh College, University of Delhi, 110003, New Delhi, India.
| | - Anita Kamra Verma
- Nanobiotech Lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi 110007, India; Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi 110007, India.
| |
Collapse
|
43
|
Mei X, Yang C, Chen F, Wang Y, Zhang Y, Man Z, Lu W, Xu J, Wu G. Interfacially Ordered NiCoMoS Nanosheets Arrays on Hierarchical Ti 3C 2T x MXene for High-Energy-Density Fiber-Shaped Supercapacitors with Accelerated Pseudocapacitive Kinetics. Angew Chem Int Ed Engl 2024; 63:e202409281. [PMID: 38837579 DOI: 10.1002/anie.202409281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Balancing electrochemical activity and structural reversibility of fibrous electrodes with accelerated Faradaic charge transfer kinetics and pseudocapacitive storage are highly crucial for fiber-shaped supercapacitors (FSCs). Herein, we report novel core-shell hierarchical fibers for high-performance FSCs, in which the ordered NiCoMoS nanosheets arrays are chemically anchored on Ti3C2Tx fibers. Beneficial from architecting stable polymetallic sulfide arrays and conductive networks, the NiCoMoS-Ti3C2Tx fiber maintains fast charge transfer, low diffusion and OH- adsorption barrier, and stabilized multi-electronic reaction kinetics of polymetallic sulfide. Consequently, the NiCoMoS-Ti3C2Tx fiber exhibits a large volumetric capacitance (2472.3 F cm-3) and reversible cycling performance (20,000 cycles). In addition, the solid-state symmetric FSCs deliver a high energy density of 50.6 mWh cm-3 and bending stability, which can significantly power electronic devices and offer sensitive detection for dopamine.
Collapse
Affiliation(s)
- Xiaotong Mei
- National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Chao Yang
- National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Fangyuan Chen
- National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Yuting Wang
- National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Yang Zhang
- National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Zengming Man
- National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Wangyang Lu
- National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Jianhong Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Guan Wu
- National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| |
Collapse
|
44
|
Xu W, Cheng H, Cheng J, Zhu S, Cui Y, Wang C, Wu J, Lan X, Cheng Y. A COBRA family protein, PtrCOB3, contributes to gelatinous layer formation of tension wood fibers in poplar. PLANT PHYSIOLOGY 2024; 196:323-337. [PMID: 38850037 DOI: 10.1093/plphys/kiae328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
Angiosperm trees usually develop tension wood (TW) in response to gravitational stimulation. TW comprises abundant gelatinous (G-) fibers with thick G-layers primarily composed of crystalline cellulose. Understanding the pivotal factors governing G-layer formation in TW fiber remains elusive. This study elucidates the role of a Populus trichocarpa COBRA family protein, PtrCOB3, in the G-layer formation of TW fibers. PtrCOB3 expression was upregulated, and its promoter activity was enhanced during TW formation. Comparative analysis with wild-type trees revealed that ptrcob3 mutants, mediated by Cas9/gRNA gene editing, were incapable of producing G-layers within TW fibers and showed severely impaired stem lift. Fluorescence immunolabeling data revealed a dearth of crystalline cellulose in the tertiary cell wall (TCW) of ptrcob3 TW fibers. The role of PtrCOB3 in G-layer formation is contingent upon its native promoter, as evidenced by the comparative phenotypic assessments of pCOB11::PtrCOB3, pCOB3::PtrCOB3, and pCOB3::PtrCOB11 transgenic lines in the ptrcob3 background. Overexpression of PtrCOB3 under the control of its native promoter expedited G-layer formation within TW fibers. We further identified 3 transcription factors that bind to the PtrCOB3 promoter and positively regulate its transcriptional levels. Alongside the primary TCW synthesis genes, these findings enable the construction of a 2-layer transcriptional regulatory network for the G-layer formation of TW fibers. Overall, this study uncovers mechanistic insight into TW formation, whereby a specific COB protein executes the deposition of cellulose, and consequently, G-layer formation within TW fibers.
Collapse
Affiliation(s)
- Wenjing Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Hao Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jiyao Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Siran Zhu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yongyao Cui
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chong Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jianzhen Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xingguo Lan
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yuxiang Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
45
|
Du J, Wang X, Sun S, Wu Y, Jiang K, Li S, Lin H. Pushing Trap-Controlled Persistent Luminescence Materials toward Multi-Responsive Smart Platforms: Recent Advances, Mechanism, and Frontier Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314083. [PMID: 39003611 DOI: 10.1002/adma.202314083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/19/2024] [Indexed: 07/15/2024]
Abstract
Smart stimuli-responsive persistent luminescence materials, combining the various advantages and frontier applications prospects, have gained booming progress in recent years. The trap-controlled property and energy storage capability to respond to external multi-stimulations through diverse luminescence pathways make them attractive in emerging multi-responsive smart platforms. This review aims at the recent advances in trap-controlled luminescence materials for advanced multi-stimuli-responsive smart platforms. The design principles, luminescence mechanisms, and representative stimulations, i.e., thermo-, photo-, mechano-, and X-rays responsiveness, are comprehensively summarized. Various emerging multi-responsive hybrid systems containing trap-controlled luminescence materials are highlighted. Specifically, temperature dependent trapping and de-trapping performance is discussed, from extreme-low temperature to ultra-high temperature conditions. Emerging applications and future perspectives are briefly presented. It is hoped that this review would provide new insights and guidelines for the rational design and performance manipulation of multi-responsive materials for advanced smart platforms.
Collapse
Affiliation(s)
- Jiaren Du
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiaomeng Wang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Shan Sun
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yongjian Wu
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Kai Jiang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Si Li
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Hengwei Lin
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| |
Collapse
|
46
|
Qian Z, Liu D, Liu D, Luo Y, Ji W, Wang Y, Chen Y, Hu R, Pan H, Wu P, Duan Y. Scalable Cathodic H 2O 2 Electrosynthesis using Cobalt-Coordinated Nanocellulose Electrocatalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403947. [PMID: 38948958 DOI: 10.1002/smll.202403947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/20/2024] [Indexed: 07/02/2024]
Abstract
Converting hierarchical biomass structure into cutting-edge architecture of electrocatalysts can effectively relieve the extreme dependency of nonrenewable fossil-fuel-resources typically suffering from low cost-effectiveness, scarce supplies, and adverse environmental impacts. A cost-effective cobalt-coordinated nanocellulose (CNF) strategy is reported for realizing a high-performance 2e-ORR electrocatalysts through molecular engineering of hybrid ZIFs-CNF architecture. By a coordination and pyrolysis process, it generates substantial oxygen-capturing active sites within the typically oxygen-insulating cellulose, promoting O2 mass and electron transfer efficiency along the nanostructured Co3O4 anchored with CNF-based biochar. The Co-CNF electrocatalyst exhibits an exceptional H2O2 electrosynthesis efficiency of ≈510.58 mg L-1 cm-2 h-1 with an exceptional superiority over the existing biochar-, or fossil-fuel-derived electrocatalysts. The combination of the electrocatalysts with stainless steel mesh serving as a dual cathode can strongly decompose regular organic pollutants (up to 99.43% removal efficiency by 30 min), showing to be a desirable approach for clean environmental remediation with sustainability, ecological safety, and high-performance.
Collapse
Affiliation(s)
- Zhiyun Qian
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Di Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Detao Liu
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Yao Luo
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Wenhao Ji
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Yan Wang
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Yonghao Chen
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Rui Hu
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Peilin Wu
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Yulong Duan
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| |
Collapse
|
47
|
Tiwari S, Ghosh T, Kandpal S, Saxena S, Kumar R, Prakash R, Chaudhary A. Utilizing Natural Materials in Electronic Devices: Inching Toward "Herbal Electronics". ACS APPLIED BIO MATERIALS 2024; 7:5107-5120. [PMID: 38980821 DOI: 10.1021/acsabm.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Sustainable development is the primary key to address global energy challenges. Though the scientific community is engaged in developing efficient ways to not only maximize energy production from natural resources like sun, wind, water, etc. but also to make all the electronic gadgets power efficient, despite all this, the materials used in most of the electronic devices are largely produced using various materials processing techniques and semiconductors, polymers, dielectrics, etc. which again increases the burden on energy and in turn affects the environment. While addressing these challenges, it is very important to explore the possibility to directly, or with minimum processing, utilize the potential of natural resources in the development of electronic devices. Recent articles are focused on the development of herbal electronic devices that essentially implement natural resources, like plants, leaves, etc., either in their raw or extracted form in the device assembly. This review encompasses the recent research developments around herbal electronic devices. Furthermore, herbal electronics has been discussed for several functional applications including electrochromism, energy storage, memresistor, LED, solar cell, water purification, pressure sensor, etc. Moreover, advantages, disadvantages, and challenges encountered in the realization of "herbal electronics" have been discussed at length.
Collapse
Affiliation(s)
- Soumya Tiwari
- Department of Physics, Indian Institute of Technology Bhilai, Bhilai, Chhattisgarh 491002, India
| | - Tanushree Ghosh
- Materials and Device Laboratory, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Suchita Kandpal
- Materials and Device Laboratory, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Shailendra Saxena
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Chennai, 603203 Tamil Nadu, India
| | - Rajesh Kumar
- Materials and Device Laboratory, Indian Institute of Technology Indore, Simrol, Indore 453552, India
- Centre for Advanced Electronics, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Rajiv Prakash
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Bhilai, Bhilai, Chhattisgarh 491002, India
| | - Anjali Chaudhary
- Department of Physics, Indian Institute of Technology Bhilai, Bhilai, Chhattisgarh 491002, India
| |
Collapse
|
48
|
Zou Y, Xia Y, Yan X. Effect of Melamine Formaldehyde Resin Encapsulated UV Acrylic Resin Primer Microcapsules on the Properties of UV Primer Coating. Polymers (Basel) 2024; 16:2308. [PMID: 39204528 PMCID: PMC11359032 DOI: 10.3390/polym16162308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Ultra-Violet (UV) coatings are widely adaptable of substrates and produce low emissions of volatile organic compounds. UV coatings can extend service life by adding self-healing microcapsules that restore integrity after sustaining damage. In this study, UV coating was used as a core material; microcapsules were produced and added to the UV coating to enhance its self-healing property, providing a good protection for both the UV coating and the substrate. UV primer microcapsules were prepared with UV primer as the core material and melamine formaldehyde resin as the wall material. The UV primer containing more than 98.0% solids content was mainly composed of epoxy acrylic resin, polyester acrylic resin, trihydroxy methacrylate, trimethyl methacrylate, and photo initiator. The preparation process of the UV primer microcapsules was optimized. Further, the UV coating was prepared with better UV primer microcapsules, and the effects of the UV primer microcapsules alongside the comprehensive properties of the coating were studied. The best preparation process for the UV primer microcapsules was as follows: the wall-core mass ratio was 1:0.50, Triton X-100 and Span-20 as emulsifiers with an HLB value of 10.04, the microcapsule reaction temperature was 70 °C, and the reaction time of the was 3.0 h. When the quantity of the UV primer microcapsules increased in the coating, color difference ΔE of the coating increased, gloss decreased, transmittance decreased, elongation at break increased and then decreased, roughness increased, and self-healing rate first increased and then decreased. When the addition of the UV primer microcapsules reached 2.0%, the color difference ΔE of the coating was 1.71, the gloss was 106.63 GU, the transmittance was 78.80%, the elongation at break was 3.62%, the roughness was 0.204 μm, and the self-healing rate was 28.56%, which were the best comprehensive properties of the UV primer. To improve the comprehensive properties of the UV coatings, the UV coatings were modified by a microcapsule technology, which gave the UV coatings a better self-healing property. The application range of microcapsules for the UV coatings was broadened. Based on the previous research of microcapsules in UV coatings, the results further refined the study of the effects of adding self-healing microcapsules to UV coatings using the UV coating itself as the core material.
Collapse
Affiliation(s)
- Yuming Zou
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.); (Y.X.)
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China
| | - Yongxin Xia
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.); (Y.X.)
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoxing Yan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.); (Y.X.)
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
49
|
Lin X, Li Y, Fang Z, Li G, Liu Y, Qiu X. Strong Yet Tough Transparent Paper with Superb Foldability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400151. [PMID: 38558525 DOI: 10.1002/smll.202400151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Transparent paper manufactured from wood fibers is emerging as a promising, cost-effective, and carbon-neutral alternatives to plastics. However, fully exploring their mechanical properties is one of the most pressing challenges. In this work, a strong yet tough transparent paper with superior folding endurance is prepared by rationally altering the native fiber structure. Microwave-assisted choline chloride/lactic acid deep eutectic solvent (DES) pulping is first utilized to isolate wood fibers from spruce wood. During this process, the S1 layer within the fibers is partially disrupted, forming protruding microfibrils that play a crucial role in enhancing cellulose accessibility. Subsequently, carboxymethylation treatment is applied to yield uniformly swollen carboxymethylated wood fibers (CM fibers), which improves the interaction between CM fibers during papermaking. The as-prepared transparent paper not only shows a 90% light transmittance (550 nm) but also exhibits impressive mechanical properties, including a folding endurance of over 26 000, a tensile strength of 248.4 MPa, and a toughness of 15.6 MJ m-3. This work provides a promising route for manufacturing transparent paper with superior mechanical properties from wood fibers and can extend their use in areas normally dominated by high-performance nonrenewable plastics.
Collapse
Affiliation(s)
- Xiaoqi Lin
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Yujie Li
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Zhiqiang Fang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Guanhui Li
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Yu Liu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Panyu District, Guangzhou, 510006, P. R. China
| |
Collapse
|
50
|
Yang X, Chen W, Fan Q, Chen J, Chen Y, Lai F, Liu H. Electronic Skin for Health Monitoring Systems: Properties, Functions, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402542. [PMID: 38754914 DOI: 10.1002/adma.202402542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Indexed: 05/18/2024]
Abstract
Electronic skin (e-skin), a skin-like wearable electronic device, holds great promise in the fields of telemedicine and personalized healthcare because of its good flexibility, biocompatibility, skin conformability, and sensing performance. E-skin can monitor various health indicators of the human body in real time and over the long term, including physical indicators (exercise, respiration, blood pressure, etc.) and chemical indicators (saliva, sweat, urine, etc.). In recent years, the development of various materials, analysis, and manufacturing technologies has promoted significant development of e-skin, laying the foundation for the application of next-generation wearable medical technologies and devices. Herein, the properties required for e-skin health monitoring devices to achieve long-term and precise monitoring and summarize several detectable indicators in the health monitoring field are discussed. Subsequently, the applications of integrated e-skin health monitoring systems are reviewed. Finally, current challenges and future development directions in this field are discussed. This review is expected to generate great interest and inspiration for the development and improvement of e-skin and health monitoring systems.
Collapse
Affiliation(s)
- Xichen Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Wenzheng Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Qunfu Fan
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Jing Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Yujie Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Feili Lai
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Hezhou Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
- Collaborative Innovation Center for Advanced Ship and Dee-Sea Exploration, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|