1
|
Dong Y, Feng S, Huang W, Ma X. Algorithm in chemistry: molecular logic gate-based data protection. Chem Soc Rev 2025; 54:3681-3735. [PMID: 40159995 DOI: 10.1039/d4cs01104j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Data security is crucial for safeguarding the integrity, authenticity, and confidentiality of documents, currency, merchant labels, and other paper-based assets, which sequentially has a profound impact on personal privacy and even national security. High-security-level logic data protection paradigms are typically limited to software (digital circuits) and rarely applied to physical devices using stimuli-responsive materials (SRMs). The main reason is that most SRMs lack programmable and controllable switching behaviors. Traditional SRMs usually produce static, singular, and highly predictable signals in response to stimuli, restricting them to simple "BUFFER" or "INVERT" logic operations with a low security level. However, recent advancements in SRMs have collectively enabled dynamic, multidimensional, and less predictable output signals under external stimuli. This breakthrough paves the way for sophisticated encryption and anti-counterfeiting hardware based on SRMs with complicated logic operations and algorithms. This review focuses on SRM-based data protection, emphasizing the integration of intricate logic and algorithms in SRM-constructed hardware, rather than chemical or material structural evolutions. It also discusses current challenges and explores the future directions of the field-such as combining SRMs with artificial intelligence (AI). This review fills a gap in the existing literature and represents a pioneering step into the uncharted territory of SRM-based encryption and anti-counterfeiting technologies.
Collapse
Affiliation(s)
- Yu Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Shiyu Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, P. R. China.
| |
Collapse
|
2
|
Zafar F, Saif K, Andreescu D, Andreescu S, Hayat A. A Target Responsive Metal Organic Framework Derived Bimetallic Apta-Switch for Reagentless Molecular Recognition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:507-517. [PMID: 39743662 DOI: 10.1021/acs.langmuir.4c03752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
By integrating iron-cobalt squarate bimetallic metal-organic framework (Fe-Co-SqBMoF) based smart material (SM) with functional DNA (fDNA), we designed a target responsive fDNA@Fe-Co-SqBMoF bioelectrode that exhibits recognition induced switchable response to serve as a reagentless single step electrochemical apta-switch (REA). The construct takes advantage of fDNA ability to bind and concentrate target on the receptor interface, while Fe-Co-SqBMoF@SM multifeatures to serve as an immobilization matrix and a signal generating electrochemical switch. Fe-Co-SqBMoF was introduced to prepare a redox active pencil graphite electrode (PGE), while fDNA (aptamer) was decorated on the receptor PGE to impart specificity and selectivity. The Fe-Co-SqBMoF synthesis was characterized through X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, micro-Raman spectroscopy, dynamic light scattering (DLS), and UV-visible (UV-vis) analysis, while each step of fDNA decoration and bioelectrode fabrication was characterized via field emission scanning electron microscopy (FE-SEM), static water contact angle measurements, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). To explore the potential application of the fDNA@Fe-Co-SqBMoF bioelectrode, we designed a REA for detection of aflatoxin B1 (AFB1) which permitted the detection of AFB1 in the linear range 0.7-1000 pg/mL with an LOD of 0.54 pg. The practical applicability of an fDNA@Fe-Co-SqBMoF based REA was demonstrated in milk and water samples.
Collapse
Affiliation(s)
- Farhan Zafar
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad (CUI), Lahore Campus, Lahore 54000, Pakistan
| | - Khansa Saif
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad (CUI), Lahore Campus, Lahore 54000, Pakistan
| | - Daniel Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699-5810, United States
| | - Silvana Andreescu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health, Florida International University (FIU), 11200 SW eighth Street, AHC-5, Miami, Florida 33199, United States
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699-5810, United States
| | - Akhtar Hayat
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad (CUI), Lahore Campus, Lahore 54000, Pakistan
| |
Collapse
|
3
|
Soni A, Singh P, Tripathi GK, Dixit P. IoT and Nano‐Bioelectronics for Target Drug Delivery. INTERNET OF THINGS IN BIOELECTRONICS 2024:17-40. [DOI: 10.1002/9781394241903.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Liu R, Liu T, Liu W, Luo B, Li Y, Fan X, Zhang X, Cui W, Teng Y. SemiSynBio: A new era for neuromorphic computing. Synth Syst Biotechnol 2024; 9:594-599. [PMID: 38711551 PMCID: PMC11070324 DOI: 10.1016/j.synbio.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Neuromorphic computing has the potential to achieve the requirements of the next-generation artificial intelligence (AI) systems, due to its advantages of adaptive learning and parallel computing. Meanwhile, biocomputing has seen ongoing development with the rise of synthetic biology, becoming the driving force for new generation semiconductor synthetic biology (SemiSynBio) technologies. DNA-based biomolecules could potentially perform the functions of Boolean operators as logic gates and be used to construct artificial neural networks (ANNs), providing the possibility of executing neuromorphic computing at the molecular level. Herein, we briefly outline the principles of neuromorphic computing, describe the advances in DNA computing with a focus on synthetic neuromorphic computing, and summarize the major challenges and prospects for synthetic neuromorphic computing. We believe that constructing such synthetic neuromorphic circuits will be an important step toward realizing neuromorphic computing, which would be of widespread use in biocomputing, DNA storage, information security, and national defense.
Collapse
Affiliation(s)
- Ruicun Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Tuoyu Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Wuge Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Boyu Luo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Yuchen Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Xinyue Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Xianchao Zhang
- Institute of Information Network and Artificial Intelligence, Jiaxing University, Jiaxing, 314001, China
| | - Wei Cui
- South China University of Technology, Guangzhou, 510641, China
| | - Yue Teng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| |
Collapse
|
5
|
Zhang Y, Lei F, Qian W, Zhang C, Wang Q, Liu C, Ji H, Liu Z, Wang F. Designing intelligent bioorthogonal nanozymes: Recent advances of stimuli-responsive catalytic systems for biomedical applications. J Control Release 2024; 373:929-951. [PMID: 39097195 DOI: 10.1016/j.jconrel.2024.07.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Bioorthogonal nanozymes have emerged as a potent tool in biomedicine due to their unique ability to perform enzymatic reactions that do not interfere with native biochemical processes. The integration of stimuli-responsive mechanisms into these nanozymes has further expanded their potential, allowing for controlled activation and targeted delivery. As such, intelligent bioorthogonal nanozymes have received more and more attention in developing therapeutic approaches. This review provides a comprehensive overview of the recent advances in the development and application of stimuli-responsive bioorthogonal nanozymes. By summarizing the design outlines for anchoring bioorthogonal nanozymes with stimuli-responsive capability, this review seeks to offer valuable insights and guidance for the rational design of these remarkable materials. This review highlights the significant progress made in this exciting field with different types of stimuli and the various applications. Additionally, it also examines the current challenges and limitations in the design, synthesis, and application of these systems, and proposes potential solutions and research directions. This review aims to stimulate further research toward the development of more efficient and versatile stimuli-responsive bioorthogonal nanozymes for biomedical applications.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Fang Lei
- School of Public Health, Nantong University, Nantong 226019, China
| | - Wanlong Qian
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Chengfeng Zhang
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Qi Wang
- School of Public Health, Nantong University, Nantong 226019, China
| | - Chaoqun Liu
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Haiwei Ji
- School of Public Health, Nantong University, Nantong 226019, China
| | - Zhengwei Liu
- Precision Immunology Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York 10029, USA.
| | - Faming Wang
- School of Public Health, Nantong University, Nantong 226019, China.
| |
Collapse
|
6
|
Martynov AI, Belov AS, Nevolin VK. Using non-adiabatic excitation transfer for signal transmission between molecular logic gates. NANOSCALE 2024; 16:14879-14898. [PMID: 39037702 DOI: 10.1039/d4nr01206b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Molecular logic gates (MLGs) are molecules which perform logic operations. They can potentially be used as building blocks for nano-sized computational devices. However, their physical and functional integration is a difficult task which remains to be solved. The problem lies in the field of signal exchange between the gates within the system. We propose using non-adiabatic excitation transfer between the gates to address this problem while absorption and fluorescence are left to communicate with external devices. Excitation transfer was studied using the modified Bixon-Jortner-Plotnikov theory with the example of the 3H-thioxanthene-TTF-dibenzo-BODIPY covalently linked triad. Several designs of the molecule were studied in a vacuum and cyclohexane. It was found that the molecular logic system has to be planar and rigid to isolate radiative interfaces from other gates. Functioning of these gates is based on dark πσ*-states in contrast to bright ππ*-states of radiative interfaces. There are no fundamental differences between ππ* → πσ* and ππ* → ππ* transitions for cases when an exciton hops from one gate to another. The rates of such transitions depend only on an energy gap between states and the distance between gates. The circuit is highly sensitive to the choice of solvent which could rearrange its state structure thereby altering its behavior. According to the obtained results, non-adiabatic transfer can be considered as one of the possible ways for transmitting a signal between MLGs.
Collapse
Affiliation(s)
- A I Martynov
- National Research University of Electronic Technology, 1 Shokin Square, Zelenograd, Moscow, Russia.
| | - A S Belov
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie gory, Moscow, Russia
| | - V K Nevolin
- National Research University of Electronic Technology, 1 Shokin Square, Zelenograd, Moscow, Russia.
| |
Collapse
|
7
|
Yadav K, Gnanakani SPE, Sahu KK, Veni Chikkula CK, Vaddi PS, Srilakshmi S, Yadav R, Sucheta, Dubey A, Minz S, Pradhan M. Nano revolution of DNA nanostructures redefining cancer therapeutics-A comprehensive review. Int J Biol Macromol 2024; 274:133244. [PMID: 38901506 DOI: 10.1016/j.ijbiomac.2024.133244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
DNA nanostructures are a promising tool in cancer treatment, offering an innovative way to improve the effectiveness of therapies. These nanostructures can be made solely from DNA or combined with other materials to overcome the limitations of traditional single-drug treatments. There is growing interest in developing nanosystems capable of delivering multiple drugs simultaneously, addressing challenges such as drug resistance. Engineered DNA nanostructures are designed to precisely deliver different drugs to specific locations, enhancing therapeutic effects. By attaching targeting molecules, these nanostructures can recognize and bind to cancer cells, increasing treatment precision. This approach offers tailored solutions for targeted drug delivery, enabling the delivery of multiple drugs in a coordinated manner. This review explores the advancements and applications of DNA nanostructures in cancer treatment, with a focus on targeted drug delivery and multi-drug therapy. It discusses the benefits and current limitations of nanoscale formulations in cancer therapy, categorizing DNA nanostructures into pure forms and hybrid versions optimized for drug delivery. Furthermore, the review examines ongoing research efforts and translational possibilities, along with challenges in clinical integration. By highlighting the advancements in DNA nanostructures, this review aims to underscore their potential in improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Krishna Yadav
- Rungta College of Pharmaceutical Sciences and Research, Kohka, Bhilai 490024, India
| | - S Princely E Gnanakani
- Department of Pharmaceutical Biotechnology, Parul Institute of Pharmacy, Parul University, Post Limda, Ta.Waghodia - 391760, Dist. Vadodara, Gujarat, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - C Krishna Veni Chikkula
- Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, USA
| | - Poorna Sai Vaddi
- Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, USA
| | - S Srilakshmi
- Gitam School of Pharmacy, Department of Pharmaceutical Chemistry, Gitams University, Vishakhapatnam, India
| | - Renu Yadav
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram, Haryana 122103, India
| | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram, Haryana 122103, India
| | - Akhilesh Dubey
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangaluru 575018, Karnataka, India
| | - Sunita Minz
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak (M.P.), India
| | | |
Collapse
|
8
|
Algama CH, Basir J, Wijesinghe KM, Dhakal S. Fluorescence-Based Multimodal DNA Logic Gates. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1185. [PMID: 39057862 PMCID: PMC11280116 DOI: 10.3390/nano14141185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
The use of DNA structures in creating multimodal logic gates bears high potential for building molecular devices and computation systems. However, due to the complex designs or complicated working principles, the implementation of DNA logic gates within molecular devices and circuits is still quite limited. Here, we designed simple four-way DNA logic gates that can serve as multimodal platforms for simple to complex operations. Using the proximity quenching of the fluorophore-quencher pair in combination with the toehold-mediated strand displacement (TMSD) strategy, we have successfully demonstrated that the fluorescence output, which is a result of gate opening, solely relies on the oligonucleotide(s) input. We further demonstrated that this strategy can be used to create multimodal (tunable displacement initiation sites on the four-way platform) logic gates including YES, AND, OR, and the combinations thereof. The four-way DNA logic gates developed here bear high promise for building biological computers and next-generation smart molecular circuits with biosensing capabilities.
Collapse
Affiliation(s)
| | | | | | - Soma Dhakal
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
9
|
Emelianov AV, Pettersson M, Bobrinetskiy II. Ultrafast Laser Processing of 2D Materials: Novel Routes to Advanced Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402907. [PMID: 38757602 DOI: 10.1002/adma.202402907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Indexed: 05/18/2024]
Abstract
Ultrafast laser processing has emerged as a versatile technique for modifying materials and introducing novel functionalities. Over the past decade, this method has demonstrated remarkable advantages in the manipulation of 2D layered materials, including synthesis, structuring, functionalization, and local patterning. Unlike continuous-wave and long-pulsed optical methods, ultrafast lasers offer a solution for thermal heating issues. Nonlinear interactions between ultrafast laser pulses and the atomic lattice of 2D materials substantially influence their chemical and physical properties. This paper highlights the transformative role of ultrafast laser pulses in maskless green technology, enabling subtractive, and additive processes that unveil ways for advanced devices. Utilizing the synergetic effect between the energy states within the atomic layers and ultrafast laser irradiation, it is feasible to achieve unprecedented resolutions down to several nanometers. Recent advancements are discussed in functionalization, doping, atomic reconstruction, phase transformation, and 2D and 3D micro- and nanopatterning. A forward-looking perspective on a wide array of applications of 2D materials, along with device fabrication featuring novel physical and chemical properties through direct ultrafast laser writing, is also provided.
Collapse
Affiliation(s)
- Aleksei V Emelianov
- Nanoscience Center, Department of Chemistry, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Mika Pettersson
- Nanoscience Center, Department of Chemistry, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Ivan I Bobrinetskiy
- BioSense Institute - Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, Novi Sad, 21000, Serbia
| |
Collapse
|
10
|
Fu R, Hou J, Wang Z, Xianyu Y. DNA Molecular Computation Using the CRISPR-Mediated Reaction and Surface Growth of Gold Nanoparticles. ACS NANO 2024; 18:14754-14763. [PMID: 38781600 DOI: 10.1021/acsnano.4c04265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
DNA has emerged as a promising tool to build logic gates for biocomputing. However, prevailing methodologies predominantly rely on hybridization reactions or structural alterations to construct DNA logic gates, which are limited in simplicity and diversity. Herein, we developed simple and smart DNA-based logic gates for biocomputing through the DNA-mediated growth of gold nanomaterials without precise structure design and probe modification. Capitalizing on their excellent plasmonic properties, the surface growth of gold nanomaterials enables distinct wavelength shifts and unique shapes, which are modulated by the composition, length, and concentration of the DNA sequences. Combined with a CRISPR-mediated reaction, we constructed DNA circuits to achieve complicated biocomputing to modulate the surface growth of gold nanomaterials. By implementing logic functions controlled by input-mediated growth of gold nanomaterials, we established YES/NOT, AND/NAND, OR/NOR, XOR, and INHIBIT gates and further constructed cascade logic circuits, parity checker for natural numbers, and gray code encoder, which are promising for DNA biocomputing.
Collapse
Affiliation(s)
- Ruijie Fu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou 310016, People's Republic of China
| | - Jinjie Hou
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou 310016, People's Republic of China
| | - Zexiang Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou 310016, People's Republic of China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou 310016, People's Republic of China
| |
Collapse
|
11
|
Li C, Wu Y, Zhu Y, Yan J, Liu S, Xu J, Fa S, Yan T, Zhu D, Yan Y, Liu J. Molecular Motor-Driven Light-Controlled Logic-Gated K + Channel for Cancer Cell Apoptosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312352. [PMID: 38301140 DOI: 10.1002/adma.202312352] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Developing artificial ion transport systems, which process complicated information and step-wise regulate properties, is essential for deeply comprehending the subtle dynamic behaviors of natural channel proteins (NCPs). Here a photo-controlled logic-gated K+ channel based on single-chain random heteropolymers containing molecular motors, exhibiting multi-core processor-like properties to step-wise control ion transport is reported. Designed with oxygen, deoxygenation, and different wavelengths of light as input signals, complicated logical circuits comprising "YES", "AND", "OR" and "NOT" gate components are established. Implementing these logical circuits with K+ transport efficiencies as output signals, multiple state transitions including "ON", "Partially OFF" and "Totally OFF" in liposomes and cancer cells are realized, further causing step-wise anticancer treatments. Dramatic K+ efflux in the "ON" state (decrease by 50% within 7 min) significantly induces cancer cell apoptosis. This integrated logic-gated strategy will be expanded toward understanding the delicate mechanism underlying NCPs and treating cancer or other diseases is expected.
Collapse
Affiliation(s)
- Cong Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
- College of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yaqi Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
- College of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yihang Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jing Yan
- College of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Shengda Liu
- College of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Jiayun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shixin Fa
- College of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Tengfei Yan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Dingcheng Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yi Yan
- College of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Junqiu Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
- College of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| |
Collapse
|
12
|
Pan Y, Luan X, Zeng F, Wang X, Qin S, Lu Q, He G, Gao Y, Sun X, Han X, He B, Song Y. Logic-gated tumor-microenvironment nanoamplifier enables targeted delivery of CRISPR/Cas9 for multimodal cancer therapy. Acta Pharm Sin B 2024; 14:795-807. [PMID: 38322334 PMCID: PMC10840398 DOI: 10.1016/j.apsb.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/24/2023] [Accepted: 09/10/2023] [Indexed: 02/08/2024] Open
Abstract
Recent innovations in nanomaterials inspire abundant novel tumor-targeting CRISPR-based gene therapies. However, the therapeutic efficiency of traditional targeted nanotherapeutic strategies is limited by that the biomarkers vary in a spatiotemporal-dependent manner with tumor progression. Here, we propose a self-amplifying logic-gated gene editing strategy for gene/H2O2-mediated/starvation multimodal cancer therapy. In this approach, a hypoxia-degradable covalent-organic framework (COF) is synthesized to coat a-ZIF-8 in which glucose oxidase (GOx) and CRISPR system are packaged. To intensify intracellular redox dyshomeostasis, DNAzymes which can cleave catalase mRNA are loaded as well. When the nanosystem gets into the tumor, the weakly acidic and hypoxic microenvironment degrades the ZIF-8@COF to activate GOx, which amplifies intracellular H+ and hypoxia, accelerating the nanocarrier degradation to guarantee available CRISPR plasmid and GOx release in target cells. These tandem reactions deplete glucose and oxygen, leading to logic-gated-triggered gene editing as well as synergistic gene/H2O2-mediated/starvation therapy. Overall, this approach highlights the biocomputing-based CRISPR delivery and underscores the great potential of precise cancer therapy.
Collapse
Affiliation(s)
- Yongchun Pan
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Xiaowei Luan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Fei Zeng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Xuyuan Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Shurong Qin
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Qianglan Lu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Guanzhong He
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Xin Han
- School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Chen M, Wang C, Wang X, Tu Z, Ding Z, Liu Z. An "AND" Logic-Gated Prodrug Micelle Locally Stimulates Antitumor Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307818. [PMID: 37935201 DOI: 10.1002/adma.202307818] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/02/2023] [Indexed: 11/09/2023]
Abstract
Materials that can respond to multiple biomarkers simultaneously, acting as an "AND" gate, have the potential to enhance tumor-targeting for drug delivery. In this study, an "AND" logic-controlled release prodrug micelle is developed for codelivering the chemotherapeutic and the stimulator of interferon genes (STING) agonist, enabling precise combinatorial therapy. The drug release is programmed by tumor-enriched boramino acids (BAA) in the tumor microenvironment and intracellular reactive oxygen species (ROS), resulting in enhanced tumor targeting. STING agonist is successfully encapsulated into prodrug micelles through π-π stacking and hydrophobic interactions. These AND logic-gated prodrug micelles can achieve tumor-targeted delivery of STING agonist, leading to significantly enhanced immune activation and antitumor efficacy in vivo. It is expected that this clinically relevant nanoplatform will provide a rational design of an effective immunotherapy combination regimen to convert immunologically "cold" tumors to immunogenic "hot" tumors, addressing the major challenges faced by immunotherapies.
Collapse
Affiliation(s)
- Mengqi Chen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Chunhong Wang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xuanyu Wang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhiyu Tu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zexuan Ding
- Changping Laboratory, Beijing, 102206, China
| | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Changping Laboratory, Beijing, 102206, China
- Peking University - Tsinghua University Center for Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
14
|
Zhao Q, Wang J, Liu HB, Duan LH. Rhodamine derivative-functionalized mesoporous silica-Al 3+ hybrid material for fluorescence "turn-on" detection of tetracycline antibiotics in aqueous media. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123068. [PMID: 37393676 DOI: 10.1016/j.saa.2023.123068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
The organic-inorganic hybrid material was prepared by embedding 2-amino-3',6'-bis(diethylamino)spiro[isoindoline-1,9'-xanthen]-3-one (RBH) onto mesoporous SBA-15 silica and coordinating it with Al3+ (RBH-SBA-15-Al3+). RBH-SBA-15-Al3+ was used for the selective and sensitive detection of tetracycline antibiotics (TAs) in aqueous media based on the binding site-signaling unit mechanism, in which Al3+ acted as the binding site and the fluorescence intensity at 586 nm as the response signal. The addition of TAs to RBH-SBA-15-Al3+ suspensions resulted in the formation of RBH-SBA-15-Al3+-TAs conjugates, which realized the electron transfer process and turned-on fluorescence signal at 586 nm. The detection limits for tetracycline (TC), oxytetracycline, and chlortetracycline were 0.06, 0.06, and 0.03 µM, respectively. Meanwhile, the detection of TC was feasible in real samples, such as tap water and honey. In addition, RBH-SBA-15 can operate as a TRANSFER logic gate by using Al3+ and TAs as input signals and the fluorescence intensity at 586 nm as output signal. This study proposes an efficient strategy for the selective detection of target analytes by introducing interaction sites (e.g. Al3+) with target analytes in the system.
Collapse
Affiliation(s)
- Qian Zhao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Jing Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China.
| | - Hai-Bo Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Long-Hui Duan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
15
|
Hasan N, Imran M, Jain D, Jha SK, Nadaf A, Chaudhary A, Rafiya K, Jha LA, Almalki WH, Mohammed Y, Kesharwani P, Ahmad FJ. Advanced targeted drug delivery by bioengineered white blood cell-membrane camouflaged nanoparticulate delivery nanostructures. ENVIRONMENTAL RESEARCH 2023; 238:117007. [PMID: 37689337 DOI: 10.1016/j.envres.2023.117007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/11/2023]
Abstract
Targeted drug delivery has emerged as a pivotal approach within precision medicine, aiming to optimize therapeutic efficacy while minimizing systemic side effects. Leukocyte membrane coated nanoparticles (NPs) have attracted a lot of interest as an effective approach for delivering targeted drugs, capitalizing on the natural attributes of leukocytes to achieve site-specific accumulation, and heightened therapeutic outcomes. An overview of the present state of the targeted medication delivery research is given in this review. Notably, Leukocyte membrane-coated NPs offer inherent advantages such as immune evasion, extended circulation half-life, and precise homing to inflamed or diseased tissues through specific interactions with adhesion molecules. leukocyte membrane-coated NPs hold significant promise in advancing targeted drug delivery for precision medicine. As research progresses, they are anticipated to contribute to improved therapeutic outcomes, enabling personalized and effective treatments for a wide range of diseases and conditions. The review covers the method of preparation, characterization, and biological applications of leucocytic membrane coated NPs. Further, patents related factors, gap of translation from laboratory to clinic, and future prospective were discussed in detail. Overall, the review covers extensive literature to establish leucocytic membrane NPs for targeted drug delivery.
Collapse
Affiliation(s)
- Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Imran
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Dhara Jain
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Arshi Chaudhary
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Km Rafiya
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Laxmi Akhileshwar Jha
- H. K. College of Pharmacy, Mumbai University, Pratiksha Nagar, Jogeshwari, West Mumbai, 400102, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 24381, Saudi Arabia
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
16
|
Wei K, He M, Zhang J, Zhao C, Nie C, Zhang T, Liu Y, Chen T, Jiang J, Chu X. A DNA Logic Circuit Equipped with a Biological Amplifier Loaded into Biomimetic ZIF-8 Nanoparticles Enables Accurate Identification of Specific Cancers In Vivo. Angew Chem Int Ed Engl 2023; 62:e202307025. [PMID: 37615278 DOI: 10.1002/anie.202307025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 08/25/2023]
Abstract
DNA logic circuits (DLC) enable the accurate identification of specific cell types, such as cancer cells, but they face the challenges of weak output signals and a lack of competent platforms that can efficiently deliver DLC components to the target site in the living body. To address these issues, we rationally introduced a cascaded biological amplifier module based on the Primer Exchange Reaction inspired by electronic circuit amplifier devices. As a paradigm, three abnormally expressed Hela cell microRNAs (-30a, -17, and -21) were chosen as "AND" gate inputs. DLC response to these inputs was boosted by the amplifier markedly enhancing the output signal. More importantly, the encapsulation of DLC and amplifier components into ZIF-8 nanoparticles resulted in their efficient delivery to the target site, successfully distinguishing the Hela tumor subtype from other tumors in vivo. Thus, we envision that this strategy has great potential for clinical cancer diagnosis.
Collapse
Affiliation(s)
- Kaiji Wei
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Mengyun He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Juan Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Chuan Zhao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Cunpeng Nie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Tong Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yi Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Tingting Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jianhui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
17
|
Gabashvili AN, Chmelyuk NS, Oda VV, Leonova MK, Sarkisova VA, Lazareva PA, Semkina AS, Belyakov NA, Nizamov TR, Nikitin PI. Magnetic and Fluorescent Dual-Labeled Genetically Encoded Targeted Nanoparticles for Malignant Glioma Cell Tracking and Drug Delivery. Pharmaceutics 2023; 15:2422. [PMID: 37896182 PMCID: PMC10609955 DOI: 10.3390/pharmaceutics15102422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Human glioblastoma multiforme (GBM) is a primary malignant brain tumor, a radically incurable disease characterized by rapid growth resistance to classical therapies, with a median patient survival of about 15 months. For decades, a plethora of approaches have been developed to make GBM therapy more precise and improve the diagnosis of this pathology. Targeted delivery mediated by the use of various molecules (monoclonal antibodies, ligands to overexpressed tumor receptors) is one of the promising methods to achieve this goal. Here we present a novel genetically encoded nanoscale dual-labeled system based on Quasibacillus thermotolerans (Qt) encapsulins exploiting biologically inspired designs with iron-containing nanoparticles as a cargo, conjugated with human fluorescent labeled transferrin (Tf) acting as a vector. It is known that the expression of transferrin receptors (TfR) in glioma cells is significantly higher compared to non-tumor cells, which enables the targeting of the resulting nanocarrier. The selectivity of binding of the obtained nanosystem to glioma cells was studied by qualitative and quantitative assessment of the accumulation of intracellular iron, as well as by magnetic particle quantification method and laser scanning confocal microscopy. Used approaches unambiguously demonstrated that transferrin-conjugated encapsulins were captured by glioma cells much more efficiently than by benign cells. The resulting bioinspired nanoplatform can be supplemented with a chemotherapeutic drug or genotherapeutic agent and used for targeted delivery of a therapeutic agent to malignant glioma cells. Additionally, the observed cell-assisted biosynthesis of magnetic nanoparticles could be an attractive way to achieve a narrow size distribution of particles for various applications.
Collapse
Affiliation(s)
- Anna N. Gabashvili
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia; (A.N.G.)
| | - Nelly S. Chmelyuk
- Laboratory “Biomedical Nanomaterials”, National University of Science and Technology “MISIS”, Leninskiy Prospekt 4, 119049 Moscow, Russia
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 1 Ostrovityanova Street, 117997 Moscow, Russia; (P.A.L.)
| | - Vera V. Oda
- MILLAB Group Ltd., 100/2 Dmitrovskoe Highway, 127247 Moscow, Russia
| | - Maria K. Leonova
- Department of Physical Chemistry, National University of Science and Technology “MISIS”, Leninskiy Prospekt 4, 119049 Moscow, Russia
| | - Viktoria A. Sarkisova
- Biology Faculty, Lomonosov Moscow State University, 1 Leninskiy Gory, 119234 Moscow, Russia
- Cell Proliferation Laboratory, Engelhardt Institute of Molecular Biology RAS, 32 Vavilov Street, 119991 Moscow, Russia
| | - Polina A. Lazareva
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 1 Ostrovityanova Street, 117997 Moscow, Russia; (P.A.L.)
| | - Alevtina S. Semkina
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 1 Ostrovityanova Street, 117997 Moscow, Russia; (P.A.L.)
- Department of Basic and Applied Neurobiology, Serbsky National Medical Research Center for Psychiatry and Narcology, 23 Kropotkinskiy Lane, 119991 Moscow, Russia
| | - Nikolai A. Belyakov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia; (A.N.G.)
| | - Timur R. Nizamov
- Laboratory “Biomedical Nanomaterials”, National University of Science and Technology “MISIS”, Leninskiy Prospekt 4, 119049 Moscow, Russia
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia; (A.N.G.)
| |
Collapse
|
18
|
Deng F, Pan J, Chen M, Liu Z, Chen J, Liu C. Integrating CRISPR-Cas12a with catalytic hairpin assembly as a logic gate biosensing platform for the detection of polychlorinated biphenyls in water samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163465. [PMID: 37068691 DOI: 10.1016/j.scitotenv.2023.163465] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/23/2023] [Accepted: 04/08/2023] [Indexed: 06/01/2023]
Abstract
Polychlorinated biphenyls (PCBs) are ubiquitous persistent organic pollutants that cause harmful effects on environmental safety and human health. There is an urgent need to develop an intelligent method for PCBs sensing. In this work, we proposed a logic gate biosensing platform for simultaneous detection of multiple PCBs. 2,3',5,5'-tetrachlorobiphenyl (PCB72) and 3,3',4,4'-tetrachlorobiphenyl (PCB77) were used as the two inputs to construct biocomputing logic gates. We used 0 and 1 to encode the inputs and outputs. The aptamer was used to recognize the inputs and release the trigger DNA. A catalytic hairpin assembly (CHA) module is designed to convert and amplify each trigger DNA into multiple programmable DNA duplexes, which initiate the trans-cleavage activity of CRISPR/Cas12a for the signal output. The activated Cas12 cleaves the BHQ-Cy5 modified single-stranded DNA (ssDNA) to yield the fluorescence reporting signals. In the YES logic gate, PCB72 was used as the only input to carry out the logic operation. In the OR, AND, and INHIBIT logic gates, PCB72 and PCB77 were used as the two inputs. The output signals can be visualized by the naked eye under UV light transilluminators or quantified by a microplate reader. Our constructed biosensing platform possesses the merits of multiple combinations of inputs, intuitive digital output, and high flexibility and scalability, which holds great promise for the intelligent detection of different PCBs.
Collapse
Affiliation(s)
- Fang Deng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jiafeng Pan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Manjia Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhi Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Chengshuai Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
19
|
Imbriano A, Tricase A, Macchia E, Torsi L, Bollella P. Self-powered logically operated fluorescent detection of hepatitis B virus (HBV). Anal Chim Acta 2023; 1252:341037. [PMID: 36935148 DOI: 10.1016/j.aca.2023.341037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
In this study, a novel sensing strategy based on double sensing/actuating pathway is demonstrated, being capable to trigger the DNA-based AND gate for the sensitive and selective detection of hepatitis B virus DNA (HBV-DNA). Such an approach encompasses an enzymatic machinery logically operated using the variation of physiologically relevant biomarkers for liver dysfunctions. Alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) are used as inputs of an AND gate generating an output signal, namely lactate. In particular, lactate is oxidized back to pyruvate at the anodic electrode by lactate oxidase connected in mediated electron transfer through ferrocene moieties (creating an amplifying recycling mechanism). The anodic electrode is further connected with a Myrothecium verrucaria bilirubin oxidase (MvBOx) based biocathode modified with SiO2 nanoparticles (SiO2NPs) functionalized with phenyl boronic acid and trigonelline, triggering the release of quenching DNA (qDNA) upon local pH change at the electrode surface (notably, modified SiONPs gets negatively recharged upon local pH gradient releasing negatively charged DNA). Next, the released qDNA labeled with BHQ2 and detecting DNA (dDNA, labeled with FAM) are detecting HBV-DNA. The proposed biosensor can discriminate between the absence and presence of HBV-DNA setting the threshold at 0.05 fM in model buffer solutions and 1 fM in human serum. This enzymatic/DNA logic network can be of particular interest for future biomedical applications (e.g., early detection of liver cancer disease etc.). In the future development this technology could be easily integrated with a smartphone camera, allowing more user-friendly applications.
Collapse
Affiliation(s)
- Anna Imbriano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy; Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy
| | - Angelo Tricase
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy
| | - Eleonora Macchia
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy; Faculty of Science and Engineering, Åbo Akademi University, 20500, Turku, Finland
| | - Luisa Torsi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy; Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy; Faculty of Science and Engineering, Åbo Akademi University, 20500, Turku, Finland
| | - Paolo Bollella
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy; Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy.
| |
Collapse
|
20
|
Pan J, Deng F, Liu Z, Zeng L, Chen J. Construction of molecular logic gates using heavy metal ions as inputs based on catalytic hairpin assembly and CRISPR-Cas12a. Talanta 2023; 255:124210. [PMID: 36566557 DOI: 10.1016/j.talanta.2022.124210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
We successfully constructed several molecular logic gates using heavy metal ions as inputs based on catalytic hairpin assembly (CHA) and CRISPR-Cas12a. The corresponding DNAzymes were used to recognize heavy metal ions (Hg2+, Cd2+, Pb2+, and Mn2+). The specific cleavage between heavy metal ions and DNAzymes leads to the release of the trigger DNA, which can be used to activate CHA through logic computation. The CHA-generated DNA duplexes contain the protospacer adjacent motifs (PAM) sequence, which can be distinguished by CRISPR-Cas12a. The hybridization interactions between the duplexes and gRNA will activate the trans-cleavage capability of Cas12a, which can cleave the single-stranded DNA (ssDNA) reporter. The separation of the fluorescence group and quench group in ssDNA will generate a high fluorescence signal for readout. Using Hg2+ and Cd2+ as the two inputs, several basic logic gates were constructed, including OR, AND, and INHIBT. Using Hg2+, Cd2+, Pb2+, and Mn2+ as the four inputs, cascaded logic gates were further fabricated. With the advantages of scalability, versatility, and logic computing capability, our proposed molecular logic gates can provide an intelligent sensing system for heavy metal ions monitoring.
Collapse
Affiliation(s)
- Jiafeng Pan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Fang Deng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Zhi Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Lingwen Zeng
- Guangdong Langyuan Biotechnology Co., LTD, Foshan, 528313, China; School of Food Science and Engineering, Foshan University, Foshan 528231, China
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
21
|
Obozina AS, Komedchikova EN, Kolesnikova OA, Iureva AM, Kovalenko VL, Zavalko FA, Rozhnikova TV, Tereshina ED, Mochalova EN, Shipunova VO. Genetically Encoded Self-Assembling Protein Nanoparticles for the Targeted Delivery In Vitro and In Vivo. Pharmaceutics 2023; 15:231. [PMID: 36678860 PMCID: PMC9861179 DOI: 10.3390/pharmaceutics15010231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Targeted nanoparticles of different origins are considered as new-generation diagnostic and therapeutic tools. However, there are no targeted drug formulations within the composition of nanoparticles approved by the FDA for use in the clinic, which is associated with the insufficient effectiveness of the developed candidates, the difficulties of their biotechnological production, and inadequate batch-to-batch reproducibility. Targeted protein self-assembling nanoparticles circumvent this problem since proteins are encoded in DNA and the final protein product is produced in only one possible way. We believe that the combination of the endless biomedical potential of protein carriers as nanoparticles and the standardized protein purification protocols will make significant progress in "magic bullet" creation possible, bringing modern biomedicine to a new level. In this review, we are focused on the currently existing platforms for targeted self-assembling protein nanoparticles based on transferrin, lactoferrin, casein, lumazine synthase, albumin, ferritin, and encapsulin proteins, as well as on proteins from magnetosomes and virus-like particles. The applications of these self-assembling proteins for targeted delivery in vitro and in vivo are thoroughly discussed, including bioimaging applications and different therapeutic approaches, such as chemotherapy, gene delivery, and photodynamic and photothermal therapy. A critical assessment of these protein platforms' efficacy in biomedicine is provided and possible problems associated with their further development are described.
Collapse
Affiliation(s)
| | | | | | - Anna M. Iureva
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Vera L. Kovalenko
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Fedor A. Zavalko
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | | | | | - Elizaveta N. Mochalova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Nanobiomedicine Division, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Victoria O. Shipunova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Nanobiomedicine Division, Sirius University of Science and Technology, 354340 Sochi, Russia
| |
Collapse
|
22
|
Kola P, Nagesh PKB, Roy PK, Deepak K, Reis RL, Kundu SC, Mandal M. Innovative nanotheranostics: Smart nanoparticles based approach to overcome breast cancer stem cells mediated chemo- and radioresistances. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1876. [PMID: 36600447 DOI: 10.1002/wnan.1876] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023]
Abstract
The alarming increase in the number of breast cancer patients worldwide and the increasing death rate indicate that the traditional and current medicines are insufficient to fight against it. The onset of chemo- and radioresistances and cancer stem cell-based recurrence make this problem harder, and this hour needs a novel treatment approach. Competent nanoparticle-based accurate drug delivery and cancer nanotheranostics like photothermal therapy, photodynamic therapy, chemodynamic therapy, and sonodynamic therapy can be the key to solving this problem due to their unique characteristics. These innovative formulations can be a better cargo with fewer side effects than the standard chemotherapy and can eliminate the stability problems associated with cancer immunotherapy. The nanotheranostic systems can kill the tumor cells and the resistant breast cancer stem cells by novel mechanisms like local hyperthermia and reactive oxygen species and prevent tumor recurrence. These theranostic systems can also combine with chemotherapy or immunotherapy approaches. These combining approaches can be the future of anticancer therapy, especially to overcome the breast cancer stem cells mediated chemo- and radioresistances. This review paper discusses several novel theranostic systems and smart nanoparticles, their mechanism of action, and their modifications with time. It explains their relevance and market scope in the current era. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Prithwish Kola
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | - Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - K Deepak
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Rui Luis Reis
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimaraes, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimaraes, Portugal
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
23
|
DNA computational device-based smart biosensors. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Nikitin MP. Non-complementary strand commutation as a fundamental alternative for information processing by DNA and gene regulation. Nat Chem 2023; 15:70-82. [PMID: 36604607 DOI: 10.1038/s41557-022-01111-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/16/2022] [Indexed: 01/07/2023]
Abstract
The discovery of the DNA double helix has revolutionized our understanding of data processing in living systems, with the complementarity of the two DNA strands providing a reliable mechanism for the storage of hereditary information. Here I reveal the 'strand commutation' phenomenon-a fundamentally different mechanism of information storage and processing by DNA/RNA based on the reversible low-affinity interactions of essentially non-complementary nucleic acids. I demonstrate this mechanism by constructing a memory circuit, a 5-min square-root circuit for 4-bit inputs comprising only nine processing ssDNAs, simulating a 572-input AND gate (surpassing the bitness of current electronic computers), and elementary algebra systems with continuously changing variables. Most importantly, I show potential pathways of gene regulation with strands of maximum non-complementarity to the gene sequence that may be key to the reduction of off-target therapeutic effects. This Article uncovers the information-processing power of the low-affinity interactions that may underlie major processes in an organism-from short-term memory to cancer, ageing and evolution.
Collapse
Affiliation(s)
- Maxim P Nikitin
- Sirius University of Science and Technology, Sochi, Russia. .,Abisense LLC, Dolgoprudny, Moscow Region, Russia.
| |
Collapse
|
25
|
Kovalenko VL, Komedchikova EN, Sogomonyan AS, Tereshina ED, Kolesnikova OA, Mirkasymov AB, Iureva AM, Zvyagin AV, Nikitin PI, Shipunova VO. Lectin-Modified Magnetic Nano-PLGA for Photodynamic Therapy In Vivo. Pharmaceutics 2022; 15:pharmaceutics15010092. [PMID: 36678721 PMCID: PMC9862264 DOI: 10.3390/pharmaceutics15010092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/16/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
The extreme aggressiveness and lethality of many cancer types appeal to the problem of the development of new-generation treatment strategies based on smart materials with a mechanism of action that differs from standard treatment approaches. The targeted delivery of nanoparticles to specific cancer cell receptors is believed to be such a strategy; however, there are no targeted nano-drugs that have successfully completed clinical trials to date. To meet the challenge, we designed an alternative way to eliminate tumors in vivo. Here, we show for the first time that the targeting of lectin-equipped polymer nanoparticles to the glycosylation profile of cancer cells, followed by photodynamic therapy (PDT), is a promising strategy for the treatment of aggressive tumors. We synthesized polymer nanoparticles loaded with magnetite and a PDT agent, IR775 dye (mPLGA/IR775). The magnetite incorporation into the PLGA particle structure allows for the quantitative tracking of their accumulation in different organs and the performing of magnetic-assisted delivery, while IR775 makes fluorescent in vivo bioimaging as well as light-induced PDT possible, thus realizing the theranostics concept. To equip PLGA nanoparticles with targeting modality, the particles were conjugated with lectins of different origins, and the flow cytometry screening revealed that the most effective candidate for breast cancer cell labeling is ConA, a lectin from Canavalia ensiformis. In vivo experiments showed that after i.v. administration, mPLGA/IR775-ConA nanoparticles efficiently accumulated in the allograft tumors under the external magnetic field; produced a bright fluorescent signal for in vivo bioimaging; and led to 100% tumor growth inhibition after the single session of PDT, even for large solid tumors of more than 200 mm3 in BALB/c mice. The obtained results indicate that the mPLGA/IR775 nanostructure has great potential to become a highly effective oncotheranostic agent.
Collapse
Affiliation(s)
- Vera L. Kovalenko
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
| | - Elena N. Komedchikova
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
| | - Anna S. Sogomonyan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Ekaterina D. Tereshina
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
| | - Olga A. Kolesnikova
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
| | - Aziz B. Mirkasymov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Anna M. Iureva
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
| | - Andrei V. Zvyagin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Petr I. Nikitin
- Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia
| | - Victoria O. Shipunova
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
- Nanobiomedicine Division, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
- Correspondence:
| |
Collapse
|
26
|
Yan H, Dong J, Luan X, Wang C, Song Z, Chen Q, Ma J, Du X. Ultrathin Porous Nitrogen-Doped Carbon-Coated CuSe Heterostructures for Combination Cancer Therapy of Photothermal Therapy, Photocatalytic Therapy, and Logic-Gated Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56237-56252. [PMID: 36472929 DOI: 10.1021/acsami.2c12503] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The construction of nanoplatforms for the multimodal cancer therapy still remains an enormous challenge. Ultrathin porous nitrogen-doped carbon coated stoichiometric copper selenide heterostructures (CuSe/NC) are prepared using a facile and green one-pot hydrothermal method. Interestingly, CuSe/NC itself can achieve both photothermal therapy (PTT) and photocatalytic therapy (PCT) under irradiation of a single near-infrared (NIR) light (808 nm), which is convenient and safe for clinical applications. Importantly, the triple-enhanced NIR light-activated PCT, including O2-independent free radicals, Fenton-like reaction, and glutathione (GSH) depletion, breaks through the limitations of hypoxia and overexpressed GSH in cancer cells. Furthermore, CuSe/NC is loaded with doxorubicin (DOX) via metal coordination and then decorates with DNA to construct the CuSe/NC-DOX-DNA nanoplatform. Surprisingly, the facile nanoplatform has an advanced biocomputing capability of an "AND" Boolean logic gate with the smart "AND" logic controlled release of DOX upon combined stimuli of pH and GSH for precise cancer chemotherapy. The synergistic mechanism of proton-mediated ligand exchange between DOX and GSH is proposed for the "AND" logic controlled drug release from CuSe/NC-DOX-DNA. In vitro and in vivo studies demonstrate that CuSe/NC-DOX-DNA has excellent anticancer efficacy and negligible toxicity. This innovative nanoplatform with multienhanced anticancer efficacy provides a paradigm for combination cancer therapy of PTT, PCT, and chemotherapy.
Collapse
Affiliation(s)
- Hua Yan
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, People's Republic of China
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou318000, People's Republic of China
| | - Jiangtao Dong
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, People's Republic of China
| | - Xingkun Luan
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, People's Republic of China
| | - Chen Wang
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, People's Republic of China
| | - Zhenjun Song
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou318000, People's Republic of China
| | - Qi Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou318000, People's Republic of China
| | - Jujiang Ma
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou318000, People's Republic of China
| | - Xuezhong Du
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, People's Republic of China
| |
Collapse
|
27
|
García-Beltrán G, Mercado-Zúñiga C, René Torres-SanMiguel C, Gallegos-García G, Torres-Torres C. Photonic encryption by optical activity in Kerr-like carbon-based nanofluids with plasmonic nanoparticles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
28
|
Nekrasov N, Kudriavtseva A, Orlov AV, Gadjanski I, Nikitin PI, Bobrinetskiy I, Knežević NŽ. One-Step Photochemical Immobilization of Aptamer on Graphene for Label-Free Detection of NT-proBNP. BIOSENSORS 2022; 12:bios12121071. [PMID: 36551038 PMCID: PMC9775241 DOI: 10.3390/bios12121071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 05/28/2023]
Abstract
A novel photochemical technological route for one-step functionalization of a graphene surface with an azide-modified DNA aptamer for biomarkers is developed. The methodology is demonstrated for the functionalization of a DNA aptamer for an N-terminal B-type natriuretic peptide (NT-proBNP) heart failure biomarker on the surface of a graphene channel within a system based on a liquid-gated graphene field effect transistor (GFET). The limit of detection (LOD) of the aptamer-functionalized sensor is 0.01 pg/mL with short response time (75 s) for clinically relevant concentrations of the cardiac biomarker, which could be of relevance for point-of-care (POC) applications. The novel methodology could be applicable for the development of different graphene-based biosensors for fast, stable, real-time, and highly sensitive detection of disease markers.
Collapse
Affiliation(s)
- Nikita Nekrasov
- Center for Probe Microscopy and Nanotechnology, National Research University of Electronic Technology, Moscow, 124498 Zelenograd, Russia
| | - Anastasiia Kudriavtseva
- Center for Probe Microscopy and Nanotechnology, National Research University of Electronic Technology, Moscow, 124498 Zelenograd, Russia
| | - Alexey V. Orlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ivana Gadjanski
- BioSense Institute—Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ivan Bobrinetskiy
- Center for Probe Microscopy and Nanotechnology, National Research University of Electronic Technology, Moscow, 124498 Zelenograd, Russia
- BioSense Institute—Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Nikola Ž. Knežević
- BioSense Institute—Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, 21000 Novi Sad, Serbia
| |
Collapse
|
29
|
Yan C, Shi G, Chen J. Fluorescent Detection of Two Pesticides Based on CRISPR-Cas12a and Its Application for the Construction of Four Molecular Logic Gates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12700-12707. [PMID: 36128975 DOI: 10.1021/acs.jafc.2c04548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An intelligent detection platform was developed through molecular logic gate operation based on CRISPR-Cas12a and signal amplification circuits using two kinds of pesticides [acetamiprid (ACE) and atrazine (ATR)] as inputs. The pesticide-aptamer bindings activate the signal amplification process to produce numerous double-stranded DNA, which can be identified by CRISPR-Cas12a. Under the optimal assay conditions, the sensor exhibits excellent analytical performance, with the detection limits for ACE and ATR of 2.5 and 0.2 pM, respectively. The practicality of the platform was verified by testing pesticide concentrations in food samples. Several molecular logic gates (OR, AND, XOR, and INHIBIT) were constructed using "0" and "1" to encode the target pesticides and the fluorescence readout. The logic detection platform with simple operation, high sensitivity, and multiple logic functions is promising to become a powerful sensing system for the intelligent assay of different pesticides in food samples.
Collapse
Affiliation(s)
- Chong Yan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, Guangdong 510650, People's Republic of China
| | - Gu Shi
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, Guangdong 510650, People's Republic of China
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, Guangdong 510650, People's Republic of China
| |
Collapse
|
30
|
Xie T, Deng Y, Zhang J, Zhang Z, Hu Z, Wu T. DNA circuits compatible encoder and demultiplexer based on a single biomolecular platform with DNA strands as outputs. Nucleic Acids Res 2022; 50:8431-8440. [PMID: 35904810 PMCID: PMC9410916 DOI: 10.1093/nar/gkac650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
A series of multiple logic circuits based on a single biomolecular platform is constructed to perform nonarithmetic and arithmetic functions, including 4-to-2 encoder, 1-to-2 demultiplexer, 1-to-4 demultiplexer, and multi-input OR gate. The encoder to a DNA circuit is the equivalent of a sensory receptor to a reflex arc. They all function to encode information from outside the pathway (DNA circuit or reflex arc) into a form that subsequent pathways can recognize and utilize. Current molecular encoders are based on optical or electrical signals as outputs, while DNA circuits are based on DNA strands as transmission signals. The output of existing encoders cannot be recognized by subsequent DNA circuits. It is the first time the DNA-based encoder with DNA strands as outputs can be truly applied to the DNA circuit, enabling the application of DNA circuits in non-binary biological environments. Another novel feature of the designed system is that the developed nanodevices all have a simple structure, low leakage and low crosstalk, which allows them to implement higher-level encoders and demultiplexers easily. Our work is based on the idea of complex functionality in a simple form, which will also provide a new route for developing advanced molecular logic circuits.
Collapse
Affiliation(s)
- Tianci Xie
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuhan Deng
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiarui Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhen Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhe Hu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tongbo Wu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
31
|
Kundu S, Ghosh A, Paul I, Schmittel M. Multicomponent Pseudorotaxane Quadrilateral as Dual-Way Logic AND Gate with Two Catalytic Outputs. J Am Chem Soc 2022; 144:13039-13043. [PMID: 35834720 DOI: 10.1021/jacs.2c05065] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A multicomponent pseudorotaxane quadrilateral was reversibly toggled between three distinct switching states. Switching in the forward conversion was achieved by addition of H+ and K+ ions, and switching in the reverse direction was performed by addition of 18-crown-6 and 1-aza-18-crown-6. In both the forward and backward ways, the inputs operated an AND gate with distinct catalytic outputs. While in the forward direction the logic AND operation starting from a heteroleptic five-component assembly turned "ON" an imine hydrolysis as output (AND-1), in the inverse direction a Michael addition was ignited as the output starting from a seven-component aggregate following the AND gate logic (AND-2).
Collapse
Affiliation(s)
- Sohom Kundu
- Center of Micro- and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Amit Ghosh
- Center of Micro- and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Indrajit Paul
- Center of Micro- and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
32
|
Pawar S, Duadi H, Fleger Y, Fixler D. Design and Use of a Gold Nanoparticle-Carbon Dot Hybrid for a FLIM-Based IMPLICATION Nano Logic Gate. ACS OMEGA 2022; 7:22818-22824. [PMID: 35811911 PMCID: PMC9260748 DOI: 10.1021/acsomega.2c02463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The interest in nanomaterials resides in the fact that they can be used to create smaller, faster, and more portable systems. Nanotechnology is already transforming health care. Nanoparticles are being used by scientists to target malignancies, improve drug delivery systems, and improve medical imaging. Integration of biomolecular logic gates with nanostructures has opened new paths in illness detection and therapy that need precise control of complicated components. Most studies have used fluorescence intensity techniques to implement the logic function. Its drawbacks, mainly when working with nanoparticles in intracellular media, include fluctuations in excitation power, fluorophore concentration dependence, and interference from cell autofluorescence. We suggest using fluorescence lifetime imaging microscopy (FLIM) in order to circumvent these constraints. Designing a nanohybrid composed of gold nanoparticles (AuNPs) and red-emitting carbon dots (CDs) can be used to develop a FLIM-based logic gate that can respond to multiple input parameters. Our findings indicate a nanohybrid that can serve as a nano-computer to receive and integrate chemical and biochemical stimuli and produce a definitive output measured by FLIM. This can open a new research avenue for enhanced diagnostics and therapy that require complicated factor handling and precise control. The AuNPs are conjugated to CDs' surfaces through a strong covalent linkage. The AuNP-CD nanohybrid shows fluorescence lifetime (FLT) quenching of pristine CDs after conjugation to AuNPs. The FLT was reduced from 3.61 ± 0.037 to 2.48 ± 0.040 ns. This quenched FLT can be recovered back by using trypsin as a recovering agent, giving us a reversible logic output. The FLT was recovered to 3.01 ± 0.01 ns after trypsin addition. This "on-off-on" response can be used to construct the IMPLICATION logic gate.
Collapse
Affiliation(s)
- Shweta Pawar
- Faculty
of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan
Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| | - Hamootal Duadi
- Faculty
of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan
Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| | - Yafit Fleger
- Bar-Ilan
Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| | - Dror Fixler
- Faculty
of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan
Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
33
|
Li C, Zhao T, Li L, Hu X, Li C, Chen W, Hu Y. Stimuli-Responsive Gold Nanocages for Cancer Diagnosis and Treatment. Pharmaceutics 2022; 14:1321. [PMID: 35890217 PMCID: PMC9318695 DOI: 10.3390/pharmaceutics14071321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 02/01/2023] Open
Abstract
With advances in nanotechnology, various new drug delivery systems (DDSs) have emerged and played a key role in the diagnosis and treatment of cancers. Over the last two decades, gold nanocages (AuNCs) have been attracting considerable attention because of their outstanding properties. This review summarizes current advancements in endogenous, exogenous, and dual/multi-stimuli responsive AuNCs in drug delivery. This review focuses on the properties, clinical translation potential, and limitations of stimuli-responsive AuNCs for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Chunming Li
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Chongqing 400030, China; (C.L.); (L.L.); (X.H.); (C.L.)
| | - Tengyue Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou 450001, China;
| | - Lixian Li
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Chongqing 400030, China; (C.L.); (L.L.); (X.H.); (C.L.)
| | - Xiaogang Hu
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Chongqing 400030, China; (C.L.); (L.L.); (X.H.); (C.L.)
| | - Chao Li
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Chongqing 400030, China; (C.L.); (L.L.); (X.H.); (C.L.)
| | - Wanyi Chen
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Chongqing 400030, China; (C.L.); (L.L.); (X.H.); (C.L.)
| | - Yurong Hu
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou 450001, China;
| |
Collapse
|
34
|
Chen M, Wang C, Ding Z, Wang H, Wang Y, Liu Z. A Molecular Logic Gate for Developing "AND" Logic Probes and the Application in Hepatopathy Differentiation. ACS CENTRAL SCIENCE 2022; 8:837-844. [PMID: 35756368 PMCID: PMC9228555 DOI: 10.1021/acscentsci.2c00387] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Indexed: 06/15/2023]
Abstract
Accurate diagnosis and therapy are challenging because most diseases lack a single biomarker that distinguishes them from other disorders. A solution would enhance targeting accuracy by using AND-gated combinations of two disease-associated stimuli. Here, we report a novel "AND" molecular logic gate, enabling a double-controlled release of intact functional molecules. Benefiting from a significant difference in intramolecular cyclization rate, cargo release occurs notably faster with the presence of both stimuli. According to this finding, several AND logic probes have been developed that respond to a broad scope of stimuli and show remarkably improved signal-to-background contrast compared to those of monoresponsive probes. In addition, an AND logic probe that is responsive to monoamine oxidase (MAO) and leucine aminopeptidase (LAP) has been constructed for hepatopathy diagnosis. It works efficiently in living cells and mouse models. Of note, this probe can successfully differentiate cirrhotic from hepatitis B by testing the blood samples from patients.
Collapse
Affiliation(s)
- Mengqi Chen
- Beijing
National Laboratory for Molecular Sciences, Radiochemistry and Radiation
Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals, Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chunhong Wang
- Beijing
National Laboratory for Molecular Sciences, Radiochemistry and Radiation
Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals, Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zexuan Ding
- Beijing
National Laboratory for Molecular Sciences, Radiochemistry and Radiation
Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals, Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hao Wang
- Department
of Radiation Oncology, Peking University
Third Hospital, 49 North Garden Road, Beijing 100191, China
| | - Yu Wang
- Department
of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100730, China
| | - Zhibo Liu
- Beijing
National Laboratory for Molecular Sciences, Radiochemistry and Radiation
Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals, Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking
University−Tsinghua University Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
35
|
Grebenko AK, Motovilov KA, Bubis AV, Nasibulin AG. Gentle Patterning Approaches toward Compatibility with Bio-Organic Materials and Their Environmental Aspects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200476. [PMID: 35315215 DOI: 10.1002/smll.202200476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Advances in material science, bioelectronic, and implantable medicine combined with recent requests for eco-friendly materials and technologies inevitably formulate new challenges for nano- and micropatterning techniques. Overall, the importance of creating micro- and nanostructures is motivated by a large manifold of fundamental and applied properties accessible only at the nanoscale. Lithography is a crucial family of fabrication methods to create prototypes and produce devices on an industrial scale. The pure trend in the miniaturization of critical electronic semiconducting components has been recently enhanced by implementing bio-organic systems in electronics. So far, significant efforts have been made to find novel lithographic approaches and develop old ones to reach compatibility with delicate bio-organic systems and minimize the impact on the environment. Herein, such delicate materials and sophisticated patterning techniques are briefly reviewed.
Collapse
Affiliation(s)
- Artem K Grebenko
- Skolkovo Institute of Science and Technology, Nobel str. 3, Moscow, 121205, Russia
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institute Lane 9, Dolgoprudny, 141701, Russia
| | - Konstantin A Motovilov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institute Lane 9, Dolgoprudny, 141701, Russia
| | - Anton V Bubis
- Skolkovo Institute of Science and Technology, Nobel str. 3, Moscow, 121205, Russia
- Institute of Solid State Physics, Russian Academy of Sciences, 2 Academician Ossipyan str., Chernogolovka, 142432, Russia
| | - Albert G Nasibulin
- Skolkovo Institute of Science and Technology, Nobel str. 3, Moscow, 121205, Russia
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
| |
Collapse
|
36
|
Yoon J, Lim J, Shin M, Lee JY, Choi JW. Recent progress in nanomaterial-based bioelectronic devices for biocomputing system. Biosens Bioelectron 2022; 212:114427. [PMID: 35653852 DOI: 10.1016/j.bios.2022.114427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
Bioelectronic devices have received the massive attention because of their huge potential to develop the core electronic components for biocomputing system. Up to now, numerous bioelectronic devices have been reported such as biomemory and biologic gate by employment of biomolecules including metalloproteins and nucleic acids. However, the intrinsic limitations of biomolecules such as instability and low signal production hinder the development of novel bioelectronic devices capable of performing various novel computing functions. As a way to overcome these limitations, nanomaterials have the great potential and wide applicability to grant and extend the electronic functions, and improve the inherent properties from biomolecules. Accordingly, lots of nanomaterials including the conductive metal, graphene, and transition metal dichalcogenide nanomaterials are being used to develop the remarkable functional bioelectronic devices like the multi-bit biomemory and resistive random-access biomemory. This review discusses the nanomaterial-based superb bioelectronic devices including the biomemory, biologic gates, and bioprocessors. In conclusion, this review will provide the interdisciplinary information about utilization of various novel nanomaterials applicable for biocomputing system.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Joungpyo Lim
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Ji-Young Lee
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Liu F, Li N, Shang Y, Wang Y, Liu Q, Ma Z, Jiang Q, Ding B. A DNA‐Based Plasmonic Nanodevice for Cascade Signal Amplification. Angew Chem Int Ed Engl 2022; 61:e202114706. [DOI: 10.1002/anie.202114706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Fengsong Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Na Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yingxu Shang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology Beijing 100190 China
| | - Yiming Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology Beijing 100190 China
| | - Zhentao Ma
- He'nan Institute of Advanced Technology School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 China
| | - Qiao Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- He'nan Institute of Advanced Technology School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
38
|
Dong H, Girmatsion M, Wang R, Lu G, Xie Y, Guo Y, Qian H, Yao W. Construction of fluorescent logic gates for the detection of mercury(II) and ciprofloxacin based on phycocyanin. Methods Appl Fluoresc 2022; 10. [PMID: 35584692 DOI: 10.1088/2050-6120/ac7123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/18/2022] [Indexed: 11/12/2022]
Abstract
Chemical pollutants such as heavy metals and antibiotics in the environment pose a huge threat to humans and animals. Our studies have demonstrated that the fluorescence of phycocyanin showed quenching responses towards both mercury (Hg2+) and ciprofloxacin (CIP), which acted in accordance with the "OR" molecular logic gate. In order to discriminate Hg2+ and CIP in application scenarios, cysteine (Cys) was utilized to design another "INHIBIT" logic gate, in which Hg2+ and Cys were the two inputs. Thus, an intelligent biosensor with dual-target identification capacity was successfully developed by using a fluorescent natural protein in an ingenious logic gate system.
Collapse
Affiliation(s)
- Han Dong
- State Key Laboratory of Food Science and Technology, Jiangnan University School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, CHINA
| | - Mogos Girmatsion
- Jiangnan University School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, CHINA
| | - Ruoyu Wang
- Jiangnan University School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, CHINA
| | - Gang Lu
- Safety & Quality Management Department, Inner Mongolia Mengniu Dairy (group) CO., LTD., Inner Mongolia Mengniu Dairy (group) CO., LTD., Hohhot, Inner Mongolia, 011500, CHINA
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University School of Food Science and Technology, Wuxi, Wuxi, Jiangsu, 214122, CHINA
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, CHINA
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, CHINA
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, CHINA
| |
Collapse
|
39
|
Facile and diverse logic circuits based on dumbbell DNA-templated fluorescent copper nanoclusters and S1 nuclease detection. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Pei Y, Bian T, Liu Y, Liu Y, Xie Y, Song J. Single-Molecule Resettable DNA Computing via Magnetic Tweezers. NANO LETTERS 2022; 22:3003-3010. [PMID: 35357200 DOI: 10.1021/acs.nanolett.2c00183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
DNA-based Boolean logic computing has emerged as a leading technique in biosensing, diagnosis, and therapeutics. Due to the development of the biological and chemical methods, especially the toehold-mediated DNA strand displacement (TMSD) reaction, different logic gates as well as circuits can be performed. However, most of these methods have been conducted at the bulk level, which may lead to missing information and be less controllable. Herein, we engineered single-molecule DNA computing controlled by stretching forces using magnetic tweezers. By tracking the real-time signals of the DNA extension, the output can be determined at a single base-pair resolution. A kinetics-controllable TMSD reaction was realized in the range of a ∼19-fold change of the reaction rate by different stretching forces. OR, AND, and NOT gates were also achieved. In addition, resettable DNA computing using force stretching cycles has been further exemplified. Overall, such a real-time, label-free, and force-controlled single-molecule DNA computing system provided new insight into molecular computing.
Collapse
Affiliation(s)
- Yufeng Pei
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, People's Republic of China
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Tianyuan Bian
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin 300072, P.R. China
| | - Yonglin Liu
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P.R. China
| | - Yan Liu
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Yujie Xie
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Jie Song
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| |
Collapse
|
41
|
Hersh AM, Alomari S, Tyler BM. Crossing the Blood-Brain Barrier: Advances in Nanoparticle Technology for Drug Delivery in Neuro-Oncology. Int J Mol Sci 2022; 23:4153. [PMID: 35456971 PMCID: PMC9032478 DOI: 10.3390/ijms23084153] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 12/10/2022] Open
Abstract
The blood-brain barrier (BBB) constitutes a microvascular network responsible for excluding most drugs from the brain. Treatment of brain tumors is limited by the impermeability of the BBB and, consequently, survival outcomes for malignant brain tumors remain poor. Nanoparticles (NPs) represent a potential solution to improve drug transport to brain tumors, given their small size and capacity to target tumor cells. Here, we review the unique physical and chemical properties of NPs that aid in BBB transport and discuss mechanisms of NP transport across the BBB, including paracellular transport, carrier-mediated transport, and adsorptive- and receptor-mediated transcytosis. The major types of NPs investigated for treatment of brain tumors are detailed, including polymeric NPs, liposomes, solid lipid NPs, dendrimers, metals, quantum dots, and nanogels. In addition to their role in drug delivery, NPs can be used as imaging contrast agents and can be conjugated with imaging probes to assist in visualizing tumors, demarcating lesion boundaries and margins, and monitoring drug delivery and treatment response. Multifunctional NPs can be designed that are capable of targeting tumors for both imaging and therapeutic purposes. Finally, limitations of NPs for brain tumor treatment are discussed.
Collapse
Affiliation(s)
| | | | - Betty M. Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (S.A.)
| |
Collapse
|
42
|
Liu F, Li N, Shang Y, Wang Y, Liu Q, Ma Z, Jiang Q, Ding B. A DNA‐based plasmonic nanodevice for cascade signal amplification. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fengsong Liu
- National Center for Nanoscience and Technology CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CHINA
| | - Na Li
- National Center for Nanoscience and Technology CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CHINA
| | - Yingxu Shang
- National Center for Nanoscience and Technology CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CHINA
| | - Yiming Wang
- National Center for Nanoscience and Technology CAS Key Labortory of Nanosystem and Hierarchical Fabrication CHINA
| | - Qing Liu
- National Center for Nanoscience and Technology CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CHINA
| | - Zhentao Ma
- Zhengzhou University School of Materials Science and Engineering CHINA
| | - Qiao Jiang
- National Center for Nanoscience and Technology CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CHINA
| | - Baoquan Ding
- National Center for Nanoscience and Technology, China CAS Key Laboratory of Nanosystem and Hierarchical Fabrication No. 11, BeiYiTiao, ZhongGuanCun 100190 Beijing CHINA
| |
Collapse
|
43
|
Pan J, Deng F, Liu Z, Shi G, Chen J. Toehold-Mediated Cascade Catalytic Assembly for Mycotoxin Detection and Its Logic Applications. Anal Chem 2022; 94:3693-3700. [PMID: 35176850 DOI: 10.1021/acs.analchem.1c05485] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this work, an enzyme-free biosensor is reported for mycotoxin detection based on a toehold-mediated catalytic hairpin assembly (CHA) and a DNAzyme-cascaded hydrolysis reaction. In the presence of a mycotoxin, the recognition between an aptamer and the mycotoxin releases the trigger DNA. The trigger DNA initiates the toehold-mediated CHA, generating large amounts of partial duplex B/C with four toeholds, which can be used to assemble the DNAzyme-cascaded hydrolysis reaction. Furthermore, through a collaborative autoassembly reaction among the B/C duplex, DNA1, and DNA2, supramolecular nanostructures corresponding to Mg2+-dependent DNAzymes can be formed. With the incubation of Mg2+, the dual-modified (TAMRA/BHQ2) substrate strand DNA2 will be cleaved into two fragments, yielding a high TAMRA fluorescence signal for mycotoxin testing. Under optimal conditions, the sensing system was ultrasensitive and showed low detection limits of 0.2 pM for ochratoxin A (OTA), 0.13 pM for aflatoxin B1 (AFB1), and 0.17 pM for zearalenone (ZEN). The mycotoxin aptasensor also exhibited high selectivity and was successfully applied for the quantitative analysis of OTA, AFB1, and ZEN in wine samples. Due to the advantages of flexibility and versatility, this mycotoxin platform was used to fabricate several concatenated logic gates including "AND-INHIBIT", "INHIBIT-OR", "OR-AND", and "OR-INHIBIT" logic biocomputings. Such multiple functions of the logic system provided a universal sensing strategy for the intelligent detection of multiplex mycotoxins, demonstrating considerable potential in food safety and environmental monitoring.
Collapse
Affiliation(s)
- Jiafeng Pan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.,National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fang Deng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.,National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhi Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Gu Shi
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
44
|
Rehman MU, Khan A, Imtiyaz Z, Ali S, Makeen HA, Rashid S, Arafah A. Current Nano-therapeutic Approaches Ameliorating Inflammation in Cancer Progression. Semin Cancer Biol 2022; 86:886-908. [DOI: 10.1016/j.semcancer.2022.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
|
45
|
Roy Chowdhury S, Haldar D. A gama-turn mimetic for selective sensing of Cu(II) and combinatorial multiple logic gate. CrystEngComm 2022. [DOI: 10.1039/d2ce00462c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have designed and synthesized a gama-turn mimetic using fenamic acid and α-aminoisobutyricacid (Aib), the conformation and optoelectronic properties of which can be changed by appropriate external stimuli. From single-crystal...
Collapse
|
46
|
Pan J, He Y, Liu Z, Chen J. Tetrahedron-Based Constitutional Dynamic Network for COVID-19 or Other Coronaviruses Diagnostics and Its Logic Gate Applications. Anal Chem 2021; 94:714-722. [PMID: 34935362 DOI: 10.1021/acs.analchem.1c03051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Considering the large-scale outbreak of the coronavirus, it is essential to develop a versatile sensing system for different coronaviruses diagnostics, such as COVID-19, severe acute respiratory syndrome-related coronavirus (SARS-CoV), and bat SARS-like coronavirus (Bat-SL-CoVZC45). In this work, a tetrahedron-based constitutional dynamic network was built as the sensing platform for coronavirus detection. Four different DNA probes were used to construct the tetrahedron structure. DNAzyme and the fluorophore modified substrate strand were used to generate different fluorescence signals, which can be used to distinguish different coronaviruses. The coronavirus biosensor shows a high sensitivity for COVID-19, Bat-SL-CoVZC45, and SARS-CoV detection, with detection limits of 2.5, 3.1, and 2.9 fM, respectively. Also, the platform is robust, and the possible interference from clinical samples was negligible. Using different coronaviruses as inputs, we have fabricated several concatenated logic gates, such as "AND-OR", "INHIBIT-AND", "AND-AND-AND", and "AND-INHIBIT". Importantly, our logic system can also be used to identify SARS-CoV-2 Delta and Lambda variants in the logic operations. Due to the unique advantages of high sensitivity and selectivity, multiple logic biocomputing capabilities, and multireadout mode, this flexible sensing system provides a versatile sensing strategy for intelligent diagnostics of different coronaviruses with low false-negative rates.
Collapse
Affiliation(s)
- Jiafeng Pan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Ying He
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Zhi Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
47
|
Yao QF, Quan MX, Yang JH, Liu QY, Bu ZQ, Huang WT. Multifunctional Carbon Nanocomposites as Nanoneurons from Multimode and Multianalyte Sensing to Molecular Logic Computing, Steganography, and Cryptography. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103983. [PMID: 34668311 DOI: 10.1002/smll.202103983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Inspired by information exchange and logic functions of life based on molecular recognition and interaction networks, ongoing efforts are directed toward development of molecular or nanosystems for multiplexed chem/biosensing and advanced information processing. However, because of their preparation shortcomings, poor functionality, and limited paradigms, it is still a big challenge to develop advanced nanomaterials-based systems and comprehensively realize neuron-like functions from multimode sensing to molecular information processing and safety. Herein, using fish scales derived carbon nanoparticles (FSCN) as a reducing agent and stabilizer, a simple one-step synthesis method of multifunctional silver-carbon nanocomposites (AgNPs-FSCN) is developed. The prepared AgNPs-FSCN own wide antibacterial and multisignal response abilities in five channels (including color, Tyndall, absorption and fluorescence intensities, and absorption wavelength) for quantitative colorimetric and fluorescence sensing of H2 O2 , ascorbic acid, and dopamine. Benefiting from its multicoding stimuli-responsive ability, molecular concealment, and programmability, AgNPs-FSCN can be abstracted as nanoneurons for implementing batch and parallel molecular logic computing, steganography, and cryptography. This research will promote the preparation of advanced multifunctional nanocomposites and the development of their multipurpose applications, including the multireadout-guided multianalyte intelligent sensing and sophisticated molecular computing, communication, and security.
Collapse
Affiliation(s)
- Qing Feng Yao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Min Xia Quan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Jin Hua Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Qing Yu Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Zhen Qi Bu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| |
Collapse
|
48
|
Drozdov AS, Nikitin PI, Rozenberg JM. Systematic Review of Cancer Targeting by Nanoparticles Revealed a Global Association between Accumulation in Tumors and Spleen. Int J Mol Sci 2021; 22:13011. [PMID: 34884816 PMCID: PMC8657629 DOI: 10.3390/ijms222313011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022] Open
Abstract
Active targeting of nanoparticles toward tumors is one of the most rapidly developing topics in nanomedicine. Typically, this strategy involves the addition of cancer-targeting biomolecules to nanoparticles, and studies on this topic have mainly focused on the localization of such formulations in tumors. Here, the analysis of the factors determining efficient nanoparticle targeting and therapy, various parameters such as types of targeting molecules, nanoparticle type, size, zeta potential, dose, and the circulation time are given. In addition, the important aspects such as how active targeting of nanoparticles alters biodistribution and how non-specific organ uptake influences tumor accumulation of the targeted nanoformulations are discussed. The analysis reveals that an increase in tumor accumulation of targeted nanoparticles is accompanied by a decrease in their uptake by the spleen. There is no association between targeting-induced changes of nanoparticle concentrations in tumors and other organs. The correlation between uptake in tumors and depletion in the spleen is significant for mice with intact immune systems in contrast to nude mice. Noticeably, modulation of splenic and tumor accumulation depends on the targeting molecules and nanoparticle type. The median survival increases with the targeting-induced nanoparticle accumulation in tumors; moreover, combinatorial targeting of nanoparticle drugs demonstrates higher treatment efficiencies. Results of the comprehensive analysis show optimal strategies to enhance the efficiency of actively targeted nanoparticle-based medicines.
Collapse
Affiliation(s)
- Andrey S. Drozdov
- Laboratory of Nanobiotechnology, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia;
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Julian M. Rozenberg
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| |
Collapse
|
49
|
Chandler M, Johnson B, Khisamutdinov E, Dobrovolskaia MA, Sztuba-Solinska J, Salem AK, Breyne K, Chammas R, Walter NG, Contreras LM, Guo P, Afonin KA. The International Society of RNA Nanotechnology and Nanomedicine (ISRNN): The Present and Future of the Burgeoning Field. ACS NANO 2021; 15:16957-16973. [PMID: 34677049 PMCID: PMC9023608 DOI: 10.1021/acsnano.0c10240] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The International Society of RNA Nanotechnology and Nanomedicine (ISRNN) hosts an annual meeting series focused on presenting the latest research achievements involving RNA-based therapeutics and strategies, aiming to expand their current biomedical applications while overcoming the remaining challenges of the burgeoning field of RNA nanotechnology. The most recent online meeting hosted a series of engaging talks and discussions from an international cohort of leading nanotechnologists that focused on RNA modifications and modulation, dynamic RNA structures, overcoming delivery limitations using a variety of innovative platforms and approaches, and addressing the newly explored potential for immunomodulation with programmable nucleic acid nanoparticles. In this Nano Focus, we summarize the main discussion points, conclusions, and future directions identified during this two-day webinar as well as more recent advances to highlight and to accelerate this exciting field.
Collapse
Affiliation(s)
- Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Emil Khisamutdinov
- Department of Chemistry, Ball State University, Muncie, Indiana 47304, United States
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702, United States
| | - Joanna Sztuba-Solinska
- Department of Biological Sciences, Auburn University, 120 W. Samford Avenue, Rouse Life Sciences Building, Auburn, Alabama 36849, United States
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Koen Breyne
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachussets 02114, United States
| | - Roger Chammas
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de São Paulo - ICESP, Faculdade de Medicina da Universidade de São Paulo - FMUSP, Avenida Dr. Arnaldo 251, Cerqueira César, São Paulo 01246-000, São Paulo, Brazil
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering and Department of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78714, United States
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
50
|
Liu L, Liu P, Ga L, Ai J. Advances in Applications of Molecular Logic Gates. ACS OMEGA 2021; 6:30189-30204. [PMID: 34805654 PMCID: PMC8600522 DOI: 10.1021/acsomega.1c02912] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/05/2021] [Indexed: 05/21/2023]
Abstract
Logic gates are devices that can perform Boolean logic operations and are the basic components of integrated circuits for information processing and storage. In recent years, molecular logic gates are gradually replacing traditional silicon-based electronic computers with their significant advantages and are used in research in water quality monitoring, heavy metal ion detection, disease diagnosis and treatment, food safety detection, and biological sensors. Logic gates at the molecular level have broad development prospects and huge development potential. In this review, the development and application of logic gates in various fields are used as the entry point to discuss the research progress of logic gates and logic circuits. At the same time, the application of logic gates in quite a few emerging fields is briefly summarized and predicted.
Collapse
Affiliation(s)
- Lijun Liu
- College
of Chemistry and Environmental Science, Inner Mongolian Key Laboratory
for Enviromental Chemistry, Inner Mongolia
Normal University, 81 Zhaowudalu, Hohhot 010022, People’s Republic of China
| | - Pingping Liu
- College
of Chemistry and Environmental Science, Inner Mongolian Key Laboratory
for Enviromental Chemistry, Inner Mongolia
Normal University, 81 Zhaowudalu, Hohhot 010022, People’s Republic of China
| | - Lu Ga
- College
of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot 010110, People’s Republic of China
| | - Jun Ai
- College
of Chemistry and Environmental Science, Inner Mongolian Key Laboratory
for Enviromental Chemistry, Inner Mongolia
Normal University, 81 Zhaowudalu, Hohhot 010022, People’s Republic of China
| |
Collapse
|