1
|
Vorobyeva A, Din MU, Schulga A, Konovalova E, Abouzayed A, Bragina O, Li R, Gräslund T, Deyev SM, Oroujeni M. Selection of the optimal chelator for labeling of DARPin Ec1 with gallium-68 for PET imaging of EpCAM expression. EJNMMI Radiopharm Chem 2025; 10:26. [PMID: 40445498 PMCID: PMC12125460 DOI: 10.1186/s41181-025-00347-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 05/06/2025] [Indexed: 06/16/2025] Open
Abstract
BACKGROUND Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein, which is overexpressed in several types of malignancies. Designed ankyrin repeat protein (DARPin) Ec1 is a 19 kDa engineered scaffold protein that binds with high affinity to EpCAM. Radiolabelled Ec1 might be used as a companion diagnostic for the selection of patients for personalized therapy. This study aimed to investigate the influence of different radiometal-chelator complexes on the biodistribution and imaging contrast of 68Ga-labelled Ec1. To investigate this, two macrocyclic chelators, 1,4,7-triazacyclononane-N,N,N-triacetic acid (NOTA) and 1-(1,3-carboxypropyl)-1,4,7-triazacyclononane-4,7-diacetic acid (NODAGA) were conjugated to the C-terminus of the Ec1. The previously developed DARPin Ec1 conjugated to 1,4,7,10-tetraazacylododecane-1,4,7,10-tetraacetic acid (DOTA) was used as a comparator. RESULTS All Ec1 variants were successfully labelled with 68Ga. The use of NOTA and NODAGA provided twice higher radiochemical yield and improved label stability compared to DOTA. All labelled Ec1 variants bound to the EpCAM-expressing cells with nanomolar affinity and preserved targeting specificity in vitro and in vivo. Biodistribution studies in mice bearing EpCAM-expressing SKOV-3 xenografts showed that [68Ga]Ga-Ec1-NOTA had lower uptake in most normal organs while maintaining tumor uptake. Among all variants, [68Ga]Ga-Ec1-NOTA showed the lowest liver uptake, with no significant differences in tumor uptake. Additionally, [68Ga]Ga-Ec1-NOTA provided the highest tumor-to-blood ratio compared to [68Ga]Ga-Ec1-DOTA and [68Ga]Ga-Ec1-NODAGA. CONCLUSION [68Ga]Ga-Ec1-NOTA is the preferred radioconjugate for PET imaging of EpCAM expression.
Collapse
Affiliation(s)
- Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85, Uppsala, Sweden
| | - Moeen-Ud Din
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85, Uppsala, Sweden
| | - Alexey Schulga
- Molecular Immunology Laboratory, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
| | - Elena Konovalova
- Molecular Immunology Laboratory, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
| | - Ayman Abouzayed
- Department of Medicinal Chemistry, Uppsala University, 75183, Uppsala, Sweden
| | - Olga Bragina
- Department of Nuclear Medicine, Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences, 634050, Tomsk, Russia
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050, Tomsk, Russia
| | - Ruonan Li
- Department of Protein Science, KTH Royal Institute of Technology, 10691, Stockholm, Sweden
| | - Torbjörn Gräslund
- Department of Protein Science, KTH Royal Institute of Technology, 10691, Stockholm, Sweden
| | - Sergey M Deyev
- Molecular Immunology Laboratory, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050, Tomsk, Russia
| | - Maryam Oroujeni
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85, Uppsala, Sweden.
| |
Collapse
|
2
|
Kang CM, Kim JL, Jung HJ, Jung KH, Kim M, Kim G, Lee H, Lee KH. 177Lu-Anti-CD25 Antibody for Interleukin-2 Receptor-α-Targeted Radioimmunotherapy of SUDHL1 Lymphomas in Mice. Mol Pharm 2025. [PMID: 40408541 DOI: 10.1021/acs.molpharmaceut.4c01410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Antibodies (Abs) conjugated with particle-emitting radioisotopes are used for cancer therapy, and the CD25 receptor (IL-2Rα) is a promising target for lymphomas. We functionalized an anti-CD25 Ab with TCO-PEG3-maleimide, specifically on sulfhydryl moieties, at 1.89 molecules per Ab. Radiosynthesis was achieved by efficiently prelabeling DOTA-PEG4-tetrazine with 177Lu at a high temperature and then linking it to the TCO-conjugated Abs via facile click chemistry under mild conditions. The [177Lu]Lu-DOTA-PEG4-Tz-TCO-PEG3-anti-CD25 Ab (177Lu-CD25 Ab) had a radiochemical purity of >99%, a specific activity of 707.9 ± 271.5 MBq/mg, an immunoreactive fraction of 77.6%, and high radiolabel stability in serum for up to 7 days. CD25-positive SUDHL1 human T lymphoma cells showed 177Lu-CD25 Ab uptake that was completely blocked by pretreatment with unlabeled Ab. The 177Lu-CD25 Ab dose-dependently suppressed SUDHL1 cell survival in vitro. In mice, 177Lu-CD25 Ab uptake at 5 days was high in the SUDHL1 tumors (7.1 ± 1.6%ID/g), modest in the liver, kidneys, and spleen, and low in the blood, lungs, and bones. CD25-specific targeting was confirmed by 66.7% suppression of tumor uptake by pretreatment with unlabeled CD25 Ab. Treatment with 18.5 MBq of 177Lu-CD25 Ab shrank the xenograft tumors, and they remained undetectable until study termination on day 61. In contrast, the tumors in all control and CD25 Ab-treated mice grew to exceed the end point criterion of 2,000 mm3. The standardized tumor growth rate and 19-day tumor volume were completely suppressed in the 177Lu-CD25 Ab group (109.9 ± 73.5 and 132.6 ± 111.5 mm3), compared with the control (1053.9 ± 151.1 and 1804.5 ± 283.1 mm3) and CD25 Ab groups (1049.7 ± 212.2 and 1443.8 ± 839.4 mm3; all p < 0.001). A Kaplan-Meier survival analysis showed that 177Lu-CD25 Ab-treated mice survived significantly longer than mice in the control and CD25 Ab groups. Tumors in a separate set of mice that were treated with 177Lu-CD25 Ab displayed increased PARP1 cleavage fragments, a signature of apoptosis. Toxicity studies showed that white blood cell, red blood cell, and platelet counts in the 177Lu-CD25 Ab group decreased from days 3-14, reaching a nadir on days 17-21 and returning to the normal range by days 24-31. Liver and renal function tests on day 28 did not differ from those of untreated mice. Thus, the 177Lu-CD25 Ab prepared as described here could be useful for radioimmunotherapy of CD25-positive lymphomas.
Collapse
Affiliation(s)
- Choong Mo Kang
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology, Seoul 01812, Korea
| | - Jung Lim Kim
- Department of Nuclear Medicine, Samsung Medical Center, Seoul 06351, Korea
- Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul 06355, Korea
| | - Hye Jin Jung
- Department of Nuclear Medicine, Samsung Medical Center, Seoul 06351, Korea
| | - Kyung-Ho Jung
- Department of Nuclear Medicine, Samsung Medical Center, Seoul 06351, Korea
- Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul 06355, Korea
| | - Mina Kim
- Department of Nuclear Medicine, Samsung Medical Center, Seoul 06351, Korea
- Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul 06355, Korea
| | - Giro Kim
- Department of Nuclear Medicine, Samsung Medical Center, Seoul 06351, Korea
| | - Hyunjong Lee
- Department of Nuclear Medicine, Samsung Medical Center, Seoul 06351, Korea
| | - Kyung-Han Lee
- Department of Nuclear Medicine, Samsung Medical Center, Seoul 06351, Korea
- Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul 06355, Korea
| |
Collapse
|
3
|
Zeng F, Hu W, Xu H, Wang X, Zhao C, Wang Y, Wang J. Strontium regulating lipid metabolism of bovine hepatocytes via SIRT1/SREBPs pathway. J Steroid Biochem Mol Biol 2025; 252:106785. [PMID: 40403884 DOI: 10.1016/j.jsbmb.2025.106785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
Periparturient dairy cows are susceptible to negative energy balance (NEB), which triggers excessive adipose mobilization, leading to elevated plasma non-esterified fatty acids (NEFA) and hepatic lipid accumulation. While strontium (Sr) has shown metabolic regulatory potential, its role in hepatic lipid homeostasis remains unclear. Using an NEFA-induced lipid accumulation model in bovine hepatocytes, we demonstrated that Sr (5-20 μM) significantly reduced intracellular triglyceride (TG) and total cholesterol (TC) levels. Further mechanistic studies revealed that Sr enhances SIRT1 expression and suppresses the expression and nuclear translocation of SREBP-1C/SREBP2, thereby downregulating downstream lipogenic enzymes including ACC, FASN, SCD1, and HMGCR. Molecular docking indicated that Sr²⁺ binds with high affinity to Asp-481/483 of SIRT1, while SIRT1 inhibition with EX-527 abolished Sr-mediated lipid-lowering effects. Additionally, Sr promoted PPARα nuclear translocation to enhance β-oxidation and upregulated LDLR expression to facilitate lipid efflux. This study elucidated the multi-target molecular mechanism of Sr alleviating lipid metabolism disorders in bovine hepatocytes through the SIRT1/SREBPs pathway, providing a theoretical foundation for the application of Sr in preventing metabolic diseases in dairy cows.
Collapse
Affiliation(s)
- Fangyuan Zeng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenjuan Hu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haichuan Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinxin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chenxu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yazhou Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Lucio-Martínez F, Szilágyi B, Uzal-Varela R, Pérez-Lourido P, Esteban-Gómez D, Lepareur N, Tircsó G, Platas-Iglesias C. [ natY/ 90Y]Yttrium and [ natLu/ 177Lu]Lutetium Complexation by Rigid H 4OCTAPA Derivatives. Effect of Ligand Topology. Chemistry 2025; 31:e202500799. [PMID: 40178154 DOI: 10.1002/chem.202500799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/05/2025]
Abstract
We present a detailed investigation on the coordination chemistry of [nat/90Y]Y3+ and [nat/177Lu]Lu3+ with the new acyclic chelator H4CHXOITAPA. This octadentate chelator forms nine-coordinated Y3+ and Lu3+ complexes thanks to the coordination of a water molecule, as demonstrated by the X-ray structure of [Y(HCHXOITAPA)(H2O)] and 1H, 13C, and 89Y NMR studies in solution. These complexes display slightly higher thermodynamic stabilities compared with those of the known H4CHXOCTAPA and H4OCTAPA chelators, reaching log KYL and log KLuL values of 21.24(5) and 21.96(1), respectively. Kinetic studies indicate that these complexes dissociate mainly through the spontaneous and proton-assisted pathways at pH 7.4. The chelator can be readily radiolabeled with [90Y]Y3+ and [177Lu]Lu3+ at room temperature in 10 min. The radio-complexes are stable in human serum at 37 °C, in contrast with the analogues of the known H4CHXOCTAPA and H4OCTAPA chelators, which experience significant dissociation under these conditions. Thus, the H4CHXOITAPA chelator represents the most promising candidate among the H4OCTAPA family for the development of 90Y- and 177Lu-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Fátima Lucio-Martínez
- Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, A Coruña, 15001, Spain
| | - Balázs Szilágyi
- Department of Physical Chemistry, University of Debrecen, Debrecen, H-4010, Hungary
- Doctoral School of Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, H-4010, Hungary
| | - Rocío Uzal-Varela
- Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, A Coruña, 15001, Spain
| | - Paulo Pérez-Lourido
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Marcosende, Pontevedra, 36310, Spain
| | - David Esteban-Gómez
- Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, A Coruña, 15001, Spain
| | - Nicolas Lepareur
- Centre Eugène Marquis, Inrae, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer), University of Rennes, UMR_A 1341, UMR_S 1317, Rennes, F-35000, France
| | - Gyula Tircsó
- Department of Physical Chemistry, University of Debrecen, Debrecen, H-4010, Hungary
| | - Carlos Platas-Iglesias
- Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, A Coruña, 15001, Spain
| |
Collapse
|
5
|
Xu H, Dong P, Wang H, Sin I, Kang CS, Ren S, Sun X, Chong HS. Synthesis and evaluation of a novel bifunctional ligand 3o-C-NETA for Yttrium-90 and Lutetium-177. Bioorg Med Chem Lett 2025; 120:130136. [PMID: 39947352 DOI: 10.1016/j.bmcl.2025.130136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/23/2025] [Accepted: 02/09/2025] [Indexed: 02/28/2025]
Abstract
A bifunctional ligand is an essential component for targeted cancer therapy using cytotoxic radionuclides. We report the synthesis and evaluation of a novel bifunctional ligand, 3o-C-NETA, designed for labeling a bioactive small molecule or an antibody with β-particle emitting radionuclides 90Y and 177Lu. 3o-C-NETA is an octadentate chelating agent and contains both a macrocyclic backbone (1,4,7-triazacyclononane, TACN) and pendant donor groups. 3o-C-NETA was efficiently synthesized via the regiospecific ring opening of a functionalized aziridinium ion with tert-Butyl protected NODA (1,4,7-triazacyclononane-1,4-diacetic acid) and evaluated for radiolabeling kinetics and in vitro complex stability with 90Y and 177Lu. The new bifunctional ligand (3o-C-NETA) rapidly bound to 90Y or 177Lu, and the corresponding 90Y- or 177Lu-labeled 3o-C-NETA remained stable in human serum for two weeks.
Collapse
Affiliation(s)
- Hua Xu
- Department of Chemistry, Lewis College of Science and Letters, Illinois Institute of Technology, Chicago, IL, United States
| | - Pengfei Dong
- Department of Chemistry, Lewis College of Science and Letters, Illinois Institute of Technology, Chicago, IL, United States
| | - Haixing Wang
- Department of Chemistry, Lewis College of Science and Letters, Illinois Institute of Technology, Chicago, IL, United States
| | - Inseok Sin
- Department of Chemistry, Lewis College of Science and Letters, Illinois Institute of Technology, Chicago, IL, United States
| | - Chi Soo Kang
- Department of Chemistry, Lewis College of Science and Letters, Illinois Institute of Technology, Chicago, IL, United States
| | - Siyuan Ren
- Department of Chemistry, Lewis College of Science and Letters, Illinois Institute of Technology, Chicago, IL, United States
| | - Xiang Sun
- Department of Chemistry, Lewis College of Science and Letters, Illinois Institute of Technology, Chicago, IL, United States
| | - Hyun-Soon Chong
- Department of Chemistry, Lewis College of Science and Letters, Illinois Institute of Technology, Chicago, IL, United States.
| |
Collapse
|
6
|
Roussel T, Cruz-Dubois T, Louis B, Laurini E, Ding L, Balasse L, Nail V, Dignat-George F, Giorgio S, Pricl S, Guillet B, Garrigue P, Peng L. Impact of inner hydrophobicity of dendrimer nanomicelles on biodistribution: a PET imaging study. J Mater Chem B 2025; 13:5041-5050. [PMID: 39699216 DOI: 10.1039/d4tb01266f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Self-assembly is a powerful strategy for building nanosystems for biomedical applications. We have recently developed small amphiphilic dendrimers capable of self-assembling into nanomicelles for tumor imaging. In this context, we studied the impact of increased hydrophobicity of the amphiphilic dendrimer on hydrophilic/hydrophobic balance and consequently on the self-assembly and subsequent biodistribution. Remarkably, despite maintaining the exact same surface chemistry, similar zeta potential, and small size, the altered and enlarged hydrophobic component within the amphiphilic dendrimer led to enhanced stability of the self-assembled nanomicelles, with prolonged circulation time and massive accumulation in the liver. This study reveals that even structural alteration within the interior of nanomicelles can dramatically impact biodistribution profiles. This finding highlights the deeper complexity of rational design for nanomedicine and the need to consider factors other than surface charge and chemistry, as well as size, all of which significantly impact the biodistribution of self-assembling nanosystems.
Collapse
Affiliation(s)
- Tom Roussel
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, France.
| | - Twiany Cruz-Dubois
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille University, CNRS, CERIMED, Marseille, France
| | - Beatrice Louis
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille University, CNRS, CERIMED, Marseille, France
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory, Department of Engineering and Architectures, University of Trieste, Trieste 34127, Italy
| | - Ling Ding
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, France.
| | - Laure Balasse
- Aix Marseille University, CNRS, CERIMED, Marseille, France
| | - Vincent Nail
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille University, CNRS, CERIMED, Marseille, France
| | | | - Suzanne Giorgio
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, France.
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory, Department of Engineering and Architectures, University of Trieste, Trieste 34127, Italy
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-136, Poland
| | - Benjamin Guillet
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille University, CNRS, CERIMED, Marseille, France
| | - Philippe Garrigue
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille University, CNRS, CERIMED, Marseille, France
| | - Ling Peng
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, France.
| |
Collapse
|
7
|
Marlin A, Tran PN, Dierolf M, DeLuca M, Joaqui Joaqui MA, Glaser OM, Koller AJ, Alucio-Sarduy E, Gork M, Śmiłowicz D, Pierre V, Engle JW, Boros E. Evaluation of PSMA-Targeted TREN-CAM Conjugates for Targeted Imaging of Cancer with 68Ga(III) and 45Ti(IV). Bioconjug Chem 2025; 36:859-866. [PMID: 40103324 DOI: 10.1021/acs.bioconjchem.5c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Chelation approaches that are compatible with a multitude of isotopes are an important area of development. Here, we introduce the design, synthesis, and evaluation of 2,3-dihydroxyterephthalate/catechol chelator conjugates compatible with the positron emission tomography (PET) isotopes 68Ga3+ and 45Ti4+, targeting the prostate-specific membrane antigen (PSMA). The conjugates are made in a multistep organic synthesis incorporating 2,3-dihydroxyterephthalate, linked to the amino hexanoic acid-extended, urea-dipeptides EuE or KuE (substrates of the PSMA active site). The radiochemical complexes, [45Ti][Ti(TREN-CAM-hex-EuE)]2-, [45Ti][Ti(TREN-CAM-hex-KuE)]2-, and [68Ga][Ga(TREN-CAM-hex-KuE)]3- form readily at room temperature within 15 min with a molar activity of 24-29 mCi/μmol. The corresponding chelates are stable in phosphate-buffered saline (PBS) solution prior to injection. Subsequent in vivo studies in a bilateral tumor xenograft mouse model were conducted, including 90- and 270-min PET, followed by biodistribution and metabolite analysis at 2 or 5 h postinjection. These studies demonstrated selective uptake of the radiochemical complexes in the PSMA-expressing tumor (17.25 ± 4.15, 13.84 ± 3.85, 15.64 ± 6.37% ID/g for [45Ti][Ti(TREN-CAM-hex-EuE)]2-, [45Ti][Ti(TREN-CAM-hex-KuE)]2- and [68Ga][Ga(TREN-CAM-hex-KuE)]3- respectively), with pharmacokinetics dominated by renal clearance. Delayed clearance of the [45Ti][Ti(TREN-CAM-hex-KuE)]2- complex is observed when compared with that of [68Ga][Ga(TREN-CAM-hex-KuE)]3- as indicated by elevated activity retention in the blood, which we attribute to the charge difference and partial complex dissociation. Urine metabolite analysis shows that [68Ga][Ga(TREN-CAM-hex-KuE)]3- is excreted >98% intact, while [45Ti][Ti(TREN-CAM-hex-KuE)]2- exhibited signs of dechelation. Conclusively, our data support further investigation of bifunctional TREN-CAM derivatives as a synthetically accessible bifunctional chelator class for 68Ga3+ and 45Ti4+ isotopes.
Collapse
Affiliation(s)
- Axia Marlin
- Department of Chemistry, University of Wisconsin Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Phuong Nguyen Tran
- Department of Chemistry, University of Wisconsin Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Morgan Dierolf
- Department of Medical Physics, University of Wisconsin Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Molly DeLuca
- Department of Medical Physics, University of Wisconsin Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - M Andrey Joaqui Joaqui
- Department of Chemistry, University of Wisconsin Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Owen M Glaser
- Department of Chemistry, University of Wisconsin Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Angus J Koller
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| | - Eduardo Alucio-Sarduy
- Department of Medical Physics, University of Wisconsin Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Mallory Gork
- Department of Chemistry, University of Wisconsin Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Dariusz Śmiłowicz
- Department of Chemistry, University of Wisconsin Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Valérie Pierre
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Jonathan W Engle
- Department of Medical Physics, University of Wisconsin Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
- Department of Radiology, University of Wisconsin Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Eszter Boros
- Department of Chemistry, University of Wisconsin Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| |
Collapse
|
8
|
Batool A, Kopp I, Kubeil M, Bachmann M, Andrews PC, Stephan H. Targeted bismuth-based materials for cancer. Dalton Trans 2025; 54:5614-5639. [PMID: 40040450 DOI: 10.1039/d5dt00163c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The use of bismuth and its compounds in biomedicine has developed rapidly in recent years. Due to their unique properties, there are great opportunities for the development of new non-invasive strategies for the early diagnosis and effective treatment of cancers. This perspective highlights key fabrication methods to generate well-defined and clinically relevant bismuth materials of varying characteristics. On the one hand, this opens up a wide range of possibilities for unimodal and multimodal imaging. On the other hand, effective treatment strategies, which are increasingly based on combinatorial therapies, are given a great deal of attention. One of the biggest challenges remains the selective tumour targeting, whether active or passive. Here we present an overview on new developments of bismuth based materials moving forward from a simple enrichment at the tumour site via uptake by the mononuclear phagocytic system (MPS) to a more active tumour specific targeting via covalent modification with tumour-seeking molecules based on either small or antibody-derived molecules.
Collapse
Affiliation(s)
- Amna Batool
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia.
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Ina Kopp
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Manja Kubeil
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Philip C Andrews
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| |
Collapse
|
9
|
Bleher K, Cieslik PA, Comba P. Bispidine coordination chemistry. Dalton Trans 2025; 54:4405-4431. [PMID: 39925184 DOI: 10.1039/d5dt00050e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Bispidines are extremely rigid ligands, easy to prepare in a large variety, with denticities of four to ten, various donor sets and charges, for mono- and oligonuclear transition metal, main group and rare earth complexes. In the last approx. 20 years significantly more than 50 new bispidine based ligands were prepared and their coordination chemistry studied. Biological probes and medicinal applications is one main area in bispidine coordination chemistry, where fast complex formation, high stability, metal ion selectivity and inertness are of utmost importance. Oxygen activation and oxidation catalysis is another main focus in bispidine coordination chemistry, with catalyst efficiency and stability as well as product selectivity as important requirements. Particularly successful applications in these areas are presented and discussed in detail, in addition to fundamental principles that show the importance of ligand rigidity, cavity size and shape as overarching fundamental properties.
Collapse
Affiliation(s)
- Katharina Bleher
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany.
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Patrick A Cieslik
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany.
- Molecular Imaging & Radiochemistry, Institute for Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Peter Comba
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany.
- Universität Heidelberg, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), INF 205, 69120 Heidelberg, Germany
| |
Collapse
|
10
|
Zhang Y, Lu Z, Guo J, Wang Q, Zhang X, Yang H, Li X. Advanced Carriers for Precise Delivery and Therapeutic Mechanisms of Traditional Chinese Medicines: Integrating Spatial Multi-Omics and Delivery Visualization. Adv Healthc Mater 2025; 14:e2403698. [PMID: 39828637 DOI: 10.1002/adhm.202403698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/01/2024] [Indexed: 01/22/2025]
Abstract
The complex composition of traditional Chinese medicines (TCMs) has posed challenges for in-depth study and global application, despite their abundance of bioactive compounds that make them valuable resources for disease treatment. To overcome these obstacles, it is essential to modernize TCMs by focusing on precise disease treatment. This involves elucidating the structure-activity relationships within their complex compositions, ensuring accurate in vivo delivery, and monitoring the delivery process. This review discusses the research progress of TCMs in precision disease treatment from three perspectives: spatial multi-omics technology for precision therapeutic activity, carrier systems for precise in vivo delivery, and medical imaging technology for visualizing the delivery process. The aim is to establish a novel research paradigm that advances the precision therapy of TCMs.
Collapse
Affiliation(s)
- Yusheng Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| | - Zhiguo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process, Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jing Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process, Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, P. R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process, Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hongjun Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, 100029, P. R. China
| | - Xianyu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| |
Collapse
|
11
|
Tosato M, Favaretto C, Kleynhans J, Burgoyne AR, Gestin JF, van der Meulen NP, Jalilian A, Köster U, Asti M, Radchenko V. Alpha Atlas: Mapping global production of α-emitting radionuclides for targeted alpha therapy. Nucl Med Biol 2025; 142-143:108990. [PMID: 39809026 DOI: 10.1016/j.nucmedbio.2024.108990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
Targeted Alpha Therapy has shown great promise in cancer treatment, sparking significant interest over recent decades. However, its broad adoption has been impeded by the scarcity of alpha-emitters and the complexities related to their use. The availability of these radionuclides is often constrained by the intricate production processes and purification, as well as regulatory and logistical challenges. Moreover, the high cost and technical difficulties associated with handling and applying alpha-emitting radionuclides pose additional barriers to their clinical implementation. This Alpha Atlas provides an in-depth overview of the leading alpha-particle emitting radionuclide candidates for clinical use, focusing on their production processes and supply chains. By mapping the current facilities that produce and supply these radionuclides, this atlas aims to assist researchers, clinicians, and industries in initiating or scaling up the applications of alpha-emitters. The Alpha Atlas aspires to act as a strategic guide, facilitating collaboration and driving forward the integration of these potent therapeutic agents into cancer treatment practices.
Collapse
Affiliation(s)
- Marianna Tosato
- Radiopharmaceutical Chemistry Laboratory (RACHEL), Nuclear Medicine Unit, AUSL-IRCCS Reggio Emilia, 42123 Reggio Emilia, Italy.
| | - Chiara Favaretto
- Radiopharmacy and Cyclotron Department, IRCCS Sacro Cuore Don Calabria, Negrar 37024, Verona, Italy
| | - Janke Kleynhans
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Andrew R Burgoyne
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, United States
| | - Jean-François Gestin
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, 44000 Nantes, France
| | - Nicholas P van der Meulen
- PSI Center for Life Sciences, 5232 Villigen-PSI, Switzerland; PSI Center for Nuclear Engineering and Sciences, 5232 Villigen-PSI, Switzerland
| | - Amirreza Jalilian
- Department of Nuclear Safety and Security, International Atomic Energy Agency, 1220 Vienna, Austria
| | - Ulli Köster
- Institut Laue-Langevin, 38042 Grenoble, France
| | - Mattia Asti
- Radiopharmaceutical Chemistry Laboratory (RACHEL), Nuclear Medicine Unit, AUSL-IRCCS Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, BC V6T 2A3 Vancouver, British Columbia, Canada; Department of Chemistry, University of British Columbia, V6T 1Z1 Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Marlin A, Le Pape F, Troadec T, Le Goff J, Tripier R, Berthou C, Patinec V. Zn 2+ triazamacrocyclic chelators with methylpyridine pendant arms for B-cell apoptosis: a structure-activity study. Dalton Trans 2025; 54:3939-3951. [PMID: 39895421 DOI: 10.1039/d4dt02962c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Three macrocyclic tacn (1,4,7-triazacyclononane) derivatives containing one, two and three 2-methylpyridine pendant arms (no1py, no2py and no3py), compared to the linear diamine analogue tpen (N,N,N',N'-tetrakis(2-methylpyridinyl)-ethylenediamine) known for its capacity to induce cell apoptosis by Zn2+ chelation and/or ROS production, have shown cytotoxic activity on the Daudi B-cell line and CLL (chronic lymphoid leukemia) primary B cell model. These properties have been evidenced using an Incucyte® Live-Cell Analysis System. Evaluation of caspase 3/7 activation by incubation with the four studied chelators has exhibited caspase-dependent apoptotic death. Investigation of the chelator action mechanism has shown no ROS (reactive oxygen species) production for the macrocyclic chelators no1py, no2py and no3py, unlike the linear counterpart tpen for which ROS production was revealed. A significant inhibition effect of macrocyclic chelator cytotoxicity has been established by extracellular addition of cationic salts (Zn2+ and Cu2+) and the Zinquin emission fluorescence method has evidenced intracellular labile zinc chelation for no2py and no3py, while no1py acts differently. The acid-base properties of the chelators and their Zn2+ complexation constants have been obtained, discussed and correlated with the demonstrated biological properties.
Collapse
Affiliation(s)
- Axia Marlin
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France.
| | - Fiona Le Pape
- Univ Brest, UMR-INSERM 1227 LBAI, 5 Avenue Foch, CHU Morvan, BP 824, 29609 Brest, France.
| | - Thibault Troadec
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France.
| | - Jocelyn Le Goff
- Univ Brest, UMR-INSERM 1227 LBAI, 5 Avenue Foch, CHU Morvan, BP 824, 29609 Brest, France.
| | - Raphaël Tripier
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France.
| | - Christian Berthou
- Univ Brest, UMR-INSERM 1227 LBAI, 5 Avenue Foch, CHU Morvan, BP 824, 29609 Brest, France.
| | - Véronique Patinec
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France.
| |
Collapse
|
13
|
Islam MF, Lin L, Ray D, Premadasa UI, Ma YZ, Sacci RL, Kertesz V, Custelcean R, Bryantsev VS, Doughty B, Thiele NA. Conformationally Adaptable Extractant Flexes Strong Lanthanide Reverse-Size Selectivity. J Am Chem Soc 2025; 147:5080-5088. [PMID: 39744917 DOI: 10.1021/jacs.4c15074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Chemical selectivity is traditionally understood in the context of rigid molecular scaffolds with precisely defined local coordination and chemical environments that ultimately facilitate a given transformation of interest. By contrast, nature leverages dynamic structures and strong coupling to enable specific interactions with target species in otherwise complex media. Taking inspiration from nature, we demonstrate unconventional selectivity in the solvent extraction of light over heavy lanthanides using a conformationally flexible ligand called octadecyl acyclopa (ODA). This novel ligand forms pseudocyclic molecular complexes with lanthanide ions at organic/aqueous interfaces, revealed by vibrational sum frequency generation spectroscopy. These complexes are extracted into the organic phase, where femtosecond structural dynamics are probed by two-dimensional infrared spectroscopy and ab initio molecular dynamics simulations to mechanistically frame the macroscopic selectivity trends. We find larger-than-expected structural fluctuations and bond lengths for heavy Ln-ODA complexes that arise from an inability of ODA to contort around the smaller ions to satisfy all would-be bonding interactions, despite forming some individually strong bonds. This finding contrasts with the binding of ODA with lighter lanthanides where, despite individually weaker bonds, collective interactions manifest that minimize structural fluctuations and give rise to enhanced thermodynamic stability. These results point to a new paradigm where conformational dynamics and cumulative bonding interactions can be used to facilitate unconventional chemical transformations.
Collapse
Affiliation(s)
- Md Faizul Islam
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Lu Lin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Debmalya Ray
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Uvinduni I Premadasa
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Robert L Sacci
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vilmos Kertesz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Radu Custelcean
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vyacheslav S Bryantsev
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Nikki A Thiele
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
14
|
Wang Y, Qiu L, Ye T, Tan F, Lyu J, Li F, Sun Z, Yang Y, Zhang J, Liu N, Liao J. 177Lu Radiolabeled Polydopamine Decorated with Fibroblast Activation Protein Inhibitor for Locoregional Treatment of Glioma. Chembiochem 2025; 26:e202400579. [PMID: 39688802 DOI: 10.1002/cbic.202400579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 12/18/2024]
Abstract
Radionuclide therapy is expected to be a powerful tool for glioma treatment. Here, we introduced a novel nuclear nanomedicine based on polydopamine (PDA), incorporating fibroblast activation protein inhibitor (FAPI) and macrocyclic chelator (DOTA) for specific cancer targeting and 177Lu labeling. The synthesized nanoradiopharmaceutical, 177Lu-DOTA-PEG-PDA-FAPI, exhibits good stability in serum, saline and PBS over 5 days. 177Lu-DOTA-PEG-PDA-FAPI shows efficient specific uptake and internalization when incubated with U87MG cells. In vivo distribution visualized prominent accumulation and long retention ability of 177Lu-DOTA-PEG-PDA-FAPI at tumor sites after local administration. Moreover, 177Lu-DOTA-PEG-PDA-FAPI has satisfactory antitumor ability without apparent toxic and side effects observed from therapy assay and H&E staining. This study highlights the feasibility of using PDA as a nanocarrier for glioma endoradiotherapy by targeting fibroblast activation protein.
Collapse
Affiliation(s)
- Yadong Wang
- Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610000, China
| | - Long Qiu
- Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610000, China
| | - Tianzhen Ye
- Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610000, China
| | - Fuyuan Tan
- Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610000, China
| | - Jie Lyu
- Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610000, China
| | - Feize Li
- Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610000, China
| | - Zhizhong Sun
- Sichuan Engineering Research Center for Radioactive Isotope, National Engineering Research Center for Isotopes and Pharmaceuticals, Nuclear Power Institute of China, Chengdu, 610000, China
| | - Yuanyou Yang
- Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610000, China
| | - Jinsong Zhang
- Sichuan Engineering Research Center for Radioactive Isotope, National Engineering Research Center for Isotopes and Pharmaceuticals, Nuclear Power Institute of China, Chengdu, 610000, China
| | - Ning Liu
- Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610000, China
| | - Jiali Liao
- Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610000, China
| |
Collapse
|
15
|
Ghosh P, Davies LJ, Nitsche C. Engineered Nanobodies Bind Bismuth, Indium and Gallium for Applications in Theranostics. Angew Chem Int Ed Engl 2025; 64:e202419455. [PMID: 39481115 DOI: 10.1002/anie.202419455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/02/2024]
Abstract
Targeted theranostics heavily rely on metal isotopes conjugated to antibodies. Single-domain antibodies, known as nanobodies, are much smaller in size without compromising specificity and affinity. The conventional way of conjugating metals to nanobodies involves non-specific modification of amino acid residues with bifunctional chelating agents. We demonstrate that mutagenesis of a single residue in a nanobody creates a triple cysteine motif that selectively binds bismuth which is, for example, used in targeted alpha therapy. Two mutations create a quadruple cysteine mutant specific for gallium and indium used in positron emission tomography and single-photon emission computed tomography, respectively. Labelling is quantitative within a few minutes. The metal nanobodies maintain structural integrity and stability over weeks, resist competition from endogenous metal binders like glutathione, and retain functionality.
Collapse
Affiliation(s)
- Pritha Ghosh
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Lani J Davies
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
16
|
Kurakina ES, McNeil BL, Khushvaktov J, Temerbulatova NT, Mirzayev NA, Magomedbekov EP, Hoehr C, Ramogida CF, Filosofov DV, Radchenko V. Production and purification of radiolabeling-ready 132/135La from the irradiation of metallic natBa targets with low energy protons. Nucl Med Biol 2025; 144-145:108994. [PMID: 39889329 DOI: 10.1016/j.nucmedbio.2025.108994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/26/2024] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
INTRODUCTION Radiolanthanides 132La and 135La form a promising chemically matched theranostic pair. With a half-life of 18.95 h, 135La acts as the therapeutic isotope as it releases approximately 11 Auger electrons per decay, making it compatible with targeted Auger electron therapy (TAET), whereas 132La with half-life of 4.58 h undergoes positron emission making it compatible with imaging via positron emission tomography (PET). METHODS 132/135La were produced via irradiation of natural barium targets (99.9 %) with 12.8 MeV protons. A two-step separation scheme using extraction chromatographic resin TK200 (50-100 μm) and cation exchange resin Dowex 50Wx4 (200-400 mesh) was designed. Inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify non-radioactive impurities in each fraction of the separation method. The distribution coefficients of La3+ in HNO3 on the TK200 resin and on both Dowex 50Wx8 (200-400 mesh) and Dowex 50Wx4 resins in ammonium α-hydroxyisobutyrate (pH 4.8) were determined, respectively. RESULTS This novel separation scheme allowed for reliable separation of [132/135La]La3+ from the Ba2+ target material, resulting in a high radiochemical yield of 98.3 ± 2.1 % (n = 3) with the final elute being directly compatible with subsequent radiolabeling due to the use of ammonium α-hydroxyisobutyrate to eliminate steps in the radiopharmaceutical synthetic process.
Collapse
Affiliation(s)
- E S Kurakina
- Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, Dubna 141980, Russian Federation; Department of High-Energy Chemistry and Radioecology, D. Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russian Federation
| | - B L McNeil
- Department of Chemistry, Simon Fraser University, BC V5A 0A7 Burnaby, British Columbia, Canada
| | - J Khushvaktov
- Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, Dubna 141980, Russian Federation
| | - N T Temerbulatova
- Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, Dubna 141980, Russian Federation
| | - N A Mirzayev
- Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, Dubna 141980, Russian Federation; Institute of Radiation Problems, Ministry of Science and Education Republic of Azerbaijan, Baku АZ1143, Azerbaijan; Khazar University, 13 Mahsati 41, Baku AZ1096, Azerbaijan
| | - E P Magomedbekov
- Department of High-Energy Chemistry and Radioecology, D. Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russian Federation
| | - C Hoehr
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada; Department of Computer Science, Mathematics, Physics, and Statistics, University of British Columbia Okanagan, Kelowna, British Columbia V1V 1V7, Canada
| | - C F Ramogida
- Department of Chemistry, Simon Fraser University, BC V5A 0A7 Burnaby, British Columbia, Canada
| | - D V Filosofov
- Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, Dubna 141980, Russian Federation
| | - V Radchenko
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| |
Collapse
|
17
|
Bender AA, Holiski CK, Embree M, Hennkens HM, Klaehn JR, Lundgreen E, Roberts AG, Zalupski PR, Mastren T. Pursuing theranostics: a multimodal architecture approach. SENSORS & DIAGNOSTICS 2025; 4:35-43. [PMID: 39493501 PMCID: PMC11528688 DOI: 10.1039/d4sd00221k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Theranostics is a field of nuclear medicine which uses the same targeting vector and chelating system for both a diagnostic and therapeutic radionuclide, allowing for uniformity in imaging and treatment. This growing field requires the development of more flexible chelate systems that permit novel targeting strategies. Toward this end, a multimodal architecture has been realized, making use of a phosphazene-based core and click chemistry to achieve a flexible and customizable scaffold. The six arm phosphazene-based core can scaffold six DTPA chelating motifs or a mixed set of 3 : 3 DTPA : DFO chelates resulting in two multimodal compounds, pDbDt and pDbDtDf, respectively. Terbium complexes displayed strong luminescence, supporting that the structures act as an organic antenna for luminescence. Metal displacement titration studies confirmed the desired structures as well as the capability for heterometallic labeling of the structures. These structures were found to have high thermal and biological stability in vitro. Radiolabeling of each compound resulted in high molar activity labeling of each compound: 169 MBq nmol-1: [161Tb]Tb-pDbDt, 170 MBq nmol-1: [89Zr]Zr-pDbDtDf, and the mixed radiolabeling illustrated chelation of both radionuclides in a 1 : 1 ratio. This multimodal architecture is promising as a heterometallic structure for coupling of both a diagnostic and a therapeutic radionuclide with a highly customizable core structure.
Collapse
Affiliation(s)
- Aidan A Bender
- Nuclear Engineering Program, University of Utah 110 Central Campus Dr. Suite 2000B Salt Lake City UT 84112 USA
| | - Connor K Holiski
- Nuclear Engineering Program, University of Utah 110 Central Campus Dr. Suite 2000B Salt Lake City UT 84112 USA
| | - Mary Embree
- University of Missouri Research Reactor Columbia MO 65211 USA
| | - Heather M Hennkens
- University of Missouri Research Reactor Columbia MO 65211 USA
- Department of Chemistry, University of Missouri Columbia MO 65211 USA
| | - John R Klaehn
- Biological and Chemical Process Sciences, Idaho National Laboratory Idaho Falls ID 83415 USA
| | - Ellie Lundgreen
- Nuclear Engineering Program, University of Utah 110 Central Campus Dr. Suite 2000B Salt Lake City UT 84112 USA
| | - Andrew G Roberts
- Department of Chemistry, University of Utah Salt Lake City UT 84112 USA
| | - Peter R Zalupski
- Aqueous Separations and Radiochemistry, Idaho National Laboratory Idaho Falls ID 83415 USA
| | - Tara Mastren
- Nuclear Engineering Program, University of Utah 110 Central Campus Dr. Suite 2000B Salt Lake City UT 84112 USA
| |
Collapse
|
18
|
Wang J, Kaiyum YA, Li X, Lei H, Johnson PE, Liu J. Kinetic and Affinity Profiling Rare Earth Metals Using a DNA Aptamer. J Am Chem Soc 2025; 147:1831-1839. [PMID: 39743479 DOI: 10.1021/jacs.4c13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Rare earth elements (REEs) are widely used in various high-tech industries. Developing affinity ligands that can detect and distinguish REEs is at the forefront of analytical chemistry. It is also interesting to understand the limits of natural biomolecules for the recognition of REEs. In this study, Sc3+ was used as a target for the isolation of DNA aptamers, and an aptamer named Sc-1 was obtained. Using a thioflavin T (ThT) fluorescence assay, Sc-1 bound only to REEs, but not other metal ions. Additionally, the binding of Sc-1 to Sc3+ exhibited slow kinetics, and the binding complex resisted dissociation by EDTA. Furthermore, Sc-1 displayed varying binding kinetics with trivalent lanthanide ions, allowing for the discrimination of 17 REEs into three major groups: (1) La3+, Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, and Gd3+; (2) Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+, Lu3+, and Y3+; and (3) Sc3+. NMR spectroscopy confirmed binding-induced conformational changes in the aptamer. Using the fluorescence strand-displacement method, the true Kd of the aptamer was measured to range from 0.6 to 258.5 nM for the REE ions, and it showed effective detection of Sc3+ in real samples.
Collapse
Affiliation(s)
- Jin Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yunus A Kaiyum
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Philip E Johnson
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
19
|
Urbanovský P, David T, Hlinová V, Kubíček V, Pietzsch HJ, Hermann P. Cross-bridged cyclam derivatives with bis(phosphinate) and phosphinate-phosphonate pendant arms (cb-BPC) as chelators for copper radioisotopes. Org Biomol Chem 2025; 23:699-720. [PMID: 39611221 DOI: 10.1039/d4ob01473a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Copper radioisotopes can be used for imaging as well as for therapy and, thus, can form ideal theranostic pairs. The Cu(II) complexes of cross-bridged cyclam (cb-cyclam) derivatives are considered to be highly stable in vivo. However, the complexes are mostly formed under harsh conditions not compatible with sensitive biomolecules. Here, a new class of cb-cyclam derivatives, cross-bridged bis(phosphinate)cyclams ("cb-BPC"), were investigated. Ligands with one or two methylene-bis(phosphinate) -CH2-PO2H-CH2-PO2H(R) (R = H, OH, substituted alkyl) pendant arms were synthesized. Bifunctionalization on the distant phosphorus atom was carried out by employing P-nitrobenzyl (R = CH2-Ph-4-NO2) precursors and/or, for cb-BPC with two bis(phosphinate) pendant arms, by reactions of silyl-phosphites obtained by silylation of their P(O)-H fragments. The reactive bifunctional groups include amine, carboxylate, azide, isothiocyanate, maleimide and/or tetrazine, and also their orthogonally reactive combination in a single molecule of chelator. The cb-BPCs with one bis(phosphinate) arm were not efficiently radiolabelled with 64Cu. The cb-BPCs with two pendant arms were radiolabelled even at room temperature and with only a small excess of chelator, leading to a high specific activity. Radiolabelling was fully comparable with that of analogous bis(phosphinate) derivatives of cyclam and identical radiolabelling of cyclam and cb-cyclam derivatives was observed for the first time. The cb-BPCs with two bis(phosphinate) pendant arms represent a new class of rigid chelators for copper radioisotopes that are easily synthetically modifiable, highly hydrophilic and radiolabelled under mild conditions.
Collapse
Affiliation(s)
- Peter Urbanovský
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague, Czech Republic.
| | - Tomáš David
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague, Czech Republic.
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Veronika Hlinová
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague, Czech Republic.
| | - Vojtěch Kubíček
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague, Czech Republic.
| | - Hans-Jürgen Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague, Czech Republic.
| |
Collapse
|
20
|
Kedar P, Saraf A, Maheshwari R, Sharma M. Advances in Dendritic Systems and Dendronized Nanoparticles: Paradigm Shifts in Cancer Targeted Therapy and Diagnostics. Mol Pharm 2025; 22:28-57. [PMID: 39707984 DOI: 10.1021/acs.molpharmaceut.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Cancer has emerged as a global health crisis, claiming millions of lives annually. Dendrimers and dendronized nanoparticles, a novel class of nanoscale molecules with highly branched three-dimensional macromolecular structures, have gained significant attention in cancer treatment and diagnosis due to their unique properties. These dendritic macromolecules offer a precisely controlled branching architecture, enabling functionalization with specific targeting molecules to enhance the selective delivery of therapeutic agents to tumor cells while minimizing systemic toxicity. Through surface modifications and the incorporation of various components, dendrimers demonstrate remarkable adaptability as nanocarriers for biomedical imaging and theranostic applications. Surface functionalization strategies, including PEGylation and ligand attachment (e.g., folic acid, RGD peptide, lactobionic acid), further enhance biocompatibility and facilitate targeted tumor cell imaging. Leveraging their improved biocompatibility and target specificity, dendritic nanosystems offer heightened sensitivity and precision in cancer diagnostics. Notably, the encapsulation of metal nanoparticles within dendrimers, such as gold nanoparticles, has shown promise in enhancing tumor imaging capabilities. Ongoing advancements in nanotechnology are poised to increase the sophistication and complexity of dendrimer-based systems, highlighting their potential as nanocarriers in drug delivery platforms, with a growing number of clinical trials on the horizon. This review provides a comprehensive overview of the potential and future prospects of dendrimers and dendrimer-based nanocarriers in targeted cancer therapy and diagnosis, exploring their ability to enhance biocompatibility, reduce toxicity, and improve therapeutic outcomes across various malignancies.
Collapse
Affiliation(s)
- Pawan Kedar
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed to be University, Shirpur, Dhule, Maharashtra 425405, India
| | - Apeksha Saraf
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Takshashila Campus, Khandwa Road, Indore, Madhya Pradesh 452001, India
| | - Rahul Maheshwari
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed to be University, Hyderabad 509301, India
| | - Mayank Sharma
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed to be University, Shirpur, Dhule, Maharashtra 425405, India
| |
Collapse
|
21
|
Ash T, Han Y, Evans JW, Windus TL. DFT investigation of the impact of inner-sphere water molecules on RE nitrate binding to internal pore and external surface of MCM-22. Phys Chem Chem Phys 2025; 27:897-904. [PMID: 39661408 DOI: 10.1039/d4cp03424d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The impact of inner-sphere water molecules on the binding of rare earth (RE) nitrates to MCM-22 aluminosilicates is analyzed. We used cluster models of MCM-22 to investigate the binding phenomena through localized-basis density functional theory (DFT) calculations. We also conducted plane-wave DFT calculations for a few selected binding configurations using the entire periodic MCM-22 unit cell to check for consistency. Two different MCM-22 cluster models are developed to represent an internal pore and an external surface. Starting with pure silica MCM-22, we substituted one Si with Al and added a H atom on the O bridging the Si and Al to create a Brønsted acid site (BAS), Si-{OH}-Al. Specifically, we investigated the binding of two RE nitrate aqua complexes, [X(NO3)3(H2O)n] where n = 4 (3) for X = Nd (Yb) via the reaction X(NO3)3(H2O)n + Si-{OH}-Al → Si-{OX(NO3)2(H2O)n}-Al + HNO3 at BASs, and via an analogous reaction at silanol sites, Si-{OH}. The above analysis just includes the inner coordination sphere H2O. Actually, for the Nd (Yb) complex, after binding at the T1 and T2 sites (T1 site) within the internal pore, one of the H2O molecules leaves this inner sphere. The binding strength at BASs and silanol sites is calculated from the energy change during the above reactions. One finds that Nd complexes prefer binding at the internal pore, while Yb complexes have a comparable binding preference both at the internal pore and external surface. The cluster calculations show good agreement with periodic calculations, implying that the cluster models are suitable for binding studies. Compared to the binding of non-hydrated RE nitrates, the explicit H2O molecules have a minimal impact on overall binding energy trends, but they do increase individual binding energy values. This study also demonstrated the stronger binding affinity of BASs over silanol sites.
Collapse
Affiliation(s)
- Tamalika Ash
- Ames National Laboratory, U.S. Department of Energy, Ames, Iowa 50011, USA.
- Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, USA
| | - Yong Han
- Ames National Laboratory, U.S. Department of Energy, Ames, Iowa 50011, USA.
- Department of Physics & Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - James W Evans
- Ames National Laboratory, U.S. Department of Energy, Ames, Iowa 50011, USA.
- Department of Physics & Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - Theresa L Windus
- Ames National Laboratory, U.S. Department of Energy, Ames, Iowa 50011, USA.
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
22
|
Ermolaev SV, Vasiliev AN, Skasyrskaya AK, Lapshina EV, Khaliullina DR, Libanova ON. 225Aс/ 213Bi generator for direct synthesis of 213Bi-labeled bioconjugates. Nucl Med Biol 2025; 140-141:108975. [PMID: 39603113 DOI: 10.1016/j.nucmedbio.2024.108975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND 213Bi is a short-lived radionuclide currently trialed for alpha therapy of various oncological diseases. A serious obstacle to the wide medical use is decay losses of 213Bi during a conventional synthesis of radiopharmaceuticals. In this work, we aimed to develop a two-column 225Aс/213Bi generator providing the accumulation of 213Bi separately from the parent 225Ac via continuous circular separation and decay of intermediate 221Fr. When attaining the transient equilibrium, 213Bi could be promptly extracted from the generator with an appropriate complexing agent, including chelator-protein bioconjugates. METHODS Sorption behavior of Bi(III) ions onto the cross-linked dextran gel Sephadex G-25 was studied from solutions of hydrochloric and nitric acid, and from sodium chloride, sodium acetate and DTPA solutions. A bifunctional chelating agent p-SCN-Bn-DTPA was conjugated to an antibody Nimotuzumab specific to the epidermal growth factor receptor, and the procedure of 207,213Bi-DTPA-Nimotuzumab synthesis in the dextran gel medium was developed. The parameters of 225Aс/213Bi generator system were evaluated. RESULTS The weight distribution ratios of Bi(III) adsorbed onto the Sephadex G-25 gel were obtained. Up to 85 % of 213Bi was accumulated in the second Sephadex-filled column of 225Aс/213Bi generator after four-hour circulation of 0.15 M NaCl (pH 5.5) solution. Having passed the solution of DTPA-Nimotuzumab bioconjugate through the second column, a fraction of 213Bi-DTPA-Nimotuzumab radioimmunoconjugate was produced with the radiochemical yield of 64 % ± 3 % (n = 6). High radionuclidic and radiochemical purity of product was achieved. CONCLUSIONS The circulating 225Aс/213Bi generator provides a 213Bi-labeled bioconjugate as a final product. While a conventional synthesis route including generator milking, bioconjugate labeling and size-exclusion purification takes >20 min, the duration of 213Bi-DTPA-Nimotuzumab production by the method proposed in this work is reduced to 6-8 min.
Collapse
Affiliation(s)
| | - Aleksandr N Vasiliev
- Institute for Nuclear Research of Russian Academy of Sciences, Moscow, Russia; Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen, China.
| | - Aino K Skasyrskaya
- Institute for Nuclear Research of Russian Academy of Sciences, Moscow, Russia
| | - Elena V Lapshina
- Institute for Nuclear Research of Russian Academy of Sciences, Moscow, Russia
| | - Daria R Khaliullina
- Institute for Nuclear Research of Russian Academy of Sciences, Moscow, Russia; Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Olga N Libanova
- Institute for Nuclear Research of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
23
|
Shchukina AA, Zubenko AD, Tarasenko OV, Larenkov AA, Bubenshchikov VB, Chernikova EY, Fedorov YV, Fedorova OA. Evaluation of chelating agents based on pyridine-azacrown compounds H 4PATA, PATAM, and H 4PATPA for 68Ga and 177Lu. Nucl Med Biol 2025; 140-141:108972. [PMID: 39550886 DOI: 10.1016/j.nucmedbio.2024.108972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
In this article, we present the synthesis and characterization of three macrocyclic chelators, H4PATA, PATAM, and H4PATPA, based on a pyridine-azacrown compound. Their complexation with 68Ga and 177Lu has been thoroughly investigated using MALDI TOF MS, 1H NMR spectroscopy, radiolabeling studies, and experiments in vitro with fetal bovine serum and a 1000-fold molar excess of H4EDTA. Our studies have shown that the chelators H4PATA and H4PATPA form complexes at room temperature with both radionuclides (RCY > 80 % and > 90 % for complexes with H4PATA and H4PATPA after 30 min, respectively). The chelator PATAM requires high temperature (95 °C) for complexation. In vitro stability assays in fetal bovine serum as well as H4EDTA-challenge revealed that transchelation occurs for all complexes with 68Ga. However, complexes of the ligands H4PATA and PATAM with 177Lu were found stable. Thus, taking into account the radiolabeling at room temperature and in vitro stability of the complex [177Lu]Lu·PATA, our investigations revealed the chelator H4PATA is a candidate for radiopharmaceutical use with 177Lu.
Collapse
Affiliation(s)
- Anna A Shchukina
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova st., 28, 119334 Moscow, Russian Federation.
| | - Anastasia D Zubenko
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova st., 28, 119334 Moscow, Russian Federation
| | - Oksana V Tarasenko
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova st., 28, 119334 Moscow, Russian Federation; D. I. Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, 125047 Moscow, Russian Federation
| | - Anton A Larenkov
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Zhivopisnaya Str., 46, 123098 Moscow, Russian Federation
| | - Viktor B Bubenshchikov
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Zhivopisnaya Str., 46, 123098 Moscow, Russian Federation
| | - Ekaterina Y Chernikova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova st., 28, 119334 Moscow, Russian Federation
| | - Yury V Fedorov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova st., 28, 119334 Moscow, Russian Federation
| | - Olga A Fedorova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova st., 28, 119334 Moscow, Russian Federation; D. I. Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, 125047 Moscow, Russian Federation
| |
Collapse
|
24
|
Paderni D, Macedi E, Sordini E, Amatori S, Rossi P, Formica M, Giorgi L, Paoli P, Fanelli M, Fusi V. Two bis-maltol-polyamines: Synthesis, characterization and studies of their palladium(II) complexes exploring their potential anticancer activity. J Inorg Biochem 2025; 262:112758. [PMID: 39393298 DOI: 10.1016/j.jinorgbio.2024.112758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
The interest in the antineoplastic and binding properties shown by the bis-maltol polyamine family, particularly Malten and Maltonis, prompted us to study the Pd2+ complexes of these latter from both a biological and metallo-receptor point of view. The Malten-Pd2+ complex can lodge hard species such as Sr2+ in its coordination-driven preorganized pocket, as confirmed by X-ray diffraction. UV-Vis and NMR data showed that Malten-Pd2+ forms even at acidic pH and exists in aqueous solution in a wide range of pH. The mononuclear complex is stable enough not to release Pd2+ in solution for a long period of time (at least one week), thus Malten-Pd2+, similarly to Maltonis-Pd2+, is suitable to be tested in biological analyses. Studies on the U937 cell line revealed that the effect on cell survival reduction induced by Malten is partially lost in Malten-Pd2+, while no differences where monitored between the effects of Maltonis-Pd2+ and Maltonis, suggesting that the availability of free maltol moieties, that is retained in Maltonis-Pd2+, but not in Malten-Pd2+, is crucial to guarantee the biological activity of these compounds.
Collapse
Affiliation(s)
- Daniele Paderni
- Department of Pure and Applied Sciences, University of Urbino, via Ca' Le Suore 2-4, 61029 Urbino, Italy
| | - Eleonora Macedi
- Department of Pure and Applied Sciences, University of Urbino, via Ca' Le Suore 2-4, 61029 Urbino, Italy.
| | - Enrica Sordini
- Molecular Pathology Laboratory "PaoLa", Department of Biomolecular Sciences, University of Urbino Carlo Bo, Fano, PU, Italy
| | - Stefano Amatori
- Molecular Pathology Laboratory "PaoLa", Department of Biomolecular Sciences, University of Urbino Carlo Bo, Fano, PU, Italy
| | - Patrizia Rossi
- Department of Industrial Engineering, University of Florence, via S. Marta 3, 50139 Florence, Italy
| | - Mauro Formica
- Department of Pure and Applied Sciences, University of Urbino, via Ca' Le Suore 2-4, 61029 Urbino, Italy
| | - Luca Giorgi
- Department of Pure and Applied Sciences, University of Urbino, via Ca' Le Suore 2-4, 61029 Urbino, Italy
| | - Paola Paoli
- Department of Industrial Engineering, University of Florence, via S. Marta 3, 50139 Florence, Italy
| | - Mirco Fanelli
- Molecular Pathology Laboratory "PaoLa", Department of Biomolecular Sciences, University of Urbino Carlo Bo, Fano, PU, Italy
| | - Vieri Fusi
- Department of Pure and Applied Sciences, University of Urbino, via Ca' Le Suore 2-4, 61029 Urbino, Italy.
| |
Collapse
|
25
|
Alanís-Manzano EI, León-Pimentel CI, Maron L, Ramírez-Solís A, Saint-Martin H. Exploring the Dynamic Coordination Sphere of Lanthanide Aqua Ions: Insights from r 2SCAN-3c Composite-DFT Born-Oppenheimer Molecular Dynamics Studies. ACS OMEGA 2024; 9:50978-50991. [PMID: 39758678 PMCID: PMC11696431 DOI: 10.1021/acsomega.4c04947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 01/07/2025]
Abstract
Born-Oppenheimer molecular dynamics (BOMD) simulations were performed to investigate the structure and dynamics of the first hydration shells of five trivalent lanthanide ions (Ln3+) at room temperature. These ions are relevant in various environments, including the bulk aqueous solution. Despite numerous studies, accurately classifying the molecular geometry of the first hydration sphere remains a challenge. To addres this, a cluster microsolvation approach was employed to study the interaction of Ln3+ ions (La, Nd, Gd, Er, and Lu) with up to 27 explicit water molecules. Electronic structure calculations were performed with the composite r2SCAN-3c method. The results demonstrate that this method offers an optimal balance between precision and computational efficiency. Specifically, it accurately predicts average Ln-O distances (MAE = 0.02 Å) of the first hydration sphere and preferred coordination numbers (CN) for the different lanthanide cations as compared to reported data in bulk. Highly dynamic first hydration shells for the examined Ln3+ ions were found, with noticeable and rapid rearrangements in their coordination geometries, some of which can be recognized as the tricapped trigonal prism (TTP) and the capped square antiprism (CSAP) for CN = 9, and as the square antiprism (SAP), the bicapped trigonal prism (BTP), and the trigonal dodecahedron (DDH) for CN = 8. However, ca. 70% of the nonacoordinated configurations did not meet the criteria of TTP or CSAP structures. For CN = 8, the percentage of configurations that could not be assigned to SAP, BTP, or DDH was lower, around 30%. The theoretical EXAFS spectra obtained from the BOMD simulations are in good agreement with the experimental data and confirm that model microsolvated environments accurately represent the near-solvation structure of these trivalent rare-earth ions. Moreover, this demonstrates that the faster dynamics of the first hydration shell can be studied separately from the dynamics of water exchange in the bulk aqueous solution.
Collapse
Affiliation(s)
| | - C. I. León-Pimentel
- Departamento
de Matemáticas/Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, México
| | - Laurent Maron
- INSA
Laboratoire de Physicochimie de Nano-Objets, Université de Toulouse, 135 Avenue de Rangueil, F31077 Toulouse, France
| | - Alejandro Ramírez-Solís
- Depto.
de Física, Centro de Investigación
en Ciencias-IICBA Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, México
| | - Humberto Saint-Martin
- Instituto
de Ciencias Físicas, Universidad
Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| |
Collapse
|
26
|
Guo Z, Wang X, Han Y, Shen S, Tian P, Hu Y, Ding Z, Fu Q, Liu Z. Targeted Radionuclide Therapy Activates Prodrugs for Treating Metastasis. ACS CENTRAL SCIENCE 2024; 10:2321-2330. [PMID: 39735312 PMCID: PMC11672548 DOI: 10.1021/acscentsci.4c01369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/31/2024]
Abstract
Over 90% of cancer patients succumb to metastasis, yet conventional frontline therapy struggles to halt the progression of metastatic tumors. Targeted radionuclide therapy, which delivers radiation precisely to tumor sites, shows promise for treating metastasis. The rational design of a prodrug activation platform using radionuclides would be an ideal approach to synergize chemotherapy with targeted radionuclide therapy, yet it has not been established. Here, we present targeted radionuclide therapy-induced cleavage chemistry that enables the controlled release of oxaliplatin and its axis ligands from oxaliplatin(IV) complexes in living systems. Of note, this strategy demonstrates feasibility over clinically relevant β-emitting radionuclides and exhibits dose dependence. These advantages were taken into account, and a Lutetium-177-activatable platinum(IV) based prodrug system was designed that could achieve localized activation at the tumor site with high efficiency, thereby suppressing subcutaneous and metastatic 4T1 tumors. In summary, our approach highlights the potential of radionuclides as reaction switches, bridging the gap between the radiotherapy-induced reaction and internal radiation. It may provide a new perspective for future combination therapy.
Collapse
Affiliation(s)
- Zhibin Guo
- Beijing
National Laboratory for Molecular Sciences, Radiochemistry and Radiation
Chemistry Key Laboratory of Fundamental Science, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xuanyu Wang
- Beijing
National Laboratory for Molecular Sciences, Radiochemistry and Radiation
Chemistry Key Laboratory of Fundamental Science, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yi Han
- China
Institute of Atomic Energy, Institute of Nuclear Technology, Beijing 102413, China
| | - Siyong Shen
- Beijing
National Laboratory for Molecular Sciences, Radiochemistry and Radiation
Chemistry Key Laboratory of Fundamental Science, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peng Tian
- Beijing
National Laboratory for Molecular Sciences, Radiochemistry and Radiation
Chemistry Key Laboratory of Fundamental Science, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuchen Hu
- Beijing
National Laboratory for Molecular Sciences, Radiochemistry and Radiation
Chemistry Key Laboratory of Fundamental Science, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | | | - Qunfeng Fu
- Beijing
National Laboratory for Molecular Sciences, Radiochemistry and Radiation
Chemistry Key Laboratory of Fundamental Science, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhibo Liu
- Beijing
National Laboratory for Molecular Sciences, Radiochemistry and Radiation
Chemistry Key Laboratory of Fundamental Science, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
- Changping
Laboratory, Beijing 102206, China
- Peking
University-Tsinghua University Centre for Life Sciences, Peking University, Beijing 100871, China
- Key
Laboratory of Carcinogenesis and Translational Research (Ministry
of Education/Beijing), NMPA Key Laboratory for Research and Evaluation
of Radiopharmaceuticals (National Medical Products Administration),
Department of Nuclear Medicine, Peking University
Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
27
|
Xiong Y, Jian H, Han X, Li L, Zhou L. A decade of incremental advances in radiopharmaceuticals: a promising future ahead. J Transl Med 2024; 22:1105. [PMID: 39633445 PMCID: PMC11616306 DOI: 10.1186/s12967-024-05891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Affiliation(s)
- Yu Xiong
- Department of Pharmacy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| | - Hui Jian
- Office of the Ethics Committee, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| | - Xiaowen Han
- NHC Key Laboratory of Nuclear Surgery Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| | - Lizhi Li
- Department of Pharmacy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| | - Liangxue Zhou
- NHC Key Laboratory of Nuclear Surgery Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China.
- Department of Neurosurgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China.
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
28
|
Klika K, Han J, Busse MS, Soloshonok VA, Javahershenas R, Vanhaecke F, Makarem A. Inductively Coupled Plasma-Mass Spectrometry (ICP-MS): An Emerging Tool in Radiopharmaceutical Science. J Am Chem Soc 2024; 146:30717-30727. [PMID: 39478417 PMCID: PMC11565647 DOI: 10.1021/jacs.4c12254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/14/2024]
Abstract
Although radioactive experiments are necessary in radiopharmaceutical drug discovery and theranostic cancer research, they are expensive, require special facilities, and face certain restrictions. Thus, finding techniques not involving radioactivity is highly beneficial for minimizing these disadvantages in such research. In this regard, methods using inductively coupled plasma-mass spectrometry (ICP-MS) have emerged as viable alternatives to traditional radioactive approaches. Despite its potential, practical applications of ICP-MS in radiopharmaceutical cancer research have only emerged in recent years. This Perspective focuses on the development and implementation of nonradioactive ICP-MS-based assays in radiopharmaceutical research and aims to inspire future research efforts in this area.
Collapse
Affiliation(s)
- Karel
D. Klika
- Molecular
Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jianlin Han
- College
of Chemical Engineering, Nanjing Forestry
University, 210037 Nanjing, China
| | - Marvin S. Busse
- Institute
of Pharmacy, University of Hamburg, 20146 Hamburg, Germany
| | - Vadim A. Soloshonok
- Department
of Organic Chemistry I, University of the
Basque Country, 20018 San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, 48009 Bilbao, Spain
| | - Ramin Javahershenas
- Department
of Organic Chemistry, Faculty of Chemistry, Urmia University, 57179-44514 Urmia, Iran
| | - Frank Vanhaecke
- Atomic
and Mass Spectrometry − A&MS Research Unit, Department
of Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Ata Makarem
- Institute
of Pharmacy, University of Hamburg, 20146 Hamburg, Germany
| |
Collapse
|
29
|
McNeil BL, Ramogida CF. From cyclotrons to chromatography and beyond: a guide to the production and purification of theranostic radiometals. Chem Soc Rev 2024; 53:10409-10449. [PMID: 39360601 DOI: 10.1039/d4cs00802b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Recent clinical success with metal-based radiopharmaceuticals has sparked an interest in the potential of these drugs for personalized medicine. Although often overlooked, the success and global impact of nuclear medicine is contingent upon the purity and availability of medical isotopes, commonly referred to as radiometals. For nuclear medicine to reach its true potential and change patient lives, novel production and purification techniques that increase inventory of radiometals are desperately needed. This tutorial review serves as a resource for those both new and experienced in nuclear medicine by providing a detailed explanation of the foundations for the production and purification of radiometals, stemming from nuclear physics, analytical chemistry, and so many other fields, all in one document. The fundamental science behind targetry, particle accelerators, nuclear reactors, nuclear reactions, and radiochemical separation are presented in the context of the field. Finally, a summary of the latest breakthroughs and a critical discussion of the threats and future potential of the most utilized radiometals is also included. With greater understanding of the fundamentals, fellow scientists will be able to better interpret the literature, identify knowledge gaps or problems and ultimately invent new production and purification pathways to increase the global availability of medical isotopes.
Collapse
Affiliation(s)
- Brooke L McNeil
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| | - Caterina F Ramogida
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| |
Collapse
|
30
|
Kanagasundaram T, Sun Y, Lee KK, MacMillan SN, Brugarolas P, Wilson JJ. Fluorine-18 incorporation and radiometal coordination in macropa ligands for PET imaging and targeted alpha therapy. Chem Commun (Camb) 2024; 60:11940-11943. [PMID: 39352495 DOI: 10.1039/d4cc04165h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
The development of theranostic agents for radiopharmaceuticals based on therapeutic alpha emitters marks an important clinical need. We describe a strategy for the development of theranostic agents of this type via the functionalization of the ligand with the diagnostic radionuclide fluorine-18. An analogue of macropa, an 18-membered macrocyclic chelator with high affinity for alpha therapeutic radiometals, was synthesized and its complexation properties with metal ions were determined. The new macropa-F ligand was used for quantitative radiometal complexation with lead-203 and bismuth-207, as surrogates for their alpha-emitting radioisotopes. As a diagnostic partner, a radiofluorinated macropa ligand was used for quantitative bismuth(III) and lead(II) complexation. All fluorine-18 and radiometal complexes are highly stable in human serum over several days. This study presents a new proof-of-principle approach for developing theranostic agents based on alpha-emitting radionuclides and fluorine-18.
Collapse
Affiliation(s)
- Thines Kanagasundaram
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY-14853, USA
| | - Yang Sun
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA-02114, USA.
| | - Kevin K Lee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY-14853, USA
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA-93106, USA.
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY-14853, USA
| | - Pedro Brugarolas
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA-02114, USA.
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY-14853, USA
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA-93106, USA.
| |
Collapse
|
31
|
Shen J, Su X, Wang S, Wang Z, Zhong C, Huang Y, Duan S. RhoJ: an emerging biomarker and target in cancer research and treatment. Cancer Gene Ther 2024; 31:1454-1464. [PMID: 38858534 DOI: 10.1038/s41417-024-00792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
RhoJ is a Rho GTPase that belongs to the Cdc42 subfamily and has a molecular weight of approximately 21 kDa. It can activate the p21-activated kinase family either directly or indirectly, influencing the activity of various downstream effectors and playing a role in regulating the cytoskeleton, cell movement, and cell cycle. RhoJ's expression and activity are controlled by multiple upstream factors at different levels, including expression, subcellular localization, and activation. High RhoJ expression is generally associated with a poor prognosis for cancer patients and is mainly due to an increased number of tumor blood vessels and abnormal expression in malignant cells. RhoJ promotes tumor progression through several pathways, particularly in tumor angiogenesis and drug resistance. Clinical data also indicates that high RhoJ expression is closely linked to the pathological features of tumor malignancy. There are various cancer treatment methods that target RhoJ signaling, such as direct binding to inhibit the RhoJ effector pocket, inhibiting RhoJ expression, blocking RhoJ upstream and downstream signals, and indirectly inhibiting RhoJ's effect. RhoJ is an emerging cancer biomarker and a significant target for future cancer clinical research and drug development.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Xinming Su
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Shana Wang
- Department of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zehua Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Chenming Zhong
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yi Huang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China.
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| |
Collapse
|
32
|
Pramanik S, Li B, Driscoll DM, Johnson KR, Evans BR, Damron JT, Ivanov AS, Jiang DE, Einkauf J, Popovs I, Jansone-Popova S. Tetradentate Ligand's Chameleon-Like Behavior Offers Recognition of Specific Lanthanides. J Am Chem Soc 2024; 146:25669-25679. [PMID: 39136967 PMCID: PMC11421014 DOI: 10.1021/jacs.4c07332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The surging demand for high-purity individual lanthanides necessitates the development of novel and exceptionally selective separation strategies. At the heart of these separation systems is an organic compound that, based on its structural features, selectively recognizes the lighter or heavier lanthanides in the trivalent lanthanide (Ln) series. This work emphasizes the significant implications resulting from modifying the donor group configuration within an N,O-based tetradentate ligand and the changes in the solvation environment of Ln ions in the process of separating Lns, with the unique ability to achieve peak selectivity in the light, medium, and heavy Ln regions. The structural rigidity of the bis-lactam-1,10-phenanthroline ligand enforces size-based selectivity, displaying an exceptional affinity for Lns having larger ionic radii such as La. Modifying the ligand by eliminating one preorganization element (phenanthroline → bipyridine) results in the fast formation of complexes with light Lns, but, in the span of hours, the peak selectivity shifts toward middle Ln (Sm), resulting in time-resolved separation. As expected, at low nitric acid concentrations, the neutral tetradentate ligand complexes with Ln3+ ions. However, the change in extraction mechanism is observed at high nitric acid concentrations, leading to the formation and preferential extraction of anionic heavy Ln species, [Ln(NO3)x+3]x-, that self-assemble with two ligands that have undergone protonation, forming intricate supramolecular architectures. The tetradentate ligand that is structurally balanced with restrictive and unrestrictive motifs demonstrates unique, controllable selectivity for light, middle, and heavy Lns, underscoring the pivotal role of solvation and ion interactions within the first and second coordination spheres.
Collapse
Affiliation(s)
- Subhamay Pramanik
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Bo Li
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Darren M Driscoll
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Katherine R Johnson
- Nuclear Energy and Fuel Cycle Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Barbara R Evans
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Joshua T Damron
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Alexander S Ivanov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jeffrey Einkauf
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ilja Popovs
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Santa Jansone-Popova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
33
|
Öztürk I, Gervasoni S, Guccione C, Bosin A, Vargiu AV, Ruggerone P, Malloci G. Force Fields, Quantum-Mechanical- and Molecular-Dynamics-Based Descriptors of Radiometal-Chelator Complexes. Molecules 2024; 29:4416. [PMID: 39339411 PMCID: PMC11434398 DOI: 10.3390/molecules29184416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Radiopharmaceuticals are currently a key tool in cancer diagnosis and therapy. Metal-based radiopharmaceuticals are characterized by a radiometal-chelator moiety linked to a bio-vector that binds the biological target (e.g., a protein overexpressed in a particular tumor). The right match between radiometal and chelator influences the stability of the complex and the drug's efficacy. Therefore, the coupling of the radioactive element to the correct chelator requires consideration of several features of the radiometal, such as its oxidation state, ionic radius, and coordination geometry. In this work, we systematically investigated about 120 radiometal-chelator complexes taken from the Cambridge Structural Database. We considered 25 radiometals and about 30 chelators, featuring both cyclic and acyclic geometries. We used quantum mechanics methods at the density functional theoretical level to generate the general AMBER force field parameters and to perform 1 µs-long all-atom molecular dynamics simulations in explicit water solution. From these calculations, we extracted several key molecular descriptors accounting for both electronic- and dynamical-based properties. The whole workflow was carefully validated, and selected test-cases were investigated in detail. Molecular descriptors and force field parameters for the complexes considered in this study are made freely available, thus enabling their use in predictive models, molecular modelling, and molecular dynamics investigations of the interaction of compounds with macromolecular targets. Our work provides new insights in understanding the properties of radiometal-chelator complexes, with a direct impact for rational drug design of this important class of drugs.
Collapse
Affiliation(s)
| | - Silvia Gervasoni
- Department of Physics, University of Cagliari, I-09042 Monserrato (CA), Italy; (I.Ö.); (C.G.); (A.B.); (A.V.V.); (P.R.)
| | | | | | | | | | - Giuliano Malloci
- Department of Physics, University of Cagliari, I-09042 Monserrato (CA), Italy; (I.Ö.); (C.G.); (A.B.); (A.V.V.); (P.R.)
| |
Collapse
|
34
|
Ho KV, Tatum DS, Watkinson L, Carmack T, Jia F, Mascioni A, Maitz CA, Magda D, Anderson CJ. Single Chelator-Minibody Theranostic Agents for 89Zr PET Imaging and 177Lu Radiopharmaceutical Therapy of PSMA-Expressing Prostate Cancer. J Nucl Med 2024; 65:1435-1442. [PMID: 39142831 PMCID: PMC11372255 DOI: 10.2967/jnumed.124.267667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/19/2024] [Indexed: 08/16/2024] Open
Abstract
Here we describe an anti-prostate-specific membrane antigen (PSMA) minibody (IAB2MA) conjugated to an octadentate, macrocyclic chelator based on four 1-hydroxypyridin-2-one coordinating units (Lumi804 [L804]) labeled with 89Zr (PET imaging) and 177Lu (radiopharmaceutical therapy), with the goal of developing safer and more efficacious treatment options for prostate cancer. Methods: L804 was compared with the current gold standard chelators, DOTA and deferoxamine (DFO), conjugated to IAB2MA for radiolabeling with 177Lu and 89Zr in cell binding, preclinical biodistribution, imaging, dosimetry, and efficacy studies in the PSMA-positive PC3-PIP tumor-bearing mouse model of prostate cancer. Results: Quantitative radiolabeling (>99% radiochemical yield) of L804-IAB2MA with 177Lu or 89Zr was achieved at ambient temperature in under 30 min, comparable to 89Zr labeling of DFO-IAB2MA. In contrast, DOTA-IAB2MA was radiolabeled with 177Lu for 30 min at 37°C in approximately 90% radiochemical yield, requiring further purification. Using europium(III) as a luminescent surrogate, high binding affinity of Eu-L804-IAB2MA to PSMA was demonstrated in PC3-PIP cells (dissociation constant, 4.6 ± 0.6 nM). All 4 radiolabeled constructs showed significantly higher levels of internalization after 30 min in the PC3-PIP cells than in PSMA-negative PC3-FLU cells. The accumulation of 177Lu- and 89Zr-L804-IAB2MA in PC3-PIP tumors and all organs examined (i.e., heart, liver, spleen, kidney, muscle, salivary glands, lacrimal glands, carcass, and bone) was significantly lower than that of 177Lu-DOTA-IAB2MA and 89Zr-DFO-IAB2MA at 96 and 72 h after injection, respectively. Generally, SPECT/CT and PET/CT imaging data showed no significant difference in the SUVmean of the tumors or muscle between the radiotracers. Dosimetry analysis via both organ-level and voxel-level dose calculation methods indicated significantly higher absorbed doses of 177Lu-DOTA-IAB2MA in tumors, kidney, liver, muscle, and spleen than of 177Lu-L804-IAB2MA. PC3-PIP tumor-bearing mice treated with single doses of 177Lu-L804-IAB2MA (18.4 or 22.2 MBq) exhibited significantly prolonged survival and reduced tumor volume compared with unlabeled minibody control. No significant difference in survival was observed between groups of mice treated with 177Lu-L804-IAB2MA or 177Lu-DOTA-IAB2MA (18.4 or 22.2 MBq). Treatment with 177Lu-L804-IAB2MA resulted in lower absorbed doses in tumors and less toxicity than that of 177Lu-DOTA-IAB2MA. Conclusion: 89Zr- and 177Lu-L804-IAB2MA may be a promising theranostic pair for imaging and therapy of prostate cancer.
Collapse
Affiliation(s)
- Khanh-Van Ho
- Department of Chemistry, University of Missouri, Columbia, Missouri
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, Missouri
| | | | - Lisa Watkinson
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
| | - Terry Carmack
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
| | - Fang Jia
- ImaginAb Inc., Inglewood, California
| | | | - Charles A Maitz
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, Missouri
- MU Research Reactor, University of Missouri, Columbia, Missouri
| | | | - Carolyn J Anderson
- Department of Chemistry, University of Missouri, Columbia, Missouri;
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, Missouri
- Department of Radiology, University of Missouri, Columbia, Missouri; and
- Ellis Fischel Cancer Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
35
|
Xu W, Langhans SA, Johnson DK, Stauff E, Kandula VVR, Kecskemethy HH, Averill LW, Yue X. Radiotracers for Molecular Imaging of Angiotensin-Converting Enzyme 2. Int J Mol Sci 2024; 25:9419. [PMID: 39273366 PMCID: PMC11395405 DOI: 10.3390/ijms25179419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Angiotensin-converting enzymes (ACE) are well-known for their roles in both blood pressure regulation via the renin-angiotensin system as well as functions in fertility, immunity, hematopoiesis, and many others. The two main isoforms of ACE include ACE and ACE-2 (ACE2). Both isoforms have similar structures and mediate numerous effects on the cardiovascular system. Most remarkably, ACE2 serves as an entry receptor for SARS-CoV-2. Understanding the interaction between the virus and ACE2 is vital to combating the disease and preventing a similar pandemic in the future. Noninvasive imaging techniques such as positron emission tomography and single photon emission computed tomography could noninvasively and quantitatively assess in vivo ACE2 expression levels. ACE2-targeted imaging can be used as a valuable tool to better understand the mechanism of the infection process and the potential roles of ACE2 in homeostasis and related diseases. Together, this information can aid in the identification of potential therapeutic drugs for infectious diseases, cancer, and many ACE2-related diseases. The present review summarized the state-of-the-art radiotracers for ACE2 imaging, including their chemical design, pharmacological properties, radiochemistry, as well as preclinical and human molecular imaging findings. We also discussed the advantages and limitations of the currently developed ACE2-specific radiotracers.
Collapse
Affiliation(s)
- Wenqi Xu
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (W.X.); (E.S.); (V.V.R.K.); (H.H.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Sigrid A. Langhans
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
- Division of Neurology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA
| | - David K. Johnson
- Computational Chemical Biology Core, Molecular Graphics and Modeling Laboratory, University of Kansas, Lawrence, KS 66047, USA;
| | - Erik Stauff
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (W.X.); (E.S.); (V.V.R.K.); (H.H.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Vinay V. R. Kandula
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (W.X.); (E.S.); (V.V.R.K.); (H.H.K.); (L.W.A.)
| | - Heidi H. Kecskemethy
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (W.X.); (E.S.); (V.V.R.K.); (H.H.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Lauren W. Averill
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (W.X.); (E.S.); (V.V.R.K.); (H.H.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Xuyi Yue
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (W.X.); (E.S.); (V.V.R.K.); (H.H.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| |
Collapse
|
36
|
Paderni D, Voccia M, Macedi E, Formica M, Giorgi L, Caporaso L, Fusi V. A combined solid state, solution and DFT study of a dimethyl-cyclen-Pd(II) complex. Dalton Trans 2024; 53:14300-14314. [PMID: 39133309 DOI: 10.1039/d4dt01791a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
A new palladium(II) complex containing the previously synthesized 4,10-bis[(3-hydroxy-4-pyron-2-yl)methyl]-1,7-dimethyl-1,4,7,10-tetraazacyclododecane ligand maltonis was prepared and characterized both in solution and in the solid state. Hirshfeld surface and energy framework analyses were also performed. Because maltonis already showed antineoplastic activity, the complexation of Pd(II), chosen as an alternative to Pt(II), was investigated to study its possible biological activity. UV-vis and NMR studies confirmed the formation and stability of the complex in aqueous solution at physiological pH. X-ray diffraction data revealed a structure where the Pd(II) ion is lodged in the dimethyl-cyclen cavity, with maltol rings facing each other (closed shape) even if they are not involved in the coordination. DFT analysis was performed in order to understand the most stable shape of the complex. In view of evaluating its possible bioactive conformation, the DFT study suggested a slight energetic preference for the closed one. The resulting closed complex was stabilized in the X-ray structure by intermolecular interactions that replace the intramolecular interactions present in the optimized complex. According to the DFT calculated formation energies, notwithstanding its rarity, the Pd(II) complex of maltonis is the thermodynamically preferred one among analogous complexes containing different metal ions (Pt(II), Co(II), and Cu(II)). Finally, to study its possible biological activity, the interaction between the Pd(II) complex of maltonis and nucleosides was evaluated through NMR and DFT calculations, revealing a possible interaction with purines via the maltol moieties.
Collapse
Affiliation(s)
- Daniele Paderni
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore 2-4, 61029 Urbino, Italy.
| | - Maria Voccia
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Eleonora Macedi
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore 2-4, 61029 Urbino, Italy.
| | - Mauro Formica
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore 2-4, 61029 Urbino, Italy.
| | - Luca Giorgi
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore 2-4, 61029 Urbino, Italy.
| | - Lucia Caporaso
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Vieri Fusi
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore 2-4, 61029 Urbino, Italy.
| |
Collapse
|
37
|
Sire C, Meneyrol V, Saffon-Merceron N, Terreno E, Garello F, Tei L, Jestin E, Tripier R, Troadec T. A versatile fluorinated azamacrocyclic chelator enabling 18F PET or 19F MRI: a first step towards new multimodal and smart contrast agents. Chem Sci 2024; 15:13550-13557. [PMID: 39183922 PMCID: PMC11339802 DOI: 10.1039/d4sc02871f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
Macrocyclic chelators play a central role in medical imaging and nuclear medicine owing to their unparalleled metal cation coordination abilities. Their functionalization by fluorinated groups is an attractive design, to combine their properties with those of 18F for Positron Emission Tomography (PET) or natural 19F for Magnetic Resonance Imaging (MRI), and access potential theranostic or smart medical imaging probes. For the first time, a compact fluorinated macrocyclic architecture has been synthesized, based on a cyclen chelator bearing additional pyridine coordinating units and simple methyltrifluoroborate prosthetic groups. This ligand and its corresponding model Zn(ii) complex were investigated to evaluate the 18F-PET or 19F MRI abilities provided by this novel molecular structure. The chelator and the complex were obtained via a simple and high-yielding synthetic route, present excellent solvolytic stability of the trifluoroborate groups at various pH, and provide facile late-stage 18F-radiolabeling (up to 68% radiochemical yield with high activity) as well as a satisfying detection limit for 19F MRI imaging (low mM range).
Collapse
Affiliation(s)
- Charline Sire
- Univ. Brest, UMR CNRS 6521 CEMCA 6 Avenue Victor Le Gorgeu 29200 Brest France
| | - Vincent Meneyrol
- Cyclotron Réunion Océan Indien CYROI 2 rue Maxime Rivière 97490 Sainte-Clotilde France
| | | | - Enzo Terreno
- Department of Molecular Biotechnology and Health Sciences, University of Turin Piazza Nizza 44/bis 10126 Turin Italy
| | - Francesca Garello
- Department of Molecular Biotechnology and Health Sciences, University of Turin Piazza Nizza 44/bis 10126 Turin Italy
| | - Lorenzo Tei
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale "Amedeo Avogadro" Viale T. Michel 11 15121 Alessandria Italy
| | - Emmanuelle Jestin
- Cyclotron Réunion Océan Indien CYROI 2 rue Maxime Rivière 97490 Sainte-Clotilde France
| | - Raphaël Tripier
- Univ. Brest, UMR CNRS 6521 CEMCA 6 Avenue Victor Le Gorgeu 29200 Brest France
| | - Thibault Troadec
- Univ. Brest, UMR CNRS 6521 CEMCA 6 Avenue Victor Le Gorgeu 29200 Brest France
| |
Collapse
|
38
|
Ramdhani D, Watabe H, Hardianto A, Janitra RS. Complexation of 3p- C-NETA with radiometal ions: A density functional theory study for targeted radioimmunotherapy. Heliyon 2024; 10:e34875. [PMID: 39144950 PMCID: PMC11320446 DOI: 10.1016/j.heliyon.2024.e34875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Bifunctional chelators (BFCs) are vital in the design of effective radiopharmaceuticals, as they are able to bind to both a radiometal ion and a targeting vector. The 3p-C-NETA or 4-[2-(bis-carboxy-methylamino)-5-(4-nitrophenyl)-entyl])-7-carboxymethyl-[1,4,7]tri-azonan-1-yl acetic acid is a novel and promising BFC, developed for diagnostic and therapeutic purposes. The binding affinity between the BFC and radiometal ion significantly impacts their effectiveness. Predicting the equilibrium constants for the formation of 1:1 radiometals/chelator complexes (log K1 values) is crucial for designing BFCs with improved affinity and selectivity for radiometals. The purpose of this study is to evaluate the complexation of Ga3+, Tb3+, Bi3+, and Ac3+ radiometal ions with 3p-C-NETA using density functional theory (B3LYP and M06-HF functional) and 6-311G(d)/SDD basis sets, where the 1,4,7,10-tetrazacyclodecane-1,4,7,10-tetracetic acid (DOTA) was employed as a benchmark. Formation of the [Ac3+(3p-C-NETA)(H2O)]- complexes is predicted to be markedly less stable compared to the other complexes, exhibiting the lowest chemical hardness and the highest chemical softness. Additionally, the chelation stability of the complexes is mainly determined by ligand-ion and ion-water interactions, which depend on the atomic charge and atomic radius of the metal ion.
Collapse
Affiliation(s)
- Danni Ramdhani
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Division of Radiation Protection and Safety Control, Cyclotron and Radioisotope Center (CYRIC), Tohoku University, Sendai, Japan
| | - Hiroshi Watabe
- Division of Radiation Protection and Safety Control, Cyclotron and Radioisotope Center (CYRIC), Tohoku University, Sendai, Japan
| | - Ari Hardianto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Regaputra S. Janitra
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
39
|
Wittmann L, Gordiy I, Friede M, Helmich-Paris B, Grimme S, Hansen A, Bursch M. Extension of the D3 and D4 London dispersion corrections to the full actinides series. Phys Chem Chem Phys 2024; 26:21379-21394. [PMID: 39092890 DOI: 10.1039/d4cp01514b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Efficient dispersion corrections are an indispensable component of modern density functional theory, semi-empirical quantum mechanical, and even force field methods. In this work, we extend the well established D3 and D4 London dispersion corrections to the full actinides series, francium, and radium. To keep consistency with the existing versions, the original parameterization strategy of the D4 model was only slightly modified. This includes improved reference Hirshfeld atomic partial charges at the ωB97M-V/ma-def-TZVP level to fit the required electronegativity equilibration charge (EEQ) model. In this context, we developed a new actinide data set called AcQM, which covers the most common molecular actinide compound space. Furthermore, the efficient calculation of dynamic polarizabilities that are needed to construct CAB6 dispersion coefficients was implemented into the ORCA program package. The extended models are assessed for the computation of dissociation curves of actinide atoms and ions, geometry optimizations of crystal structure cutouts, gas-phase structures of small uranium compounds, and an example extracted from a small actinide complex protein assembly. We found that the novel parameterizations perform on par with the computationally more demanding density-dependent VV10 dispersion correction. With the presented extension, the excellent cost-accuracy ratio of the D3 and D4 models can now be utilized in various fields of computational actinide chemistry and, e.g., in efficient composite DFT methods such as r2SCAN-3c. They are implemented in our freely available standalone codes (dftd4, s-dftd3) and the D4 version will be also available in the upcoming ORCA 6.0 program package.
Collapse
Affiliation(s)
- Lukas Wittmann
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Igor Gordiy
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Marvin Friede
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Benjamin Helmich-Paris
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Markus Bursch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
- FACCTs GmbH, 50677, Köln, Germany
| |
Collapse
|
40
|
Chen G, Qin Y, Sheng R. Integrating Prior Chemical Knowledge into the Graph Transformer Network to Predict the Stability Constants of Chelating Agents and Metal Ions. J Chem Inf Model 2024; 64:5867-5877. [PMID: 39075943 DOI: 10.1021/acs.jcim.4c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The latest advancements in nuclear medicine indicate that radioactive isotopes and associated metal chelators play crucial roles in the diagnosis and treatment of diseases. The development of metal chelators mainly relies on traditional trial-and-error methods, lacking rational guidance and design. In this study, we propose the structure-aware transformer (SAT) combined with molecular fingerprint (SATCMF), a novel graph transformer network framework that incorporates prior chemical knowledge to construct coordination edges and learns the interactions between chelating agents and metal ions. SATCMF is trained on stability data collected from metal ion-ligand complexes, leveraging the SAT network to extract structural features relevant to the binding of ligands with metal ions. It further integrates molecular fingerprint features to refine the prediction of the stability constants of the chelating agents and metal ions. The experimental results on benchmark data set demonstrate that SATCMF achieves state-of-the-art performance based on four different graph neural network architectures. Additionally, visualizing the learned molecular attention distribution provides interpretable insights from the prediction results, offering valuable guidance for the development of novel metal chelators.
Collapse
Affiliation(s)
- Geng Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yiyang Qin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Rong Sheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321036, P. R. China
| |
Collapse
|
41
|
Winter RC, Amghar M, Wacker AS, Bakos G, Taş H, Roscher M, Kelly JM, Benešová-Schäfer M. Future Treatment Strategies for Cancer Patients Combining Targeted Alpha Therapy with Pillars of Cancer Treatment: External Beam Radiation Therapy, Checkpoint Inhibition Immunotherapy, Cytostatic Chemotherapy, and Brachytherapy. Pharmaceuticals (Basel) 2024; 17:1031. [PMID: 39204136 PMCID: PMC11359268 DOI: 10.3390/ph17081031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
Cancer is one of the most complex and challenging human diseases, with rising incidences and cancer-related deaths despite improved diagnosis and personalized treatment options. Targeted alpha therapy (TαT) offers an exciting strategy emerging for cancer treatment which has proven effective even in patients with advanced metastatic disease that has become resistant to other treatments. Yet, in many cases, more sophisticated strategies are needed to stall disease progression and overcome resistance to TαT. The combination of two or more therapies which have historically been used as stand-alone treatments is an approach that has been pursued in recent years. This review aims to provide an overview on TαT and the four main pillars of therapeutic strategies in cancer management, namely external beam radiation therapy (EBRT), immunotherapy with checkpoint inhibitors (ICI), cytostatic chemotherapy (CCT), and brachytherapy (BT), and to discuss their potential use in combination with TαT. A brief description of each therapy is followed by a review of known biological aspects and state-of-the-art treatment practices. The emphasis, however, is given to the motivation for combination with TαT as well as the pre-clinical and clinical studies conducted to date.
Collapse
Affiliation(s)
- Ruth Christine Winter
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| | - Mariam Amghar
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| | - Anja S. Wacker
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, 413 East 69th Street, New York, NY 10021, USA; (A.S.W.); (J.M.K.)
| | - Gábor Bakos
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| | - Harun Taş
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| | - Mareike Roscher
- Service Unit for Radiopharmaceuticals and Preclinical Studies, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
| | - James M. Kelly
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, 413 East 69th Street, New York, NY 10021, USA; (A.S.W.); (J.M.K.)
| | - Martina Benešová-Schäfer
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| |
Collapse
|
42
|
Wood JL, Ghosh S, Houston ZH, Fletcher NL, Humphries J, Mardon K, Akhter DT, Tieu W, Ivashkevich A, Wheatcroft MP, Thurecht KJ, Codd R. A first-in-class dual-chelator theranostic agent designed for use with imaging-therapy radiometal pairs of different elements. Chem Sci 2024; 15:11748-11760. [PMID: 39092114 PMCID: PMC11290327 DOI: 10.1039/d4sc02851a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 08/04/2024] Open
Abstract
A covalent adduct of DFOB and DOTA separated by a l-lysine residue (DFOB-l-Lys-N 6-DOTA) exhibited remarkable regioselective metal binding, with {1H}-13C NMR spectral shifts supporting Zr(iv) coordinating to the DFOB unit, and Lu(iii) coordinating to the DOTA unit. This first-in-class, dual-chelator theranostic design could enable the use of imaging-therapy radiometal pairs of different elements, such as 89Zr for positron emission tomography (PET) imaging and 177Lu for low-energy β--particle radiation therapy. DFOB-l-Lys-N 6-DOTA was elaborated with an amine-terminated polyethylene glycol extender unit (PEG4) to give DFOB-N 2-(PEG4)-l-Lys-N 6-DOTA (compound D2) to enable installation of a phenyl-isothiocyanate group (Ph-NCS) for subsequent monoclonal antibody (mAb) conjugation (mAb = HuJ591). D2-mAb was radiolabeled with 89Zr or 177Lu to produce [89Zr]Zr-D2-mAb or [177Lu]Lu-D2-mAb, respectively, and in vivo PET/CT imaging and in vivo/ex vivo biodistribution properties measured with the matched controls [89Zr]Zr-DFOB-mAb or [177Lu]Lu-DOTA-mAb in a murine LNCaP prostate tumour xenograft model. The 89Zr-immuno-PET imaging function of [89Zr]Zr-D2-mAb and [89Zr]Zr-DFOB-mAb showed no significant difference in tumour accumulation at 48 or 120 h post injection. [89Zr]Zr-D2-mAb and [177Lu]Lu-D2-mAb showed similar ex vivo biodistribution properties at 120 h post-injection. Tumour uptake of [177Lu]Lu-D2-mAb shown by SPECT/CT imaging at 48 h and 120 h post-injection supported the therapeutic function of D2, which was corroborated by similar therapeutic efficacy between [177Lu]Lu-D2-mAb and [177Lu]Lu-DOTA-mAb, both showing a sustained reduction in tumour volume (>80% over 65 d) compared to vehicle. The work identifies D2 as a trifunctional chelator that could expand capabilities in mixed-element radiometal theranostics to improve dosimetry and the clinical outcomes of molecularly targeted radiation.
Collapse
Affiliation(s)
- James L Wood
- The University of Sydney, School of Medical Sciences New South Wales 2006 Australia
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane Queensland 4072 Australia
| | - Saikat Ghosh
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane Queensland 4072 Australia
| | - Zachary H Houston
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane Queensland 4072 Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane Queensland 4072 Australia
| | - James Humphries
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane Queensland 4072 Australia
| | - Karine Mardon
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane Queensland 4072 Australia
| | - Dewan T Akhter
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane Queensland 4072 Australia
| | - William Tieu
- Molecular Imaging and Therapy Research Unit (MITRU), South Australian Health and Medical Research Institute (SAHMRI) Adelaide Australia
| | | | | | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane Queensland 4072 Australia
| | - Rachel Codd
- The University of Sydney, School of Medical Sciences New South Wales 2006 Australia
| |
Collapse
|
43
|
Li Y, Zhang T, Dou Z, Xie W, Lan C, Li G. Summary of the Research Progress on Advanced Engineering, Processes, and Process Parameters of Rare Earth Green Metallurgy. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3686. [PMID: 39124347 PMCID: PMC11312686 DOI: 10.3390/ma17153686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
The addition of rare earth metals to aluminum alloys can effectively improve their corrosion resistance and has been widely used in the aerospace and military industries. However, the current methods for the preparation of rare earth metals involve long processing steps, high energy consumption, and high carbon emissions, which severely constrains the development of aluminum alloys. Its output is further developed. To this end, this paper reviews mainstream rare earth production processes (precipitation methods, microemulsion methods, roasting-sulfuric acid leaching methods, electrochemical methods, solvent extraction methods, and ion exchange methods) to provide basic information for the green smelting of rare earth metals and help promote the development of green rare earth smelting. Based on the advantages and disadvantages of each process as well as recent research results, the optimal process parameters and production efficiency were summarized. Studies have concluded that the precipitation method is mostly used for the recovery of rare earth elements and related valuable metals from solid waste; the microemulsion method is mostly used for the preparation of nanosized rare earth alloys by doping; the roasting-sulfuric acid leaching method is mostly used for the treatment of raw rare earth ores; and the molten salt electrolysis method is a more specific method. This is a green and environmentally friendly production process. The results of this study can provide direction for the realization of green rare earth smelting and provide a reference for improving the existing rare earth smelting process.
Collapse
Affiliation(s)
| | - Tingan Zhang
- Key Laboratory of Ecological Metallurgy of Multi-Metal Intergrown Ores of Ministry of Education, School of Metallurgy, Northeastern University, Shenyang 110819, China; (Y.L.); (Z.D.); (W.X.); (C.L.); (G.L.)
| | | | | | | | | |
Collapse
|
44
|
Simms ME, Li Z, Sibley MM, Ivanov AS, Lara CM, Johnstone TC, Kertesz V, Fears A, White FD, Thorek DLJ, Thiele NA. PYTA: a universal chelator for advancing the theranostic palette of nuclear medicine. Chem Sci 2024; 15:11279-11286. [PMID: 39055008 PMCID: PMC11268510 DOI: 10.1039/d3sc06854d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/05/2024] [Indexed: 07/27/2024] Open
Abstract
To clinically advance the growing arsenal of radiometals available to image and treat cancer, chelators with versatile binding properties are needed. Herein, we evaluated the ability of the py2[18]dieneN6 macrocycle PYTA to interchangeably bind and stabilize 225Ac3+, [177Lu]Lu3+, [111In]In3+ and [44Sc]Sc3+, a chemically diverse set of radionuclides that can be used complementarily for targeted alpha therapy, beta therapy, single-photon emission computed tomography (SPECT) imaging, and positron emission tomography (PET) imaging, respectively. Through NMR spectroscopy and X-ray diffraction, we show that PYTA possesses an unusual degree of flexibility for a macrocyclic chelator, undergoing dramatic conformational changes that enable it to optimally satisfy the disparate coordination properties of each metal ion. Subsequent radiolabeling studies revealed that PYTA quantitatively binds all 4 radiometals at room temperature in just minutes at pH 6. Furthermore, these complexes were found to be stable in human serum over 2 half-lives. These results surpass those obtained for 2 state-of-the-art chelators for nuclear medicine, DOTA and macropa. The stability of 225Ac-PYTA and [44Sc]Sc-PYTA, the complexes having the most disparity with respect to metal-ion size, was further probed in mice. The resulting PET images (44Sc) and ex vivo biodistribution profiles (44Sc and 225Ac) of the PYTA complexes differed dramatically from those of unchelated [44Sc]Sc3+ and 225Ac3+. These differences provide evidence that PYTA retains this size-divergent pair of radionuclides in vivo. Collectively, these studies establish PYTA as a new workhorse chelator for nuclear medicine and warrant its further investigation in targeted constructs.
Collapse
Affiliation(s)
- Megan E Simms
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Zhiyao Li
- Department of Radiology, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
| | - Megan M Sibley
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Alexander S Ivanov
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Caroline M Lara
- Department of Biological Sciences, University of Notre Dame Notre Dame IN 46556 USA
| | - Timothy C Johnstone
- Department of Chemistry and Biochemistry, University of California Santa Cruz Santa Cruz CA 95064 USA
| | - Vilmos Kertesz
- Biosciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Amanda Fears
- Department of Radiology, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
| | - Frankie D White
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Daniel L J Thorek
- Department of Radiology, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
- Department of Biomedical Engineering, Washington University in St. Louis St. Louis MO 63110 USA
- Oncologic Imaging Program, Siteman Cancer Center, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
| | - Nikki A Thiele
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| |
Collapse
|
45
|
Xu P, Gu Y, Li C, Shen J, Cheng X, Zhang LW, Wang Y, Wang Y. Radioactive Hydroxyapatite Microspheres Empower Sustainable In Situ Tumor Vaccination. ACS NANO 2024; 18:18425-18443. [PMID: 38975713 DOI: 10.1021/acsnano.4c02972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Tumor in situ vaccination (ISV) strategies have emerged in clinical trials as promising approaches, involving the release of tumor antigens through local radiotherapy and intratumorally adjuvant injections. However, the current fabrication strategy for achieving a sustainable immune response to ISV remains a pressing challenge. In this study, we present an empowered sustainable ISV method for antitumor therapy using 177Lu-labeled manganese-doped mesoporous hydroxyapatite (177Lu/Mn-HAP) microspheres. The ISV enables the sustained utilization of tumor antigens, leading to the activation of dendritic cells and polarization of macrophages toward the M1 subtype. Consequently, it facilitates the generation of potent CD8+ T-cell responses, enhancing the antitumor effects of internal radiation in both primary and distant tumors. Importantly, this approach achieves complete remission in all tumor-bearing mice and stimulates immune memory to prevent tumor recurrence. Our study highlights a universal and safe ISV strategy capable of inducing potent tumor-specific and sustainable immune response.
Collapse
Affiliation(s)
- Pei Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yuan Gu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Chenze Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jiahao Shen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiaju Cheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Leshuai W Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yangyun Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yong Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215004, China
| |
Collapse
|
46
|
Harriswangler C, Omweri JM, Saini S, Valencia L, Esteban-Gómez D, Ranga M, Guidolin N, Baranyai Z, Lapi SE, Platas-Iglesias C. Improving the In Vivo Stability of [ 52Mn]Mn(II) Complexes with 18-Membered Macrocyclic Chelators for PET Imaging. J Med Chem 2024; 67:11242-11253. [PMID: 38935616 PMCID: PMC11247486 DOI: 10.1021/acs.jmedchem.4c00812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
We report the [natMn/52Mn]Mn(II) complexes of the macrocyclic chelators PYAN [3,6,10,13-tetraaza-1,8(2,6)-dipyridinacyclotetradecaphane] and CHXPYAN [(41R,42R,101R,102R)-3,5,9,11-tetraaza-1,7(2,6)-dipyridina-4,10(1,2)-dicyclohexanacyclododecaphane]. The X-ray crystal structures of Mn-PYAN and Mn-CHXPYAN evidence distorted octahedral geometries through coordination of the nitrogen atoms of the macrocycles. Cyclic voltammetry studies evidence reversible processes due to the Mn(II)/Mn(III) pair, indicating that the complexes are resistant to oxidation. CHXPYAN forms a more thermodynamically stable and kinetically inert Mn(II) complex than PYAN. Radiochemical studies with the radioactive isotope manganese-52 (52Mn, t1/2 = 5.6 days) evidenced better radiochemical yields for CHXPYAN than for PYAN. Both [52Mn]Mn(II) complexes remained stable in mouse and human serum, so in vivo stability studies were carried out. Positron emission tomography/computed tomography scans and biodistribution assays indicated that [52Mn]Mn-PYAN has a distribution pattern similar to that of [52Mn]MnCl2, showing persistent radioactivity accumulation in the kidneys. Conversely, [52Mn]Mn-CHXPYAN remained stable in vivo, clearing quickly from the liver and kidneys.
Collapse
Affiliation(s)
- Charlene Harriswangler
- Universidade da Coruña, Centro Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, A Coruña 15071, Galicia, Spain
| | - James M Omweri
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Shefali Saini
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Laura Valencia
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Marcosende 36310, Pontevedra, Spain
| | - David Esteban-Gómez
- Universidade da Coruña, Centro Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, A Coruña 15071, Galicia, Spain
| | - Madalina Ranga
- Bracco Imaging SpA, CRB Trieste, AREA Science Park, ed. Q─S.S. 14 Km 163,5, 34149 Basovizza, TS, Italy
| | - Nicol Guidolin
- Bracco Imaging SpA, CRB Trieste, AREA Science Park, ed. Q─S.S. 14 Km 163,5, 34149 Basovizza, TS, Italy
| | - Zsolt Baranyai
- Bracco Imaging SpA, CRB Trieste, AREA Science Park, ed. Q─S.S. 14 Km 163,5, 34149 Basovizza, TS, Italy
| | - Suzanne E Lapi
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Carlos Platas-Iglesias
- Universidade da Coruña, Centro Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, A Coruña 15071, Galicia, Spain
| |
Collapse
|
47
|
Roy T, Pogorilyy E, Kumarananthan CP, Kvitastein UA, Foscato M, Törnroos KW, Adamsen TCH, Le Roux E. Synthesis and stability of the [ 45Ti]Ti-DOTA complex: en route towards aza-macrocyclic 45Ti-based radiopharmaceuticals. Chem Commun (Camb) 2024; 60:7148-7151. [PMID: 38860653 DOI: 10.1039/d4cc01800a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
We report the use of DOTA as a chelator for titanium. The resulting complex is fully characterised and in vitro stability studies reveal its high kinetic inertness against transmetallation and transchelation. The radiolabeling of DOTA with 45Ti, via a guaiacol-based liquid-liquid extraction method, leads to a high radiochemical conversion up to 98%.
Collapse
Affiliation(s)
- Tamal Roy
- Department of Chemistry, University of Bergen, Allégaten 41, Bergen, Norway.
| | - Eduard Pogorilyy
- Department of Chemistry, University of Bergen, Allégaten 41, Bergen, Norway.
| | - Chubina P Kumarananthan
- Department of Radiology, Haukeland University Hospital, Centre for Nuclear Medicine and PET, Jonas Lies vei 65, Bergen, Norway
| | - Unni A Kvitastein
- Department of Radiology, Haukeland University Hospital, Centre for Nuclear Medicine and PET, Jonas Lies vei 65, Bergen, Norway
| | - Marco Foscato
- Department of Chemistry, University of Bergen, Allégaten 41, Bergen, Norway.
| | - Karl W Törnroos
- Department of Chemistry, University of Bergen, Allégaten 41, Bergen, Norway.
| | - Tom C H Adamsen
- Department of Chemistry, University of Bergen, Allégaten 41, Bergen, Norway.
- Department of Radiology, Haukeland University Hospital, Centre for Nuclear Medicine and PET, Jonas Lies vei 65, Bergen, Norway
| | - Erwan Le Roux
- Department of Chemistry, University of Bergen, Allégaten 41, Bergen, Norway.
| |
Collapse
|
48
|
Merdzo I, Travagin F, Boccalon M, Alessio E, Lattuada L, Baranyai Z, Giovenzana GB. TRASUTA: The Effect of the Structural Rigidity of a Mesocyclic AAZTA-like Chelating Agent on the Thermodynamic, Kinetic, and Structural Properties of Some Divalent Metal and Ga 3+ Complexes. Inorg Chem 2024; 63:12525-12537. [PMID: 38905138 DOI: 10.1021/acs.inorgchem.4c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Mesocyclic chelating agents such as AAZTA and its derivatives have been recently reported to overcome the relatively low thermodynamic stability of metal complexes of acyclic chelating agents and the slow complexation kinetics of macrocyclic chelating agents. This work reports the preparation of a spirobicyclic hexadentate AAZTA-like chelating agent (TRASUTA) and the investigation of the thermodynamic, kinetic, and structural properties of the corresponding chelates with the PET-relevant Ga3+ and selected metal ions. A combination of analytical techniques allowed identification of a coordination isomerization process, involving the coordinating side arms and the inversion of a nitrogen atom and leading to lower thermodynamic and kinetic inertness with respect to mononuclear mesocyclic analogues. The bicyclic system of TRASUTA retains significant dynamics despite the conformational constraint imposed by the spiro-fusion, resulting in a lower stability of the corresponding metal chelates.
Collapse
Affiliation(s)
- Ileana Merdzo
- Bracco Imaging Spa, AREA Science Park, ed. Q─S.S. 14 Km 163,5, Basovizza 34149, (TS), Italy
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, Trieste 34127, (TS), Italy
| | - Fabio Travagin
- Dipartimento di Scienze del Farmaco, Università Degli Studi Del Piemonte Orientale, Largo Donegani 2/3, Novara 28100, (NO), Italy
| | - Mariangela Boccalon
- Bracco Imaging Spa, AREA Science Park, ed. Q─S.S. 14 Km 163,5, Basovizza 34149, (TS), Italy
| | - Enzo Alessio
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, Trieste 34127, (TS), Italy
| | - Luciano Lattuada
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, Colleretto Giacosa 10010, (TO), Italy
| | - Zsolt Baranyai
- Bracco Imaging Spa, AREA Science Park, ed. Q─S.S. 14 Km 163,5, Basovizza 34149, (TS), Italy
| | - Giovanni B Giovenzana
- Dipartimento di Scienze del Farmaco, Università Degli Studi Del Piemonte Orientale, Largo Donegani 2/3, Novara 28100, (NO), Italy
| |
Collapse
|
49
|
Franchi S, Madabeni A, Tosato M, Gentile S, Asti M, Orian L, Di Marco V. Navigating through the coordination preferences of heavy alkaline earth metals: Laying the foundations for 223Ra- and 131/135mBa-based targeted alpha therapy and theranostics of cancer. J Inorg Biochem 2024; 256:112569. [PMID: 38701687 DOI: 10.1016/j.jinorgbio.2024.112569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
The clinical success of [223Ra]RaCl2 (Xofigo®) for the palliative treatment of bone metastases in patients with prostate cancer has highlighted the therapeutic potential of α-particle emission. Expanding the applicability of radium-223 in Targeted Alpha Therapy of non-osseous tumors is followed up with significant interest, as it holds the potential to unveil novel treatment options in the comprehensive management of cancer. Moreover, the use of barium radionuclides, like barium-131 and -135m, is still unfamiliar in nuclear medicine applications, although they can be considered as radium-223 surrogates for imaging purposes. Enabling these applications requires the establishment of chelators able to form stable complexes with radium and barium radionuclides. Until now, only a limited number of ligands have been suggested and these molecules have been primarily inspired by existing structures known for their ability to complex large metal cations. However, a systematic inspection of chelators specifically tailored to Ra2+ and Ba2+ has yet to be conducted. This work delves into a comprehensive investigation of a series of small organic ligands, aiming to unveil the coordination preferences of both radium-223 and barium-131/135m. Electronic binding energies of both metal cations to each ligand were theoretically computed via Density Functional Theory calculations (COSMO-ZORA-PBE-D3/TZ2P), while thermodynamic stability constants were experimentally determined for Ba2+-ligand complexes by potentiometry, NMR and UV-Vis spectroscopies. The outcomes revealed malonate, 2-hydroxypyridine 1-oxide and picolinate as the most favorable building blocks to design multidentate chelators. These findings serve as foundation guidelines, propelling the development of cutting-edge radium-223- and barium-131/135m-based radiopharmaceuticals for Targeted Alpha Therapy and theranostics of cancer.
Collapse
Affiliation(s)
- Sara Franchi
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
| | - Andrea Madabeni
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
| | - Marianna Tosato
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, AUSL-IRCCS Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Silvia Gentile
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
| | - Mattia Asti
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, AUSL-IRCCS Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Laura Orian
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; National Institute of Nuclear Physics, National Laboratories of Legnaro (INFN-LNL), 35020 Legnaro, Padova, Italy.
| | - Valerio Di Marco
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
50
|
Svítok A, Blahut J, Urbanovský P, Hermann P. Dynamics of Coordinated Phosphonate Group Directly Observed by 17O-NMR in Lanthanide(iii) Complexes of a Mono(ethyl phosphonate) DOTA Analogue. Chemistry 2024; 30:e202400970. [PMID: 38624256 DOI: 10.1002/chem.202400970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
Biological phosphates can coordinate metal ions and their complexes are common in living systems. Dynamics of mutual oxygen atom exchange in the tetrahedral group in complexes has not been investigated. Here, we present a direct experimental proof of exchange ("phosphonate rotation") in model Ln(III) complexes of monophosphonate H4dota analogue which alters phosphorus atom chirality of coordinated phosphonate monoester. Combination of macrocycle-based isomerism with P-based chirality leads to several diastereoisomers. (Non)-coordinated oxygen atoms were distinguished through 17O-labelled phosphonate group and their mutual exchange was followed by various NMR techniques and DFT calculations. The process is sterically demanding and occurs through bulky bidentate (κ2-PO2)- coordination and was observed only in twisted-square antiprism (TSA) diastereoisomer of large Ln(III) ions. Its energy demands increase for smaller Ln(III) ions (298ΔG≠(exp./DFT)=51.8/52.1 and 61.0/71.5 kJ mol-1 for La(III) and Eu(III), respectively). These results are helpful in design of such complexes as MRI CA and for protein paramagnetic NMR probes. It demonstrates usefulness of 17O NMR to study solution dynamics in complexes involving phosphorus acid derivatives and it may inspire use of this method to study dynamics of phosphoric acid derivatives (as e. g. phosphorus acid-based inhibitors of metalloenzymes) in different areas of chemistry.
Collapse
Affiliation(s)
- Adam Svítok
- Department Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843, Prague 2, Czech Republic
| | - Jan Blahut
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Flemingovo náměstí 2, 16000, Prague 6, Czech Republic
| | - Peter Urbanovský
- Department Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843, Prague 2, Czech Republic
| | - Petr Hermann
- Department Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843, Prague 2, Czech Republic
| |
Collapse
|