1
|
Song X, Yi J, Chen Y, Su Y, Wang H, Liu A, Wu D, Li Q. Condensable particulate matter emissions regulated by flue gas desulfurization technologies in typical industrial plants. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137527. [PMID: 39933464 DOI: 10.1016/j.jhazmat.2025.137527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/24/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
Condensable particulate matter (CPM) emissions have exceeded filterable particulate matter from industrial plants under strict emission standards. However, how CPM emission characteristics are affected by air pollution control devices (especially end-of-pipe flue gas desulfurization (FGD) systems) remains to be investigated. Here, we systematically demonstrated CPM emissions regulated by various FGD systems through field measurements of 22 typical industrial sites. Inorganic CPM (57.6 ∼ 99.5 % of CPM) predominantly consisted of water-soluble ions, whose concentrations were distinct between the inlet and outlet of FGD units. SO42- or Cl- mainly contributed to inorganic CPM before desulfurization, while SO42- and NH4+ accounted for 49.2 ∼ 96.3 % of inorganic CPM after FGD. Higher removal efficiencies for Cl- (98.1 ± 1.9 %) than SO42- (50.1 ± 23.8 %) in partial lime-gypsum-wet FGD systems could convert Cl--rich CPM into SO42--rich CPM. Ammonia-wet FGD and activated coke FGD failed to address NH3 slip issues effectively, leading to NH4+- rich (44.0 ∼ 96.0 %) CPM after desulfurization. Conversions of precursors (i.e., NH3, HCl, and SO3) before and after FGD were consistent with those of water-soluble ions. This study revealed chemical-specific transformations of CPM under different FGD processes, highlighting the control of the NH3 slip to reduce CPM emissions.
Collapse
Affiliation(s)
- Xiwen Song
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China
| | - Jinrun Yi
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China
| | - Yuanzheng Chen
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China
| | - Yi Su
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China
| | - Huantao Wang
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China
| | - Anlin Liu
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China; National Engineering Research Center for Flue Gas Desulfurization, College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Di Wu
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China
| | - Qing Li
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China; Shanghai Institute of Eco-Chongming (SIEC), No. 3663 Northern Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
2
|
Liu A, Chen Y, Shao Y, Huo Y, Li J, Li Z, Ma L, Li Q. Condensable and filterable particulate matter emitted from typical diesel vehicles in steady and transient driving conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135716. [PMID: 39236543 DOI: 10.1016/j.jhazmat.2024.135716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Condensable particulate matter (CPM) and filterable particulate matter (FPM) emitted from industrial sources have been well studied, but their emissions from vehicles have not yet been covered. This study explores the emission characteristics of CPM and FPM from typical diesel vehicles under various driving conditions. The emission factors (EFs) of CPMs under driving conditions were 5.4-10.4 times higher than those of FPMs, while CPMs EFs under transient driving conditions were about 2.5 times higher than those under steady driving conditions. CPM and FPM are mainly composed of organic matter accounting for 53.3 %-92.9 %, while the intermediate and semi-volatile organic compounds dominate the organic matter accounting for 86.3 %-98.6 %. Similar to industrial sources, alkanes are the predominant organic species emitted by diesel vehicles, comprising 42.0 %-64.0 % of the detected organic components. Inorganic CPM is primarily composed of NH4+ , representing 84.9 %-87.6 % of the total, in contrast to industrial sources where SO42- and Cl- dominate. Interestingly, the air pollution control devices installed on diesel vehicles under steady driving conditions perform better in removing organic CPM and producing higher inorganic CPM emissions than those under transient driving conditions. These findings will enhance the comprehensive understanding of particulate matter emitted from diesel vehicles and provide a scientific foundation for the development of related control technologies.
Collapse
Affiliation(s)
- Anlin Liu
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, Sichuan 610065, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yuanzheng Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Eco-Chongming (SIEC), No 3663 Northern Zhongshan Road, Shanghai 200062, China
| | - Yuankai Shao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; National Engineering Laboratory for Mobile Source Emission Control Technology, China Automotive Technology & Research Center, Co, Ltd, Tianjin 300300, China
| | - Yaoqiang Huo
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Jianping Li
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhenguo Li
- National Engineering Laboratory for Mobile Source Emission Control Technology, China Automotive Technology & Research Center, Co, Ltd, Tianjin 300300, China
| | - Liang Ma
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Qing Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Eco-Chongming (SIEC), No 3663 Northern Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
3
|
Ahn J, Kim D, Park J, Yang Y, Kim MH, Choi HJ, Jeong W, Lee WS, Oh DY, Ha DH, Hong SH, Oh SJ. Extremely Stable Ag-Based Photonics, Plasmonic, Optical, and Electronic Materials and Devices Designed with Surface Chemistry Engineering for Anti-Tarnish. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308968. [PMID: 38477693 DOI: 10.1002/smll.202308968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Silver (Ag) metal-based structures are promising building blocks for next-generation photonics and electronics owing to their unique characteristics, such as high reflectivity, surface plasmonic resonance effects, high electrical conductivity, and tunable electron transport mechanisms. However, Ag structures exhibit poor sustainability in terms of device performance because harsh chemicals, particularly S2- ions present in the air, can damage their structures, lowering their optical and electrical properties. Here, the surface chemistry of Ag structures with (3-mercaptopropyl)trimethoxysilane (MPTS) ligands at room temperature and under ambient conditions is engineered to prevent deterioration of their optical and electrical properties owing to S2- exposure. Regardless of the dimensions of the Ag structures, the MPTS ligands can be applied to each dimension (0D, 1D, and 3D). Consequently, highly sustainable plasmonic effects (Δλ < 2 nm), Fabry-Perot cavity resonance structures (Δλ < 2 nm), reflectors (ΔRReflectance < 0.5%), flexible electrodes (ΔRelectrical < 0.1 Ω), and strain gauge sensors (ΔGF < 1), even in S2- exposing conditions is achieved. This strategy is believed to significantly contribute to environmental pollution reduction by decreasing the volume of electronic waste.
Collapse
Affiliation(s)
- Junhyuk Ahn
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Doa Kim
- Superintelligence Creative Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon, 34129, Republic of Korea
| | - Junhyeok Park
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yoonji Yang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Mi-Hyun Kim
- Superintelligence Creative Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon, 34129, Republic of Korea
| | - Hyung Jin Choi
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Wooseok Jeong
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Woo Seok Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Dae Yang Oh
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Don-Hyung Ha
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sung-Hoon Hong
- Superintelligence Creative Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon, 34129, Republic of Korea
| | - Soong Ju Oh
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
4
|
Lee SJ, Ju JT, Lee JJ, Song CK, Shin SA, Jung HJ, Shin HJ, Choi SD. Mapping nationwide concentrations of sulfate and nitrate in ambient PM 2.5 in South Korea using machine learning with ground observation data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171884. [PMID: 38527532 DOI: 10.1016/j.scitotenv.2024.171884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/24/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Particulate matter (PM) is a major air pollutant in Northeast Asia, with frequent high PM episodes. To investigate the nationwide spatial distribution maps of PM2.5 and secondary inorganic aerosols in South Korea, prediction models for mapping SO42- and NO3- concentrations in PM2.5 were developed using machine learning with ground-based observation data. Specifically, the random forest algorithm was used in this study to predict the SO42- and NO3- concentrations at 548 air quality monitoring stations located within the representative radii of eight intensive air quality monitoring stations. The average concentrations of PM2.5, SO42-, and NO3- across the entire nation were 17.2 ± 2.8, 3.0 ± 0.6, and 3.4 ± 1.2 μg/m3, respectively. The spatial distributions of SO42- and NO3- concentrations in 2021 revealed elevated concentrations in both the western and central regions of South Korea. This result suggests that SO42- concentrations were primarily influenced by industrial activities rather than vehicle emissions, whereas NO3- concentrations were more associated with vehicle emissions. During a high PM2.5 event (November 19-21, 2021), the concentration of SO42- was primarily influenced by SOX emissions from China, while the concentration of NO3- was affected by NOX emissions from both China and Korea. The methodology developed in this study can be used to explore the chemical characteristics of PM2.5 with high spatiotemporal resolution. It can also provide valuable insights for the nationwide mitigation of secondary PM2.5 pollution.
Collapse
Affiliation(s)
- Sang-Jin Lee
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jeong-Tae Ju
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jong-Jae Lee
- Research and Management Center for Particulate Matter in the Southeast Region of Korea, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Chang-Keun Song
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; Research and Management Center for Particulate Matter in the Southeast Region of Korea, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sun-A Shin
- Climate and Air Quality Research Department, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Hae-Jin Jung
- Climate and Air Quality Research Department, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Hye Jung Shin
- Climate and Air Quality Research Department, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Sung-Deuk Choi
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; Research and Management Center for Particulate Matter in the Southeast Region of Korea, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
5
|
Peng Z, Liu H, Zhang C, Zhai Y, Hu W, Tan Y, Li X, Zhou Z, Gong X. Potential Strategy to Control the Organic Components of Condensable Particulate Matter: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7691-7709. [PMID: 38664958 DOI: 10.1021/acs.est.3c10615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
More and more attention has been paid to condensable particulate matter (CPM) since its emissions have surpassed that of filterable particulate matter (FPM) with the large-scale application of ultralow-emission reform. CPM is a gaseous material in the flue stack but instantly turns into particles after leaving the stack. It is composed of inorganic and organic components. Organic components are an important part of CPM, and they are an irritant, teratogenic, and carcinogenic, which triggers photochemical smog, urban haze, and acid deposition. CPM organic components can aggravate air pollution and climate change; therefore, consideration should be given to them. Based on existing methods for removing atmospheric organic pollutants and combined with the characteristics of CPM organic components, we provide a critical overview from the aspects of (i) fundamental cognition of CPM, (ii) common methods to control CPM organic components, and (iii) catalytic oxidation of CPM organic components. As one of the most encouraging methods, catalytic oxidation is discussed in detail, especially in combination with selective catalytic reduction (SCR) technology, to meet the growing demands for multipollutant control (MPC). We believe that this review is inspiring for a fuller understanding and deeper exploration of promising approaches to control CPM organic components.
Collapse
Affiliation(s)
- Zhengkang Peng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hanxiao Liu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Zhejiang Feida Environmental Science & Technology Co., Ltd., Zhuji 311800, China
- Zhejiang Environmental Protection Group Eco-Environmental Research Institute, Hangzhou 310030, China
| | - Chuxuan Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yunfei Zhai
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Hu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuyao Tan
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaomin Li
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zijian Zhou
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xun Gong
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
6
|
Song X, Wu D, Chen X, Ma Z, Li Q, Chen J. Toxic Potencies of Particulate Matter from Typical Industrial Plants Mediated with Acidity via Metal Dissolution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6736-6743. [PMID: 38564367 DOI: 10.1021/acs.est.4c00929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Acidity is an important property of particulate matter (PM) in the atmosphere, but its association with PM toxicity remains unclear. Here, this study quantitively reports the effect of the acidity level on PM toxicity via pH-control experiments and cellular analysis. Oxidative stress and cytotoxicity potencies of acidified PM samples at pH of 1-2 were up to 2.8-5.2 and 2.1-13.2 times higher than those at pH of 8-11, respectively. The toxic potencies of PM samples from real-world smoke plumes at the pH of 2.3 were 9.1-18.2 times greater than those at the pH of 5.6, demonstrating a trend similar to that of acidified PM samples. Furthermore, the impact of acidity on PM toxicity was manifested by promoting metal dissolution. The dramatic increase by 2-3 orders of magnitude in water-soluble metal content dominated the variation in PM toxicity. The significant correlation between sulfate, the pH value, water-soluble Fe, IC20, and EC1.5 (p < 0.05) suggested that acidic sulfate could enhance toxic potencies by dissolving insoluble metals. The findings uncover the superficial association between sulfate and adverse health outcomes in epidemiological research and highlight the control of wet smoke plume emissions to mitigate the toxicity effects of acidity.
Collapse
Affiliation(s)
- Xiwen Song
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
| | - Di Wu
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
| | - Xiu Chen
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
| | - Zizhen Ma
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Qing Li
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
- Shanghai Institute of Eco-Chongming (SIEC), 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai 202162, China
| | - Jianmin Chen
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
- Shanghai Institute of Eco-Chongming (SIEC), 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai 202162, China
| |
Collapse
|
7
|
Xu Z, Wu Y, Liu S, Tang M, Lu S. Migration and distribution characteristics of typical organic pollutants in condensable particulate matter of coal-fired flue gas and by-products of wet flue gas desulfurization system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26170-26181. [PMID: 38498134 DOI: 10.1007/s11356-024-32923-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
The wet flue gas desulfurization (WFGD) system of coal-fired power plants shows a good removal effect on condensable particulate matter (CPM), reducing the dust removal pressure for the downstream flue gas purification devices. In this work, the removal effect of a WFGD system on CPM and its organic pollutants from a coal-fired power plant was studied. By analyzing the organic components of the by-products emitted from the desulfurization tower, the migration characteristics of organic pollutants in gas, liquid, and solid phases, as well as the impact of desulfurization towers on organic pollutants in CPM, were discussed. Results show that more CPM in the flue gas was generated by coal-fired units at ultra-low load, and the WFGD system had a removal efficiency nearly 8% higher than that at full load. The WFGD system had significant removal effect on two typical esters, especially phthalate esters (PAEs), with the highest removal efficiency of 49.56%. In addition, the WFGD system was better at removing these two esters when the unit was operating at full load. However, it had a negative effect on n-alkanes, which increased the concentration of n-alkanes by 8.91 to 19.72%. Furthermore, it is concluded that the concentration distribution of the same type of organic pollutants in desulfurization wastewater was similar to that in desulfurization slurry, but quite different from that in coal-fired flue gas. The exchange of three organic pollutants between flue gas and desulfurization slurry was not significant, while the concentration distribution of organic matters in gypsum was affected by coal-fired flue gas.
Collapse
Affiliation(s)
- Zhenyao Xu
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yujia Wu
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Siqi Liu
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Minghui Tang
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shengyong Lu
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
8
|
Tang Q, Zhao X, Chen L, Yao H, Miao C, Ji Q, Ma D, Zhang S. Removal and emission characteristics of hazardous trace elements in total and graded particulate matters: A case study of a typical ultra-low emission coal-fired power plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168434. [PMID: 37944605 DOI: 10.1016/j.scitotenv.2023.168434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Particulate matters (PMs) and hazardous trace elements (HTEs) emitted from coal-fired power plants (CFPPs) have raised serious environmental and human issues. Herein, total PMs and graded PMs including PM<1, PM1-2.5 and PM2.5-10 at the inlet/outlet of air pollution control devices (APCDs) were collected from a representative ultra-low emission (ULE) CFPP in China. The removal efficiencies of total PMs by selective catalytic reduction (SCR), electrostatic precipitator (ESP), wet flue gas desulfurization (WFGD) and wet electrostatic precipitator (WESP) were 0.40 %, 99.9 %, 38.1 % and 85.3 %, respectively. PM2.5-10 was robustly removed by WFGD, while PM<1 and PM1-2.5 were readily removed by WESP. The removal efficiencies of As, Cd, Cr and Pb in total PMs by APCDs followed an order: ESP > WESP > WFGD > SCR. SCR significantly decreased Se concentration by 42.8 %, contrasting to the removal of As, Cd, Cr and Pb (10.8-20.8 %). As, Cd, Cr, Pb and Se concentrations in graded PMs at the outlets of ESP, WFGD and WESP decreased with particle size increasing. All As, Cd, Cr, and Pb contents in PM<1, PM1-2.5 and PM2.5-10 at WFGD outlet increased, surpassing their analogues at ESP and WESP outlets. However, the concentration of Se declined in PM<1 at WFGD outlet. The atmospheric emission factors (EFs) of As, Cd, Cr, Pb and Se in the studied ULE CFPP were respectively 7.32, 1.27, 6.05, 122.5 and 6.42 mg/t, in line with Monte Carlo simulations. This study would not only provide a basis for emission control of PMs and HTEs in CFPPs, but also promote the improvement of respective environmental policy.
Collapse
Affiliation(s)
- Quan Tang
- School of Life Sciences, Anhui University, Hefei 230601, China.
| | - Xiaohu Zhao
- School of Life Sciences, Anhui University, Hefei 230601, China
| | - Lai Chen
- School of Business, Anhui University, Hefei 230601, China
| | - Haihan Yao
- School of Life Sciences, Anhui University, Hefei 230601, China
| | - Chunhui Miao
- Anhui Xinli Power Technology Consulting Company with Limited Liability, State Grid Anhui Electric Power Corporation Research Institute, Hefei 230601, China
| | - Qiaozhen Ji
- Anhui Xinli Power Technology Consulting Company with Limited Liability, State Grid Anhui Electric Power Corporation Research Institute, Hefei 230601, China
| | - Dawei Ma
- Anhui Xinli Power Technology Consulting Company with Limited Liability, State Grid Anhui Electric Power Corporation Research Institute, Hefei 230601, China
| | - Shangwei Zhang
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
9
|
Wang Z, Sun J, Zhang L. Separation and recovery of arsenic, germanium and tungsten from toxic coal ash from lignite by sequential vacuum distillation with disulphide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122775. [PMID: 37884191 DOI: 10.1016/j.envpol.2023.122775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/18/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
Large amount of coal ash is produced as industrial waste during the electricity generation through the combustion of lignite. Toxic elements arsenic exists in the coal ash, which hinders the subsequent recycling processes. Moreover, coal ash could be recycled further to retrieve scattered metals germanium and tungsten. It is believed that traditional recycling methods present barriers to scaled application, especially serious secondary pollution, such as toxic residue and waste liquid. In this work, a novel sequential vacuum distillation with disulphide method is proposed to separate arsenic, germanium and tungsten from coal ash. First, arsenic can be volatilized completely out of the reaction system at temperatures below 550 °C. Subsequently, Ge and W volatilized in the form of sulfide in the presence of Na2S2O3. The optimal condition was 1050 °C, the mass ratio of 0.6 with reaction a pressure of 1 Pa and a time duration of 120 min demonstrated the best evaporation ratio. For coal fly ash, chemical species As2S3, GeS, and WOx (x < 3)/WS2 were the main condensed products. For coal bottom ash, As2S3, GeS, and WO3/WS2 were dominant chemical components. Mechanisms for the process of release and evaporation of As, Ge, and W from coal ash, vacuum reaction, evaporation, and condensation were analyzed. In summary, the vacuum distillation method deserves to be further developed as it provides an eco-friendly method to recycle coal ash.
Collapse
Affiliation(s)
- Zhengyi Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jun Sun
- Shanghai Electric Group Co., Ltd., Central Academe, Shanghai, 200070, China
| | - Lingen Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
10
|
Bian J, Zhao H, Wang B, Han B, Ling H, Ju F. Emission characteristics of condensable particulate matter (CPM) from FCC flue gas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163533. [PMID: 37076004 DOI: 10.1016/j.scitotenv.2023.163533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Particulate matter (PM) as a major air pollutant, generally includes filterable particulate matter (FPM) and condensable particulate matter (CPM). CPM has gradually attracted widespread attention recently, due to its increasing proportion in total PM emissions. Fluid catalytic cracking (FCC) units, the main emission source in refineries, mostly use wet flue gas desulfurization (WFGD), which will produce a large amount of CPM. However, CPM emission and composition of FCC units are actually unclear. In this work, we aimed to understand the emission characteristics of CPM in FCC flue gas and provide some potential control strategies. Here, the stack tests of three typical FCC units were conducted to monitor FPM and CPM, and the field monitoring FPM results are higher than the concentration provided by Continuous Emission Monitoring System (CEMS). The emission of CPM is at a high-level concentration from 28.88 to 86.17 mg/Nm3, divided into inorganic fraction and organic fraction. The inorganic fraction is mainly composed in CPM, where water-soluble ions including SO42-, Na+, NH4+, NO3-, CN-, Cl-, and F-, are the major contributors. Moreover, a variety of organic compounds are detected as qualitative analysis of organic fraction in CPM, which can be roughly classified into alkanes, esters, aromatics, and others. Finally, on the basis of the understanding of the characteristics of CPM, we have proposed two strategies for CPM control. This work is expected to advance CPM emission regulation and control in FCC units.
Collapse
Affiliation(s)
- Jiawei Bian
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hai Zhao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bohan Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bingqiang Han
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Ling
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Feng Ju
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
11
|
Tong H, Wang Y, Tao S, Huang L, Jiang S, Bian J, Chen N, Kasemsan M, Yin H, Huang C, Chen H, Zhang K, Li L. Developed compositional source profile and estimated emissions of condensable particulate matter from coal-fired power plants: A case study of Yantai, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161817. [PMID: 36708842 DOI: 10.1016/j.scitotenv.2023.161817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The emission and environmental impact of condensable particulate matter (CPM) from coal-fired power plants (CFPPs) are of increasing concern worldwide. Many studies on the characteristics of CPM emission have been conducted in China, but its source profile remains unclear, and its emission inventory remains high uncertainty. In this work, the latest measurements reported in the latest 33 studies for CPM inorganic and organic species emitted from CFPPs in China were summarized, and then a compositional source profile of CPM for CFPPs was developed for the first time in China, which involved 10 inorganic species and 71 organic species. In addition, the CPM emission inventory of CFPPs in Yantai of China was developed based on surveyed activity data, continuous emission monitoring system (CEMS), and the latest measurement data. The results show that: (1) Inorganic species accounted for 77.64 % of CPM emitted from CFPPs in Yantai, among which SO42- had the highest content, accounting for 23.74 % of CPM, followed by Cl-, accounting for 11.95 %; (2) Organic matter accounted for 22.36 % of CPM, among which alkanes accounted for the largest proportion of organic fraction (72.7 %); (3) Emission concentration method (EC) and CEMS-based emission ratio method (ERFPM,CEMS) were recommended to estimate CPM emissions for CFPPs; (4) The estimated CPM emission inventories of Yantai CFPPs in 2020 by the EC method and the ERFPM,CEMS method were 1231 tons and 929 tons, respectively, with uncertainties of -34 % ∼ 33 % and -27 % ∼ 57 %, respectively; (5) CPM emissions were mainly distributed in the northern coastal areas of Yantai. This developed CPM source profile and emission inventory can provide basic data for assessing the impacts of CPM on air quality and health. In addition, this study can provide an important methodology for developing CPM emission inventories and CPM emission source profiles for stationary combustion sources in other regions.
Collapse
Affiliation(s)
- Huanhuan Tong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Yangjun Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China.
| | - Shikang Tao
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Ling Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Sen Jiang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Jinting Bian
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Nan Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Manomaiphiboon Kasemsan
- The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology, Thonburi, Bangkok 10140, Thailand; Center of Excellence on Energy Technology and Environment, Ministry of Higher Education, Science, Research and Innovation, Bangkok, 10140, Thailand
| | - Haiyan Yin
- Yantai Environmental Engineering Consulting Design Institute Co., Ltd., Yantai, Shandong 264000, China
| | - Cheng Huang
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Hui Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Kun Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Li Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
12
|
Sheng Z, Zhang F, Wu T, Yang L. Variation of nitrate and nitrite in condensable particulate matter from coal-fired power plants under the simulated rapid condensing conditions. CHEMOSPHERE 2023; 318:137934. [PMID: 36702403 DOI: 10.1016/j.chemosphere.2023.137934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
In this work, condensation temperature, H2O vapor, SO2, SO3 and NH3 were studied to explore the formation mechanism of nitrate ions (NO3-) and nitrite ions (NO2-) in condensable particulate matter (CPM) discharged by ultra-low emission coal-fired power plants. Some important results were obtained: (i) The concentration of NO3- and NO2- increased with the decrease of condensation temperature, and H2O vapor could also promote the formation of NO3- and NO2-. (ii) The effects of SO2 and SO3 varied at different saturated states of flue gas, which was caused by the redox reaction of SO2 and NOX or the formation of H2SO4. (iii) NH3 could promote the nucleation of NO3- and NO2-, and the promotion effect also existed in the existence of SO2 or SO3. It is worth mentioning that SO3 and SO2 might synergistically inhibit the formation of NO3- and NO2-, regardless of the presence of NH3. The research results would enrich peoples understanding of the chemical and physical characteristics of NO3- and NO2- in CPM and provide a basic reference for the control of CPM emitted from coal-fired power plants.
Collapse
Affiliation(s)
- Zhongyi Sheng
- School of Environment, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China
| | - Fuyang Zhang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Tong Wu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Liu Yang
- School of Environment, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
13
|
Zhang F, Yang L, Sheng Z, Wu T, Chu X. Physicochemical characteristics of polycyclic aromatic hydrocarbons in condensable particulate matter from coal-fired power plants: A laboratory simulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120944. [PMID: 36584857 DOI: 10.1016/j.envpol.2022.120944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/03/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
The objective of this study was to examine the physicochemical characteristics of polycyclic aromatic hydrocarbons (PAHs) in condensable particulate matter (CPM) during fast condensation (within several seconds). The concentration of PAHs increased as the condensation temperature decreased, indicating that the conversion of gaseous PAHs to CPM would be enhanced at low temperatures. PAH concentrations increased in relation to the number of rings in the fragment, with the high-ring (4-,5- and 6-ring) PAHs accounting for 89.70-92.30% and 99.78-99.80% of the total concentration and total toxic equivalent of PAHs. In addition, particulate-phase PAHs (0.1-1.0 μm), developed through the synergistic effect of PAHs and fine particles, were difficult to collect by fast condensation. Inorganic fine particles could be formed when ammonia-rich conditions prevail, reducing PAH condensation further. Furthermore, CPM was morphologically and chemically characterized. During the experiment, fine and well-aggregated CPMs were detected on the membrane, and the diameter of CPMs was further enhanced by the addition of 16 PAHs. Most of the C element was collected in the rinse fluid, thus indicating that PAHs in CPM were collected through condensation. Based on these findings, basic guidelines can be provided for the control of PAHs in flue gas from coal-fired power plants.
Collapse
Affiliation(s)
- Fuyang Zhang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Liu Yang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Zhongyi Sheng
- School of Environment, Nanjing Normal University, Nanjing 210023, China.
| | - Tong Wu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Xinyue Chu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
14
|
Zhou X, Tang W, He M, Xiao X, Wang T, Cheng S, Zhang L. Combined removal of SO 3 and HCl by modified Ca(OH) 2 from coal-fired flue gas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159466. [PMID: 36257446 DOI: 10.1016/j.scitotenv.2022.159466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/01/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
As treatments for mainstream pollutants in coal-fired power plants have been established, the control of non-conventional pollutants, such as SO3 and HCl, is gradually gaining attention. In this study, combined SO3 and HCl removal is proposed based on SO3 removal by absorber injection. However, it is challenging to selectively absorb SO3 and HCl from SO2-rich atmospheres. Therefore, Ca(OH)2 was modified via ball milling and doping with CuO for the combined removal of SO3 and HCl. The results showed that ball milling reduced the particle and grain sizes of Ca(OH)2, which increased the active sites of Ca(OH)2 and prolonged reaction time. After modification by ball milling, SO3 absorption per mg of Ca(OH)2 increased by 40 %. However, HCl removal efficiency was difficult to improve by modifying Ca(OH)2 using only ball milling under SO3 and SO2 atmospheres. Therefore, the dechlorination capacity of Ca(OH)2 was improved by adding ions during the ball milling process. Doping of Ca(OH)2 with Cu2+ changed its crystal structure, weakened the diffusion resistance of HCl, and improved Ca(OH)2 utilization. Additionally, it increased the energy of Ca(OH)2 to adsorb HCl.
Collapse
Affiliation(s)
- Xiaohan Zhou
- National Engineering Laboratory of Coal-fired Pollutants Emission Reduction, School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Wenjing Tang
- National Engineering Laboratory of Coal-fired Pollutants Emission Reduction, School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Minqiang He
- Xi'an Thermal Power Research Institute Co., Ltd., China
| | - Xia Xiao
- National Engineering Laboratory of Coal-fired Pollutants Emission Reduction, School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Tao Wang
- National Engineering Laboratory of Coal-fired Pollutants Emission Reduction, School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Shanjie Cheng
- National Engineering Laboratory of Coal-fired Pollutants Emission Reduction, School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Liqiang Zhang
- National Engineering Laboratory of Coal-fired Pollutants Emission Reduction, School of Energy and Power Engineering, Shandong University, Jinan 250061, China.
| |
Collapse
|
15
|
Deng J, Wang S, Zhang J, Zhang Y, Jiang J, Gu Y, Han T, Feng L, Gao J, Duan L. Suggestion on further strengthening ultra-low emission standards for PM emission from coal-fired power plants in China. J Environ Sci (China) 2023; 123:203-211. [PMID: 36521984 DOI: 10.1016/j.jes.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 06/17/2023]
Abstract
China has established the largest clean coal-fired power generation system in the world by accomplishing the technological transformation of coal-fired power plants (CFPPs) to achieve ultra-low emission. The potential for further particulate matter (PM) emission reduction to achieve near-zero emission for CFPPs has become a hotspot issue. In this study, PM emission from some ultra-low emission CFPPs adopting advanced air pollutant control technologies in China was reviewed. The results revealed that the average filterable particulate matter (FPM) concentration, measured as the total particulate matter (TPM) according to the current national monitoring standard, was (1.67±0.86) mg/m3, which could fully achieve the ultra-low emission standard for key regions (5 mg/m3), but that achieving the near-zero emission standard was difficult (1 mg/m3). However, the condensable particulate matter (CPM), with an average concentration of (1.06±1.28) mg/m3, was generally ignored during monitoring, which led to about 38.7% underestimation of the TPM. Even considering both FPM and CPM, the TPM emission from current CFPPs would contribute to less than 5% of atmospheric PM2.5 concentrations in the key cities and regions in China. Therefore, further reduction in FPM emission proposed by the near-zero emission plan of CFPPs may have less environmental benefit than emission control of other anthropogenic sources. However, it is suggested that the management of CPM emission should be strengthened, and a national standard for CPM emission monitoring based on the indirect dilution method should be established for CFPPs. Those measurements are helpful for optimal operation of air pollutant control devices and continuously promoting further emission reduction.
Collapse
Affiliation(s)
- Jianguo Deng
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Shumin Wang
- China Energy Investment Co., Ltd., Beijing 100011, China
| | - Jiawei Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yi Zhang
- China Energy Investment Co., Ltd., Beijing 100011, China
| | - Jingkun Jiang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yongzheng Gu
- Guodian Power Development Co., Ltd., Beijing 100101, China
| | - Tao Han
- CHN ENERGY New Energy Technology Research Institute Co., Ltd., Beijing 102209, China
| | - Lei Feng
- CHN ENERGY New Energy Technology Research Institute Co., Ltd., Beijing 102209, China
| | - Jian Gao
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lei Duan
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
16
|
Morino Y, Chatani S, Fujitani Y, Tanabe K, Murphy BN, Jathar SH, Takahashi K, Sato K, Kumagai K, Saito S. Emissions of Condensable Organic Aerosols from Stationary Combustion Sources over Japan. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2022; 289:119319. [PMID: 40012955 PMCID: PMC11864277 DOI: 10.1016/j.atmosenv.2022.119319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Treatment of condensable particulate matter (CPM) is key for accurate simulation of atmospheric particulate matter (PM), because conventional stationary combustion source emission surveys do not measure CPM in many countries. This study updates previously estimated CPM emissions from stationary combustion sources in Japan by considering the relationship between the CPM fraction and filterable PM (FPM) concentrations for individual sources rather than using a uniform CPM/FPM ratio for all sources. As a result, the total emissions ratio of condensable organic aerosol (OA) and filterable PM2.5 (OA CPM ∕ PM 2.5 FPM ) from stationary combustion sources, based on this update, changes from ~2.0 to 0.20, and the estimated concentrations of condensable OA, averaged over winter and over summer, changes from up to 3 μg m-3 to up to 0.2 μg m-3. The normalized mean bias for concentration of the simulated organic carbon (OC) in winter changes from -78% ~ -9% to -83% ~ -28%), although the proportion of modern carbon in total carbon is better estimated. The CPM contribution is likely to be overestimated when the source-dependent relationship between the CPM/FPM ratio and FPM concentration is not considered. Thus, accurate knowledge of the CPM/FPM ratio, particularly for sources with high FPM concentrations, is critical to improve CPM emission estimation.
Collapse
Affiliation(s)
- Yu Morino
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Satoru Chatani
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Yuji Fujitani
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Kiyoshi Tanabe
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Benjamin N. Murphy
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Shantanu H. Jathar
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Katsuyuki Takahashi
- Japan Environmental Sanitation Center, 10-6 Yotsuyakami-Cho, Kawasaki, Kanagawa 210-0828, Japan
| | - Kei Sato
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Kimiyo Kumagai
- Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki, Maebashi, Gunma 371-0052, Japan
| | - Shinji Saito
- Tokyo Metropolitan Research Institute for Environmental Protection, 1-7-5 Shinsuna, Koto-ku, Tokyo 136-0075, Japan
| |
Collapse
|
17
|
Li M, Yu S, Chen X, Li Z, Zhang Y, Song Z, Liu W, Li P, Zhang X, Zhang M, Sun Y, Liu Z, Sun C, Jiang J, Wang S, Murphy BN, Alapaty K, Mathur R, Rosenfeld D, Seinfeld JH. Impacts of condensable particulate matter on atmospheric organic aerosols and fine particulate matter (PM 2.5) in China. ATMOSPHERIC CHEMISTRY AND PHYSICS 2022; 22:11845-11866. [PMID: 39872897 PMCID: PMC11770565 DOI: 10.5194/acp-22-11845-2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Condensable particulate matter (CPM) emitted from stationary combustion and mobile sources exhibits high emissions and a large proportion of organic components. However, CPM is not generally measured when conducting emission surveys of PM in most countries, including China. Consequently, previous emission inventories have not included emission rates for CPM. Here, we construct an emission inventory of CPM in China with a focus on organic aerosols (OAs) based on collected CPM emission information. Results show that OA emissions are enhanced twofold after the inclusion of CPM in a new inventory for China for the years 2014 and 2017. Considering organic CPM emissions and model representations of secondary OA (SOA) formation from CPM, a series of sensitivity cases have been simulated here using the three-dimensional Community Multiscale Air Quality (CMAQ) model to estimate the contributions of CPM emissions to atmospheric OA and fine PM (PM2.5, particulate matter with aerodynamic diameter not exceeding 2.5 μm) concentrations in China. Compared with observations at a Beijing site during a haze episode from 14 October to 14 November 2014, estimates of the temporal average primary OA (POA) and SOA concentrations were greatly improved after including the CPM effects. These scenarios demonstrated the significant contributions of CPM emissions from stationary combustion and mobile sources to the POA (51 %-85 %), SOA (42 %-58 %), and total OA concentrations (45 %-75 %). Furthermore, the contributions of CPM emissions to total OA concentrations were demonstrated over the 2 major cities and 26 other cities of the Beijing-Tianjin-Hebei region (hereafter referred to as the "BTH2 + 26 cities") in December 2018, with average contributions of up to 49 %, 53 %, 54 %, and 50 % for Handan, Shijiazhuang, Xingtai, and Dezhou, respectively. Correspondingly, the inclusion of CPM emissions also narrowed the gap between simulated and observed PM2.5 concentrations over the BTH2 + 26 cities. These results improve the simulation performance of atmospheric OA and PM2.5 and may also provide important implications for the sources of OA.
Collapse
Affiliation(s)
- Mengying Li
- Research Center for Air Pollution and Health, Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environment and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Shaocai Yu
- Research Center for Air Pollution and Health, Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environment and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Xue Chen
- Research Center for Air Pollution and Health, Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environment and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Zhen Li
- Research Center for Air Pollution and Health, Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environment and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Yibo Zhang
- Research Center for Air Pollution and Health, Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environment and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Zhe Song
- Research Center for Air Pollution and Health, Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environment and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Weiping Liu
- Research Center for Air Pollution and Health, Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environment and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Pengfei Li
- College of Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, PR China
| | - Xiaoye Zhang
- Research Center for Air Pollution and Health, Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environment and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing 100081, PR China
| | - Meigen Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing 100029, PR China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, PR China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing 100029, PR China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zirui Liu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing 100029, PR China
| | - Caiping Sun
- Environmental Information Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jingkun Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, PR China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Benjamin N. Murphy
- Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Kiran Alapaty
- Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Rohit Mathur
- Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Daniel Rosenfeld
- Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - John H. Seinfeld
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
18
|
Shi Y, Li M, Wen J, Yang Y, Zeng J. Deep Learning-Based Approach for Heat Transfer Efficiency Prediction with Deep Feature Extraction. ACS OMEGA 2022; 7:31013-31035. [PMID: 36092576 PMCID: PMC9453825 DOI: 10.1021/acsomega.2c03052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Failure to blow ash on the heated surface of the boiler will cause a drop in heat transfer rate and even industrial safety accidents. Nowadays, the shortcomings of the fixed soot blowing operation every hour and every shift are significant, which can be improved by high-precision ash accumulation prediction. Therefore, this paper proposes a deep learning model fused with deep feature extraction. First, a dynamic fouling model and a health index-clearness factor (CF) of the heated surface are established. The data preprocessing method reduces unnecessary forecasting difficulty and makes the degradation trend of the CF time series more obvious. In addition, deep feature extraction is composed of complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and kernel principal component analysis (KPCA), which completes the multiscale analysis of time series and reduces the training time of deep learning models, and has significant contributions to improving prediction accuracy and reducing time consumption. The adaptive sliding window and the encoder-decoder based on the attention mechanism (EDA) can better mine the internal information of the time series. Compared with long short-term memory (LSTM), taking the 300 MW boiler's various heated surface data sets as an example, multistep forward prediction and different starting point prediction experiments have verified the superiority and effectiveness of the model. Finally, under the variable working condition economizer datasets, the proposed method better completes the predictive maintenance task of the heated surface. The research results provide operational guidance for improving heat transfer rate, energy saving, and reducing consumption.
Collapse
|
19
|
Yuan C, Liang S, Cheng H, Xu R, Su S, Yao Z, Wang P, Tuo X, Wang Z. Assessing the dry impinger method for condensable particulate matter from ultra-low emission coal-fired power plant measurement. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155002. [PMID: 35398423 DOI: 10.1016/j.scitotenv.2022.155002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
The dry impinger method is commonly used for the determination of condensable particulate matter (CPM) emissions. The coil and chamber condenser is used to build different dry impinger methods for CPM sampling. The comparative analysis of coil and chamber condenser is performed in a laboratory experiment to evaluate the deviation caused by SO2. Results showed that the positive deviation caused by SO2 in the chamber condenser is lower than that in the coil condenser under the same sampling conditions, especially under high humidity flue gas. The CPM emission characteristics from Hanchuan coal-fired power plant (CFPP) determined by both dry impinger methods are also investigated as well. The CPM and its most water-soluble ions (e.g., F-, Cl-, NO3-, SO42-, Na+, Ca2+ and NH4+) measured by method #2 (chamber condenser) are higher than that of method #1 (coil condenser). In addition, the esters in the CPM also increased with the CPM concentrations. Based on above evidences, it can be inferred that the dry impinger method with chamber condenser, will be recommended as the appropriate method for measuring CPM emitted from stationary sources, especially under the high humidity flue gas conditions.
Collapse
Affiliation(s)
- Chang Yuan
- School of Resources and Environmental Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, China
| | - Shengwen Liang
- Environmental Monitoring Station of Wuhan, 422 Xinhua Road, Wuhan 430015, China
| | - Hairong Cheng
- School of Resources and Environmental Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, China
| | - Ruiguang Xu
- Environmental Monitoring Station of Wuhan, 422 Xinhua Road, Wuhan 430015, China
| | - Siqian Su
- School of Resources and Environmental Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, China
| | - Zhibing Yao
- Environmental Monitoring Station of Wuhan, 422 Xinhua Road, Wuhan 430015, China
| | - Pengcheng Wang
- School of Resources and Environmental Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, China
| | - Xiaohan Tuo
- School of Resources and Environmental Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, China
| | - Zuwu Wang
- School of Resources and Environmental Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, China.
| |
Collapse
|
20
|
Hong Q, Xu H, Pang X, Liu W, Liu Z, Huang W, Qu Z, Yan N. Reverse Conversion Treatment of Gaseous Sulfur Trioxide Using Metastable Sulfides from Sulfur-Rich Flue Gas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10935-10944. [PMID: 35867955 DOI: 10.1021/acs.est.2c02362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sulfur trioxide (SO3) is an unstable pollutant, and its removal from the gas phase of industrial flue gas remains a significant challenge. Herein, we propose a reverse conversion treatment (RCT) strategy to reduce S(VI) in SO3 to S(IV) by combining bench-scale experiments and theoretical studies. We first demonstrated that metastable sulfides can break the S-O bond in SO3, leading to the re-formation of sulfur dioxide (SO2). The RCT performance varied between mono- and binary-metal sulfides, and metastable CuS had a high SO3 conversion efficiency in the temperature range of 200-300 °C. Accordingly, the introduction of selenium (Se) lowered the electronegativity of the CuS host and enhanced its reducibility to SO3. Among the CuSe1-xSx composites, CuSe0.3S0.7 was the optimal RCT material and reached a SO2 yield of 6.25 mmol/g in 120 min. The low-valence state of selenium (Se2-/Se1-) exhibited a higher reduction activity for SO3 than did S2-/S1-; however, excessive Se doping degraded the SO3 conversion owing to the re-oxidation of SO2 by the generated SeO32-. The density functional theory calculations verified the stronger SO3 adsorption performance (Eads = -2.76 eV) and lower S-O bond breaking energy (Ea = 1.34 eV) over CuSe0.3S0.7 compared to those over CuS and CuSe. Thus, CuSe1-xSx can serve as a model material and the RCT strategy can make use of field temperature conditions in nonferrous smelters for SO3 emission control.
Collapse
Affiliation(s)
- Qinyuan Hong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haomiao Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xingyu Pang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- China-UK Low-Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Liu
- Jiangsu Academy of Environmental Sciences Environmental Technology Co., Ltd., Nanjing 210019, China
| | - Zhisong Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenjun Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- China-UK Low-Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
21
|
Liu S, Wu Y, Xu Z, Lu S, Li X. Study on characteristics of organic components in condensable particulate matter before and after wet flue gas desulfurization system of coal-fired power plants. CHEMOSPHERE 2022; 294:133668. [PMID: 35063556 DOI: 10.1016/j.chemosphere.2022.133668] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/12/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Wet flue gas desulfurization (WFGD) in coal-fired power plants has a great impact on the emission of particulate matter, including filterable particulate matter (FPM) and condensable particulate matter (CPM). In this paper, CPM and FPM in flue gas before and after WFGD in coal-fired power plants were sampled in parallel. FPM was tested according to ISO standard 23210-2009, and CPM was tested according to U.S. EPA Method 202. A method for quantitatively analyzing fatty acid methyl esters in CPM was established, and the removal capacity of fatty acid methyl esters and phthalate esters by WFGD in a typical coal-fired unit was compared. Results show that WFGD has a significant effect on particle size distribution, concentration, and chemical composition. WFGD has a high removal efficiency of inorganic components in CPM, up to 54.74%. CPM contains a variety of organic compounds, including hydrocarbons, esters, siloxanes, halogenated hydrocarbons, and so on. In particular, esters are an important component in CPM, whose concentration tends to decrease after WFGD. Furthermore, a total of 11 fatty acid methyl esters and 5 phthalate esters were detected in CPM before and after WFGD. Noted that fatty acid methyl esters account for 13.38% of CPM, which make a higher contribution to the concentration of particulate matter than phthalate esters, while WFGD has a stronger control effect on the removal of phthalates.
Collapse
Affiliation(s)
- Siqi Liu
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yujia Wu
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhenyao Xu
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shengyong Lu
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaodong Li
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
22
|
Zhai Y, Liu X, Han J, Zou Y, Huang Y, Wang H, Liu L, Xu M. Study on the removal characteristics of different air pollution control devices for condensable particulate matter in coal-fired power plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:34714-34724. [PMID: 35040059 DOI: 10.1007/s11356-021-17952-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
This study reports the emissions of condensable particulate matter (CPM) and filterable particulate matter (FPM) in two coal-fired power plants with different air pollution control devices (APCDs). The mechanisms of CPM removed by existing APCDs in coal-fired power plants were explored, and a series of analyses were also carried out on the composition and characteristics of CPM. The results show that the removal efficiencies to CPM by electrostatic-bag-precipitator (EBP) and ESP are 77.34% and 79.23%, respectively, so the difference is not obvious because the interception filtration mechanisms of baghouses for CPM have less effect on CPM compared to FPM. The mechanism of EBP/ESP to remove CPM is mainly electrostatic adsorption and FPM's adsorption. The concentration of CPM decreases when passing through WFGD. However, the WESP can increase the CPM in different ways. For example, the pollution of the circulation of the flushing fluid may cause the increase of CPM. In addition, CPM mainly includes three parts. The first part is organic fractions such as alkanes and esters; the second is the water-soluble ions that include SO42-, NH4+, and Cl-; and the third is Na, Ca, and other minerals. The research in this study is helpful to understand the impact of existing APCDs in coal-fired power plants on CPM and the sources of CPM.
Collapse
Affiliation(s)
- Yunfei Zhai
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaowei Liu
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Jingkun Han
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yue Zou
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yubo Huang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huakun Wang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lei Liu
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Minghou Xu
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
23
|
Does Ambient Secondary Conversion or the Prolonged Fast Conversion in Combustion Plumes Cause Severe PM2.5 Air Pollution in China? ATMOSPHERE 2022. [DOI: 10.3390/atmos13050673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ambient formation of secondary particulate matter (ambient FSPM) is commonly recognized as the major cause of severe PM2.5 air pollution in China. We present observational evidence showing that the ambient FSPM was too weak to yield a detectable contribution to extreme PM2.5 pollution events that swept northern China between 11 and 14 January 2019. Although the Community Multiscale Air Quality (CMAQ) model (v5.2) reasonably reproduced the observations in January 2019, it largely underestimated the concentrations of the PM2.5 during the episode. We propose a novel mechanism, called the “in-fresh-stack-plume non-precipitation-cloud processing of aerosols” followed by the evaporation of semi-volatile components from the aerosols, to generate PM2.5 at extremely high concentrations because of highly concentrated gaseous precursors and large amounts of water droplets in fresh cooling combustion plumes under poor dispersion conditions, low ambient temperature, and high relative humidity. The recorded non-precipitation-cloud processing of the aerosols in fresh stack combustion plumes normally lasts 20–30 s, but it prolongs as long as 2–5 min under cold, humid, and stagnant meteorological conditions and expectedly causes severe PM2.5 pollution events. Regardless of the presence of the natural cloud in the planetary boundary layer during the extreme events, the fast conversion of air pollutants in water droplets and the generation of the PM2.5 through the non-precipitation-cloud processing of aerosols always occur in fresh combustion plumes. The processing of aerosols is detectable using a nano-scan particle sizer assembled on an unmanned aerial vehicle to monitor the particle formation in stack plumes. In-fresh-stack-plume processed aerosols under varying meteorological conditions need to be studied urgently.
Collapse
|
24
|
Liu A, Yi J, Ding X, Deng J, Wu D, Huo Y, Jiang J, Li Q, Chen J. An online technology for effectively monitoring inorganic condensable particulate matter emitted from industrial plants. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128221. [PMID: 35007968 DOI: 10.1016/j.jhazmat.2022.128221] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
The concentration of condensable particulate matter (CPM) has gradually exceeded that of filterable particulate matter emitted from industrial plants equipped with advanced air pollution control systems. However, there is still no available online technology to measure CPM emissions. Based on the significant linear correlations (R2 > 0.87, p < 3 × 10-3) between the electrical conductivity (EC) values and ionic mass concentrations of the CPM solutions when the interference of H+ was excluded. We developed an online inorganic CPM monitoring system, including a cooling and condensation unit, pH and EC meters, a self-cleaning unit, and an automatic control unit. The CPM mass concentrations obtained by the developed online monitoring system agree well (mean bias 3.8-20.7%) with those obtained by the offline system according to USEPA Method 202 when used in parallel during real-world studies. Furthermore, individual ion mass concentrations of CPMs can even be retrieved separately with a time resolution of one hour when industrial plants are under steady operating conditions. The newly developed system makes the online monitoring of CPM emissions available and lays a foundation for the control of CPM emitted from industrial sources to further improve air quality.
Collapse
Affiliation(s)
- Anlin Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention,National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Eco-Chongming (SIEC), No. 3663 Northern Zhongshan Road, Shanghai 200062, China
| | - Jinrun Yi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention,National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Eco-Chongming (SIEC), No. 3663 Northern Zhongshan Road, Shanghai 200062, China
| | - Xiang Ding
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention,National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jianguo Deng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Di Wu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention,National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yaoqiang Huo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention,National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Eco-Chongming (SIEC), No. 3663 Northern Zhongshan Road, Shanghai 200062, China
| | - Jingkun Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qing Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention,National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Eco-Chongming (SIEC), No. 3663 Northern Zhongshan Road, Shanghai 200062, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention,National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Eco-Chongming (SIEC), No. 3663 Northern Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
25
|
Lin SL, Guo Z, Chen SJ, Tang W, Huang SW. Use of hydrous ABE-glycerin-diesel microemulsions in a nonroad diesel engine - Performance and unignorable emissions. CHEMOSPHERE 2022; 290:133244. [PMID: 34919915 DOI: 10.1016/j.chemosphere.2021.133244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/17/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Oversupply, extra energy consumption, and CO2 emissions from the refinery of biodiesel-derived glycerin (G) led to the consideration of its use as an alternative fuel. In this study, a nonroad diesel engine generator was employed to represent potential emissions under stringent regulated standards. G-diesel has been reported to reduce nitrogen oxides (NOx) and soot levels but increase CO and hydrocarbon emissions. A bio-producible acetone-butanol-ethanol (ABE) solution with multiple polarities was added to stabilize the glycerin and water in diesel examined in this study. A series of ABE-G-diesel blends were prepared to form the thermostable microemulsions. Four blends with small and well-dispersed bubbles were tested in the engine generator. The specific thermal efficiencies of the engine were slightly improved by using ABE-G from regular diesel due to better spray quality, longer ignition delay, and fuel-oxygen content that would enhance combustion. Meanwhile, the PM-NOx-CO emission trade-off in the previous study has been overcome by using ABE-G-diesel since the better fuel atomization and more premixed combustion were approached, as well as the lower and homogeneous in-cylinder temperature caused by water content and micro-explosion. However, the condensable particulate matter and nitro-PAHs were also observed and realized their unignorable contribution, which has not been regulated and even researched for the generators. Fortunately, the new fuels could inhibit both of them to a certain degree. Consequently, this study proposes using recyclable glycerin with a simple pretreatment mixed with ABE and diesel for greener nonroad diesel engine especially those equipped with low-grade aftertreatment.
Collapse
Affiliation(s)
- Sheng-Lun Lin
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Zhefeng Guo
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shui-Jen Chen
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Wei Tang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shih-Wei Huang
- Institute of Environmental Toxin and Emerging Contaminant, Cheng Shiu University, Kaohsiung, 83347, Taiwan; Center for Environmental Toxin and Emerging-contaminant Research, Cheng Shiu University, Kaohsiung, 83347, Taiwan.
| |
Collapse
|
26
|
Lin SL, Wu JL, Chen WH, Wu H, Tang W. Ultra-low PCDD/F emissions and their particle size and mass distribution in a hazardous waste treatment system. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127032. [PMID: 34474365 DOI: 10.1016/j.jhazmat.2021.127032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
An integrated gasification-flameless combustion-melting process was approached by a twin-cyclonic flow in a hazardous waste thermal treatment plant. A series of advanced scrubber, cyclonic demister, activated carbon adsorption, and baghouse processes were equipped for the end-of-pipe treatment. The untreated filterable particulate matter, CO, and NOx levels were only 283, 47.1, and 15.9 mg/Nm3, indicating the flameless combustion inhibited their formation by narrowing the post-combustion zone. The filterable particle mass-size distribution was equally contributed by nucleation, accumulation, and coarse formations, while their number concentration was predominated by nucleation (99.6%). That could enhance the adsorption of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) on ultrafine particles. Both total mass and toxic equivalent concentrations of PCDD/Fs were reduced 99.9% by the new air pollution control system when a slight reformation occurred during scrubbing. However, the escaped PCDD/Fs were mainly distributed on the ultrafine particles, which should be further inhibited by either increasing their sizes or equipping backup filtrations. Finally, the new process concentrates the PCDD/Fs into the scrubbing sludge, which could be recirculated back into the thermal process. This study not only reveals the emission risk of the ultrafine particle-bound PCDD/Fs, but also provides an effective process to remove them for industrial application.
Collapse
Affiliation(s)
- Sheng-Lun Lin
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; Center for Environmental Toxin and Emerging-contaminant Research, Cheng Shiu University, Kaohsiung 83347, Taiwan
| | - Jhong-Lin Wu
- Environmental Resource and Management Research Center, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 70101, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 41170, Taiwan.
| | - Han Wu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wei Tang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
27
|
Chen TW, Chen JC, Liu ZS, Chi KH, Chang MB. Characteristics of PM and PAHs emitted from a coal-fired boiler and the efficiencies of its air pollution control devices. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2022; 72:85-97. [PMID: 34652988 DOI: 10.1080/10962247.2021.1994483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/02/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Sampling and analysis of filterable particulate matter (FPM), FPM2.5, condensable particulate matter (CPM), polycyclic aromatic hydrocarbons (PAHs), sulfur oxides (SOx), and nitrogen oxides (NOx) emitted from a coal-fired boiler equipped with selective catalytic reduction (SCR)+ electrostatic precipitator (ESP) + wet flue gas desulfurization (WFGD) + wet electrostatic precipitator (WESP) as air pollution control devices (APCDs) are conducted. The results show that NOx concentration emitted from the coal-fired boiler is 56 ± 2.17 ppm (with the NOx removal efficiency of 47.2%), which does not meet the best available control technology (BACT) emission standard (≤ 30 ppm). On the other hand, the WFGD adopted has a good removal efficiency for SOx and HCl. Both SOx and HCl emission concentrations are < 1 ppm, and removal efficiencies are > 99%. The FPM and FPM2.5 emitted from the coal-fired boiler are 0.9 ± 0.06 mg/Nm3 and < 0.09 ± 0.006 mg/Nm3, respectively. The overall removal efficiency of FPM achieved with ESP+WFGD+WESP+MGGH is 99.98%. However, high concentration of CPM (37.4 ± 6.3 mg/Nm3) is measured, which is significantly higher than FPM and FPM2.5. The concentrations of 27 PAHs at the WESP inlet and stack are measured as 667 ng/Nm3 and 547 ng/Nm3, respectively while the removal efficiencies of gas- and solid-phase PAHs are 9% and 58%, respectively. The results show that APCDs adopted are not effective in removing PAHs (only 18%), and gas-phase PAHs contribute the most in the total PAH emission. In addition, the benzo(a)pyrene equivalent (BaPeq) concentration emitted from the stack is 28.8 ng-BaPeq/Nm3, and most of it is contributed by 4-6 ring PAHs with high toxic equivalent factors (TEFs). Furthermore, the emission factors of air pollutant emitted from coal-fired boilers equipped with different combinations of APCDs are compiled and compared. The results show that except for CPM and NOx, the emission factors of air pollutant calculated for this coal-fired boiler are lower if compared with other studies.Implications: Primary particles discharged from coal-fired processes include filterable particulate matter (FPM) and condensable particulate matter (CPM). PM2.5 emissions would be greatly underestimated if CPM is ignored. Polycyclic aromatic hydrocarbons (PAHs) are semi-volatile organic compounds (SVOCs) formed by two or more fused benzene rings. PAHs have attracted much public attention because of toxicity and carcinogenicity. This study selects one coal-fired boiler with the best available control technology (BACT) to simultaneously measure the concentrations of PM, PAHs, and gaseous pollutants at the inlet and outlet of air pollution control devices (APCDs) to understand the efficacy of APCDs adopted and pollutant emission intensity.
Collapse
Affiliation(s)
- Tang-Wei Chen
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, Taiwan
| | - Jyh-Cherng Chen
- Department of Environmental Engineering and Science, Feng Chia University, Taichung, Taiwan
| | - Zhen-Shu Liu
- Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei, Taiwan
| | - Kai-Hsien Chi
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Moo Been Chang
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, Taiwan
| |
Collapse
|
28
|
Ju F, Wu C, Luan H, Tang Z, Pan H, Pan H, Xiu G, Ling H. Influence of wet flue gas desulfurization on the pollutants monitoring in FCC flue gas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55502-55510. [PMID: 34142321 DOI: 10.1007/s11356-021-14767-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
Fluid catalytic cracking (FCC) unit emits a large amount of flue gas, which is a major concern of environmental protection supervision. Wet flue gas desulfurization (WFGD) technologies have been widely used to control the emissions of SO2 in refineries. In this study, stack tests for pollutants emission of a typical FCC unit were conducted. The emission characteristics of the FCC unit indicated that WFGD would cause a large amount of water vapor in the flue gas, which indirectly leads to large quantities of salt pollutants entrained in the flue gas including ammonium sulfite ((NH4)2SO3) and ammonium sulfate ((NH4)2SO4). A strong correlation among the concentrations of SO2, NH3, and H2O was observed, and factor analysis shows that these concentrations are dominated by a common factor. It was also found that a mass quantity of NH4+ and SO32- existed in the condensate water of the flue gas. The TG-MS analysis shows that (NH4)2SO3 could be decomposed at 94.1 °C, and NH3, SO2, and H2O are released as reaction products in the form of gas. Therefore, a part of the NH3 and SO2 obtained by Fourier transform infrared spectroscopy (FTIR) monitoring may be derived from the decomposition of (NH4)2SO3 in the flue gas due to the high temperature during the sampling process, which was also confirmed in a lab experiment. The hot and wet sampling process will lead to overestimation of NH3 and SO2 emissions rather than FTIR method itself when monitoring the high-humidity FCC flue gas. Thus, the concentration of H2O in the flue gas and the type of sampling process need to be taken into consideration during the monitoring process.
Collapse
Affiliation(s)
- Feng Ju
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cong Wu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hui Luan
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhihe Tang
- Research Institute of Safety and Environment Technology, China National Petroleum Corporation, Beijing, 102206, China
| | - Helin Pan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hui Pan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Guangli Xiu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Hao Ling
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
29
|
An Overview of the Classification, Production and Utilization of Biofuels for Internal Combustion Engine Applications. ENERGIES 2021. [DOI: 10.3390/en14185687] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biofuel, a cost-effective, safe, and environmentally benign fuel produced from renewable sources, has been accepted as a sustainable replacement and a panacea for the damaging effects of the exploration for and consumption of fossil-based fuels. The current work examines the classification, generation, and utilization of biofuels, particularly in internal combustion engine (ICE) applications. Biofuels are classified according to their physical state, technology maturity, the generation of feedstock, and the generation of products. The methods of production and the advantages of the application of biogas, bioalcohol, and hydrogen in spark ignition engines, as well as biodiesel, Fischer–Tropsch fuel, and dimethyl ether in compression ignition engines, in terms of engine performance and emission are highlighted. The generation of biofuels from waste helps in waste minimization, proper waste disposal, and sanitation. The utilization of biofuels in ICEs improves engine performance and mitigates the emission of poisonous gases. There is a need for appropriate policy frameworks to promote commercial production and seamless deployment of these biofuels for transportation applications with a view to guaranteeing energy security.
Collapse
|
30
|
Li J, Li X, Wang W, Wang X, Lu S, Sun J, Mao Y. Investigation on removal effects and condensation characteristics of condensable particulate matter: Field test and experimental study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146985. [PMID: 33865138 DOI: 10.1016/j.scitotenv.2021.146985] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Condensable particulate matter (CPM) has become the main part of the total primary PM emitted from stationary sources and has aroused increasing concern. In this work, the removal effects of wet flue gas desulfurization (WFGD) on CPM components were studied. A new CPM-containing flue gas system was designed and used to investigate the condensation characteristics of 16 PAHs, sulfuric acid mist and SO2 conversion into CPM. Some interesting results were obtained and include the following: (i) The removal efficiencies of WFGD on both CPM inorganic and organic fraction reached 81.0% and 67.3%, respectively. (ii) The removal efficiency data obtained for C21-C29 and 5-ring PAHs revealed that organic components with high boiling points and low volatility in CPM are easily removed by WFGD. Condensation experimental results indicated that the condensation ratios of PAHs generally increased with the number of fused benzene rings, while the increase of flue gas moisture content might inhibit the conversion of PAHs into CPM. (iii) The concentrations of SO42-, Ca, and Na accounted for 48.7% of CPM inorganic fraction after desulfurization, while Ca was barely removed by WFGD. Condensation experiments indicated that most SO42- in CPM arose from sulfuric acid mist, rather than from sulfate aerosols. Note that only <20% of the sulfuric acid mist belonged to the CPM category, which might help to develop specialized deep purification strategy for SO3. In addition, SO2 could cause a high positive bias for the CPM field test although its condensation ratio was only 2.7%. This work provides a basic reference for subsequent CPM formation and reduction researches.
Collapse
Affiliation(s)
- Jingwei Li
- Shandong Engineering Laboratory for Solid Waste Green Materials, National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan 250014, China.
| | - Xiaodong Li
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wenlong Wang
- Shandong Engineering Laboratory for Solid Waste Green Materials, National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan 250014, China.
| | - Xujiang Wang
- Shandong Engineering Laboratory for Solid Waste Green Materials, National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan 250014, China
| | - Shengyong Lu
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jing Sun
- Shandong Engineering Laboratory for Solid Waste Green Materials, National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan 250014, China
| | - Yanpeng Mao
- Shandong Engineering Laboratory for Solid Waste Green Materials, National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan 250014, China
| |
Collapse
|
31
|
Zhang X, Li Y, Zhang Z, Nie M, Wang L, Zhang H. Adsorption of condensable particulate matter from coal-fired flue gas by activated carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146245. [PMID: 33711589 DOI: 10.1016/j.scitotenv.2021.146245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Condensable particulate matter (CPM) is a special kind of primary particulate matter and is in a gaseous state before discharge. After discharge, it rapidly forms liquid or solid particles through atmospheric dilution and cooling, which are harmful to the environment and human health. However, current research on controlling CPM is lacking. Therefore, the adsorption effects of activated carbons (ACs) on CPM at different temperatures were studied using EPA Method 202. Results showed that the removal efficiency range of CPM at 90 °C by ACs could reach 19%-22%. The removal efficiency of the inorganic fraction was higher than that of the organic fraction. ACs had obvious adsorption effects on Cl-, NH4+, and Hg in CPM but had marginal adsorption effects on SO42+, NO3-, and other metal elements in CPM. ACs had prominent adsorption effects on extremely toxic aromatic compounds in CPM. At a flue gas temperature of 35-170 °C, the efficiency of CPM removal through AC adsorption could increase with decreasing flue gas temperature, and this effect was more obvious during the adsorption of inorganic fractions. In addition, the efficiency of CPM removal through condensation and adsorption could reach up to 51% at 35 °C when flue gas at 130 °C was used as the initial flue gas.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Yuzhong Li
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China.
| | - Zhuping Zhang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Maofeng Nie
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China; Shandong Low Carbon Expert Sci. & Tech. Co. Ltd., Jinan, Shandong 250002, China
| | - Lu Wang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Hongwei Zhang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| |
Collapse
|
32
|
Tang W, Zhang L, Luo H. Experimental Study on the Removal of Low-Concentration SO 3 by Trona at Medium Temperatures. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenjing Tang
- National Engineering Laboratory of Coal-Fired Pollutants Emission Reduction, School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Liqiang Zhang
- National Engineering Laboratory of Coal-Fired Pollutants Emission Reduction, School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Haodong Luo
- National Engineering Laboratory of Coal-Fired Pollutants Emission Reduction, School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
33
|
Lin SL, Wu JL, Lin KC, Wu H, Guo Z, Tu CW. A novel flameless oxidation and in-chamber melting system coupled with advanced scrubbers for a laboratory waste plant. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 126:706-718. [PMID: 33878675 DOI: 10.1016/j.wasman.2021.03.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
This is the first study integrate the flameless oxidation (FO) and in-chamber melting (ICM) processes in a primary chamber of a laboratory waste incinerator to improve energy and emission performances. Two liquid burners created a twin-cyclonic fluid field that achieved the FO and ICM in the same chamber. The first cyclone provided a well-mixed and lower temperature FO to reduce auxiliary diesel consumption, NOx and PM emissions by 25.8%, 30.9%, and 79.2%, respectively, from the original system. The hot gases produced by FO enhance the ICM process and transformed the bottom ashes to stabler slags, in turn meeting the regulations for nonhazardous wastes. The other cyclone enhanced the drying and water-gas shift reaction in the drying zone by recirculating the CO and enthalpy from FO and ICM. Eventually, the residual CO, hydrocarbons, and H2 were sent to the secondary chamber for further oxidation. A computational fluid dynamic simulation supported the fluid field assumption posed in this study. Moreover, advanced scrubbers were employed after thermal treatments to reduce HCl and SO2 by 81.8% and 38.8% and further retarded the corrosion rate in the baghouse supporting cage by 87.7%. The precursors of condensable particulate matter were reduced by condensation and finally removed in the baghouse. Nevertheless, the emissions of the high- and mid-molecular-weight polycyclic aromatic hydrocarbons were greatly reduced by 60.8-93.1% and 80.2-99.9%, respectively. Consequently, the new system reduced annual emissions by 40.7-87.6% and operating costs by 41.5%, allowing recovery of the remodification investment in 20.5 months.
Collapse
Affiliation(s)
- Sheng-Lun Lin
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; Center for Environmental Toxin and Emerging-contaminant Research, Cheng Shiu University, Kaohsiung 83347, Taiwan.
| | - Jhong-Lin Wu
- Environmental Resource and Management Research Center, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Kuang C Lin
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Han Wu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhefeng Guo
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chun-Wei Tu
- Environmental Resource and Management Research Center, National Cheng Kung University, Tainan 70101, Taiwan; Department of Resource Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
34
|
Considering Condensable Particulate Matter Emissions Improves the Accuracy of Air Quality Modeling for Environmental Impact Assessment. SUSTAINABILITY 2021. [DOI: 10.3390/su13084470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study examines environmental impact assessment considering filterable particulate matter (FPM) and condensable particulate matter (CPM) to improve the accuracy of the air quality model. Air pollutants and meteorological data were acquired from Korea’s national monitoring station near a residential development area in the target district and background site. Seasonal emissions of PM2.5, including CPM, were estimated using the California puff (CALPUFF) model, based on Korea’s national emissions inventory. These results were compared with the traditional environmental impact assessment results. For the residential development area, the seasonal PM2.5 concentration was predicted by considering FPM and CPM emissions in the target area as well as the surrounding areas. In winter and spring, air quality standards were not breached because only FPM was considered. However, when CPM was included in the analysis, the results exceeded the air quality standards. Furthermore, it was predicted that air quality standards would not be breached in summer and autumn, even when CPM is included. In other words, conducting an environmental impact assessment on air pollution including CPM affects the final environmental decision. Therefore, it is concluded that PM2.5 should include CPM for greater accuracy of the CALPUFF model for environmental impact assessment.
Collapse
|
35
|
Zhang L, Song Q, Xu Z. Arsenic Removal and Recovery of Germanium and Tungsten in Toxic Coal Fly Ash from Lignite by Vacuum Distillation with a Sulfurizing Reagent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4027-4036. [PMID: 33663209 DOI: 10.1021/acs.est.0c08784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Every year, billions of tons of lignite are burnt to generate electricity, meanwhile generating large amounts of coal fly ash (CFA) that is regarded as an industrial waste. During lignite combustion, arsenic and scarce metals are simultaneously volatilized in the form of oxide into CFA. This study proposed an effective vacuum distillation method to remove As and recover Ge and W from CFA. The feasibility of separating As and recycling Ge and W from CFA was verified by the theoretical analysis. The experimental result indicated that the removal ratio of As was 96 ± 1% and the contents of Ge and W reached 0.75 ± 0.023 and 0.24 ± 0.016 wt % in the residue, which were enriched 17.2 and 1.2 times, respectively, at a temperature of 550 °C, with 50 wt % sulfurizing agent added under pressure of 1 Pa and 240 min of heating. For the condensed product, chemical species As2S3 and As4S4 were detected by X-ray photoelectron spectroscopy analysis. For Ge and W in the residue, GeOx (x < 2), GeS, WOx (x < 3), and WS2 were the main chemical species. The potential mechanism involved in the release of arsenic from CFA, vacuum sulfurization, evaporation, and condensation was proposed. The kinetic analysis indicated that the apparent activation energy (Eα) was 31.24 kJ mol-1. Those results encourage further exploration of vacuum separation technology to environmentally friendly recycle CFA.
Collapse
Affiliation(s)
- Lingen Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Qingming Song
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zhenming Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
36
|
Zhang Z, Yang B, Ma H. Aliphatic amine decorating metal–organic framework for durable SO2 capture from flue gas. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|