1
|
Cheng Z, Wang J, Liu X, Cao S. Accelerated sludge granulation of novel complete ammonium and nitrate removal via denitratation anammox over nitrite process at elevated loading rates. BIORESOURCE TECHNOLOGY 2025; 431:132610. [PMID: 40315933 DOI: 10.1016/j.biortech.2025.132610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
The Complete Ammonium and Nitrate Removal via Denitratation Anammox Over Nitrite (CANDAN) process was evaluated for rapid sludge granulation in a lab-scale sequencing batch reactor. Over 119 days under increasing nitrogen loading rates (NLRs), the system finally achieved average 89.2 % total nitrogen removal at 1.93 kg N/m3/d NLR, with sludge particle sizes increasing from 215.6 μm to 924.5 μm. Higher NLRs significantly increased extracellular polymeric substances, especially hydrophobic proteins, enhancing sludge hydrophobicity and aggregation. Metagenomic analysis identified Candidatus Brocadia and Thauera as predominant and key microbial genera for nitrogen removal. Furthermore, the upregulation of carbon metabolism under heightened NLRs facilitated the synthesis of hydrophobic amino acids, promoting sludge granulation. These findings demonstrate NLR-driven granulation mechanisms, highlight optimizing NLR as key for accelerating granulation, providing insights to improve start-up and operational efficiency of CANDAN systems.
Collapse
Affiliation(s)
- Ziyi Cheng
- College of Architecture and Civil Engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing 100124, China
| | - Jinyan Wang
- College of Architecture and Civil Engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing 100124, China
| | - Xinping Liu
- College of Architecture and Civil Engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing 100124, China
| | - Shenbin Cao
- College of Architecture and Civil Engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing 100124, China; Chongqing Research Institute of Beijing University of Technology, Chongqing 401121, China.
| |
Collapse
|
2
|
Gong Q, Zeng W, Hao X, Wang Y, Peng Y. DNA stable isotope probing and metagenomics reveal temperature responses of sulfur-driven autotrophic partial denitrification coupled with anammox (SPDA) system. WATER RESEARCH 2025; 280:123494. [PMID: 40107211 DOI: 10.1016/j.watres.2025.123494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/22/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
The sulfur-driven autotrophic partial denitrification coupled with anammox (SPDA) process showed significant advantages in energy conservation and resource recovery in municipal wastewater treatment. However, its application in regions with seasonal temperature fluctuations and high latitudes is challenged by low temperatures. In this study, the feasibility of the SPDA process for treating low-strength municipal wastewater across a wide temperature range (30-10 °C) was systematically investigated. The results demonstrated that thiosulfate-driven autotrophic partial denitrification maintained an efficient nitrate removal rate of 7.82 mg NO3--N/gVSS/h and a nitrate to nitrite transformation rate of 62.7 % even at temperatures as low as 10 °C. Molecular ecological network and DNA-SIP revealed that dominant sulfur-oxidizing bacteria (SOB) shifted from norank_f_Hydrogenophilaceae and Thiobacillus at higher temperatures (30-20 °C) to Thiobacillus and Sulfurimonas as temperature decreased, thus ensuring the performance of autotrophic partial denitrification and consistent nitrite supply for anammox. Metagenomic analysis showed that the abundance of functional genes related to sulfur conversion increased almost universally, ensuring a stable electron supply for nitrate reduction through sulfur oxidation at low temperatures. The functional genes responsible for nitrate reduction changed from nar genes at higher temperatures to nap genes at lower temperatures, while a decrease in the abundance of hzs and hdh genes corresponding to reduced anammox performance. This study highlights the stable performance of the sulfur-driven autotrophic denitrification at low temperatures and the reliability of coupling with anammox, extending the applicability of SPDA to a broader geographical range.
Collapse
Affiliation(s)
- Qingteng Gong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China.
| | - Xiaojing Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Yifei Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
3
|
Hu YL, Dai K, Wang QT, Zhou CY, Huang XC, Yang XF, Pang HL, Zeng RJ, Zhang F. Viscosity is a nonnegligible factor in the waste activated sludge fermentation: Taking hyaluronan as an example. WATER RESEARCH 2025; 279:123465. [PMID: 40068285 DOI: 10.1016/j.watres.2025.123465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 05/06/2025]
Abstract
The waste activated sludge (WAS) exhibits typical viscoelasticity due to the presence of viscous and gelling organics in extracellular polymeric substances (EPS). However, the positive role of reducing viscosity in WAS fermentation by degrading viscous polysaccharides has been historically overlooked. This work demonstrates the occurrence of viscous hyaluronan-like polysaccharides in the WAS for the first time. Approximately 6.8 % of bacteria, such as Zoogloea (1.0 %), were identified as the potential producers. The viscosity of hyaluronan could be significantly reduced by 99 % within 1 hour by the oriented hyaluronan-degrading consortium (HDC), and a reduction of 20 % was also observed for WAS after 24 h. This resulted in a 18 % improvement in methane production and a 35 % improvement in the maximum production rate in WAS fermentation. The conversion of viscous hyaluronan was mainly through the hyaluronan lyase (EC 4.2.2.1) dependent pathway. An unfamiliar genus of Paludibacter (9.6 %) was identified as a key bacterium, responsible for excreting five extracellular enzymes of EC 4.2.2.1, EC 3.2.1.35, EC 3.2.1.31, EC 3.2.1.52, and EC 3.2.1.180. Consequently, this study has elucidated reducing viscosity as a substantial factor in WAS fermentation by the oriented HDC, thus providing a novel paradigm to enhance methane production.
Collapse
Affiliation(s)
- Yan-Lin Hu
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Kun Dai
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qing-Ting Wang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Chen-Yuan Zhou
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xing-Chen Huang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiao-Fei Yang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - He-Liang Pang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Fang Zhang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
4
|
Li X, Wang S, Wang B, Dang M, Zhao Y. Dynamic transformation and mechanisms of volatile sulfur compound releasing during anaerobic digestion of sludge. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137786. [PMID: 40022927 DOI: 10.1016/j.jhazmat.2025.137786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Volatile sulfur compounds (VSCs) are important nodes of sulfur metabolism; their emission, transformation and corresponding mechanisms during the anaerobic digestion are influenced by physical, chemical and biological components during the dynamic process. This study investigated the dynamic sulfur flows and distributions in terms of various forms and phases in sludge with different solid contents, and revealed the effects of extracellular polymeric substances (EPS) on VSCs and their interactions with microbial metabolites. The generation of H2S and other VSCs from sludge with low solid content (3 %) was fast initially, and the accumulated sulfur distribution into VSCs was 1.21 μg·g-1 TS while sulfate decreased by 11.7 % during the period. With higher solid contents (e.g., 10 %), the sulfur distribution in VSCs was less than 0.1 μg·g-1 TS, and sulfate increased by 10 %. Higher solid contents favored the growth of sulfur-oxidizing microbes (SOB) in the initial stage, while their abundances decreased significantly when sulfur metabolism was less active. In contrast, sulfur-reducing microbes play important roles in sulfate reduction and H2S generation in sludge with low solid contents. EPS compositions and characteristics are important for both sulfur-related microorganisms and VSCs releasing from sludge, and their physical barrier effect is considered as a key factor of reducing VSCs emission from sludge with high solid contents. This study provides a comprehensive understanding of the mechanism of VSC generation and release from dynamic sulfur transformation, contributing to the potential management of VSCs during sludge management.
Collapse
Affiliation(s)
- Xiang Li
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shengwei Wang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Bowen Wang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Minghui Dang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yan Zhao
- School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
5
|
Ye Y, Yan X, Jiang Y, Wang S, Liu D, Ren Y, Li D, Ngo HH, Guo W, Cheng D, Jiang W. Optimized feeding schemes of heterotrophic anodic denitrification coupled with cathodic phosphate recovery from wastewater using a microbial fuel cell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 981:179590. [PMID: 40328065 DOI: 10.1016/j.scitotenv.2025.179590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/13/2025] [Accepted: 04/30/2025] [Indexed: 05/08/2025]
Abstract
Enhanced water quality standards and increasing resource scarcity have prompted extensive research into low-cost nitrogen removal and phosphate recovery from wastewater. Microbial fuel cells (MFCs) offer a viable solution by simultaneously removing nitrogen, recovering phosphorus, and generating electrical energy. This study employed MFCs to achieve simultaneous nitrogen removal and phosphorus recovery, investigating the impact of different feeding schemes. The experimental results indicated that replacing the entire anode chamber solution and recycling the anode effluent to the cathode chamber effectively prevented the accumulation of nitrifying bacteria while achieving the highest pollutant removal performance. Under closed circuit conditions, the system consistently maintained low nitrite concentrations, achieving an average nitrate removal efficiency of 68.09 ± 1.86 % and phosphate recovery efficiency of 83.46 ± 5.30 %. Furthermore, this feeding scheme facilitated microbial growth and reproduction while also improving operational convenience. The study utilized metagenomics and other technologies to comprehensively analyze the system's operation mechanism and reasons for its excellent performance.
Collapse
Affiliation(s)
- Yuanyao Ye
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Xueyi Yan
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Yuanshou Jiang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Songlin Wang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Dongqi Liu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Yongzheng Ren
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Daosheng Li
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, PR China
| | - Wei Jiang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, PR China.
| |
Collapse
|
6
|
Yin L, Yang Y, Du Z, Duan P, Cao C, Kapusta K. Recovery of organic materials from waste activated sludge for the rapid synthesis of N-doped hierarchical porous carbon as supercapacitor electrodes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125582. [PMID: 40315657 DOI: 10.1016/j.jenvman.2025.125582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/19/2025] [Accepted: 04/26/2025] [Indexed: 05/04/2025]
Abstract
The organic matter in waste activated sludge (WAS) is extracted via a NaOH/urea aqueous solution combined with ultrasonic treatment to obtain an organic-enriched extractant (S-NaOH/urea). N-doped hierarchical porous carbons (NPCs) are prepared by dissolving cellulose in S-NaOH/urea followed by carbonization and in situ activation. The NaOH/urea aqueous solution serves as a trifunctional medium: organic extractant for WAS, chemical activator, and nitrogen precursor during pyrolysis, significantly enhancing process efficiency while minimizing secondary reagent consumption. Structural characterization revealed that the obtained NPCs exhibit well-defined hierarchical porosity and proper heteroatom doping, endowing them with exceptional capacitive performance (390.3 F g-1 at 0.5 A g-1) and excellent cycling stability in alkaline electrolytes. Furthermore, the contributions of surface control and diffusion control from nitrogen doping were also analyzed. Additionally, the carbon materials obtained from S-NaOH/urea with wheat straw and corncob also exhibit hierarchically porous networks and favorable electrochemical properties. These findings suggested that this strategy not only provides a novel method for the resource utilization of WAS but also offers a potentially convenient synthesis route for multisource biomass-based heteroatom-doped hierarchical porous carbons.
Collapse
Affiliation(s)
- Linxin Yin
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Yulu Yang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Zihan Du
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Peigao Duan
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Changqing Cao
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Krzysztof Kapusta
- Główny Instytut Górnictwa (Central Mining Institute), PlacGwarków 1, 40-166, Katowice, Poland.
| |
Collapse
|
7
|
Geng M, Li T, Qu F, Gao S, Tian J. Insights into the impact of feeding with polymers on aerobic granular sludge development and stability: Performance and mechanisms. BIORESOURCE TECHNOLOGY 2025; 426:132368. [PMID: 40056959 DOI: 10.1016/j.biortech.2025.132368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/24/2025]
Abstract
In this study, the effect of feeding with polymers on aerobic granular sludge (AGS) formation and stability was comprehensively investigated during 235-day operation. Results showed that the granules developed in starch-fed reactor possessed fluffy surface with overgrowth of granule size, and 60 % flocs were produced in protein-fed reactor, identifying feeding with polymers deteriorated AGS development and stability. Moreover, substrate conversion analysis revealed that ∼ 14 % of the consumed COD was recovered as storage of poly-hydroxybutyrate in polymer-fed reactor, much lower than 63.7 % in acetate-fed reactor. Extended Derjaguin-Landau-Verwey-Overbeek theory analysis showed that feeding with polymers increased the cell-cell energy barriers to 307.8 ∼ 388.8 kT, weakening the microbial aggregation capacity in AGS system. Microbial population results found that the relative abundance of Candidatus_Competibacter in protein- and starch-fed reactor displayed 0.01 ∼ 6.1 % and 0.07 ∼ 3.7 %, much lower than 81 % in acetate-fed reactor. Assembly mechanism analysis demonstrated that feeding with polymers enhanced the stochastic selection in shaping microbial assembly.
Collapse
Affiliation(s)
- Mingyue Geng
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Ting Li
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Fangshu Qu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Shanshan Gao
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jiayu Tian
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
8
|
Zhang C, Chen H, Xue G. Enhanced nitrogen removal from low C/N ratio wastewater by coordination of ternary electron donors of Fe 0, carbon source and sulfur: Focus on oxic/anoxic/oxic process. WATER RESEARCH 2025; 276:123290. [PMID: 39965445 DOI: 10.1016/j.watres.2025.123290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/17/2025] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
Insufficient organics was the major obstacle for total nitrogen (TN) removal in conventional pre-anoxic denitrification when treating low carbon to nitrogen (C/N) ratio wastewater. This study constructed a novel ternary-electron donors (Fe0, organics and S0) enhanced oxic/anoxic/oxic (O/A/O) process, integrating simultaneous nitrification and denitrification and autotrophic denitrification (ADN), and evaluated its feasibility to achieve efficient nutrient removal under organics-deficient condition. Long-term operation results showed that TN removal was lower (9.9 %) when Fe0 added individually, then raised to 27.3 %∼46.0 % in simultaneous presence of Fe0 and organics. And the highest TN removal (82.0 %) was obtained by coordination of ternary-electron donors, with 8.46 ± 0.43 mg/L TN in effluent. Meanwhile, the O/A/O process exhibited excellent total phosphorous (TP) removal (84.8 %∼98.4 %) derived from chemical precipitation by Fe0, of which the effluent was <0.76 ± 0.04 mg/L TP. Metabolic characteristics indicated that the coordination of multi-electron donors improved microbial metabolism and denitrifying enzymatic activities, thereby promoting ammonia assimilation and enhancing TN removal. And the secretion of EPS was also stimulated, which favored the bio-utilization of Fe0 and S0 and alleviated organics dependence. Besides, the notable increase in abundances of aerobic denitrifiers (23.95 %∼27.37 %), autotrophic denitrifiers (9.31 %) and denitrifying genes further verified the synergy effect of multi-electron donors on TN removal. This study revealed the enhancement mechanism of O/A/O process by coordination of ternary-electron donors, verified its cost-effectiveness and provided innovative insights on low C/N ratio wastewater remediation.
Collapse
Affiliation(s)
- Chengji Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
9
|
Zhou CY, Dai K, Lin YP, Huang XC, Hu YL, Chen XX, Yang XF, Sun QY, Zhang Y, van Loosdrecht MC, Zeng RJ, Zhang F. Elucidating the complex hydrolysis and conversion network of xanthan-like extracellular heteropolysaccharides in waste activated sludge fermentation. WATER RESEARCH X 2025; 27:100303. [PMID: 39895693 PMCID: PMC11783115 DOI: 10.1016/j.wroa.2025.100303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 02/04/2025]
Abstract
The hydrolysis of structural extracellular polymeric substances (St-EPS) is considered a major limiting step in the anaerobic fermentation of waste activated sludge (WAS). However, the degradation of heteropolysaccharides, characterized by complex monomers of uronic acids and neutral saccharides in St-EPS, has rarely been reported. In this study, microbial-produced xanthan-like heteropolysaccharides, characterized by a blue filamentary film, were identified. The xanthan-producing bacteria comprised ∼7.2% of total genera present in WAS. An xanthan-degrading consortium (XDC) was enriched in an anaerobic batch reactor. This consortium could degrade Xanthan for over 90% and disrupt the gel structure of xanthan while promoting methane production from WAS by 29%. The xanthan degradation network consisting of extracellular enzymes and bacteria was elucidated by combining high-throughput sequencing, metagenomic, and metaproteomic analyses. Five enzymes were identified as responsible for hydrolyzing xanthan to monomers, including xanthan lyase, β-d-glucosidase, β-d-glucanase, α-d-mannosidase, and unsaturated glucuronyl hydrolase. Seven genera, including Paenibacillus (0.2%) and Clostridium (3.1%), were identified as key bacteria excreting one to five of the aforementioned enzymes. This study thus provides insights into the complex conversions in anaerobic digestion of WAS and gives a foundation for future optimization of this process.
Collapse
Affiliation(s)
- Chen-Yuan Zhou
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Kun Dai
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yi-Peng Lin
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xing-Chen Huang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yan-Lin Hu
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xuan-Xin Chen
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiao-Fei Yang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qi-Yuan Sun
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Yong Zhang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Mark C.M. van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, Delft 2628 BC, the Netherlands
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Fang Zhang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
10
|
Qv M, Wu Q, Wang W, Wang H, Zhu L. Metagenomic insights into the response of microbial metabolic function and extracellular polymeric substances from microalgae-bacteria consortia to fluoroquinolone antibiotics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125283. [PMID: 40203710 DOI: 10.1016/j.jenvman.2025.125283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/19/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Microalgae-bacteria consortia (MBC) are considered a promising bioremediation technology for removing pollutants from swine wastewater. However, the overuse of antibiotics poses challenges to the effective functioning of MBC. In this study, the removal efficiency of nutrients in wastewater by MBC under different antibiotic concentrations (0, 1, 5, 10 and 50 mg/L) was evaluated. The changes of functional microbial abundance were elucidated and the response mechanism of MBC against antibiotics was investigated. Antibiotics inhibited the accumulation of MBC biomass and reduced the removal efficiency of ammonia nitrogen and total phosphorus in wastewater by 8.39 % and 8.74 % respectively. In addition, antibiotics affected the relative abundance of microorganisms (Raineyella, from 30.72 % to 15.96 %) and functional genes (glnA, gudB, NirK, NirBD, NarB, NapAB, NorBC and NosZEPS) involved in N metabolism. MBC could defend against the adverse effects of antibiotics by regulating the content of proteins in the extracellular polymeric substances.
Collapse
Affiliation(s)
- Mingxiang Qv
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Qirui Wu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Wei Wang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Hanzhi Wang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Liandong Zhu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China; State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
11
|
Cao S, Fang J, Koch K, Fan X, Al-Hazmi HE, Du R, Wells GF. Fluoride-induced stress shapes partial denitrification granules to sustain microbial metabolism. WATER RESEARCH 2025; 275:123239. [PMID: 39908679 DOI: 10.1016/j.watres.2025.123239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
The presence of fluoride ions (F-) in nitrogen-rich wastewater from photovoltaic and semiconductor industries introduces a significant challenge to biological treatment processes, particularly for the innovative partial denitrification (PD) process, which supplies nitrite for anaerobic ammonium oxidation (Anammox). This study provides the first comprehensive and systematic investigation of the effects of F- stress on the granule-based PD process through batch tests and long-term operation. Results indicate that PD activity remains resilient to F- shock up to 1.5 g/L but is markedly impaired at concentrations of 2.0-3.0 g/L, despite maintaining a nitrate-to-nitrite transformation ratio (NTR) of approximately 80 %. Under long-term F- stress at 0.5 g/L, NTR gradually reduces to 50 %, but subsequently recovers to and maintains at 70 %. The increased secretion of loosely bound extracellular polymeric substances and proteins likely enhances the resistance of PD granules to F- stress, though excessive amounts degrade their settling properties. F--induced microbial community succession shapes a predominance of medium granules (1.0 < d < 2.0 mm of 60.2 %) by enhancing aggregation of smaller granules and disintegration of larger ones. This enhances the mechanical strength and microbial activity of PD granules, aiding in resistance to F- stress to sustain microbial metabolism. Thauera is selectively enriched under long-term F- stress, with upregulated nirBDS genes contributing to the reduced NTR. Additionally, increased electron metabolism activity and a robust antioxidative response help to maintain higher microbial metabolic activity, mitigating F--induced oxidative stress. These findings advance our understanding of the resilience and adaptability of the PD process under F- stress, providing critical insights for optimizing biological wastewater treatment systems in challenging environments.
Collapse
Affiliation(s)
- Shenbin Cao
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China; Chongqing Research Institute of Beijing University of Technology, Chongqing 401121, PR China
| | - Jinxin Fang
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Konrad Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, Garching 85748, Germany
| | - Xiaoyan Fan
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Hussein E Al-Hazmi
- Eko-Tech Center and Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Ul. Narutowicza 11/12, Gdańsk 80-233, Poland; BioCo Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, Gent 9000, Belgium
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China.
| | - George F Wells
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, United States
| |
Collapse
|
12
|
Zhu J, Li X, Wang Y, Gu X, Wang H, Ma J, Huang Y. Organic sulfur-driven denitrification pretreatment for enhancing autotrophic nitrogen removals from thiourea-containing wastewater: performance and microbial mechanisms. WATER RESEARCH 2025; 282:123753. [PMID: 40319779 DOI: 10.1016/j.watres.2025.123753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/26/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Thiourea (CH4N2S) is a widely used industrial reagent and is frequently detected in both sewage and industrial wastewater. However, treating thiourea-containing wastewater remains challenging due to its toxicity, high ammonium concentration, and low C/N ratio. In this study, a novel integrated autotrophic-heterotrophic denitrification (IAHD)- completely autotrophic nitrogen removal over nitrite (CANON) process was developed. The degradation pathway of toxic compounds, nitrogen, and sulfur release and transformation, as well as variations in functional genes were comprehensively examined. The results show that by incorporating an IAHD unit, prior to CANON, toxic thiourea was effectively degraded by the recycled nitrate from CANON. The released sulfur and organic carbon served as electron donors facilitating efficient NO3--N reduction. The optimal thiourea/NO3--N ratio for IAHD operation was determined to be 4:1 (m:m), achieving NO3- and thiourea removal efficiencies of 90 % and 99 %, respectively. Additionally, NH4+-N and SO42--S concentrations increased by 199.9 mg/L and 201.9 mg/L, respectively. Approximately 53.3 % of thiourea was converted into high-molecular-weight biological metabolites in the IAHD unit, which were subsequently and completely degraded in the CANON unit, where a robust nitrite-shunt and anammox process occurred. 16S rRNA amplicon sequencing revealed that Thiobacillus (with a relative abundance of 39.9 %) was the dominant genera in the IAHD unit, followed by Arenimonas (10.8 %) and norank_o_1013-28-CG33 (12.4 %), indicating that sulfur autotrophic denitrification was the primary pathway for thiourea degradation. Metagenomic analysis further confirmed that thiourea, acting as an electron donor, stimulated the expression of key functional genes involved in denitrification, sulfur oxidation, dissimilatory nitrate reduction, hydrolytic oxidation, and amino acid synthesis and transport pathways. These processes contributed to the active biological transformation of carbon, nitrogen and sulfur in the IAHD unit. This study demonstrates that implementing a prior autotrophic-heterotrophic denitrification unit effectively degrades toxic thiourea, thereby ensuring the subsequent nitrogen removal performance of CANON. This approach offers a new paradigm for the treatment of thiourea-containing wastewater, promoting a more efficient and low-carbon process.
Collapse
Affiliation(s)
- Jiheng Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China.
| | - Xin Gu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
13
|
Pang H, An L, Ding J, Wei Q, Luo J, He J, Tian Y, Liu Y, Lu J. Recyclable cation exchange resin-driven fermentation of waste activated sludge in sequential batch-parallel pattern: long-term resin/regenerant recycle stability and triple driving mechanisms. WATER RESEARCH 2025; 281:123654. [PMID: 40273601 DOI: 10.1016/j.watres.2025.123654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/06/2025] [Accepted: 04/13/2025] [Indexed: 04/26/2025]
Abstract
Anaerobic acidogenic fermentation has been posited as a preferable technology for waste activated sludge management, whereas the inefficient hydrolysis, inadequate metabolism and disordered microbiota still existed as three fermentability limitations. The existing solutions addressed single limitation while consuming substantial chemicals/energy, thereby restraining technological dissemination. Innovatively, the recyclable cation exchange resin (CER) is a promising approach for synchronously overcoming these fermentability limitations and reducing chemicals/energy costs from sludge-native metal removal perspective; however, it has been rarely reported. This study pioneered a recyclable CER-driven sludge fermentation in continuous CER and regenerant reuse scene, taking comprehensive insights into long-term performance and multiple mechanisms. The CER induced speciation conversion and stepwise removal of structural metals from sludge, especially organic-binding and residual Ca&Mg, which played triple driving contributions: (1) breaking metal-bridging sites and hydrogen bonds disentangled protein molecules for raising electronegative repulsion and flocculation energy barrier, causing synergic extracellular and intracellular hydrolysis (up to 30.05 %); (2) liberating endogenous redox mediators from metal-complexations for assisting electron shuttle and extracellular respiration, which metabolic electron transfer activity by 1.58 times; (3) triggering "bacteria screening" through sensitive methanogen inhibition and tolerant acidogens growth towards maximum acidogenic eco-functions. Such fermentability breakthroughs greatly promoted short-chain fatty acids (superior carbon sources) accumulation by average 2.52 folds while declining sludge solid by 55.87 %. The NaCl regeneration thoroughly restored CER active sites and eluted pollutant blockages, with negligible capability loss ≤ 3.53 % in 18-cycle operations, which stabilized acidogenic performances during 72-day fermentation (RSD ≤ 7.88 %). The fermentative products presented as high-quality carbon sources with abundant carbon and absent nitrogen, owing to CER-mediated NH4+ exchange. Innovative batch-parallel operation was established in engineering strategy, offering 409.49 CNY/ton SS income. The findings provided mechanism framework linking sludge fermentability with native metal functions.
Collapse
Affiliation(s)
- Heliang Pang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, PR China
| | - Lei An
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Jiangbo Ding
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiao Wei
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jingyang Luo
- College of Environment, Hohai University, Nanjing 210098, PR China
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, PR China
| | - Yu Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Jinsuo Lu
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
14
|
Shao W, Li ZH, Yuan L, Sheng GP. Unveiling a novel mechanism for anaerobic hexavalent chromium reduction mediated by extracellular reductases. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125165. [PMID: 40179554 DOI: 10.1016/j.jenvman.2025.125165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/04/2024] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
Anaerobic biological treatment technology are considered as promising way for toxic Cr(VI)-containing wastewater removal. However, the inherent mechanisms of bioremediation of Cr(VI) by microbial enzymatic reduction is unclear, which limited the regulation for enhancing Cr(VI) removal. In this work, the effects of Cr(VI) on anaerobic process and the bio-reduction of Cr(VI) by intracellular and extracellular reductase were investigated. Results showed that the Cr(VI) exposure with concentration >5 mg/L significantly inhibited the anaerobic digestion (e.g., glucose degradation and CH4 production) and reduced the reduction efficiency of Cr(VI). Moreover, the non-enzymatic and enzymatic test on Cr(VI) reduction indicates that enzymatic reduction dominated the transformation of Cr(VI) to Cr(III), occupying 81.6 %-89.3 % of total Cr(VI) reduction. Furthermore, the extracellular enzymatic effect showed a comparable contribution to the intracellular enzymatic effect for Cr(VI) reduction, indicating that the reduction of extracellular enzymes is an important aspect of Cr(VI) reduction. The findings revealed the vital role of extracellular enzymatic reduction in the transformation of Cr(VI), which contributes to clarifying the mechanisms of Cr(VI) reduction through anaerobic biological treatment.
Collapse
Affiliation(s)
- Wei Shao
- Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Zheng-Hao Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026, China.
| | - Li Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026, China
| |
Collapse
|
15
|
Zhou M, Cao J, Guo J, Wang Y, Lu Y, Zhu L, Hu L, Liu W, Li C. Mechanisms and mitigation control of clogging in constructed wetlands: Insight into the enhancement of the bioelectrochemical systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124809. [PMID: 40049013 DOI: 10.1016/j.jenvman.2025.124809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/20/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025]
Abstract
Constructed wetlands (CWs), a cost-effective and eco-friendly wastewater treatment technology, are extensively applied in various types of wastewater treatment. There is a series of strong impacts on CWs performance by the accumulation of clogging matters which attribute to physical, chemical, and biological processes after the long-term operation. This paper summarizes the mechanism of clogging formation, which can be classified into physical, chemical, and biological clogging. Moreover, it analyzes the typical measures for preventing and controlling clogging in CWs. The integration of bioelectrochemical systems (BES), including microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) into CWs is proposed as a safe and efficient way to alleviate substrate clogging on-site, owing to the fact that BES can easily automate the control or adjustment of its internal electric field form. The mechanism of clogging control by CW-BES is comprehensively described and analyzed. With the help of BES, the clogging substances obtained optimized occurrence form, reduced hydrophobicity and advantageous spatial distribution. Besides, the microbial community achieved promoted structure, accelerated rates of electron transfer and more diverse metabolic pathway. Compared to traditional methods for evaluating the clogging of CWs, the MFC sensor offers the advantages of being fast, enabling in-site detection, and being non-destructive. Future research should be focused on the theoretical underpinnings for putting CW-BES into practical use. Additional, efforts should be made to ensure the stable, long-term operation of CWs.
Collapse
Affiliation(s)
- Ming Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China; Henan Yongze Environmental Technology Co., LTD, Zhengzhou, 451191, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Jinyan Guo
- Henan Yongze Environmental Technology Co., LTD, Zhengzhou, 451191, China
| | - Yantang Wang
- Henan Yongze Environmental Technology Co., LTD, Zhengzhou, 451191, China
| | - Yanhong Lu
- Henan Yongze Environmental Technology Co., LTD, Zhengzhou, 451191, China
| | - Lisha Zhu
- Henan Yongze Environmental Technology Co., LTD, Zhengzhou, 451191, China
| | - Li Hu
- College of Biology and Food Engineering, Huanghuai University, 76 Kaiyuan Road, Zhumadian, 463000, China
| | - Weijing Liu
- Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, China
| | - Chao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
16
|
You X, Zhang H, Lin H, Rao L. Dynamic reverse Cl - driven integration of sludge conditioning and dewatering. Nat Commun 2025; 16:2717. [PMID: 40108135 PMCID: PMC11923106 DOI: 10.1038/s41467-025-57878-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
Gel fouling is a major rate-limiting factor for forward osmosis (FO) dewatering of waste activated sludge (WAS). This study proposes a novel FO system, assisted by in-situ ultraviolet/electrooxidation (UV/E-Cl) driven by dynamic reverse chloride ions (Cl-), for simultaneous WAS conditioning and dewatering. Superior filtration performances were achieved, with water flux reaching 614% of the control and filtration resistance reduced by orders of magnitude, primarily due to the targeted attack on protein and polysaccharide fractions within extracellular polymeric substances (EPS). Density functional theory (DFT) simulations identified that protein-polysaccharide interactions prefer a specific linear configuration, driving cross-linked network formation. Interfacial thermodynamics demonstrated that UV/E-Cl decreased foulant adhesion energy on the membrane surface by 97.51% through cleaving cross-links. Crucially, this work provides the quantitative thermodynamic evidence that shifts in water occurrence states surrounding network pores from bound to free water dominate gel fouling mitigation, with chemical potential variation accounting for 90.71% of filtration resistance.
Collapse
Affiliation(s)
- Xiujia You
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Hongjun Lin
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Linhua Rao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
17
|
Le TM, Lin Y, Zhuang WQ, Jayaraman K, Kim NK. Effects of Extraction Methods on the Thermal Stability of Extracellular Polymeric Substances-Based Biomaterials from Wastewater Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4165-4177. [PMID: 39968815 DOI: 10.1021/acs.est.4c10329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Various methods for recovering extracellular polymeric substances (EPS)-based biomaterials from wastewater sludge exist. However, the relationships between extraction methods and properties of biomaterials have not been fully explored. In this study, the thermal properties, including activation energy (AE) and thermal decomposition mechanism, of EPS-based biomaterials extracted by different methods have been determined by thermogravimetric analysis integrated with the deconvolution method. Simultaneously, the chemical properties of these biomaterials, such as the extraction yield, chemical composition, and functional groups, have been monitored to clarify the influences of extraction methods. Notably, proteins and humic-like substances have been found as the major components to determine thermal stability and AE. Moreover, the physicochemical method shows significant effects on enhancing extraction yield and AE, with the NaOH and heat methods proving to be outstanding by delivering the highest AE of 300 kJ/mol and a substantial char formation of 24%. The results have demonstrated the significant impact of extraction methods on the thermal stability of EPS-based biomaterials. Moreover, this finding provides insights into the linkages between the properties of EPS-based biomaterials and extraction methods to guide the selection of appropriate extraction methods tailored to specific applications, including flame-resistant materials.
Collapse
Affiliation(s)
- Tan M Le
- Centre for Advanced Materials Manufacturing and Design, University of Auckland, Auckland 1023, New Zealand
- Department of Mechanical and Mechatronics Engineering, University of Auckland, Auckland 1010, New Zealand
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, Delft 2629HZ, The Netherlands
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, University of Auckland, Auckland 1010, New Zealand
| | - Krishnan Jayaraman
- Centre for Advanced Materials Manufacturing and Design, University of Auckland, Auckland 1023, New Zealand
- Department of Mechanical and Mechatronics Engineering, University of Auckland, Auckland 1010, New Zealand
| | - Nam Kyeun Kim
- Centre for Advanced Materials Manufacturing and Design, University of Auckland, Auckland 1023, New Zealand
- Department of Mechanical and Mechatronics Engineering, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
18
|
Qiao X, Zhang L, Yuan T, Wu Y, Geng Y, Li Y, Li B, Zhang L, Zhuang WQ, Yu K. Mixotrophic anammox bacteria outcompete dissimilatory nitrate reduction and denitrifying bacteria in propionate-containing wastewater. BIORESOURCE TECHNOLOGY 2025; 419:132077. [PMID: 39814151 DOI: 10.1016/j.biortech.2025.132077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/02/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Organic carbon can influence nitrogen removal during the anaerobic ammonia oxidation (anammox) process. Propionate, a common organic compound in pretreated wastewater, its impacts on mixotrophic anammox bacteria and the underlying mechanisms have not been fully elucidated. This study investigated the core metabolism and shift in behavior patterns of mixotrophic Candidatus Brocadia sapporoensis (AMXB) under long-term propionate exposure. Genome-resolved metagenomic analysis revealed that AMXB could convert nitrate generated by anammox bacteria to ammonium via the DNRA pathway, leveraging propionate as an electron donor. This recycled ammonium was then used to sustain the anammox process, thereby enhancing nitrogen removal efficiency. Notably, AMXB grew more efficiently than DNRA and denitrifying bacteria due to its more energy-efficient propionate metabolic pathway. This finding suggests that AMXB, as a mixotrophic anammox bacterium, has a competitive advantage in nitrogen metabolism in low C/N wastewater, contributing to efficient nitrogen removal.
Collapse
Affiliation(s)
- Xuejiao Qiao
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Liyu Zhang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tugui Yuan
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Yang Wu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yanni Geng
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yumeng Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Bing Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Lijuan Zhang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland 1142, New Zealand
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
19
|
You Z, Yu H, Zhang B, Liu Q, Xiong B, Li C, Qiao C, Dai L, Li J, Li W, Xin G, Liu Z, Li F, Song H. Engineering Exopolysaccharide Biosynthesis of Shewanella oneidensis to Promote Electroactive Biofilm Formation for Liquor Wastewater Treatment. ACS Synth Biol 2025; 14:373-383. [PMID: 39556104 DOI: 10.1021/acssynbio.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Microbial electrochemical systems (MESs), as a green and sustainable technology, can decompose organics in wastewater to recover bioelectricity. Electroactive biofilms, a microbial community structure encased in a self-produced matrix, play a decisive role in determining the efficiency of MESs. However, as an essential component of the biofilm matrix, the role of exopolysaccharides in electroactive biofilm formation and their influence on extracellular electron transfer (EET) have been rarely studied. Herein, to explore the effects of exopolysaccharides on biofilm formation and EET rate, we first inhibited the key genes responsible for exopolysaccharide biosynthesis (namely, so_3171, so_3172, so_3177, and so_3178) by using antisense RNA in Shewanella oneidensis MR-1. Then, to explore the underlying mechanisms why inhibition of exopolysaccharide synthesis could enhance biofilm formation and promote the EET rate, we characterized cell physiology and electrophysiology. The results showed inhibition of exopolysaccharide biosynthesis not only altered cell surface hydrophobicity and promoted intercellular adhesion and aggregation, but also increased biosynthesis of c-type cytochromes and decreased interfacial resistance, thus promoting electroactive biofilm formation and improving the EET rate of S. oneidensis. Lastly, to evaluate and intensify the capability of exopolysaccharide-reduced strains in harvesting electrical energy from actual liquor wastewater, engineered strain Δ3171-as3177 was further constructed to treat an actual thin stillage. The results showed that the output power density reached 380.98 mW m-2, 11.1-fold higher than that of WT strain, which exhibited excellent capability of harvesting electricity from actual liquor wastewater. This study sheds light on the underlying mechanism of how inhibition of exopolysaccharides impacts electroactive biofilm formation and EET rate, which suggested that regulating exopolysaccharide biosynthesis is a promising avenue for increasing the EET rate.
Collapse
Affiliation(s)
- Zixuan You
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Huan Yu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Baocai Zhang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Qijing Liu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Bo Xiong
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Chao Li
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Chunxiao Qiao
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Longhai Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Jianxun Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Wenwei Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Guosheng Xin
- School of Life and Sciences, Ningxia University, Yinchuan, 750021, China
| | - Zhanying Liu
- Center for Energy Conservation and Emission Reduction in Fermentation Industry in Inner Mongolia, Engineering Research Center of Inner Mongolia for Green Manufacturing in Bio-fermentation Industry, and School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia, Hohhot 010051, China
| | - Feng Li
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Hao Song
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
20
|
Gao L, Chen Y, Li S, Yang Z, Lu Y, Zhu G. Proteomic and spectral analysis reveals the role of extracellular polymeric substances in mercury biosorption by activated sludge under high-altitude conditions. ENVIRONMENTAL RESEARCH 2025; 267:120613. [PMID: 39675454 DOI: 10.1016/j.envres.2024.120613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
In high-altitude regions, elevated mercury (Hg) levels in wastewater treatment plants (WWTPs) influent raise concerns about treatment efficiency and environmental impact. This study investigated the Hg biosorption capacity of activated sludge under high-altitude conditions, focusing on the binding mechanisms between EPS and Hg, and variations in EPS secretion. Low pressure, oxygen, and temperature at high altitudes increase EPS secretion, enhancing Hg biosorption. EPS provides numerous binding sites for Hg, forming nonfluorescent complexes with tryptophan-like and aromatic proteins, while hydrocarbon and oxygen-containing groups limit Hg entry into microbial cells. Proteomic analysis revealed the upregulation of transporters, stress-resistance, and binding proteins, along with those involved in carbon and amino acid metabolism, which enhance microbial resilience and EPS production, leading to increased Hg biosorption. These insights reveal adaptive mechanisms that optimize pollutant removal in high-altitude environments.
Collapse
Affiliation(s)
- Lei Gao
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Yue Chen
- School of Energy and Environment, Southeast University, Nanjing, 210096, China; Key Laboratory of Water Safety and Aquatic Ecosystem Health of Xizang, Xianyang, 712082, China
| | - Shuping Li
- College of Information Engineer, Xizang Minzu University, Xianyang, 712082, China; Key Laboratory of Water Safety and Aquatic Ecosystem Health of Xizang, Xianyang, 712082, China; Key Laboratory of Water Pollution Control and Ecological Restoration of Xizang, National Ethnic Affairs Commission, Xianyang, 712082, China
| | - Zhonglian Yang
- School of Energy and Environment, Southeast University, Nanjing, 210096, China; Key Laboratory of Water Pollution Control and Ecological Restoration of Xizang, National Ethnic Affairs Commission, Xianyang, 712082, China
| | - Yongze Lu
- School of Energy and Environment, Southeast University, Nanjing, 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210096, China.
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, Nanjing, 210096, China; Key Laboratory of Water Safety and Aquatic Ecosystem Health of Xizang, Xianyang, 712082, China; Key Laboratory of Water Pollution Control and Ecological Restoration of Xizang, National Ethnic Affairs Commission, Xianyang, 712082, China.
| |
Collapse
|
21
|
Elleuch J, Drira M, Ghribi I, Hadjkacem F, Pierre G, Causserand C, Khemakhem H, Michaud P, Fendri I, Abdelkafi S. Amphora coffeiformis extracellular polymeric substances and their potential applications in lead removal. Antonie Van Leeuwenhoek 2025; 118:51. [PMID: 39899145 DOI: 10.1007/s10482-024-02057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/15/2024] [Indexed: 02/04/2025]
Abstract
Microorganisms producing extracellular polymeric substances (EPS) are of great potential in numerous environmental applications. The present study explores the production and properties of extracellular polymeric substances (EPS) from Amphora coffeiformis diatom strain and their potential applications in environmental remediation. EPS were composed of a complex mixture of polysaccharides, proteins, humic substances and nucleic acids, with polyanionic characteristics as revealed by FTIR, Raman and zeta potential analyses. EPS showed high flocculation efficiency against kaolin clay at low dosages (5 mg/L) through a charge neutralization mechanism involving both polysaccharides and proteins. EPS also exhibited strong emulsification activity for various nonpolar substrates, mainly olive oil, corn oil, soybean oil, essence and diesel, with emulsification indexes above 80%. The emulsions were stable for 72 h under different NaCl concentrations (1-10% w/v). Moreover, EPS demonstrated remarkable adsorption capacity for lead, reaching a maximum of 1699.33 ± 89.61 mg/g under optimized conditions using Box-Behnken design. The adsorption mechanism involved multiple functional groups such as hydroxyl, carbonyl, carboxyl, phosphoric and sulfhydryl. Therefore, EPS from A. coffeiformis are a promising candidate for restoring environments contaminated by heavy metals.
Collapse
Affiliation(s)
- Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Marwa Drira
- Laboratoire de Protection et Amélioration des Plantes, Centre de Biotechnologie de Sfax, Université de Sfax, B.P. 1177, 3018, Sfax, Tunisia
| | - Imtinen Ghribi
- Laboratoire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Farah Hadjkacem
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Guillaume Pierre
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000, Clermont-Ferrand, France
| | - Christel Causserand
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Hamadi Khemakhem
- Laboratory of Multifunctional Materials and Applications (LaMMA), (LR16ES18), Faculty of Sciences of Sfax, University of Sfax, B.P. 1171, 3000, Sfax, Tunisia
| | - Philippe Michaud
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000, Clermont-Ferrand, France
| | - Imen Fendri
- Laboratoire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia.
| |
Collapse
|
22
|
Yang JH, Han NN, Hu JB, Jiang Y, Fan NS, Jin RC. Microbial regulation of interspecific interaction and metabolism in anammox process to achieve coadaptation to artificial sweeteners. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136654. [PMID: 39591786 DOI: 10.1016/j.jhazmat.2024.136654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 11/28/2024]
Abstract
Artificial sweeteners (ASs) were frequently detectable in wastewater, which pose high risks to human health and ecological security. The feasibility of anaerobic ammonium oxidation (anammox) process for treatment of ASs-containing wastewater was evaluated in this study. The 86-d continuous flow experiment results showed that 0-30 μg L-1 cyclamate and acesulfame did not significantly affect the nitrogen removal efficiency (NRE) of anammox processes, which were 94.5 ± 3.0 % and 96.6 ± 2.5 %, respectively. Simultaneously, specific anammox activity (SAA) was inhibited by 15 μg L-1 ASs. Fortunately, anammox consortia adapted to the ASs stress by secreting extracellular polymeric substance (EPS). The relative abundances of Candidatus Kuenenia slightly decreased by 0.2 % and 2.3 % under stress of two ASs, and the microbial diversity increased. In addition, the anammox consortia regulated metabolites expression by cell energy allocation. The dominant metabolic pathways were amino acid metabolism, lipid metabolism and nucleotide metabolism. Particularly, the abundances of 5-hydroxylysinonorleucine and L-hypoglycin A significantly increased with ASs concentrations, which were crucial for bacterial proliferation. The co-metabolism between different bacteria might contribute to the biodegradation of ASs. This work demonstrates the feasibility of anammox process to treat the ASs-containing wastewater and reveals the regulation and adaptation mechanism of anammox microbiota, which further drives the implementation and development of anammox process.
Collapse
Affiliation(s)
- Jia-Hui Yang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Na-Na Han
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jin-Bao Hu
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuan Jiang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Nian-Si Fan
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Ren-Cun Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
23
|
Ou B, Hu X, Yu W, Meng F, Li W, Liang S, Yuan S, Duan H, Hou H, Xiao K. Critical evaluation of extracellular polymeric substances extraction methods: Extraction efficiency, molecular characteristics, and heavy metals binding properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178345. [PMID: 39756304 DOI: 10.1016/j.scitotenv.2024.178345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/11/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
Extracellular polymeric substances (EPS) significantly influence the properties and performance of waste activated sludge. Various pretreatment protocols with different extraction efficiency and characteristics of EPS have been reported, which markedly impact subsequent treatment and disposal of sewage sludge. This study systematically assesses the EPS properties from twelve extraction pretreatment methods. The organic and inorganic matters content, cell lysis, basic physicochemical property, molecular weight distribution, and fluorescence properties of extracted EPS were determined. Physical extraction methods (Centrifugation, Heat, and Ultrasound) were relatively mild, resulting in lower extraction of organic matter contents from EPS (< 6 mg total organic carbon /g volatile solids). Biological extraction methods (Enzyme and Enzyme-NaOH) exhibited high EPS extraction efficiency however led to significant cell lysis, thereby contaminating the extracted EPS with intracellular substances. In addition, heating and biological extraction methods excessively degraded EPS, resulting in a large amount of small molecular weight matters (≤ 103 Da) generation. Chemical extraction methods offered efficient EPS extraction with the different degrees of cell lysis, but it would introduce chemical reagent residues in EPS. Among those extraction methods, EPS extracted by cation exchange resin (CER) method had uniform and abundant molecular weight matters and fluorescence matters distribution. After dialysis, the residual Na and other metal elements could be significantly removed. Then, the fluorescence quenching effect of Cu(II) and Zn(II) at 400 μM on the Bound-EPS after dialysis increased up to the maximum value of 65 % and 30 %, respectively, compared to that without dialysis. It indicates that dialysis coupled with CER extracted EPS has a well extraction efficiency and can maintain the original state of EPS for the subsequent investigation.
Collapse
Affiliation(s)
- Bei Ou
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Xueyang Hu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Wenbo Yu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycle Technology, Wuhan, Hubei 430074, China; Hubei Provincial Research Center of Water Quality Safety and Water Pollution Control Engineering Technology, Wuhan, Hubei 430074, China.
| | - Fanhao Meng
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Wen Li
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Sha Liang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycle Technology, Wuhan, Hubei 430074, China; Hubei Provincial Research Center of Water Quality Safety and Water Pollution Control Engineering Technology, Wuhan, Hubei 430074, China
| | - Shushan Yuan
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycle Technology, Wuhan, Hubei 430074, China; Hubei Provincial Research Center of Water Quality Safety and Water Pollution Control Engineering Technology, Wuhan, Hubei 430074, China
| | - Huabo Duan
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycle Technology, Wuhan, Hubei 430074, China; Hubei Provincial Research Center of Water Quality Safety and Water Pollution Control Engineering Technology, Wuhan, Hubei 430074, China
| | - Huijie Hou
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycle Technology, Wuhan, Hubei 430074, China; Hubei Provincial Research Center of Water Quality Safety and Water Pollution Control Engineering Technology, Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Keke Xiao
- Environmental Science and Engineering Program, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| |
Collapse
|
24
|
Chang BZ, Huang XL, Chen DZ, Jin RC, Yang GF. How biofilm and granular sludge cope with dissolved oxygen exposure in anammox process: Performance, bioaccumulation characteristics and bacterial evolution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123986. [PMID: 39742762 DOI: 10.1016/j.jenvman.2024.123986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/24/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
In order to study the resistance mechanisms of biofilm and granular sludge to various dissolved oxygen (DO) exposures in anaerobic ammonium oxidation (anammox) process, a biofilm - granular sludge anammox reactor was established and operated. Experimental results showed that DO levels of ≤0.41 mg L-1 hardly affected the total nitrogen removal efficiency (TNRE). Higher DO levels of 1.96-2.08 mg L-1 promoted biomass disintegration and decreased specific anammox activity and extracellular polymeric substance (EPS) levels in granular sludge, but did not decrease EPS significantly in biofilm. The relative abundance of anammox genus Candidatus Kuenenia in granular sludge and biofilm decreased to 13.93% and 1.93%, respectively. NO3--N was accumulated due to the increased NOB genus Nitrospira in granular sludge and biofilm. The inhibition effects of 1.96-2.08 mg L-1 DO on anammox system were reversible, and the TNRE was quickly restored to (82.21 ± 2.39)% with AnAOB accumulation after removing aeration. This study provided theoretical support for the development of coupled biological nitrogen removal system based on anammox with other aerobic processes.
Collapse
Affiliation(s)
- Ben-Ze Chang
- Department of Environmental Science and Engineering, Zhejiang Ocean University, No.1 Haida South Road, Zhoushan, 316022, PR China
| | - Xiao-Lan Huang
- Department of Environmental Science and Engineering, Zhejiang Ocean University, No.1 Haida South Road, Zhoushan, 316022, PR China
| | - Dong-Zhi Chen
- Department of Environmental Science and Engineering, Zhejiang Ocean University, No.1 Haida South Road, Zhoushan, 316022, PR China; Zhejiang Provincial Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316022, PR China
| | - Ren-Cun Jin
- Department of Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, PR China
| | - Guang-Feng Yang
- Department of Environmental Science and Engineering, Zhejiang Ocean University, No.1 Haida South Road, Zhoushan, 316022, PR China; Zhejiang Provincial Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316022, PR China.
| |
Collapse
|
25
|
Elleuch J, Drira M, Ghribi I, Hadjkacem F, Pierre G, Khemakhem H, Michaud P, Fendri I, Abdelkafi S. Lead removal from the aqueous solution by extracellular polymeric substances produced by the marine diatom Navicula salinicola. ENVIRONMENTAL TECHNOLOGY 2025; 46:46-58. [PMID: 38619982 DOI: 10.1080/09593330.2024.2338456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 03/27/2024] [Indexed: 04/17/2024]
Abstract
Microbial extracellular polymeric substances (EPS) have recently emerged as significant contributors in diverse biotechnological applications. Extracellular polymeric substances (EPS), produced by a Navicula salinicola strain, have been studied for potential applications in a specific heavy metal (lead (Pb II)) removal from wastewater. The optimisation of operational parameters, mainly pH, Pb and EPS concentrations, using the Box-Behnken design (BBD) was undertaken to enhance lead uptake. The higher Pb adsorption capacity reached 2211.029 mg/g. Hydroxyl, carbonyl, carboxyl, phosphoric, and sulfhydryl groups were identified quantitatively as potential sites for Pb adsorption. EPS exhibited a notable flocculation rate of 70.20% in kaolin clay at a concentration of 15 mg/L. They demonstrated an emulsifying activity greater than 88%, showcasing their versatile potential for both sedimentation processes and stabilising liquid-liquid systems. EPS could be excellent nonconventional renewable biopolymers for treating water and wastewater.
Collapse
Affiliation(s)
- Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, Sfax, Tunisia
| | - Marwa Drira
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Imtinen Ghribi
- Laboratory of Plant Biotechnologies Applied to the Improvement of Plants, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Farah Hadjkacem
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, Sfax, Tunisia
- CNRS, Clermont Auvergne INP, Institute Pascal, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Guillaume Pierre
- CNRS, Clermont Auvergne INP, Institute Pascal, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratory of Multifunctional Materials and Applications (LaMMA), (LR16ES18), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | | | - Philippe Michaud
- CNRS, Clermont Auvergne INP, Institute Pascal, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Imen Fendri
- Laboratory of Plant Biotechnologies Applied to the Improvement of Plants, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
26
|
Ding X, Yu Q, Xue H, Zhang W, Ren H, Geng J. Photochemical behavior of extracellular polymeric substances in intimately coupled TiO 2 photocatalysis and biodegradation system. BIORESOURCE TECHNOLOGY 2025; 416:131752. [PMID: 39515430 DOI: 10.1016/j.biortech.2024.131752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Photosensitization of extracellular polymeric substances (EPS) in aqueous environments is significant for pollutants degradation, but the synergistic effects in intimately coupled photocatalysis and biodegradation (ICPB) remain unknown. In this study, the pivotal role of EPS photosensitization in the degradation of 17β-estradiol 3-sulfate (E2-3S) was investigated in ICPB. Protein and polysaccharide contents in loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) increased by 16.6, 9.15 and 9.2, 2.2 times compared with R1 (biofilm with light without photocatalyst) and R2 (biofilm with photocatalyst without light), respectively. During irradiation tests, more reactive species were generated in LB-EPS, and achieving 99.8 % degradation efficiency of E2-3S; tryptophan-like protein in EPS firstly to be converted, while the tyrosine-like protein underwent greater conversion; furthermore, hydrophilic molecules with O/C < 0.45 in EPS decreased and unsaturated molecules with H/C = 0.7-1.5 and O/C = 0-0.1 increased. This study reveals the photosensitization reaction of EPS in ICPB, which provides new insights for pollutants degradation.
Collapse
Affiliation(s)
- Xiangwei Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Qingmiao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China
| | - Hongpu Xue
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China
| | - Wei Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
27
|
Zhang J, Zhang J, Sano D, Chen R. Comparison of activated sludge and virus interactions in aerobic and anaerobic membrane bioreactors. iScience 2024; 27:111450. [PMID: 39735431 PMCID: PMC11681883 DOI: 10.1016/j.isci.2024.111450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/10/2024] [Accepted: 11/19/2024] [Indexed: 12/31/2024] Open
Abstract
Membrane bioreactors (MBRs) are effective sewage treatment technologies, yet the differences in virus removal efficiency between aerobic (AeMBR) and anaerobic membrane bioreactors (AnMBR), remain inadequately understood. This study compared the virus removal efficiency of AeMBR and AnMBR, focusing on the interactions between aerobic (AeS) and anaerobic (AnS) activated sludge and viruses in the sewage treatment process. Results showed average log removal values (LRVs) for MS2 of 2.53 ± 0.54 in AeMBR and 1.64 ± 0.90 in AnMBR due to the higher virus inactivation in the aerobic mixed liquor. The virus concentration in AnS was greater than in AeS, consistent with the predictions from the pseudo-second-order kinetic model. Soluble extracellular polymeric substances (S-EPS) were key to virus adsorption in AeS, while tightly bound EPS (TB-EPS) were significant in AnS. Additionally, more fluorescent substances in AnS contributed to virus adsorption, while more functional groups in AeS offered adsorption sites.
Collapse
Affiliation(s)
- Jinfan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi’an University Architecture and Technology, No. 13 Yanta Road, Xi’an 710055, P.R. China
| | - Jie Zhang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi’an University Architecture and Technology, No. 13 Yanta Road, Xi’an 710055, P.R. China
| | - Daisuke Sano
- Department of Civil and Environment Engineering, Graduate School of Engineering, Tohoku University, Aoba 606-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
- Department of Frontier Sciences for Advanced Environment, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi’an University Architecture and Technology, No. 13 Yanta Road, Xi’an 710055, P.R. China
- International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi’an University of Architecture and Technology, No. 13 Yanta Road, Xi’an 710055, P.R. China
| |
Collapse
|
28
|
Zhang Y, Gao J, Zhao J, Zhao Y, Liu Y, Guo Y, Xie T. Phenacetin enhanced the inorganic nitrogen removal performance of anammox bacteria naturally in-situ enriched system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177586. [PMID: 39566627 DOI: 10.1016/j.scitotenv.2024.177586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Among the earliest synthetic antipyretic drugs, phenacetin (PNCT) could be used as the novel partial nitrification (PN) inhibitor to effectively inhibit nitrite-oxidizing bacteria (NOB). In practical application, the rapidly starting of PN could provide stable source of nitrite for anaerobic ammonium oxidation (anammox) process. However, impact of PNCT on anaerobic ammonia oxidizing bacteria (AnAOB) and its underlying mechanisms were not clear. In this research, totally 14 times of PNCT aerobic soaking treatment were performed in the AnAOB naturally enrichment system to improve total inorganic nitrogen removal efficiency (TINRE). After once of PNCT treatment, TINRE rose from 61.89 % to 79.93 %. After 14 times of PNCT treatment, NOB Nitrospira relative abundance decreased from 9.82 % to 0.71 %, though Candidatus Brocadia relative abundance also declined, it might gradually adjust to PNCT by converting the leading oligotype species. The activity and relative abundances of NOB were reduced by PNCT via decreasing the abundances of genes amoA and nxrB, enzymes NxrA and NxrB. Moreover, Candidatus Jettenia and Ca. Brocadia might be the potential host of qacH-01 and they played the crucial role in the shaping profile of antibiotic resistance genes (ARGs). The explosive propagation or transmission of ARGs might not take place after PNCT treatment.
Collapse
Affiliation(s)
- Yi Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Jingqiang Zhao
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Yifan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Ying Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Yi Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Tian Xie
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
29
|
Zhao J, Xie X, Chen Z, Wang Q, Zhang H, Shen Y, Ye J, Zhang S, Wu C, Feng K. Electro-stimulated biodegradation of dimethyl disulfide: Insights from biofilm spatial structure and key functional genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125216. [PMID: 39477005 DOI: 10.1016/j.envpol.2024.125216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/06/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
As a typical sulfur-containing volatile organic compound, dimethyl disulfide (DMDS) is known for its high toxicity and resistance to degradation, necessitating efficient control in environmental media. To address the limitations of biological treatment in degradation capacity, this study employs electro-stimulation to promote DMDS elimination by a porous polyaniline@carbon nanotube bioanode developed on graphite sheet (PANI@CNT/GS). Compared with the unmodified GS bioanode, the PANI@CNT/GS bioanode demonstrates significant advantages in biofilm activity, redox property, and DMDS degradation efficiency. Kinetics analysis shows that the maximum degradation rate of the PANI@CNT/GS bioanode was 0.60 mM h-1, which is 1.36 times higher than that of the control. Characterization results reveal that the highly active biofilms in PANI@CNT/GS bioanode possess 1.40 times the amount of living cells and a 12.5% increase in thickness, contributing to the notable enhancement in DMDS degradation capacity. Additionally, functional gene annotation indicates that the PANI@CNT/GS electrode facilitates the motility and activity of microbial cells and enriches the genes encoding key enzymes involved in DMDS metabolism. This work validates the feasibility of electro-stimulation for enhancing DMDS degradation and further provides in-depth insights into the process intensification mechanism from the perspectives of biofilm spatial structure and key functional genes.
Collapse
Affiliation(s)
- Jingkai Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Zhejiang Ecology and Environment Group Co., Ltd., Hangzhou, 311100, China
| | - Xinyi Xie
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhangyu Chen
- Zhejiang Ecology and Environment Group Co., Ltd., Hangzhou, 311100, China
| | - Qinlin Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hanyu Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yao Shen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiexu Ye
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shihan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chao Wu
- Zhejiang Ecology and Environment Group Co., Ltd., Hangzhou, 311100, China.
| | - Ke Feng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
30
|
Zhao A, Li J, Gao P, Tang P, Liu T, Zhang X, Liu X, Chen C, Zhang Z, Zheng Z. Insight into the responses of the anammox granular sludge system to tetramethylammonium hydroxide (TMAH) during chip wastewater treatment. ENVIRONMENTAL RESEARCH 2024; 263:120099. [PMID: 39374750 DOI: 10.1016/j.envres.2024.120099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Tetramethylammonium hydroxide (TMAH), an extensively utilized photoresist developer, is frequently present in ammonium-rich wastewater from semiconductor manufacturing, and its substantial ecotoxicity should not be underestimated. This study systematically investigated the effects of TMAH on the anammox granular sludge (AnGS) system and elucidated its inhibitory mechanisms. The results demonstrated that the median inhibitory concentration of TMAH for anammox was 84.85 mg/L. The nitrogen removal performance of the system was significantly decreased after long-term exposure to TMAH (0-200 mg/L) for 30 days (p < 0.05), but it showed adaptability to certain concentrations (≤50 mg/L). Concurrently, the stability of the granules decreased dramatically, resulting in the breakdown of AnGS. Further investigations indicated that TMAH exposure increased the secretion of extracellular polymeric substances but weakened their defense function. The increase in reactive oxygen species resulted in damage to the cell membrane. Reduced activity of anammox bacteria, impeded electron transfer, and changes in enzyme activity suggested that TMAH affected the metabolic activity. Microbiological analysis revealed that TMAH caused a decrease in the abundance of anammox bacteria and a weakening of symbiotic interactions within the microbial community. These results provide valuable guidance for the AnGS system application in chip wastewater treatment.
Collapse
Affiliation(s)
- Andong Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Jun Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Peng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Peng Tang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Tingting Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Xin Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Xuming Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Cong Chen
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Zehao Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China.
| | - Zhaoming Zheng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
31
|
Lv L, Yin B, Zhang D, Ji W, Liang J, Liu X, Gao W, Sun L, Ren Z, Zhang G, Zhang R. Synchronous reinforcement azo dyes decolorization and anaerobic granular sludge stability by Fe, N co-modified biochar: Enhancement based on extracellular electron transfer. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135836. [PMID: 39276735 DOI: 10.1016/j.jhazmat.2024.135836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/22/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
Anaerobic digestion (AD) treatment of azo dyes wastewater often suffers from low decolorization efficiency and poor stability of anaerobic granular sludge (AnGS). In this study, iron and nitrogen co-modified biochar (FNC) was synthesized based on the secondary calcination method, and the feasibility of this material for enhanced AD treatment of azo dye wastewater and its mechanism were investigated. FNC not only formed richer conducting functional groups, but also generated Fe2+/Fe3+ redox pairs. The decolorization efficiency of Congo red and AD properties (e.g., methane production) were enhanced by FNC. After adding FNC, the content of extracellular polymeric substances (EPS) and the ratio of proteins remained stable under the impact of Congo red, which greatly protected the internal microbial community. This was mainly contributed to the excellent electrochemical properties of FNC, which strengthened the microbial extracellular electron transfer and realized the coupled mechanism of action: On the one hand, an electron transfer bridge between decolorizing bacteria and dyes was constructed to achieve rapid decolorization of azo dyes and mitigate the impact on methanogenic bacteria; On the other hand, the stability of AnGS was enhanced based on enhanced extracellular polymeric substances secretion, microbial community and direct interspecies electron transfer (DIET) process. This study provides a new idea for enhanced AD treatment of azo dyes wastewater.
Collapse
Affiliation(s)
- Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Bingbing Yin
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Duoying Zhang
- School of Civil Engineering, Heilongjiang University, Harbin 150086, PR China
| | - Wenbo Ji
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Jinsong Liang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Xiaoyang Liu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Wenfang Gao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Li Sun
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Ruijun Zhang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| |
Collapse
|
32
|
Li X, Cai S, Xu M. Nanoscale zero-valent iron alleviated horizontal transfer of antibiotic resistance genes in soil: The important role of extracellular polymeric substances. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135902. [PMID: 39303615 DOI: 10.1016/j.jhazmat.2024.135902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/23/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Extracellular polymeric substances (EPS) are tightly related to the horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs), but often neglected in soil. In this study, nanoscale zero-valent iron (nZVI) was utilized for attenuation of ARGs in contaminated soil, with an emphasis on its effects on EPS secretion and HGT. Results showed during soil microbe cultivation exposed to tetracycline, more EPS was secreted and significant increase of tet was observed due to facilitated HGT. Notably, copies of EPS-tet accounted for 71.39 % of the total tet, implying vital effects of EPS on ARGs proliferation. When co-exposed to nZVI, EPS secretion was decreased by 38.36-71.46 %, for that nZVI could alleviate the microbial oxidative stress exerted by tetracycline resulting in downregulation of genes expression related to the c-di-GMP signaling system. Meanwhile, the abundance of EPS-tet was obviously reduced from 7.04 to 5.12-6.47 log unit, directly causing decrease of total tet from 7.19 to 5.68-6.69 log unit. For the reduced tet, it was mainly due to decreased EPS secretion induced by nZVI resulting in inhibition of HGT especially transformation of the EPS-tet. This work gives an inspiration for attenuation of ARGs dissemination in soil through an EPS regulation strategy.
Collapse
Affiliation(s)
- Xu Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China
| | - Shujie Cai
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China.
| |
Collapse
|
33
|
Ma X, Liu D, Chu X, Huang J, Shu Z, Li Y, Jin Y. Effects of exogenous signaling molecules on anaerobic sludge digestion: Quorum sensing and antibiotic resistance genes. BIORESOURCE TECHNOLOGY 2024; 414:131624. [PMID: 39395605 DOI: 10.1016/j.biortech.2024.131624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Regulating quorum sensing (QS) signaling molecules could improve wastewater treatment but might increase antibiotic resistance. This study investigated the effects of exogenous C6-HSL on anaerobic sludge under oxytetracycline stress, with a focus on antibiotic resistance genes (ARGs) and the QS response. The results revealed that exogenous oxytetracycline increased the copy number of ARGs by more than 68.8 %. It also facilitated a 3.04-fold increase in the concentration of signaling molecules and increased the abundance of QS genes. Further addition of the C6-HSL accelerated oxytetracycline degradation, and reduced its residual concentration by 70.9 %, alleviating oxytetracycline stress on microbial communities, and correspondingly reducing stress release from AHL by 75.4 %. Importantly, this did not exacerbate antibiotic resistance, with no significant difference (p > 0.05) in the ARG abundance. These findings may provide valuable insights into the relationship between QS process and antibiotic resistance.
Collapse
Affiliation(s)
- Xinxin Ma
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Dandan Liu
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou 450000, PR China
| | - Xu Chu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China
| | - Jianli Huang
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhifei Shu
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yangyang Li
- Zhejiang Jiaxing Green Energy Environmental Protection Technology Co. LTD, Jiaxing 314000, PR China
| | - Yiying Jin
- School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
34
|
Zhang Y, Wang W, Xu X, Zhang Q, Xing D, Lee DJ, Ren N, Chen C. Sulfur cycle-mediated biological nitrogen removal and greenhouse gas abatement processes: Micro-oxygen regulation tells the story. BIORESOURCE TECHNOLOGY 2024; 414:131614. [PMID: 39395607 DOI: 10.1016/j.biortech.2024.131614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Sulfur-mediated autotrophic biological nitrogen removal (BNR) processes favor the reduction of greenhouse gas (GHG) emissions compared to heterotrophic BNR processes. Micro-oxygen environments are widely prevalent in practical BNR systems, and the mechanisms of GHG emissions mediated by multi-elements, including nitrogen (N), sulfur (S), and oxygen (O), remain to be systematically summarized. This review reveals the functional microorganisms involved in sulfur-mediated BNR processes under micro-oxygen regulation, elucidating their metabolic mechanisms and interactions. The GHG abatement potential of sulfur-mediated BNR processes under micro-oxygen regulation is highlighted, along with recent advances in multi-scenario applications. The fate of GHG in wastewater treatment systems is explored and insights into future multi-scale GHG regulatory strategies are provided. Overall, the application of sulfur-mediated BNR processes under micro-oxygen regulation exhibits great potential. This review can act as a guide for the effective implementation of strategies to mitigate the environmental impacts of GHG emissions from wastewater treatment processes.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Quan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| |
Collapse
|
35
|
Zhao K, Si T, Liu S, Liu G, Li D, Li F. Co-metabolism of microorganisms: A study revealing the mechanism of antibiotic removal, progress of biodegradation transformation pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176561. [PMID: 39362550 DOI: 10.1016/j.scitotenv.2024.176561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
The widespread use of antibiotics has resulted in large quantities of antibiotic residues entering aquatic environments, which can lead to the development of antibiotic-resistant bacteria and antibiotic-resistant genes, posing a potential environmental risk and jeopardizing human health. Constructing a microbial co-metabolism system has become an effective measure to improve the removal efficiency of antibiotics by microorganisms. This paper reviews the four main mechanisms involved in microbial removal of antibiotics: bioaccumulation, biosorption, biodegradation and co-metabolism. The promotion of extracellular polymeric substances for biosorption and extracellular degradation and the regulation mechanism of enzymes in biodegradation by microorganisms processes are detailed therein. Transformation pathways for microbial removal of antibiotics are discussed. Bacteria, microalgae, and microbial consortia's roles in antibiotic removal are outlined. The factors influencing the removal of antibiotics by microbial co-metabolism are also discussed. Overall, this review summarizes the current understanding of microbial co-metabolism for antibiotic removal and outlines future research directions.
Collapse
Affiliation(s)
- Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, China
| | - Tingting Si
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, China; Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shenghe Liu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, China
| | - Gaolei Liu
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Donghao Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
36
|
Liu Y, Wu Y, Zhao Y, Niu J, Wang Q, Bamanu B, Hussain A, Liu Y, Tong Y, Li YY. Multidimensional Insights into Organics Stress on Anammox systems: From a "Molecule-Cell-Ecology" Perspective. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20768-20784. [PMID: 39468881 DOI: 10.1021/acs.est.4c02781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Anaerobic ammonium oxidation (anammox) is efficient and cost-effective for treating high-strength ammonia wastewater, but the organics in wastewater will affect its stability. To address this challenge, it is crucial to gain a deep understanding of the inhibitory effects and mechanisms of organics stress on anammox bacteria. The review provided a comprehensive classification of organics and evaluated their specific effects on the anammox system according to their respective characteristics. Based on the micro to macro perspective, the "molecule-cell-ecology" inhibitory mechanism of organics on anammox bacteria was proposed. The molecular observation systematically summarized the binding process and action sites of organics with anammox bacteria. At the cellular observation, the mechanisms of organics effects on extracellular polymeric substances, membranes, and anammoxosome of anammox bacteria were also expounded. At the ecological observation, the dynamic changes in coexisting populations and their role in organics transformation were further discussed. Further revelations on response mechanisms and inhibition mitigation strategies were proposed to broaden the applicability of anammox systems for organic wastewater. This review offered a multidimensional understanding of the organics inhibitory mechanism of anammox bacteria and provided a theoretical foundation for anammox systems.
Collapse
Affiliation(s)
- Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bibek Bamanu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Arif Hussain
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
37
|
Lai J, Liu H, Yang Z, Deng R, Xiong Y, Li Y, Song M. Promotion of aromatic amino acids of extracellular polymeric substance targeted transformation via sulfite mediated iron redox cycling in sludge solid-liquid separation. WATER RESEARCH 2024; 266:122369. [PMID: 39243458 DOI: 10.1016/j.watres.2024.122369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/02/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Highly hydrophilic extracellular polymeric substance (EPS) with gel-like structure seriously plagues the development of sludge deep dewatering. Oxysulfur radicals-based oxidation driven by iron-bearing mineral proposes a promising strategy for effective EPS decomposition. However, the transformation and involved interaction mechanisms of aromatic proteins are still controversial due to the complex EPS structure. Herein, sulfite mediated siderite (denoted as Fe(II)/S(IV)) was developed for targeted transformation aromatic amino acids in EPS oxidation to strengthen sludge solid-liquid separation. The enhanced sludge dewaterability were benefited from the Fe(II)/S(IV) bonded interaction assisted by Fe3+/Fe2+ as redox interface that facilitating the release of intracellular bound water via diminish the hydrophily and bind strength with solid protons. The amide region nitrogen of aromatic amino acids (especially tyrosine and tryptophan) originating from EPS presented looser structure and lower spatial site resistance, which were attributed to the exposure of hydrophobic sites in amino groups after Fe(II)/S(IV) treatment. Furthermore, the effective decline of aromatic amino acids in inner layer-EPS (loosely bound EPS and tightly bound EPS) was directed from Fe-N targeted interaction by triggering a series of sulfate-based radical chain reactions. The good correlation between electron transfer amount (R2 = 0.926) and Fe-N (R2 = 0.925) with bonding interaction demonstrated that the complexation of aromatic amino acids with Fe sites on siderite/sulfite via Fe-N bonds, accounting for efficient sludge solid-liquid separation. This study deepens the understanding of sludge organic matter targeted transformation and provides a tactic for iron-based conditioning of sludge.
Collapse
Affiliation(s)
- Jiahao Lai
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Huan Liu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhen Yang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Rong Deng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Yun Xiong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Yafei Li
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Min Song
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China.
| |
Collapse
|
38
|
Li XQ, Yu Z, Lin Z, Fang YK, Sun Q, Chen K, Wang AJ, Liu WZ. Unveiling the common laws of extracellular polymeric substances (EPS) properties on short-chain fatty acids production from sludge by EPS disintegration pretreatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175286. [PMID: 39111431 DOI: 10.1016/j.scitotenv.2024.175286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
The production of short-chain fatty acids (SCFAs) from sludge is promising, but the efficiency and product quality often vary because of extracellular polymeric substances (EPS) characteristics and pretreatment principles. This study adopted specific EPS disintegration pretreatment to treat different types of sludge. By correlation coefficient matrix analysis and correlation dynamics change resolution, the intrinsic relationships between the nature of EPS and the production of SCFAs from sludge was unveiled. We demonstrate that tight-bound EPS (TB-EPS) is a principal carbon reservoir, positively impacting SCFAs yields, in the fermentation system with EPS as the main fermentation substrate, it can contribute about 29.2 % for SCFAs growth during fermentation. Conversely, TB-EPS exhibits a negative correlation during fermentation due to EPS-SCFAs interconversion, while loosely bound EPS (LB-EPS) correlates positively. Proteins and polysaccharides in TB-EPS, especially proteins, significantly enhance individual SCFAs yields, predominantly acetic, propionic, and isovaleric acids. The findings would provide a theoretical basis for developing pretreatments and process-control technologies aimed at improving SCFAs production efficiency and quality.
Collapse
Affiliation(s)
- Xi-Qi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhe Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zhen Lin
- Shanghai Municipal Engineering Design & Research Institute (Group) Co. Ltd, Shanghai 200092, China
| | - Ying-Ke Fang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450002, China
| | - Qi Sun
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Kan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wen-Zong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
39
|
Ji X, Zhang X, Ju T, Zhou L, Jin D, Wu P. Mechanisms of inhibition and recovery under multi-antibiotic stress in anammox: A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122754. [PMID: 39366232 DOI: 10.1016/j.jenvman.2024.122754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/15/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
With the escalating global concern for emerging pollutants, particularly antibiotics, microplastics, and nanomaterials, the potential disruption they pose to critical environmental processes like anaerobic ammonia oxidation (anammox) has become a pressing issue. The anammox process, which plays a crucial role in nitrogen removal from wastewater, is particularly sensitive to external pollutants. This paper endeavors to address this knowledge gap by providing a comprehensive overview of the inhibition mechanisms of multi-antibiotic on anaerobic ammonia-oxidizing bacteria, along with insights into their recovery processes. The paper dives deeply into the various ways antibiotics interact with anammox bacteria, focusing specifically on their interference with the bacteria's extracellular polymers (EPS) - crucial components that maintain the structural integrity and functionality of the cells. Additionally, it explores how anammox bacteria utilize quorum sensing (QS) mechanisms to regulate their community structure and respond to antibiotic stress. Moreover, the paper summarizes effective removal methods for these antibiotics from wastewater systems, which is crucial for mitigating their inhibitory effects on anammox bacteria. Finally, the paper offers valuable insights into how anammox communities can recuperate from multi-antibiotic stress. This includes strategies for reintroducing healthy bacteria, optimizing operational conditions, and using bioaugmentation techniques to enhance the resilience of anammox communities. In summary, this paper not only enriches our understanding of the complex interactions between antibiotics and anammox bacteria but also provides theoretical and practical guidance for the treatment of antibiotic pollution in sewage, ensuring the sustainability and effectiveness of wastewater treatment processes.
Collapse
Affiliation(s)
- Xu Ji
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Ting Ju
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Li Zhou
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Da Jin
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
40
|
Li J, Yang W, Hao X, Lin Y, van Loosdrecht MCM. Little alginates synthesized in EPS: Evidences from high-throughput community and metagenes. WATER RESEARCH 2024; 265:122211. [PMID: 39137456 DOI: 10.1016/j.watres.2024.122211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/03/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
As a significant structure in activated sludge, extracellular polymeric substances (EPS) hold considerable value regarding resource recovery and applications. The present study aimed to elucidate the relationship between the microbial community and the composition and properties of EPS. A biological nutrient removal (BNR) reactor was set up in the laboratory and controlled under different solid retention times (SRT), altering microbial species within the system. Then EPS was extracted from activated and analyzed by chemical and spectroscopic methods. High-throughput sequencing and metagenomic approaches were employed to investigate bacterial community and metabolic pathways. The results showed that lower SRT with a higher abundance of the family-level Proteobacteria (27.7%-53.5%) favored EPS synthesis, while another dominant group Bacteroidetes (20.0%-32.6%) may not significantly affect EPS synthesis. Furthermore, the abundance of alginates-producing bacteria including Pseudomonas spp. and Azotobacter vinelandii was only 2.53%-6.76% and 1.98%-6.34%, respectively. The alginate synthesis pathway genes Alg8 and Alg44 were also present at very low levels (0.05‱-0.11‱, 0.01‱-0.02‱, respectively). Another important gene related to alginates operons, AlgK, was absent across all the SRT-operated reactors. These findings suggest an impossible and incomplete alginate synthesis pathway within sludge. In light of these results, it can be concluded that EPS does not necessarily contain alginate components.
Collapse
Affiliation(s)
- Ji Li
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Beijing Advanced Innovation Centre of Future Urban Design, Beijing University of Civil Engineering & Architecture, Beijing 100044, PR China; Dept. of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Wanbang Yang
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Beijing Advanced Innovation Centre of Future Urban Design, Beijing University of Civil Engineering & Architecture, Beijing 100044, PR China
| | - Xiaodi Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Beijing Advanced Innovation Centre of Future Urban Design, Beijing University of Civil Engineering & Architecture, Beijing 100044, PR China.
| | - Yuemei Lin
- Dept. of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Mark C M van Loosdrecht
- Dept. of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| |
Collapse
|
41
|
Li S, Xi Y, Chu Y, Li X, Li F, Ren N, Ho SH. Multi-dimensional perspectives into the pervasive role of microbial extracellular polymeric substances in electron transport processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175222. [PMID: 39098409 DOI: 10.1016/j.scitotenv.2024.175222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
During the process of biological treatment, most microorganisms are encapsulated in extracellular polymeric substances (EPS), which protect the cell from adverse environments and aid in microbial attachment. Microorganisms utilize extracellular electron transfer (EET) for energy and information interchange with other cells and the outside environment. Understanding the role of steric EPS in EET is critical for studying microbiology and utilizing microorganisms in biogeochemical processes, pollutant transformation, and bioenergy generation. However, the current study shows that understanding the roles of EPS in the EET processes still needs a great deal of research. In view of recent research, this work aims to systematically summarize the production and functional group composition of microbial EPS. Additionally, EET pathways and the role of EPS in EET processes are detailed. Then factors impacting EET processes in EPS are then discussed, with a focus on the spatial structure and composition of EPS, conductive materials and environmental pollution, including antibiotics, pH and minerals. Finally, strategies to enhance EET, as well as current challenges and future prospects are outlined in detail. This review offers novel insights into the roles of EPS in biological electron transport and the application of microorganisms in pollutant transformation.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Yucan Xi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Yuhao Chu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Xue Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Fengxiang Li
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
42
|
Zhang T, Yang X, Zeng Z, Li Q, Yu J, Deng H, Shi Y, Zhang H, Gerson AR, Pi K. Combined Remediation Effects of Sewage Sludge and Phosphate Fertilizer on Pb-Polluted Soil from a Pb-Acid Battery Plant. ENVIRONMENTAL MANAGEMENT 2024; 74:928-941. [PMID: 38376512 DOI: 10.1007/s00267-024-01948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/01/2024] [Indexed: 02/21/2024]
Abstract
Pb soil pollution poses a serious health risk to both the environment and humans. Immobilization is the most common strategy for remediation of heavy metal polluted soil. In this study, municipal sewage sludge was used as an amendment for rehabilitation of Pb-contaminated soils, for agricultural use, near a lead-acid battery factory. The passivation effect was further improved by the addition of phosphate fertilizer. It was found that the leachable Pb content in soils was decreased from 49.6 mg kg-1 to 16.1-36.6 mg kg-1 after remediation of sludge for 45 d at applied dosage of municipal sewage sludge of 4-16 wt%, and further decreased to 14.3-34.3 mg kg-1 upon extension of the remediation period to 180 d. The addition of phosphate fertilizer greatly enhanced the Pb immobilization, with leachable Pb content decreased to 2.0-23.6 mg kg-1 with increasing dosage of phosphate fertilizer in range of 0.8-16 wt% after 180 d remediation. Plant assays showed that the bioavailability of Pb was significantly reduced by the soil remediation, with the content of absorbed Pb in mung bean roots decreased by as much as 87.0%. The decrease in mobility and biotoxicity of the soil Pb is mainly attributed to the speciation transformation of carbonate, Fe-Mn oxides and organic matter bound Pb to residue Pb under the synergism of reduction effect of sludge and acid dissolution and precipitation effect of phosphate fertilizer. This study suggests a new method for remediation of Pb-contaminated soil and utilization of municipal sewage sludge resources.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Xiong Yang
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China.
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lake, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Zhijia Zeng
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Qiang Li
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Jiahai Yu
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Huiling Deng
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Yafei Shi
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lake, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Huiqin Zhang
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lake, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Andrea R Gerson
- Blue Minerals Consultancy, Wattle Grove, Tasmania, 7109, TAS, Australia
| | - Kewu Pi
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China.
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lake, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| |
Collapse
|
43
|
Wang T, Wang H, Li Z, Li X, Tsybekmitova G, Wang Y. Sulfide addition accelerates anammox sludge granulation and promotes microbial cooperation. WATER RESEARCH 2024; 268:122626. [PMID: 39418804 DOI: 10.1016/j.watres.2024.122626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/04/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
The granular anaerobic ammonium oxidation (anammox) system has attractive advantages in tolerance to environmental-stress and enhancement of nitrogen removal capacity. Sulfide addition can improve nitrogen removals in anammox systems via inducing sulfur denitrification, yet its function in the improvement of the property of anammox granular sludge remains unclear. Herein, we investigated the variations in the morphological and microbial properties of the anammox sludge response to different sulfide concentrations (Na2S: 10-100 mg/L) through a long-term experiment. By comparing the sludge diameter and heme c content, it comes that a relatively low sulfide (S/N [nitrate] molar ratio of 0.18-0.50) significantly promoted the average diameter and heme c concentration of sludge by 25-175 % and 75-95 %, respectively, compared to that of both without sulfide addition and a high sulfide addition (S/N > 0.85). This enhancement is primarily because a low amount of sulfide had stimulated the secretion of extracellular polymeric substance, induced slight biogenic sulfur accumulation as microbial nuclei, and facilitated the appropriate amount of filamentous bacteria proliferation. Microbial metabolism functions analyses revealed a robust granular anammox coupled with sulfur denitrification in the sulfide-mediated anammox reactor, and the assembled granules exhibited exceptional tolerance to environmental stress. Significantly, the anammox bacteria (Candidatus_Brocadia) dominating the granules displayed satisfactory anammox activity (21.8 ± 2.1 mg N/g VSS h), and their produced nitrate was efficiently removed by the sulfur-oxidizing bacteria (Thiobacillus) that predominantly occurred in the flocs. This collaboration ensured an efficient sulfide-mediated anammox granules system, achieving nitrogen removal efficiency exceeding 95 %. These results highlight the function of sulfide in improving the morphological property of anammox sludge as well as the creation of a favorable ecological niche for the functional microorganism, which is important to maintain the efficiency and robustness of the anammox process in treating wastewater.
Collapse
Affiliation(s)
- Tong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China.
| | - Zibin Li
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, PR China
| | - Gazhit Tsybekmitova
- Institute of Natural Resources, Ecology and Cryology, Siberian Branch of Russian Academy Science Nedorezova, 16a, Chita 672014, Russian Federation
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| |
Collapse
|
44
|
Fu Q, Li X, Xu Y, Ma X, Wang Y, Long S, Liu X, Wang D. How Does Triclocarban Affect Sulfur Transformation in Anaerobic Systems? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17959-17969. [PMID: 39322606 DOI: 10.1021/acs.est.4c07825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Triclocarban (TCC), as a typical antimicrobial agent, accumulates at substantial levels in natural environments and engineered systems. This work investigated the impact of TCC on anaerobic sulfur transformation, especially toxic H2S production. Experimental findings revealed that TCC facilitated sulfur flow from the sludge solid phase to liquid phase, promoted sulfate reduction and sulfur-containing amino acid degradation, and largely improved anaerobic H2S production, i.e., 50-600 mg/kg total suspended solids (TSS) TCC increased the cumulative H2S yields by 24.76-478.12%. Although TCC can be partially biodegraded in anaerobic systems, the increase in H2S production can be mainly attributed to the effect of TCC rather than its degradation products. TCC was spontaneously adsorbed by protein-like substances contained in microbe extracellular polymers (EPSs), and the adsorbed TCC increased the direct electron transfer ability of EPSs, possibly due to the increase in the content of electroactive polymer protein in EPSs, the polarization of the amide group C═O bond, and the increase of the α-helical peptide dipole moment, which might be one important reason for promoting sulfur bioconversion processes. Microbial analysis showed that the presence of TCC enriched the organic substrate-degrading bacteria and sulfate-reducing bacteria and increased the abundances of functional genes encoding sulfate transport and dissimilatory sulfate reduction.
Collapse
Affiliation(s)
- Qizi Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Xuemei Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Yunhao Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Xingyu Ma
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Yan Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Sha Long
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| |
Collapse
|
45
|
Fan T, Liu X, Sheng H, Ma M, Chen X, Yue Y, Sun J, Kalkhajeh YK. The enhancement effect of n-Fe 3O 4 on methyl orange reduction by nitrogen-fixing bacteria consortium. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135362. [PMID: 39116744 DOI: 10.1016/j.jhazmat.2024.135362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/18/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
Although the anaerobic reduction of azo dyes is ecofriendly, high ammonia consumption remains a significant challenge. This work enriched a mixed nitrogen-fixing bacteria consortium (NFBC) using n-Fe3O4 to promote the anaerobic reduction of methyl orange (MO) without exogenous nitrogen. The enriched NFBC was dominated by Klebsiella (80.77 %) and Clostridium (17.16 %), and achieved a 92.7 % reduction of MO with an initial concentration of 25 mg·L-1. Compared with the control, the consortium increased the reduction efficiency of MO, cytochrome c content, and electron transport system (ETS) activity by 11.86 %, 89.86 %, and 58.49 %, respectively. When using 2.5 g·L-1 n-Fe3O4, the extracellular polymeric substances (EPS) of NFBC were present in a concentration of 85.35 mg·g-1. The specific reduction rates of MO by NFBC were 2.26 and 3.30 times faster than those of Fe(II) and Fe(III), respectively, while the enrichment factor of the ribosome pathway in NFBC exceeded 0.75. Transcriptome, carbon consumption, and EPS analyses suggested that n-Fe3O4 stimulated carbon metabolism and secreted protein synthesized by the mixed culture. The latter occurred due to the increased activity of consortium and the content of redox substances. These findings demonstrate that n-Fe3O4 promoted the efficiency of mixed nitrogen-fixing bacteria for removing azo dyes from wastewater. This innovative approach highlights the potential of integrating nanomaterials with biological systems to effectively address complex pollution challenges.
Collapse
Affiliation(s)
- Ting Fan
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China.
| | - Xiaoqiang Liu
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China
| | - Huazeyu Sheng
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China
| | - Mengyao Ma
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China
| | - Xingyuan Chen
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China
| | - Yuchen Yue
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China
| | - Jingyi Sun
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China
| | - Yusef Kianpoor Kalkhajeh
- Department of Environmental Science, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, PR China
| |
Collapse
|
46
|
Li Y, Zhang HM. Calcined pyrite accelerates sulfur metabolic and electron transfer in driving targeted microbial fuel cell denitrification. BIORESOURCE TECHNOLOGY 2024; 410:131285. [PMID: 39151569 DOI: 10.1016/j.biortech.2024.131285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
The sulfur powder as electron donor in driving dual-chamber microbial fuel cell denitrification (S) process has the advantages in economy and pollution-free to treat nitrate-contained groundwater. However, the low efficiency of electron utilization in sulfur oxidation (ACE) is the bottleneck to this method. In this study, the addition of calcined pyrite to the S system (SCP) accelerated electron generation and intra/extracellular transfer efficiency, thereby improving ACE and denitrification performance. The highest nitrate removal rate reached to 3.55 ± 0.01 mg N/L/h in SCP system, and the ACE was 103 % higher than that in S system. More importantly, calcined pyrite enhanced the enrichment of functional bacteria (Burkholderiales, Thiomonas and Sulfurovum) and functional genes which related to sulfur metabolism and electron transfer. This study was more effective in removing nitrate from groundwater without compromising the water quality.
Collapse
Affiliation(s)
- Yue Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, PR China
| | - Han-Min Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, PR China.
| |
Collapse
|
47
|
He S, Zhao L, Liu Y, Feng L, Hu T, Gao Z, Zhao Q, Wei L, You S. Multiple drivers and mechanisms of solid-water interfacial interactions in sludge dewatering: Roles of polarity and molecular structure of extracellular polymeric substances. WATER RESEARCH 2024; 263:122180. [PMID: 39106620 DOI: 10.1016/j.watres.2024.122180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/09/2024] [Accepted: 07/28/2024] [Indexed: 08/09/2024]
Abstract
Water occurrence states in sewage sludge, influenced by sludge physicochemical properties, are crucial for sludge dewaterability and have recently been regarded as a research hotspot. Here, the multifold characteristics of sludge flocs during hydrothermal treatment, including rheological properties, solid-water interfacial interactions, and the polarity distribution and molecular structure of extracellular polymeric substances (EPS), were systematically investigated, and the impact of these characteristics on sludge dewaterability was explored in depth. Hydrothermal treatment at 80 °C and 100 °C induced the conversion of free water into bound water, while an increase in temperature to 180 °C resulted in a significant decrease in bound water content, approximately 4-fold lower than at 100 °C. In addition to the conventional view of decreased sludge surface hydrophilicity at high temperatures, the decline in bound water was associated with the reduction in sludge apparent viscosity. XAD resin fractionation identified the hydrophobic/hydrophilic EPS (HPO-/HPI) ratio as an important factor determining water occurrence states. Especially, hydrolysis of HPI-related hydrophilic proteins and subsequent increase in HPO-related tryptophan-like substances played a dominant role in reducing sludge viscosity and facilitating the release of bound water. Protein conformational analysis revealed that the disruption of α-helix structures and disulfide bonds significantly reduced EPS water-holding capacity, providing strong evidence for the potential of targeting these dense structure units to enhance sludge dewaterability. These findings provide a holistic understanding of multidimensional drivers of water occurrence states in sludge, and guide directions for optimizing sludge treatment efficiency through EPS modification.
Collapse
Affiliation(s)
- Shufei He
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lingxin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Liu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Likui Feng
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tianyi Hu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhelu Gao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Shijie You
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
48
|
Zahra SA, Persiani R, Dueholm MK, van Loosdrecht M, Nielsen PH, Seviour TW, Lin Y. Rethinking characterization, application, and importance of extracellular polymeric substances in water technologies. Curr Opin Biotechnol 2024; 89:103192. [PMID: 39216163 DOI: 10.1016/j.copbio.2024.103192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/20/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Biofilms play important roles in water technologies such as membrane treatments and activated sludge. The extracellular polymeric substances (EPS) are key components of biofilms. However, the precise nature of these substances and how they influence biofilm formation and behavior remain critical knowledge gaps. EPS are produced by many different microorganisms and span multiple biopolymer classes, which each require distinct strategies for characterization. The biopolymers additionally associate with each other to form insoluble complexes. Here, we explore recent progress toward resolving the structures and functions of EPS, where a shift towards direct functional assessments and advanced characterization techniques is necessary. This will enable integration with better microbial community and omics analyses to understand EPS biosynthesis pathways and create further opportunities for EPS control and valorization.
Collapse
Affiliation(s)
- Sasmitha A Zahra
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark
| | - Rozalia Persiani
- Department of Biotechnology, Delft University of Technology, 2628 Delft, the Netherlands
| | - Morten Kd Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Mark van Loosdrecht
- Department of Biotechnology, Delft University of Technology, 2628 Delft, the Netherlands
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Thomas W Seviour
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark.
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, 2628 Delft, the Netherlands.
| |
Collapse
|
49
|
Zhang H, Li B, Liu X, Qian T, Zhao D, Wang J, Zhang L, Wang T. Pyrite-stimulated bio-reductive immobilization of perrhenate: Insights from integrated biotic and abiotic perspectives. WATER RESEARCH 2024; 262:122089. [PMID: 39018586 DOI: 10.1016/j.watres.2024.122089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Microbes possessing electron transfer capabilities hold great promise for remediating subsurface contaminated by redox-active radionuclides such as technetium-99 (99TcO4-) through bio-transformation of soluble contaminants into their sparingly soluble forms. However, the practical application of this concept has been impeded due to the low electron transfer efficiency and long-term product stability under various biogeochemical conditions. Herein, we proposed and tested a pyrite-stimulated bio-immobilization strategy for immobilizing ReO4- (a nonradioactive analogue of 99TcO4-) using sulfate-reducing bacteria (SRB), with a focus on pure-cultured Desulfovibrio vulgaris. Pyrite acted as an effective stimulant for the bio-transformation of ReO4-, boosting the removal rate of ReO4- (50 mg/L) in a solution from 2.8 % (without pyrite) to 100 %. Moreover, the immobilized products showed almost no signs of remobilization during 168 days of monitoring. Dual lines of evidence were presented to elucidate the underlying mechanisms for the pyrite-enhanced bio-activity. Transcriptomic analysis revealed a global upregulation of genes associated with electron conductive cytochromes c network, extracellular tryptophan, and intracellular electron transfer units, leading to enhanced ReO4- bio-reduction. Spectroscopic analysis confirmed the long-term stability of the bio-immobilized products, wherein ReO4- is reduced to stable Re(IV) oxides and Re(IV) sulfides. This work provides a novel green strategy for remediation of radionuclides- or heavy metals-contaminated sites.
Collapse
Affiliation(s)
- Haoqing Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Taiyuan 030024, China
| | - Bo Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Taiyuan 030024, China
| | - Xiaona Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Taiyuan 030024, China
| | - Tianwei Qian
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Taiyuan 030024, China.
| | - Dongye Zhao
- Department of Civil, Construction and Environmental Engineering, San Diego State University, San Diego, CA 92182, United States.
| | - Jianhui Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Taiyuan 030024, China
| | - Lei Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Taiyuan 030024, China; Shanxi Low-Carbon Environmental Protection Industry Group Co. Ltd. Taiyuan 030032, China
| | - Ting Wang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| |
Collapse
|
50
|
Feng F, Yang Y, Liu Q, Wu S, Yun Z, Xu X, Jiang Y. Insights into the characteristics of changes in dissolved organic matter fluorescence components on the natural attenuation process of toluene. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134952. [PMID: 38944985 DOI: 10.1016/j.jhazmat.2024.134952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
Natural attenuation (NA) is of great significance for the remediation of contaminated groundwater, and how to identify NA patterns of toluene in aquifers more quickly and effectively poses an urgent challenge. In this study, the NA of toluene in two typical soils was conducted by means of soil column experiment. Based on column experiments, dissolved organic matter (DOM) was rapidly identified using fluorescence spectroscopy, and the relationship between DOM and the NA of toluene was established through structural equation modeling analysis. The adsorption rates of toluene in clay and sandy soil were 39 % and 26 %, respectively. The adsorption capacity and total NA capacity of silty clay were large. The occurrence of fluorescence peaks of protein-like components and specific products indicated the occurrence of biodegradation. Arenimonas, Acidovorax and Brevundimonas were the main degrading bacteria identified in Column A, while Pseudomonas, Azotobacter and Mycobacterium were the main ones identified in Column B. The pH, ORP, and Fe(II) were the most important factors affecting the composition of microbial communities, which in turn affected the NA of toluene. These results provide a new way to quickly identify NA of toluene.
Collapse
Affiliation(s)
- Fan Feng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yu Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qiyuan Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shuxuan Wu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhichao Yun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiangjian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yonghai Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|