1
|
Zhai X, Gao J, Jing S, Xia P, Xu Q, Zhang M, Qiao W. Application of atmospheric pressure plasma jet in membrane bioreactor for membrane fouling control: Performance evaluation and mechanism exploration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125336. [PMID: 40228469 DOI: 10.1016/j.jenvman.2025.125336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
The plasma plume generated by atmospheric pressure plasma jet (APPJ) can directly oxidize and decompose the sludge on the membrane surface in membrane bioreactor (MBR), and simultaneously modify the membrane surface, thus achieving the objective of membrane cleaning. Compared with NaClO cleaning, APPJ cleaning showed stronger performance in reducing membrane fouling. Furthermore, the average membrane fouling period using NaClO cleaning was 2.5 days, while that of APPJ cleaning increased to 3 days. The average total flux recovery ratio of the membrane after APPJ cleaning reached 85.6 %, which was higher than the 73.4 % after NaClO cleaning. The atmospheric pressure plasma plume could directly blow away the sludge on the membrane surface. Plasma generated reactive species, such as free radicals (•OH), H2O2 and O3 to destroy cells and decompose extracellular polymers into small molecules. Meanwhile, the reactive species degraded β-D-glucose polysaccharide and caused the cake layer on the membrane to be looser. APPJ cleaning could degrade signal molecules C6-HSL in the cake layer, thereby maintaining C8-HSL at low levels. In addition, the direct scanning of the plasma jet to the membrane resulted in a more hydrophilic, smoother, and more electronegative surface, which increased the anti-fouling performance of the membrane.
Collapse
Affiliation(s)
- Xiaopeng Zhai
- Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Jie Gao
- Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Siyi Jing
- Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Pengcheng Xia
- Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Qi Xu
- Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Ming Zhang
- Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China.
| | - Weichuan Qiao
- Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
2
|
Ran X, Qin H, Liu X, Chu C, Li Q, Zhao H, Mao S. Oxygen Reduction Reaction Coupled Electro-Oxidation for Highly-Efficient and Sustainable Water Treatment. Angew Chem Int Ed Engl 2025; 64:e202414481. [PMID: 39227999 DOI: 10.1002/anie.202414481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
Electro-oxidation (EO) technology demonstrates significant potential in wastewater treatment. However, the high energy consumption has become a pivotal constraint hindering its large-scale implementation. Herein, we design an EO and 4-electron oxygen reduction reaction coupled system (EO-4eORR) to replace the traditional EO and hydrogen evolution reaction (HER) coupled system (EO-HER). The theoretical cathodic potential of the electrolytic reactor is tuned from 0 V (vs. RHE) in HER to 1.23 V (vs. RHE) in 4eORR, which greatly decreases the required operation voltage of the reactor. Moreover, we demonstrate that convection can improve the mass transfer of oxygen and organic pollutants in the reaction system, leading to low cathodic polarization and high pollutant removal rate. Compared with traditional EO-HER system, the energy consumption of the EO-4eORR system under air aeration for 95 % total organic carbon (TOC) removal is greatly decreased to 2.61 kWh/kgTOC (only consider the electrolyzer energy consumption), which is superior to previously reported EO-based water treatment systems. The reported results in this study offer a new technical mode for development of highly efficient and sustainable EO-based treatment systems to remove organic pollutants in waste water.
Collapse
Affiliation(s)
- Xiaomeng Ran
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Hehe Qin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Xiangyun Liu
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Chengcheng Chu
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Qiuju Li
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Hongying Zhao
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Shun Mao
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
3
|
Olvera-Vargas H, Trellu C, Nidheesh PV, Mousset E, Ganiyu SO, Martínez-Huitle CA, Zhou M, Oturan MA. Challenges and opportunities for large-scale applications of the electro-Fenton process. WATER RESEARCH 2024; 266:122430. [PMID: 39278119 DOI: 10.1016/j.watres.2024.122430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
As an electrochemical advanced oxidation process, the electro-Fenton (EF) process has gained significant importance in the treatment of wastewater and persistent organic pollutants in recent years. As recently reported in a bibliometric analysis, the number of scientific publications on EF have increased exponentially since 2002, reaching nearly 500 articles published in 2022 (Deng et al., 2022). The influence of the main operating parameters has been thoroughly investigated for optimization purposes, such as type of electrode materials, reactor design, current density, and type and concentration of catalyst. Even though most of the studies have been conducted at a laboratory scale, focusing on fundamental aspects and their applications to degrade specific pollutants and treat real wastewater, important large-scale attempts have also been made. This review presents and discusses the most recent advances of the EF process with special emphasis on the aspects more closely related to future implementations at the large scale, such as applications to treat real effluents (industrial and municipal wastewaters) and soil remediation, development of large-scale reactors, costs and effectiveness evaluation, and life cycle assessment. Opportunities and perspectives related to the heterogeneous EF process for real applications are also discussed. This review article aims to be a critical and exhaustive overview of the most recent developments for large-scale applications, which seeks to arouse the interest of a large scientific community and boost the development of EF systems in real environments.
Collapse
Affiliation(s)
- Hugo Olvera-Vargas
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Morelos 62580, Mexico.
| | - Clément Trellu
- Laboratoire Géomatériaux et Environnement EA 4508, Université Gustave Eiffel, Cedex 2, Marne-la-Vallée 77454, France.
| | | | - Emmanuel Mousset
- Nantes Université, ONIRIS, CNRS, GEPEA, UMR 6144, F-85000 La Roche-sur-Yon, France
| | - Soliu O Ganiyu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton AB, T6G 2W2, Canada
| | - Carlos A Martínez-Huitle
- Institute of Chemistry, Federal University of Rio Grande do Norte, Lagoa Nova, CEP, Natal, RN 59078-970, Brazil
| | - Minghua Zhou
- Nankai University, College of Environmental Science and Engineering, Tianjin 300350, China
| | - Mehmet A Oturan
- Laboratoire Géomatériaux et Environnement EA 4508, Université Gustave Eiffel, Cedex 2, Marne-la-Vallée 77454, France.
| |
Collapse
|
4
|
Zhou L, Wu F, Ou P, Li H, Zhuang WQ. Non-electroactive bacteria behave variously in AnMBR biofilm control using electric field. WATER RESEARCH 2024; 268:122646. [PMID: 39432995 DOI: 10.1016/j.watres.2024.122646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Electroactive bacteria are often regarded as key players responding to electric fields that are used to control biofilm development during AnMBR (anaerobic membrane bioreactor) operation. Consequently, little attention has been given to non-electroactive bacteria in the same systems because of their incapability to acquire and transfer electrons directly. However, in this study, we identified some functionally important non-electroactive bacteria from biofilm established under low-voltage (0, 0.3, 0.5 and 1 V) electric fields in AnMBRs, designated as E-AnMBRs in this study. During the whole experiment, non-electroactive bacteria, mainly belonging to Proteobacteria, Bacteroidetes, and Chloroflexi, were found in all biofilm samples taken from each E-AnMBR. Under 0.3 V and 1 V conditions, non-electroactive bacteria did not seem to contribute to the development of biofilm significantly. Whereas under 0.5 V conditions, the growth of non-electroactive bacteria contributed up to 0.61 kPa/day biofilm formation. Therefore, 0.5 V was identified as a critical voltage, leading to the most severe biofilm formation. The microbial community structure in the reactor with a 0.5 V electric field was distinctly unique, caused by the increase of non-electroactive bacterial activity and the upregulation of their metabolic pathways. Notably, functional genes involved in carbon metabolism and oxidative phosphorylation pathway were upregulated. Furthermore, the 0.5 V electric field enhanced the protein/polysaccharide ratio and increased zeta potential to 31.6 mV (p < 0.01) of the biofilm samples. This was because upregulating quorum sensing genes accelerated the coordinated gene regulations and functional activities among non-electroactive bacteria.
Collapse
Affiliation(s)
- Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Fei Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Pingxiang Ou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Haixiang Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, PR China
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
5
|
Qi L, Yang Y, Yang Z, Qi J, Zhou Y, Zhu Z, Li J. Antifouling characteristics and mechanisms in visible-light photocatalytic membrane bioreactor based on g-C 3N 4 modified membrane. WATER RESEARCH 2024; 268:122581. [PMID: 39395364 DOI: 10.1016/j.watres.2024.122581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/22/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
A novel visible-light photocatalytic membrane bioreactor (R3) was constructed for membrane fouling control and effluent quality improvement. Specially, g-C3N4 modified membrane was evaluated for the performance of synergistic separation and photocatalysis. Another two parallel reactors, MBRs with ceramic membrane (R1) and g-C3N4 membrane in dark condition (R2), were operated synchronously for comparison. A satisfactory effluent quality was obtained in R3 with COD and NH4+-N around 22.0 mg/L and 1.02 mg/L during 60-day operation, which was superior to R1 (27.8, 1.42 mg/L) and R2 (29.9, 2.26 mg/L). The thickness of cake layer on membranes in R3 (2.46 μm) was thinner than R1 (3.52 μm) and R2 (4.97 μm) after operation, indicating the introduction of visible light could effectively mitigate membranes fouling. Moreover, microorganism community analysis revealed that visible light increased the relative abundance of Bacteroidetes and Chryseolinea, which not only enhanced the activity of microorganisms in metabolizing organic nutrients, but also improved the transfer and utilization of photogenerated electrons on the semiconductor-microorganism interface. The active aromatic protein metabolism and the upregulated related enzymes further demonstrated the synergistic effect of photocatalysis and microbial communities on the membrane fouling mitigation. This work provides a novel application of photocatalysis into antibiofouling effect in MBRs, and opens a strategy for bacteria inactivation and foulants removal with eco-friendly solar energy.
Collapse
Affiliation(s)
- Lanyue Qi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Yue Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China.
| | - Zhongcheng Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Junwen Qi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Yujun Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Zhigao Zhu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China.
| |
Collapse
|
6
|
Ni L, Wang P, Westerhoff P, Luo J, Wang K, Wang Y. Mechanisms and Strategies of Advanced Oxidation Processes for Membrane Fouling Control in MBRs: Membrane-Foulant Removal versus Mixed-Liquor Improvement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11213-11235. [PMID: 38885125 DOI: 10.1021/acs.est.4c02659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Membrane bioreactors (MBRs) are well-established and widely utilized technologies with substantial large-scale plants around the world for municipal and industrial wastewater treatment. Despite their widespread adoption, membrane fouling presents a significant impediment to the broader application of MBRs, necessitating ongoing research and development of effective antifouling strategies. As highly promising, efficient, and environmentally friendly chemical methods for water and wastewater treatment, advanced oxidation processes (AOPs) have demonstrated exceptional competence in the degradation of pollutants and inactivation of bacteria in aqueous environments, exhibiting considerable potential in controlling membrane fouling in MBRs through direct membrane foulant removal (MFR) and indirect mixed-liquor improvement (MLI). Recent proliferation of research on AOPs-based antifouling technologies has catalyzed revolutionary advancements in traditional antifouling methods in MBRs, shedding new light on antifouling mechanisms. To keep pace with the rapid evolution of MBRs, there is an urgent need for a comprehensive summary and discussion of the antifouling advances of AOPs in MBRs, particularly with a focus on understanding the realizing pathways of MFR and MLI. In this critical review, we emphasize the superiority and feasibility of implementing AOPs-based antifouling technologies in MBRs. Moreover, we systematically overview antifouling mechanisms and strategies, such as membrane modification and cleaning for MFR, as well as pretreatment and in-situ treatment for MLI, based on specific AOPs including electrochemical oxidation, photocatalysis, Fenton, and ozonation. Furthermore, we provide recommendations for selecting antifouling strategies (MFR or MLI) in MBRs, along with proposed regulatory measures for specific AOPs-based technologies according to the operational conditions and energy consumption of MBRs. Finally, we highlight future research prospects rooted in the existing application challenges of AOPs in MBRs, including low antifouling efficiency, elevated additional costs, production of metal sludge, and potential damage to polymeric membranes. The fundamental insights presented in this review aim to elevate research interest and ignite innovative thinking regarding the design, improvement, and deployment of AOPs-based antifouling approaches in MBRs, thereby advancing the extensive utilization of membrane-separation technology in the field of wastewater treatment.
Collapse
Affiliation(s)
- Lingfeng Ni
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
| | - Kaichong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
7
|
Liu L, Guo Z, Wang Y, Yin L, Zuo W, Tian Y, Zhang J. Low energy-consumption oriented membrane fouling control strategy in anaerobic fluidized membrane bioreactor. CHEMOSPHERE 2024; 359:142254. [PMID: 38714253 DOI: 10.1016/j.chemosphere.2024.142254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Anaerobic fluidized membrane bioreactors (AFMBR) has attracted growing interest as an emerging wastewater treatment technology towards energy recovery from wastewater. AFMBR combines the advantages of anaerobic digestion and membrane bioreactors and shows great potential in overcoming limiting factors such as membrane fouling and low efficiency in treating low-strength wastewater such as domestic sewage. In AFMBR, the fluidized media performs significant role in reducing the membrane fouling, as well as improving the anaerobic microbial activity of AFMBRs. Despite extensive research aimed at mitigating membrane fouling in AFMBR, there has yet to emerge a comprehensive review focusing on strategies for controlling membrane fouling with an emphasis on low energy consumption. Thus, this work overviews the recent progress of AFMBR by summarizing the factors of membrane fouling and energy consumption in AFMBR, and provides targeted in-depth analysis of energy consumption related to membrane fouling control. Additionally, future development directions for AFMBR are also outlooked, and further promotion of AFMBR engineering application is expected. By shedding light on the relationship between energy consumption and membrane fouling control, this review offers a useful information for developing new AFMBR processes with an improved efficiency, low membrane fouling and low energy consumption, and encourages more research efforts and technological advancements in the domain of AFMBR.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Ze Guo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yihe Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Linlin Yin
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
8
|
Jia Y, Li H, Zhao H, Zhang G, Zhang Z, Zhang X, Zhou W. A new strategy for improving the energy efficiency of electro-Fenton: Using N-doped activated carbon cathode with strong Fe(III) adsorption capacity to promote Fe(II) regeneration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120823. [PMID: 38583380 DOI: 10.1016/j.jenvman.2024.120823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Fe(II) regeneration plays a crucial role in the electro-Fenton process, significantly influencing the rate of ·OH formation. In this study, a method is proposed to improve Fe(II) regeneration through N-doping aimed at enhancing the adsorption capacity of the activated carbon cathode for Fe(III). N-doping not only enriched the pore structure on the surface of activated carbon, providing numerous adsorption sites, but also significantly increased the adsorption energy for Fe(III). Among the types of nitrogen introduced, pyridine-N exhibited the most substantial enhancement effect, followed by pyrrole-N, while graphite-N showed a certain degree of inhibition. Furthermore, N-doping facilitated the adsorption of all forms of Fe(III) by activated carbon. The adsorption and electrosorption rates of the NAC-900 electrode for Fe(III) were 30.33% and 42.36%, respectively. Such modification markedly enhanced the Fe3+/Fe2+ cycle within the electro-Fenton system. The NAC-900 system demonstrated an impressive phenol degradation efficiency of 93.67%, alongside the lowest electricity consumption attributed to the effective "adsorption-reduction" synergy for Fe(III) on the NAC-900 electrode. Compared to the AC cathode electro-Fenton system, the degradation efficiency of the NAC-900 cathode electro-Fenton system at pH = levels ranging from 3 to 5 exceeded 90%; thus, extending the pH applicability of the electro-Fenton process. The degradation efficiency of phenol using the NAC-900 cathode electro-Fenton system in various water matrices approached 90%, indicating robust performance in real wastewater treatment scenarios. This research elucidates the impact of cathodic Fe(III) adsorption on Fe(II) regeneration within the electro-Fenton system, and clarifies the influence of different N- doping types on the cathodic adsorption of Fe(III).
Collapse
Affiliation(s)
- Yongying Jia
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing, Heilongjiang, 163318, China
| | - Hongguang Li
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing, Heilongjiang, 163318, China
| | - Haiqian Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China.
| | - Guole Zhang
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing, Heilongjiang, 163318, China
| | - Zhuangzhuang Zhang
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing, Heilongjiang, 163318, China
| | - Xiaolong Zhang
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing, Heilongjiang, 163318, China
| | - Wei Zhou
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| |
Collapse
|
9
|
Yang Y, Wang R, Zhou J, Qiao S. Removal of ofloxacin using a porous carbon microfiltration membrane based on in-situ generated •OH. ENVIRONMENTAL RESEARCH 2024; 244:117837. [PMID: 38065381 DOI: 10.1016/j.envres.2023.117837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023]
Abstract
This study investigated the removal performance of ofloxacin (OFL) by a novel electro-Fenton enhanced microfiltration membrane. The membranes used in this study consisted of metal-organic framework derived porous carbon, carbon nanotubes and Fe2+, which were able to produce hydroxyl radicals (•OH) in-situ via reducing O2 to hydrogen peroxide. Herein, membrane filtration with bias not only concentrated the pollutants to the level that could be efficiently treated by electro-Fenton but also confined/retained the toxic intermediates within the membrane to ensure a prolonged contact time with the oxidants. After validated by experiments, the applied bias of -1.0 V, pH of 3 and electrolyte concentration of 0.1 M were the relatively optimum conditions for OFL degradation. Under these conditions, the average OFL removal rate could be reach 75% with merely 5% membrane flux loss after 4 cycles operation by filtrating 1 mg/L OFL. Via decarboxylation reaction, piperazinyl ring opening, dealkylation and ipso substitution reaction, etc., OFL could be gradually and efficiently degraded to intermediate products and even to CO2 by •OH. Moreover, the oxidation reaction was preferred to following first-order reaction kinetics. This research verified a possibility for antibiotic removal by electro-enhanced microfiltration membrane.
Collapse
Affiliation(s)
- Yue Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Ruiyu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Sen Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
10
|
Jiang W, Haider MR, Duan Y, Han J, Ding Y, Mi B, Wang A. Metal-free electrified membranes for contaminants oxidation: Synergy effect between membrane rejection and nanoconfinement. WATER RESEARCH 2024; 248:120862. [PMID: 37976953 DOI: 10.1016/j.watres.2023.120862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/04/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Electro-Fenton processes are frequently impeded by depletion of metal catalysts, unbalance between H2O2 generation and activation, and low concentration of reactive species (e.g., •OH) in the bulk solution. A metal-free electro-Fenton membrane was fabricated with nitrogen-doped carbon nanotube (N-CNT) and reduced graphene oxide (RGO). N-CNT acted as a catalyst for both H2O2 generation and activation, while the incorporated RGO served as the second catalyst for H2O2 generation and improved the performance of membrane rejection. The electrified membrane was optimized in terms of nitrogen precursors selection and composition of N-CNT and RGO to achieve optimal coupling between H2O2 generation and activation. The membrane fabricated with 67% mass of N-CNT with urea as the precursor achieved over 95% removal of the target contaminants in a single pass through the membrane with a water flux of 63 L m-2 h-1. This membrane also exhibited efficient transformation of various concentrations of contaminants (i.e., 1-10 mg L-1) over a broad range of pH (i.e., 3-9). Due to its good durability and low energy consumption, the metal-free electro-Fenton membrane holds promise for practical water treatment application. The concentration-catalytic oxidation model elucidated that the elevated contaminant concentration near the membrane surface enhanced the transformation rate by 40%. The nanoconfinement enhanced the transformation rate constant inside the membrane by a factor of 105 because of elevated •OH concentration inside the nanopores. Based on the prediction of this model, the configuration of the membrane reactor has been optimized.
Collapse
Affiliation(s)
- Wenli Jiang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China; Department of Civil & Environmental Engineering, University of California, Berkeley, CA 94720, United States; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Muhammad Rizwan Haider
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Yanghua Duan
- Department of Civil & Environmental Engineering, University of California, Berkeley, CA 94720, United States
| | - Jinglong Han
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China.
| | - Yangcheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Baoxia Mi
- Department of Civil & Environmental Engineering, University of California, Berkeley, CA 94720, United States.
| | - Aijie Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| |
Collapse
|
11
|
Deng F, Olvera-Vargas H, Zhou M, Qiu S, Sirés I, Brillas E. Critical Review on the Mechanisms of Fe 2+ Regeneration in the Electro-Fenton Process: Fundamentals and Boosting Strategies. Chem Rev 2023; 123:4635-4662. [PMID: 36917618 DOI: 10.1021/acs.chemrev.2c00684] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
This review presents an exhaustive overview on the mechanisms of Fe3+ cathodic reduction within the context of the electro-Fenton (EF) process. Different strategies developed to improve the reduction rate are discussed, dividing them into two categories that regard the mechanistic feature that is promoted: electron transfer control and mass transport control. Boosting the Fe3+ conversion to Fe2+ via electron transfer control includes: (i) the formation of a series of active sites in both carbon- and metal-based materials and (ii) the use of other emerging strategies such as single-atom catalysis or confinement effects. Concerning the enhancement of Fe2+ regeneration by mass transport control, the main routes involve the application of magnetic fields, pulse electrolysis, interfacial Joule heating effects, and photoirradiation. Finally, challenges are singled out, and future prospects are described. This review aims to clarify the Fe3+/Fe2+ cycling process in the EF process, eventually providing essential ideas for smart design of highly effective systems for wastewater treatment and valorization at an industrial scale.
Collapse
Affiliation(s)
- Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China.,Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Hugo Olvera-Vargas
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco S/N, Col. Centro, Temixco, Morelos CP 62580, México
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Shan Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
12
|
Xue C, Cao Z, Tong X, Yang P, Li S, Chen X, Liu D, Huang W. Investigation of CuCoFe-LDH as an efficient and stable catalyst for the degradation of acetaminophen in heterogeneous electro-Fenton system: Key operating parameters, mechanisms and pathways. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 327:116787. [PMID: 36442449 DOI: 10.1016/j.jenvman.2022.116787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/02/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Pharmaceuticals, as anthropogenic pollutants in a wide range of water sources, generally require specific treatment methods for degradation. A trimetallic layered double hydroxide (CuCoFe-LDH) was successfully fabricated by coprecipitation and applied as a novel heterogeneous electro-Fenton (EF) catalyst for the degradation of acetaminophen (ACT) from aqueous environments. The EF experiments showed that the CuCoFe-LDH/EF process achieved 100% of ACT degradation efficiency within 60 min at pH = 5, catalyst dosage of 0.50 g/L, current density of 10 mA/cm2 and initial ACT concentration of 20 mg/L. An impressive (>80%) mineralization of ACT was obtained over a wide pH range (pH 3-9) after 180 min. Meanwhile, the role of ·OH and O2.- were certified by radical quenching experiments and electron paramagnetic resonance (EPR) analysis. Through mechanism exploration, the coexistence of Cu and Co on Fe-based LDHs can accelerate the interfacial electron transfer and promote the formation of the reactive oxygen species (ROS), thus facilitating the EF process. Furthermore, the degradation by-products and possible degradation pathways of ACT in the CuCoFe-LDH/EF process were proposed. The reusability test and the treatment of various typical organic pollutants experiments indicated that the CuCoFe-LDH/EF process has excellent stability and broad application prospects. This work provides a valuable reference for the treatment of pharmaceuticals by the heterogeneous EF process in a wide range of pH.
Collapse
Affiliation(s)
- Cheng Xue
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zhenhua Cao
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiaoqin Tong
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Peizhen Yang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Songrong Li
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xi Chen
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Dongfang Liu
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Wenli Huang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
13
|
Zheng W, Xu J, Wang L, Zhang J, Chu W, Liu J, Lu L, Cai C, Peng K, Huang X. Electro-enhanced Rapid Separation of Nanosized Oil Droplets from Emulsions via the Superhydrophilic Micro-sized Pore Membrane. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
14
|
Ilyas A, Vankelecom IFJ. Designing sustainable membrane-based water treatment via fouling control through membrane interface engineering and process developments. Adv Colloid Interface Sci 2023; 312:102834. [PMID: 36634445 DOI: 10.1016/j.cis.2023.102834] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/05/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Membrane-based water treatment processes have been established as a powerful approach for clean water production. However, despite the significant advances made in terms of rejection and flux, provision of sustainable and energy-efficient water production is restricted by the inevitable issue of membrane fouling, known to be the major contributor to the elevated operating costs due to frequent chemical cleaning, increased transmembrane resistance, and deterioration of permeate flux. This review provides an overview of fouling control strategies in different membrane processes, such as microfiltration, ultrafiltration, membrane bioreactors, and desalination via reverse osmosis and forward osmosis. Insights into the recent advancements are discussed and efforts made in terms of membrane development, modules arrangement, process optimization, feed pretreatment, and fouling monitoring are highlighted to evaluate their overall impact in energy- and cost-effective water treatment. Major findings in four key aspects are presented, including membrane surface modification, modules design, process integration, and fouling monitoring. Among the above mentioned anti-fouling strategies, a large part of research has been focused on membrane surface modifications using a number of anti-fouling materials whereas much less research has been devoted to membrane module advancements and in-situ fouling monitoring and control. At the end, a critical analysis is provided for each anti-fouling strategy and a rationale framework is provided for design of efficient membranes and process for water treatment.
Collapse
Affiliation(s)
- Ayesha Ilyas
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium
| | - Ivo F J Vankelecom
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium.
| |
Collapse
|
15
|
Wang L, Niu J, Gao S, Liu Z, Wu S, Huang M, Li H, Zhu M, Yuan R. Breakthrough in controlling membrane fouling and complete demulsification via electro-fenton pathway: Principle and mechanisms. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Dong C, Fang W, Yi Q, Zhang J. A comprehensive review on reactive oxygen species (ROS) in advanced oxidation processes (AOPs). CHEMOSPHERE 2022; 308:136205. [PMID: 36049639 DOI: 10.1016/j.chemosphere.2022.136205] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/03/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
In this account, the reactive oxygen species (ROS) were comprehensively reviewed, which were based on electro-Fenton and photo-Fenton processes and correlative membrane filtration technology. Specifically, this review focuses on the fundamental principles and applications of advanced oxidation processes (AOPs) based on a series of nanomaterials, and we compare the pros and cons of each method and point out the perspective. Further, the emerging reviews regarding AOPs rarely emphasize the involved ROS and consider the convenience of radical classification and transformation mechanism, such a review is of paramount importance to be needed. Owing to the strong oxidation ability of radical (e.g., •OH, O2•-, and SO4•-) and non-radical (e.g., 1O2 and H2O2), these ROS would attack the organic contaminants of emerging concern, thus achieving the goal of environmental remediation. Hopefully, this review can offer detailed theoretical guidance for the researchers, and we believe it able to offer the frontier knowledge of AOPs for wastewater treatment plants (WWTPs).
Collapse
Affiliation(s)
- Chencheng Dong
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Wenzhang Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China
| | - Qiuying Yi
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China.
| |
Collapse
|
17
|
Dong J, Li G, Gao J, Zhang H, Bi S, Liu S, Liao C, Jiang G. Catalytic degradation of brominated flame retardants in the environment: New techniques and research highlights. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157695. [PMID: 35908699 DOI: 10.1016/j.scitotenv.2022.157695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/09/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Due to the extensive commercial use of brominated flame retardants (BFRs), human beings are chronically exposed to BFRs, causing great harms to human health, which imposes urgent demands to degrade them in the environment. Among various degradation techniques, catalytic degradation has been proven to be outstanding because of its rapidness and effectiveness. Therefore, much attention has been given to catalytic degradation, especially the extensively studied photocatalytic degradation and nanocatalytic reduction techniques. Recently, some novel advanced catalytic techniques have been developed and show excellent catalytic degradation efficiency for BFRs, including natural substances catalytic degradation, new Fenton catalytic degradation, new chemical reagent catalytic degradation, new material catalytic degradation, electrocatalytic degradation, plasma catalytic degradation, and composite catalytic degradation systems. In addition to the common features of traditional catalytic techniques, these novel techniques possess their own specific advantages in various aspects. Therefore, this review summarized the degradation mechanism of BFRs by the above new catalytic degradation methods under the laboratory conditions, simulated real environment, and real environment conditions, and further evaluated their advantages and disadvantages, aiming to provide some research ideas for the catalytic degradation of BFRs in the environment in the future. We suggested that more attention should focus on features of novel catalytic techniques, including eco-friendliness, cost-effectiveness, and pragmatic usefulness.
Collapse
Affiliation(s)
- Jingcun Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jia Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - He Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shihao Bi
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Wang Z, Xiao F, Shen X, Zhang D, Chu W, Zhao H, Zhao G. Electronic Control of Traditional Iron-Carbon Electrodes to Regulate the Oxygen Reduction Route to Scale Up Water Purification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13740-13750. [PMID: 36130282 DOI: 10.1021/acs.est.2c03673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Shifting four-electron (4e-) oxygen reduction in fuel cell technology to a two-electron (2e-) pathway with traditional iron-carbon electrodes is a critical step for hydroxyl radical (HO•) generation. Here, we fabricated iron-carbon aerogels with desired dimensions (e.g., 40 cm × 40 cm) as working electrodes containing atomic Fe sites and Fe3C subnanoclusters. Electron-donating Fe3C provides electrons to FeN4 through long-range activation for achieving the ideal electronic configuration, thereby optimizing the binding energy of the *OOH intermediate. With an iron-carbon aerogel benefiting from finely tuned electronic density, the selectivity of 2e- oxygen reduction increased from 10 to 90%. The resultant electrode exhibited unexpectedly efficient HO• production and fast elimination of organics. Notably, the kinetic constant kM for sulfamethoxazole (SMX) removal is 60 times higher than that in a traditional iron-carbon electrode. A flow-through pilot device with the iron-carbon aerogel (SA-Fe0.4NCA) was built to scale up micropolluted water decontamination. The initial total organic carbon (TOC) value of micropolluted water was 4.02 mg L-1, and it declined and maintained at 2.14 mg L-1, meeting the standards for drinking water quality in China. Meanwhile, the generation of emerging aromatic nitrogenous disinfection byproducts (chlorophenylacetonitriles) declined by 99.2%, satisfying the public safety of domestic water. This work provides guidance for developing electrochemical technologies to satisfy the flexible and economic demand for water purification, especially in water-scarce areas.
Collapse
Affiliation(s)
- Zining Wang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Fan Xiao
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuqian Shen
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Di Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Hongying Zhao
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Guohua Zhao
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
19
|
Integration of in situ Fenton-like self-cleaning and photothermal membrane distillation for wastewater treatment via Co-MoS2/CNT catalytic membrane. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Gharibian S, Hazrati H. Towards practical integration of MBR with electrochemical AOP: Improved biodegradability of real pharmaceutical wastewater and fouling mitigation. WATER RESEARCH 2022; 218:118478. [PMID: 35472746 DOI: 10.1016/j.watres.2022.118478] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/26/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
In the current study, we report enhanced treatment of real pharmaceutical wastewater by integration of Electrooxidation (EO) with Membrane Bio-Reactor (MBR) for the first time. Integrated pre-pilot EO-MBR plant consisted of a 3D printed electrochemical flowcell equipped with graphite electrodes installed in the effluent recirculation line of an MBR equipped with a hollow fiber membrane module. Results demonstrated that 5 V was the optimum voltage level for an isolated EO system. Isolated EO system led to 40% COD removal and 2.5 fold biodegradability index (BOD5/COD) improvement after 24 hr treatment at the optimum voltage of 5 V and 160 mL.min-1 flowrate. Almost complete removal of COD and BOD5 was observed for the EO-MBR system with 160 mL.min-1 recirculation rate and 24 hr HRT, while respective values were 60 and 87% for the MBR system at same operational conditions. Oxidation of pharmaceutical compounds identified in real wastewater and the fate of main oxidation-recalcitrant by-products were confirmed using liquid chromatography techniques. In addition, the integrated EO-MBR system led to significant membrane fouling mitigation with a 28 day extended operational time before reaching the Trans Membrane Pressure (TMP) limit value of 30 kPa. Measurements revealed reduced Extracellular Polymeric Substances (EPS) Concentration of membrane sludge cake layer of EO-MBR along with significant reduction of proteinaceous compounds in the LB-EPS fraction of cake layer in comparison with isolated MBR system. Fouling behavior improvement of the EO-MBR system was attributed to the electrophilic attack of electrochemically generated hydroxyl radicals to the electron-rich moieties of EPS organic foulants. Reduced proteinaceous/humic-like substances of LB-EPS from the cake layer were further confirmed by Emission Excitation matrix (EEM) and Fourier Transform InfraRed (FTIR) spectroscopic methods. The results of current research provide a helpful basis for future studies by elucidating the complex operating/fouling mechanism of integrated Advanced Oxidation Processes (AOPs) with MBR systems for enhanced treatment of organics polluted wastewaters with low biodegradability.
Collapse
Affiliation(s)
- Soorena Gharibian
- Faculty of Chemical Engineering, Sahand University of Technology, Sahand New Town, East Azerbaijan, P.O. Box: 51335-1996, Iran; Environmental Engineering Research Center, Sahand University of Technology, Sahand New Town, Iran; Biotechnology Research Center, Sahand University of Technology, Sahand New Town, Iran
| | - Hossein Hazrati
- Faculty of Chemical Engineering, Sahand University of Technology, Sahand New Town, East Azerbaijan, P.O. Box: 51335-1996, Iran; Environmental Engineering Research Center, Sahand University of Technology, Sahand New Town, Iran; Biotechnology Research Center, Sahand University of Technology, Sahand New Town, Iran.
| |
Collapse
|
21
|
Ni L, Wang T, Wang K, Ma J, Wang Y. Novel Control Strategy for Membrane Biofouling by Surface Loading of Aerobically and Anaerobically Applicable Photocatalytic Optical Fibers Based on a Z-Scheme Heterostructure Zr-MOFs/rGO/Ag 3PO 4 Photocatalyst. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6608-6620. [PMID: 35476428 DOI: 10.1021/acs.est.1c08031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The high replacement cost of modified membranes in antibiofouling application is inevitable. Here, surface-loaded photocatalytic optical fibers (POFs) were developed as antibiofouling strategies to replace membrane modification. To prepare aerobically and anaerobically applicable POFs, novel visible light-driven zirconium-based metal-organic framework/reduced graphene oxide/Ag3PO4 (Zr-MOFs/rGO/Ag3PO4) Z-scheme heterojunctions were constructed and coated on optical fibers. After loading the POFs on the membrane surface, the antibiofouling capability of the POFs was demonstrated during membrane filtration of bacteria and foulants under visible light irradiation. The disinfection efficiencies of the POFs against Escherichia coli and Staphylococcus aureus reached 95.7 and 92.4%, respectively, by aerobic treatment and 90.3 and 85.5%, respectively, by anaerobic treatment. For the inactivated bacteria, cell membrane and membrane-associated functions were destroyed, accompanied by antioxidant enzyme decomposition, loss of cell respiration and adenosine triphosphate (ATP) synthesis capacity, and leakage and oxidation of protein, lipid, potassium, DNA, and RNA. During membrane filtration of model foulants and membrane bioreactor sludge, the POFs significantly alleviated the membrane flux decline by foulant disintegration. By qualitative and quantitative detection and quenching tests of reactive species, aerobically generated •O2- and •OH and anaerobically generated •OH from POFs played dominant roles in the antibiofouling process. This work provides unique insights into membrane fouling control based on environmentally friendly and efficient photocatalytic technology.
Collapse
Affiliation(s)
- Lingfeng Ni
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Tong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Kaichong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Jie Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
22
|
Meta-analysis of electrically conductive membranes: A comparative review of their materials, applications, and performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
23
|
Wang Y, Li S, Hou C, Jing L, Ren R, Ma L, Wang X, Wang J. Biomass-based carbon fiber/MOFs composite electrode for electro-Fenton degradation of TBBPA. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Hu T, Tang L, Feng H, Zhang J, Li X, Zuo Y, Lu Z, Tang W. Metal-organic frameworks (MOFs) and their derivatives as emerging catalysts for electro-Fenton process in water purification. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214277] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Liu M, Feng Z, Luan X, Chu W, Zhao H, Zhao G. Accelerated Fe 2+ Regeneration in an Effective Electro-Fenton Process by Boosting Internal Electron Transfer to a Nitrogen-Conjugated Fe(III) Complex. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6042-6051. [PMID: 33616409 DOI: 10.1021/acs.est.0c08018] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The regeneration rate of Fe2+ from Fe3+ dictates the performance of the electro-Fenton (EF) process, represented by the amount of produced hydroxyl radicals (·OH). Current strategies for the acceleration of Fe2+ regeneration normally require additional chemical reagents, to vary the redox potential of Fe2+/Fe3+. Here, we report an attempt at using the intrinsic property of the electrode to our advantage, i.e., nitrogen-doped carbon aerogel (NDCA), as a reducing agent for the regeneration of Fe2+ without using foreign reagents. Moreover, the pyrrolic N in NDCA provides unpaired electrons through the carbon framework to reduce Fe3+, while the graphitic and pyridinic N coordinate with Fe3+ to form a C-O-Fe-N2 bond, facilitating electron transfer from both the external circuit and pyrrolic N to Fe3+. Our Fe2+/NDCA-EF system exhibits a 5.8 ± 0.3 times higher performance, in terms of the amount of generated ·OH, than a traditional Fenton system using the same Fe2+ concentration. In the subsequent reaction, the Fe2+/NDCA-EF system demonstrates 100.0% removal of dimethyl phthalate, 3-chlorophenol, bisphenol A, and sulfamethoxazole with a low specific energy consumption of 0.17-0.36 kW·h·g-1. Furthermore, 90.1 ± 0.6% removal of dissolved organic carbon and 83.3 ± 0.9% removal of NH3-N are achieved in the treatment of domestic sewage. The purpose of this work is to present a novel strategy for the regeneration of Fe2+ in the EF process and also to elucidate the role of different N species of the carbonaceous electrode in contributing to the redox cycle of Fe2+/Fe3+.
Collapse
Affiliation(s)
- Mingyue Liu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Zhiyuan Feng
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Xinmiao Luan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Hongying Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| |
Collapse
|
26
|
Electro-enhanced heterogeneous activation of peroxymonosulfate via acceleration of Fe(III)/Fe(II) redox cycle on Fe-B catalyst. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Zheng M, Yang Y, Qiao S, Zhou J, Quan X. A porous carbon-based electro-Fenton hollow fiber membrane with good antifouling property for microalgae harvesting. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Liu L, Li K, Zhao S, Wang J, Lan H, Wang J. The effects of electrophoresis, bubbles and electroosmosis for conductive membrane performance in the electro-filtration process. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Wei K, Cui T, Huang F, Zhang Y, Han W. Membrane Separation Coupled with Electrochemical Advanced Oxidation Processes for Organic Wastewater Treatment: A Short Review. MEMBRANES 2020; 10:membranes10110337. [PMID: 33198324 PMCID: PMC7697808 DOI: 10.3390/membranes10110337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 11/25/2022]
Abstract
Research on the coupling of membrane separation (MS) and electrochemical advanced oxidation processes (EAOPs) has been a hot area in water pollution control for decades. This coupling aims to greatly improve water quality and focuses on the challenges in practical application to provide a promising solution to water shortage problems. This article provides a summary of the coupling configurations of MS and EAOPs, including two-stage and one-pot processes. The two-stage process is a combination of MS and EAOPs where one process acts as a pretreatment for the other. Membrane fouling is reduced when setting EAOPs before MS, while mass transfer is promoted when placing EAOPs after MS. A one-pot process is a kind of integration of two technologies. The anode or cathode of the EAOPs is fabricated from porous materials to function as a membrane electrode; thus, pollutants are concurrently separated and degraded. The advantages of enhanced mass transfer and the enlarged electroactive area suggest that this process has excellent performance at a low current input, leading to much lower energy consumption. The reported conclusions illustrate that the coupling of MS and EAOPs is highly applicable and may be widely employed in wastewater treatment in the future.
Collapse
Affiliation(s)
- Kajia Wei
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (K.W.); (T.C.); (F.H.)
| | - Tao Cui
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (K.W.); (T.C.); (F.H.)
- Nanjing Research Institute of Electronic Engineering, Nanjing 210007, China
| | - Fang Huang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (K.W.); (T.C.); (F.H.)
| | - Yonghao Zhang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (K.W.); (T.C.); (F.H.)
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
- Correspondence: (Y.Z.); (W.H.)
| | - Weiqing Han
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (K.W.); (T.C.); (F.H.)
- Correspondence: (Y.Z.); (W.H.)
| |
Collapse
|