1
|
Zhang H, Su P, Jiang M, Liu C, Lv Q, Li W, Hou X, Zhou J, Li S, Zhang B, Zhang B, Ma J, Yang T. Efficient permanganate activation under UV 222 nm irradiation for enhanced pollutant abatement. WATER RESEARCH 2025; 283:123830. [PMID: 40393332 DOI: 10.1016/j.watres.2025.123830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 04/23/2025] [Accepted: 05/12/2025] [Indexed: 05/22/2025]
Abstract
As an emerging advanced oxidation process (AOP), the ultraviolet (UV)-driven permanganate [Mn(VII)] activation process has drawn increasing attention in water treatment. Hydroxyl radical (HO•) and various reactive manganese species (RMnS) were simultaneously generated, resulting in enhanced pollutant abatement. However, Mn(VII) activation efficiency by the current UV lights was quite limited, with unsatisfactory apparent quantum yields of Mn(VII) (Φapp, Mn(VII) < 0.25 mol/Einstein). Recently, the krypton chloride (KrCl*) excimer lamp, which emits UV light mainly at 222 nm (UV222), has received growing interest due to its superior photon energy, safety, environmental friendliness, and lifespan compared with currently applied UV lamps. Herein, the KrCl* excimer lamp was applied to activate Mn(VII) for the first time. Φapp, Mn(VII) was determined to be as high as 0.65 mol/Einstein in UV222/Mn(VII). The fluence-based pseudo-first-order reaction rate constants of target pollutants (flumequine and 4-hydroxybenzoic acid) in UV222/Mn(VII) were several to thousands of times higher than those in other UV/Mn(VII) AOPs reported in literature, suggesting significantly higher efficiency of UV222 in Mn(VII) activation. Compared with HO•, RMnS played more significant roles in pollutant abatement. The total contributions of RMnS to pollutant abatement were approximately 60-70% under pH 4.0-9.0, while the contributions of HO• were around 10-25%. Moreover, hypomanganate [Mn(V)] was important RMnS responsible for the abatement of two pollutants, while the role of trivalent manganese [Mn(III)] was limited based on experimental and computational results. Pollutant abatement was inhibited with the increase of pH, while was promoted with the increase of light intensity and Mn(VII) concentration. Furthermore, water matrix components (chloride, bicarbonate, and humic acid) showed negligible or slight influences on pollutant abatement due to the selective oxidation features of RMnS. This study demonstrates the superior potential of the UV222/Mn(VII) AOP in water treatment.
Collapse
Affiliation(s)
- Haochen Zhang
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Peng Su
- Institute of Carbon Peaking and Carbon Neutralization, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China; Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, 10 Jieyang 515200, China
| | - Maoju Jiang
- Institute of Carbon Peaking and Carbon Neutralization, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Chenlong Liu
- Institute of Carbon Peaking and Carbon Neutralization, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Qixiao Lv
- Institute of Carbon Peaking and Carbon Neutralization, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Wenqi Li
- Institute of Carbon Peaking and Carbon Neutralization, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Xiangyang Hou
- Institute of Carbon Peaking and Carbon Neutralization, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Junhui Zhou
- Institute of Carbon Peaking and Carbon Neutralization, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Shuo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Bin Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bei Zhang
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tao Yang
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China; Institute of Carbon Peaking and Carbon Neutralization, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China; Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, 10 Jieyang 515200, China.
| |
Collapse
|
2
|
Zhang W, Sun C, Wang W, Zhang Z. A novel method for accelerating zearalenone degradation using ultraviolet light and atmospheric cold plasma: Insights into their synergistic mechanism. Food Chem 2025; 485:144495. [PMID: 40306049 DOI: 10.1016/j.foodchem.2025.144495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/17/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
Zearalenone (ZEN) is an estrogenic mycotoxin, posing a serious threat to food safety and human health. In this study, a new technique coupling ultraviolet (UV) and atmospheric cold plasma (ACP) was used to investigate how to degrade ZEN efficiently and to reveal the accelerated degradation mechanism. Within 1 min, UV and ACP together degraded 61.65 % of ZEN, which was greater than the sum of UV alone (16.67 %) and ACP alone (3.28 %), showing a synergistic effect. Four degradation products were identified using isotope tracing, LC-MS/MS, and NMR, namely UV-mediated isomerization product cis-ZEN and ACP-mediated oxidation products. After 10 min, ZEN was reduced from 0.58 μg to 0.08 μg. cis-ZEN accounted for more than 90 % among all products. The degradation acceleration was attributed to fast electron transitions and high energy release under high-voltage electric fields and ACP. This study provides a potential detoxification method for other mycotoxins, showing a broad application prospect.
Collapse
Affiliation(s)
- Wan Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; College of Engineering, China Agricultural University, Beijing 100083, China
| | - Changpo Sun
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Wei Wang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zhongjie Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| |
Collapse
|
3
|
Tao C, Wu K, Liu T, Yang S, Li Z. Promoting effect of oxygen vacancies in CuZnO x-2/peroxymonosulfate system on the p-arsanilic acid degradation and secondary arsenic species immobilization. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136742. [PMID: 39653638 DOI: 10.1016/j.jhazmat.2024.136742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/12/2024] [Accepted: 12/01/2024] [Indexed: 01/29/2025]
Abstract
Combining chemical oxidation and adsorption is highly desirable but challenging to remove organoarsenic compounds for water purification. Herein, we prepared a Zn-doped CuO (CuZnOx-2) catalyst by incorporating Zn atoms into the CuO lattice, which results in abundant surface oxygen vacancies (OVs) and modulates the electronic structure of Cu-OVs-Zn sites for PMS activation to degrade p-arsanilic acid (p-ASA) and adsorb the secondary arsenic species simultaneously. The elevated d-band centers for Cu upward to the Fermi level can significantly strengthen the adsorption of PMS, p-ASA, and the generated arsenic species. The OVs cause the charge redistribution to form electron-rich centers, which accelerate the electron transfer from Cu-OVs-Zn sites to adsorbed PMS, facilitating the cleavage of peroxide bond to produce SO4•-, •OH. Furthermore, the PMS adsorbed on the local environment of OVs with different configurations can directly decompose to produce 1O2 without undergoing PMS → O2•- → 1O2 or O2 → O2•- → 1O2 processes. The evolution process of the main arsenic species in solution and catalyst surface with oxidation was clarified. The ultimate removal of the total As involves 20 % As(III), 60 % As(V), and 20 % organic arsenic intermediates via forming inner-sphere complexes or electrostatic interaction. This contribution provides a brand-new perspective for the remediation of organoarsenic pollution over designing highly active catalysts.
Collapse
Affiliation(s)
- Chaonan Tao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Beilin District, Xi'an 710055, Shaanxi, PR China
| | - Kun Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Beilin District, Xi'an 710055, Shaanxi, PR China.
| | - Ting Liu
- College of Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi Province, PR China
| | - Shengjiong Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Beilin District, Xi'an 710055, Shaanxi, PR China
| | - Zhihua Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Beilin District, Xi'an 710055, Shaanxi, PR China
| |
Collapse
|
4
|
Zeng G, An L, Jiang M, Li W, Hou X, Su P, Liu M, Cheng H, Long Z, Yang J, Ma J, Yang T. Novel catalyst-free activation of chlorine by visible light for micropollutant abatement. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136084. [PMID: 39413519 DOI: 10.1016/j.jhazmat.2024.136084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/21/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024]
Abstract
This study systematically investigated the direct activation of chlorine by visible light emitting diode (Vis-LED). Vis-LED could effectively activate chlorine to degrade micropollutants with degradation efficiency and pseudo-first-order degradation rate constant range of 64.3-100 % and 0.0340-0.195 min-1, respectively. Quenching experiments and modeling results suggested that reactive chlorine species (RCS, including ClO•, Cl2•-, and Cl•) and hydroxyl radical (•OH) were involved in the degradation of atenolol (ATL). The contribution ratio of ClO•, free available chlorine, Cl•, Cl2•-, and •OH to ATL degradation were 58.7 %, 17.4 %, 15.6 %, 1.8 %, and 5.9 %, respectively, in Vis-LED448/chlorine process. Moreover, the innate quantum yields of HClO and ClO- decreased from 0.229 and 0.0206 to 0.0489 and 0.0109 mol·Einstein-1, respectively, as the wavelength increased from 448 to 513 nm, leading to a decrease in ATL degradation, which was consistent with the model results. Experimental and modeling results have confirmed that ATL degradation decreased when pH increased from 4.0 to 9.0. Cl- had little effect on the degradation of ATL, while HA and HCO3- affected ATL degradation by scavenging reactive species and/or shielding effect. The concentration of disinfection by-products decreased with the increase of wavelength and pH. In summary, Vis-LED/chlorine is an efficient water treatment process even without a catalyst.
Collapse
Affiliation(s)
- Ge Zeng
- Institute of Carbon Peaking and Carbon Neutralization, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Linqian An
- Institute of Carbon Peaking and Carbon Neutralization, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Maoju Jiang
- Institute of Carbon Peaking and Carbon Neutralization, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Wenqi Li
- Institute of Carbon Peaking and Carbon Neutralization, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Xiangyang Hou
- Institute of Carbon Peaking and Carbon Neutralization, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Peng Su
- Institute of Carbon Peaking and Carbon Neutralization, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Minchao Liu
- Institute of Carbon Peaking and Carbon Neutralization, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Haijun Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiyun Long
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China.
| | - Jingxin Yang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Tao Yang
- Institute of Carbon Peaking and Carbon Neutralization, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314000, China; Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang 515200, China.
| |
Collapse
|
5
|
Tian S, Ma Y, Xu Y, Lin Y, Ma J, Wen G. Transformation of p-arsanilic acid by dissolved Mn(III) and enhanced arsenic removal: Mechanism, toxicity and performance in complicated water matrices. WATER RESEARCH 2024; 265:122252. [PMID: 39173353 DOI: 10.1016/j.watres.2024.122252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/01/2024] [Accepted: 08/10/2024] [Indexed: 08/24/2024]
Abstract
Dissolved Mn(III), as a potent one-electron transfer oxidant, is ubiquitous in natural waters and sediments and actively involved in the transformation of organics in biogeochemical processes and water treatment. However, the important role of Mn(III) has long been overlooked because of its short life. This study was the first to investigate the performance of Mn(III) in organoarsenic transformation and to highlight the environmental implications. Both homogeneous and heterogeneous Mn(III)-based systems were effective to remove p-arsanilic acid (p-ASA, 15 μM) with degradation efficiency approaching 40.4 %-98.3 %. Two degradation pathways of p-ASA were proposed, in which As-C bond and amino group were vulnerable sites to Mn(III) attack, leading to the formation of more toxic arsenate (As(V)) and nitarsone. Through transforming organoarsenic to inorganic arsenic species, the removal efficiency of total arsenic and dissolved organics were enhanced to 65.1 %-95.5 % and 16.6 %-36.6 %, respectively, by post-treatment of coagulation or adsorption, accompanied with significant reduction of cytotoxicity and environmental risks. Particularly, polymeric ferric sulfate and granular activated alumina showed superior performance in the total As removal. Moreover, oxidation efficiency of Mn(III) was hardly affected by common cations and anions (e.g., Ca2+, Mg2+, NH4+, NO3-, SO4-), halide ions (e.g., Cl-, Br-) and natural organic matter, showing high robustness for organoarsenic removal under complicated water matrices. Overall, this study shed light on the significance of Mn(III) to the fate of organoarsenics in manganese-rich environments, and demonstrated the promising potential of Mn(III)-based strategies to achieve targeted decontamination in water/wastewater purification.
Collapse
Affiliation(s)
- Shiqi Tian
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Field Scientific Observation and Research Station for Qinling Water Source Water Quality of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuwei Ma
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Field Scientific Observation and Research Station for Qinling Water Source Water Quality of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuanyuan Xu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Field Scientific Observation and Research Station for Qinling Water Source Water Quality of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yingzi Lin
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Gang Wen
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Field Scientific Observation and Research Station for Qinling Water Source Water Quality of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
6
|
Yang T, Zeng G, Jiang M, Su P, Liu C, Lv Q, Li W, Hou X, Li J. Matching periodate peak absorbance by far UVC at 222 nm promotes the degradation of micropollutants and energy efficiency. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134978. [PMID: 38905986 DOI: 10.1016/j.jhazmat.2024.134978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/09/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Periodate (PI)-based advanced oxidation processes have gained increasing interest. This study for the first time elevates the light-activation capacity of PI by using far UVC at 222 nm (UV222/PI) without extra chemical inputs. The effectiveness and the underlying mechanisms of UV222/PI for the remediation of micropollutants were studied by selecting atenolol (ATL) as a representative. PI possessed a high molar absorption coefficient of 9480-6120 M-1 cm-1 at 222 nm in the pH range of 5.0-9.0, and it was rapidly decomposed by UV222 with first-order rate constants of 0.0055 to 0.002 s-1. ATL and the six other organic compounds were effectively degraded by the UV222/PI process under different conditions with the fluence-based rate constants generally two to hundred times higher than by UVA photolysis. Hydroxyl radical and ozone were confirmed as the major contributors to ATL degradation, while direct photolysis also played a role at higher pH or lower PI dosages. Degradation pathways of ATL were proposed including hydroxylation, demethylation, and oxidation. The high energy efficiency of the UV222/PI process was also confirmed. This study provides a cost-effective and convenient approach to enhance PI light-response activity for the treatment of micropollutants.
Collapse
Affiliation(s)
- Tao Yang
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China; Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Ge Zeng
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Maoju Jiang
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Peng Su
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Chenlong Liu
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Qixiao Lv
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Wenqi Li
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Xiangyang Hou
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China.
| |
Collapse
|
7
|
Zhang G, Li Y, Zhao C, Gu J, Zhou G, Shi Y, Zhou Q, Xiao F, Fu WJ, Chen Q, Ji Q, Qu J, Liu H. Redox-neutral electrochemical decontamination of hypersaline wastewater with high technology readiness level. NATURE NANOTECHNOLOGY 2024; 19:1130-1140. [PMID: 38724611 DOI: 10.1038/s41565-024-01669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 04/01/2024] [Indexed: 08/18/2024]
Abstract
Industrial hypersaline wastewaters contain diverse pollutants that harm the environment. Recovering clean water, alkali and acid from these wastewaters can promote circular economy and environmental protection. However, current electrochemical and advanced oxidation processes, which rely on hydroxyl radicals to degrade organic compounds, are inefficient and energy intensive. Here we report a flow-through redox-neutral electrochemical reactor (FRER) that effectively removes organic contaminants from hypersaline wastewaters via the chlorination-dehalogenation-hydroxylation route involving radical-radical cross-coupling. Bench-scale experiments demonstrate that the FRER achieves over 75% removal of total organic carbon across various compounds, and it maintains decontamination performance for over 360 h and continuously treats real hypersaline wastewaters for two months without corrosion. Integrating the FRER with electrodialysis reduces operating costs by 63.3% and CO2 emissions by 82.6% when compared with traditional multi-effect evaporation-crystallization techniques, placing our system at technology readiness levels of 7-8. The desalinated water, high-purity NaOH (>95%) and acid produced offset industrial production activities and thus support global sustainable development objectives.
Collapse
Affiliation(s)
- Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yongqi Li
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- School of Hydraulic and Hydropower Engineering, North China Electric Power University, Beijing, China
| | - Chenxuan Zhao
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Jiabao Gu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Gang Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Yanfeng Shi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Qi Zhou
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Feng Xiao
- School of Hydraulic and Hydropower Engineering, North China Electric Power University, Beijing, China
| | - Wen-Jie Fu
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Qingbai Chen
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Qinghua Ji
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.
| |
Collapse
|
8
|
An L, Kong X, Jiang M, Li W, Lv Q, Hou X, Liu C, Su P, Ma J, Yang T. Photo-assisted natural chalcopyrite activated peracetic acid for efficient micropollutant degradation. WATER RESEARCH 2024; 257:121699. [PMID: 38713937 DOI: 10.1016/j.watres.2024.121699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/01/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024]
Abstract
The effective activation of natural chalcopyrite (CuFeS2) on peracetic acid (PAA) to remove organic micropollutants was studied under visible light irradiation. Results showed than an effective sulfamethoxazole (SMX) degradation (95.0 %) was achieved under visible light irradiation for 30 min at pH 7.0. Quenching experiments, electron spin resonance analysis, and LC/MS spectrum demonstrated that HO• and CH3C(O)OO• were the main reactive species for SMX degradation, accounting for 43.3 % and 56.7 % of the contributions, respectively. Combined with X-ray photoelectron spectroscopy analysis, the photoelectrons generated on CuFeS2 activated by visible light enhanced the Fe3+/Fe2+ and Cu2+/Cu+ cycles on the surface, thereby activating PAA to generate HO•/CH3C(O)OO•. The removal rate of SMX decreased with the increase in wavelengths, due to the formation of low energy photons at longer wavelengths. Besides, the optimal pH for degradation of SMX by CuFeS2/PAA/Vis-LED process was neutral, which was attributed to the increasing easily activated anionic form of PAA during the increase in pH and the depletion of Fe species at alkaline conditions. Cl-, HCO3-, and HA slightly inhibited SMX degradation because of reactive species being quenched and/or shielding effect. Furthermore, the degradation efficiency of different pollutants by CuFeS2/PAA/Vis-LED was also measured, and the removal efficiency was different owing to the selectivity of CH3C(O)OO•. Finally, the process exhibited good applicability in real waters. Overall, this study provides new insight into visible light-catalyzed activation of PAA and suggests on further exploration of the intrinsic activation mechanism of PAA.
Collapse
Affiliation(s)
- Linqian An
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Xiujuan Kong
- Center of Water Resources and Environment, School of Civil Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Maoju Jiang
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Wenqi Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Qixiao Lv
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Xiangyang Hou
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Chenlong Liu
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Peng Su
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Tao Yang
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China; Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, Guangdong Province, China.
| |
Collapse
|
9
|
Wang W, Root CW, Peel HF, Garza M, Gidley N, Romero-Mariscal G, Morales-Paredes L, Arenazas-Rodríguez A, Ticona-Quea J, Vanneste J, Vanzin GF, Sharp JO. Photosynthetic pretreatment increases membrane-based rejection of boron and arsenic. WATER RESEARCH 2024; 252:121200. [PMID: 38309061 DOI: 10.1016/j.watres.2024.121200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
The metalloids boron and arsenic are ubiquitous and difficult to remove during water treatment. As chemical pretreatment using strong base and oxidants can increase their rejection during membrane-based nanofiltration (NF), we examined a nature-based pretreatment approach using benthic photosynthetic processes inherent in a unique type of constructed wetland to assess whether analogous gains can be achieved without the need for exogenous chemical dosing. During peak photosynthesis, the pH of the overlying clear water column above a photosynthetic microbial mat (biomat) that naturally colonizes shallow, open water constructed wetlands climbs from circumneutral to approximately 10. This biological increase in pH was reproduced in a laboratory bioreactor and resulted in analogous increases in NF rejection of boron and arsenic that is comparable to chemical dosing. Rejection across the studied pH range was captured using a monoprotic speciation model. In addition to this mechanism, the biomat accelerated the oxidation of introduced arsenite through a combination of abiotic and biotic reactions. This resulted in increases in introduced arsenite rejection that eclipsed those achieved solely by pH. Capital, operation, and maintenance costs were used to benchmark the integration of this constructed wetland against chemical dosing for water pretreatment, manifesting long-term (sub-decadal) economic benefits for the wetland-based strategy in addition to social and environmental benefits. These results suggest that the integration of nature-based pretreatment approaches can increase the sustainability of membrane-based and potentially other engineered treatment approaches for challenging water contaminants.
Collapse
Affiliation(s)
- Weishi Wang
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA; Center for Mining Sustainability (Centro para Minería Sostenible), Colorado School of Mines and Universidad Nacional de San Agustín de Arequipa, Santa Catalina 117, Arequipa 04001, Peru
| | - Colin Wilson Root
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA; Center for Mining Sustainability (Centro para Minería Sostenible), Colorado School of Mines and Universidad Nacional de San Agustín de Arequipa, Santa Catalina 117, Arequipa 04001, Peru
| | - Henry F Peel
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
| | - Maximilian Garza
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
| | - Nicholas Gidley
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
| | - Giuliana Romero-Mariscal
- Center for Mining Sustainability (Centro para Minería Sostenible), Colorado School of Mines and Universidad Nacional de San Agustín de Arequipa, Santa Catalina 117, Arequipa 04001, Peru; Facultad de Ingeniería de Procesos, Universidad Nacional de San Agustín de Arequipa. Santa Catalina 117, Arequipa 04001, Peru
| | - Lino Morales-Paredes
- Center for Mining Sustainability (Centro para Minería Sostenible), Colorado School of Mines and Universidad Nacional de San Agustín de Arequipa, Santa Catalina 117, Arequipa 04001, Peru; Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustín de Arequipa. Santa Catalina 117, Arequipa 04001, Peru
| | - Armando Arenazas-Rodríguez
- Center for Mining Sustainability (Centro para Minería Sostenible), Colorado School of Mines and Universidad Nacional de San Agustín de Arequipa, Santa Catalina 117, Arequipa 04001, Peru; Facultad de Ciencias Biológicas, Universidad Nacional de San Agustín de Arequipa. Santa Catalina 117, Arequipa 04001, Peru
| | - Juana Ticona-Quea
- Center for Mining Sustainability (Centro para Minería Sostenible), Colorado School of Mines and Universidad Nacional de San Agustín de Arequipa, Santa Catalina 117, Arequipa 04001, Peru; Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustín de Arequipa. Santa Catalina 117, Arequipa 04001, Peru
| | - Johan Vanneste
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA; Center for Mining Sustainability (Centro para Minería Sostenible), Colorado School of Mines and Universidad Nacional de San Agustín de Arequipa, Santa Catalina 117, Arequipa 04001, Peru
| | - Gary F Vanzin
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA; Center for Mining Sustainability (Centro para Minería Sostenible), Colorado School of Mines and Universidad Nacional de San Agustín de Arequipa, Santa Catalina 117, Arequipa 04001, Peru
| | - Jonathan O Sharp
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA; Center for Mining Sustainability (Centro para Minería Sostenible), Colorado School of Mines and Universidad Nacional de San Agustín de Arequipa, Santa Catalina 117, Arequipa 04001, Peru; Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, CO 80401, USA.
| |
Collapse
|
10
|
Wang HY, Wu DX, Du Y, Lv XT, Wu QY. Multi-endpoint assays reveal more severe toxicity induced by chloraminated effluent organic matter than chloraminated natural organic matter. J Environ Sci (China) 2024; 135:310-317. [PMID: 37778806 DOI: 10.1016/j.jes.2023.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 10/03/2023]
Abstract
Disinfection by chloramination produces toxic byproducts and the difference in toxicity of reclaimed and drinking water treated by chloramination remains unclear. This study investigated cytotoxic effects at the same concentrations of dissolved organic matter and showed that chloraminated effluent organic matter (EfOM) induced 1.7 times higher cytotoxicity than chloraminated natural organic matter (NOM) applied to simulate drinking water. Chloraminated EfOM induced more reactive nitrogen species than chloraminated NOM, and chloraminated EfOM and NOM induced similar and higher levels of reactive oxygen species than the negative control, respectively. Consequently, intracellular macromolecule damage indicated by DNA/RNA damage marker 8‑hydroxy-(deoxy)guanosine and the intracellular protein carbonyl concentration induced by chloraminated EfOM was higher and slightly more than that induced by chloraminated NOM, respectively. These data were consistent with the effects on cell physiological processes. Cell cycle arrest mainly occurred in G2 phase by chloraminated EfOM and NOM. Early apoptotic cells, which could return to normal, increased upon exposure to high concentrations of chloraminated EfOM and NOM. Moreover, necrotic cells were significantly increased from 0.5% to 2.5% when the concentration increased from 20- to 60-fold chloraminated EfOM, but were not obviously changed by chloraminated NOM. These results indicated that the comprehensive intracellular changes induced by toxic substances in chloraminated EfOM were more irreversible and induced more cell death than chloraminated NOM.
Collapse
Affiliation(s)
- Hai-Yan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - De-Xiu Wu
- Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Xiao-Tong Lv
- Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qian-Yuan Wu
- Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
11
|
Li J, Yang T, Zeng G, An L, Jiang J, Ao Z, Ma J. Ozone- and Hydroxyl Radical-Induced Degradation of Micropollutants in a Novel UVA-LED-Activated Periodate Advanced Oxidation Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18607-18616. [PMID: 36745772 DOI: 10.1021/acs.est.2c06414] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, novel light emitting diode (LED)-activated periodate (PI) advanced oxidation process (AOP) at an irradiation wavelength in the ultraviolet A range (UVA, UVA-LED/PI AOP) was developed and investigated using naproxen (NPX) as a model micropollutant. The UVA-LED/PI AOP remarkably enhanced the degradation of NPX and seven other selected micropollutants with the observed pseudo-first-order rate constants ranging from 0.069 ± 0.001 to 4.50 ± 0.145 min-1 at pH 7.0, demonstrating a broad-spectrum micropollutant degradation ability. Lines of evidence from experimental analysis and kinetic modeling confirmed that hydroxyl radical (•OH) and ozone (O3) were the dominant species generated in UVA-LED/PI AOP, and they contributed evenly to NPX degradation. Increasing the pH and irradiation wavelength negatively affected NPX degradation, and this could be well explained by the decreased quantum yield (ΦPI) of PI. The degradation kinetics of NPX by the UVA-LED/PI AOP in the presence of water matrices (i.e., chloride, bicarbonate, and humic acid) and in real waters were examined, and the underlying mechanisms were illustrated. A total of nine transformation products were identified from NPX oxidation by the UVA-LED/PI AOP, mainly via hydroxylation, dealkylation, and oxidation pathways. The UVA-LED/PI AOP proposed might be a promising technology for the treatment of micropollutants in aqueous solutions. The pivotal role of ΦPI during light photolysis of PI may guide the future design of light-assisted PI AOPs.
Collapse
Affiliation(s)
- Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai519087, People's Republic of China
| | - Tao Yang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen529020, People's Republic of China
| | - Ge Zeng
- School of Biotechnology and Health Science, Wuyi University, Jiangmen529020, People's Republic of China
| | - Linqian An
- School of Biotechnology and Health Science, Wuyi University, Jiangmen529020, People's Republic of China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou510006, People's Republic of China
| | - Zhimin Ao
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai519087, People's Republic of China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin150090, People's Republic of China
| |
Collapse
|
12
|
Luo Z, Peng X, Liang W, Zhou D, Dang C, Cai W. Enhanced adsorption of roxarsone on iron-nitrogen co-doped biochar from peanut shell: Synthesis, performance and mechanism. BIORESOURCE TECHNOLOGY 2023; 388:129762. [PMID: 37716571 DOI: 10.1016/j.biortech.2023.129762] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/04/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
Efficient removal of organic arsenic (roxarsone, ROX) from wastewater is highly demanded on the purpose of human health and environmental protection. This work aims to prepare Fe-N co-doped biochar (Fe-N-BC) via one-pot hydrothermal method using waste peanut shell, FeCl3·6H2O and urea, followed by pyrolysis. The effect of Fe-N co-doping on biochar's physicochemical properties, and adsorption performance for ROX were systematically investigated. At the pyrolysis temperature of 650 °C, Fe-N-BC-650 shows a significantly increased specific surface area of 358.53 m2/g with well-developed micro-mesoporous structure. Its adsorption capacity for ROX reaches as high as 197.32 mg/g at 25 °C, with > 90 % regeneration efficiency after multiple adsorption-desorption cycles. Correlation and spectral analysis revealed that the pore filling, π-π interactions, as well as hydrogen bonding play the dominant role in ROX adsorption. These results suggest that the Fe-N co-doped biochar shows great potential in the ROX removal from wastewater with high efficiency.
Collapse
Affiliation(s)
- Zhijia Luo
- School of Chemistry and Chemical Engineering, Guangzhou University, 510006 Guangzhou, China; Joint Institute of Guangzhou University & Institute of Corrosion Science and Technology, Guangzhou University, Guangzhou, China
| | - Xiong Peng
- DeCarbon Tech. (Shenzhen) Co., Ltd, 518071 Shenzhen, China
| | - Wanwen Liang
- School of Chemistry and Chemical Engineering, Guangzhou University, 510006 Guangzhou, China; Joint Institute of Guangzhou University & Institute of Corrosion Science and Technology, Guangzhou University, Guangzhou, China.
| | - Dan Zhou
- School of Chemistry and Chemical Engineering, Guangzhou University, 510006 Guangzhou, China
| | - Chengxiong Dang
- School of Chemistry and Chemical Engineering, Guangzhou University, 510006 Guangzhou, China
| | - Weiquan Cai
- School of Chemistry and Chemical Engineering, Guangzhou University, 510006 Guangzhou, China.
| |
Collapse
|
13
|
Yao MC, Zhang X, Huang Q, Huang J, Sheng GP. Chlorine oxide radical (ClO) enables the enhanced degradation of antibiotic resistance genes during UV/chlorine treatment by selectively inducing base damage. ENVIRONMENT INTERNATIONAL 2023; 178:108121. [PMID: 37544266 DOI: 10.1016/j.envint.2023.108121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
Compared to individual UV or chlorine disinfection, the combined UV and chlorine (i.e., UV/chlorine) can substantially promote the degradation of antibiotic resistance genes (ARGs) in the effluent by generating radicals. However, the mechanisms of ARG degradation induced by radicals during UV/chlorine treatment remain largely unknown, limiting further enhancement of ARG degradation by process optimization. Herein, we aimed to uncover the role of different radicals in ARG degradation and the molecular mechanisms of ARG degradation by radicals in UV/chlorine process. The ClO was proven to be responsible for the enhanced ARG degradation during UV/chlorine treatment, while the other radicals (OH, Cl, and Cl2-) played a minor role. This is because ClO possessed both high steady-state concentration and high reactivity toward ARGs (rate constant: 4.29 × 1010 M-1 s-1). The ClO might collaborate with free chlorine to degrade ARG. The ClO degraded ARGs by selectively attacking guanine and thymine but failed to induce strand breakage, while chlorine could break the strand of ARGs. Ultimately, ClO cooperated with chlorine to degrade ARGs quickly by hydroxylation and chlorination of bases and produce many chlorine- and nitrogen-containing products as revealed by high-resolution mass spectrometry. The uncovered degradation mechanisms of ARGs by UV/chlorine provide useful guidelines for process optimization to achieve deep removal of effluent ARGs.
Collapse
Affiliation(s)
- Mu-Cen Yao
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Qi Huang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jie Huang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
14
|
Zhang Y, Guo Y, Fang J, Guo K, Yu G, Wang Y. Characterization of UV/chlorine process for micropollutant abatement by probe compound-based kinetic models. WATER RESEARCH 2023; 237:119985. [PMID: 37098285 DOI: 10.1016/j.watres.2023.119985] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/09/2023]
Abstract
Micropollutant (MP) abatement efficiencies are critical information for optimizing water treatment process for cost-effective operations. Nevertheless, due to the vast number of MPs in real water matrices, it is infeasible to measure their abatement efficiencies individually in practical applications. In this study, a probe compound-based kinetic model was developed for generalized prediction of MP abatement in various water matrices by the ultraviolet (UV)/chlorine process. The results show that by measuring the depletion of three probe compounds (ibuprofen, primidone, and dimetridazole) spiked in the water matrix, the exposures of main reactive chlorine species (RCS including chlorine radicals (Cl•), dichloride radicals (Cl2-•) and chlorine oxide radicals (ClO•)) and hydroxyl radicals (•OH) during the UV/chlorine process could be calculated using the model. Based on the determined exposures, the abatement efficiencies of various MPs in different water matrices (e.g., surface water, groundwater, and wastewater) could generally be predicted with acceptable accuracy by the model without prior water-specific calibration. In addition, the relative contribution of UV photolysis and oxidation with active chlorine, RCS, and •OH to MP abatement could be quantitatively simulated using the model to clarify the abatement mechanism of MPs during the UV/chlorine process. The probe-based kinetic model can thus offer a useful tool to guide practical water and wastewater treatment for MP abatement and to explore the mechanism of UV/chlorine process.
Collapse
Affiliation(s)
- Yinqiao Zhang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, 100084 Beijing, China; School of Engineering, China Pharmaceutical University, 211198 Nanjing, China
| | - Yang Guo
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, 100084 Beijing, China
| | - Jingyun Fang
- School of Environmental Science and Engineering, Sun Yat-Sen University, 510275 Guangzhou, China
| | - Kaiheng Guo
- School of Environmental Science and Engineering, Sun Yat-Sen University, 510275 Guangzhou, China
| | - Gang Yu
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, 519087 Zhuhai, China
| | - Yujue Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, 100084 Beijing, China.
| |
Collapse
|
15
|
Yang T, An L, Zeng G, Jiang M, Li J, Liu C, Jia J, Ma J. Efficient removal of p-arsanilic acid and arsenite by Fe(II)/peracetic acid (Fe(II)/PAA) and PAA processes. WATER RESEARCH 2023; 241:120091. [PMID: 37262947 DOI: 10.1016/j.watres.2023.120091] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/16/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
The widespread occurrence of p-arsanilic acid (p-ASA) in natural environments poses big threats to the biosphere due to the generation of toxic inorganic arsenic (i.e., As(III) and As(V), especially As(III) with higher toxicity and mobility). Oxidation of p-ASA or As(III) to As(V) followed by precipitation of total arsenic using Fe-based advanced oxidation processes demonstrated to be a promising approach for the treatment of arsenic contamination. This study for the first time investigated the efficiency and inherent mechanism of p-ASA and As(III) oxidation by Fe(II)/peracetic acid (Fe(II)/PAA) and PAA processes. p-ASA was rapidly degraded by the Fe(II)/PAA process within 20 s at neutral to acidic pHs under different conditions, while it was insignificantly degraded by PAA oxidation alone. Lines of evidence suggested that hydroxyl radicals and organic radicals generated from the homolytic OO bond cleavage of PAA contributed to the degradation of p-ASA in the Fe(II)/PAA process. p-ASA was mainly oxidized to As (V), NH4+, and p-aminophenol by the Fe(II)/PAA process, wherein the aniline group and its para position were the most vulnerable sites. As(III) of concern was likely generated as an intermediate during p-ASA oxidation and it could be readily oxidized to As(V) by the Fe(II)/PAA process as well as PAA alone. The in-depth investigation demonstrated that PAA alone was effective in the oxidation of As(III) under varied conditions with a stoichiometric molar ratio of 1:1. Efficient removal (> 80%) of total arsenic during p-ASA oxidation by Fe(II)/PAA process or during As(III) oxidation by PAA process with additional Fe(III) in synthetic or real waters were observed, mainly due to the adsorptive interactions of amorphous ferric (oxy)hydroxide precipitates. This study systematically investigates the oxidation of p-ASA and As(III) by the Fe(II)/PAA and PAA processes, which is instructive for the future development of arsenic remediation technology.
Collapse
Affiliation(s)
- Tao Yang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Linqian An
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Ge Zeng
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Maoju Jiang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai 519087, China.
| | - Changyu Liu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Jianbo Jia
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
16
|
Yang T, Zhu M, An L, Zeng G, Fan C, Li J, Jiang J, Ma J. Photolysis of chlorite by solar light: An overlooked mitigation pathway for chlorite and micropollutants. WATER RESEARCH 2023; 233:119809. [PMID: 36878179 DOI: 10.1016/j.watres.2023.119809] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Chlorite (ClO2-) is an undesirable toxic byproduct commonly produced in the chlorine dioxide and ultraviolet/chlorine dioxide oxidation processes. Various methods have been developed to remove ClO2- but require additional chemicals or energy input. In this study, an overlooked mitigation pathway of ClO2- by solar light photolysis with a bonus for simultaneous removal of micropollutant co-present was reported. ClO2- could be efficiently decomposed to chloride (Cl-) and chlorate by simulated solar light (SSL) at water-relevant pHs with Cl- yield up to 65% at neutral pH. Multiple reactive species including hydroxyl radical (•OH), ozone (O3), chloride radical (Cl•), and chlorine oxide radical (ClO•) were generated in the SSL/ClO2- system with the steady-state concentrations following the order of O3 (≈ 0.8 μΜ) > ClO• (≈ 4.4 × 10-6 μΜ)> •OH (≈ 1.1 × 10-7 μΜ)> Cl• (≈ 6.8 × 10-8 μΜ) at neutral pH under investigated condition. Bezafibrate (BZF) as well as the selected six other micropollutants was efficiently degraded by the SSL/ClO2- system with pseudofirst-order rate constants ranging from 0.057 to 0.21 min-1 at pH 7.0, while most of them were negligibly degraded by SSL or ClO2- treatment alone. Kinetic modeling of BZF degradation by SSL/ClO2- at pHs 6.0 - 8.0 suggested that •OH contributed the most, followed by Cl•, O3, and ClO•. The presence of water background components (i.e., humic acid, bicarbonate, and chloride) exhibited negative effects on BZF degradation by the SSL/ClO2- system, mainly due to their competitive scavenging of reactive species therein. The mitigation of ClO2- and BZF under photolysis by natural solar light or in realistic waters was also confirmed. This study discovered an overlooked natural mitigation pathway for ClO2- and micropollutants, which has significant implications for understanding their fate in natural environments.
Collapse
Affiliation(s)
- Tao Yang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Mengyang Zhu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Linqian An
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Ge Zeng
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Chengqian Fan
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai 519087, China.
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
17
|
Oyewo OA, Ramaila S. Adsorption and photocatalytic removal of murexide using ZnO/rGO and ZnO/g-C3N4 composites. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
18
|
Wei S, Zhou C, Zhang G, Zheng H, Chen Z, Zhang S. Effects of a redox-active diketone on the photochemical transformation of roxarsone: Mechanisms and environmental implications. CHEMOSPHERE 2022; 308:136326. [PMID: 36084835 DOI: 10.1016/j.chemosphere.2022.136326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Organoarsenical antibiotics pose a severe threat to the environment and human health. In aquatic environment, dissolved organic matter (DOM)-mediated photochemical transformation is one of the main processes in the fate of organoarsenics. Dicarbonyl is a typical redox-active moiety in DOM. However, the knowledge on the photoconversion of organoarsenics by DOM, especially the contributions of dicarbonyl moieties is still limited. Here, we systematically investigated the photochemical transformation of three organoarsenics with the simplest β-diketone, acetylacetone (AcAc), as a model dicarbonyl moiety of DOM. The presence of AcAc significantly enhanced the photochemical conversion of roxarsone (ROX), whereas only minor effects were observed for 3-amino-4-hydroxyphenylarsonic acid (HAPA) and arsanilic acid (ASA), because the latter two (with an amino (-NH2) group) are more photoactive than ROX (with a nitro (-NO2) group). The results demonstrate that AcAc was a potent photo-activator and the reduction of -NO2 to -NH2 might be a rate-limiting step in the phototransformation of ROX. At a 1:1 M ratio of AcAc to ROX, the photochemical transformation rate of ROX was increased by 7 folds. In O2-rich environment, singlet oxygen, peroxide radicals, and ·OH were the main reactive species that led to the breakage of the C-As bond in ROX and the oxidation of the released arsono group to arsenate, whereas the triplet-excited state of AcAc (3AcAc*) and carbon-centered radicals from the photolysis of AcAc dominated in the reductive transformation of ROX. In anoxic environment, 3-amino-4-hydroxyphenylarsonic acid was one of the main reductive transformation intermediates of ROX, whose photolysis rate was about 35 times that of ROX. The knowledge obtained here is of great significance to better understand the fate of organoarsenics in natural environment.
Collapse
Affiliation(s)
- Shuangshuang Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Chang Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Guoyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Hongcen Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zhihao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
19
|
Mai J, Yang T, Ma J. Novel solar-driven ferrate(VI) activation system for micropollutant degradation: Elucidating the role of Fe(IV) and Fe(V). JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129428. [PMID: 35897188 DOI: 10.1016/j.jhazmat.2022.129428] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
This paper presents a novel process of solar-ferrate(VI) [Fe(VI)] for micropollutant degradation. The solar-Fe(VI) process promoted micropollutant degradation compared with Fe(VI) alone and solar. The radical scavenging and probing experiment results suggested that Fe(V) and Fe(IV) but not reactive oxygen species were most likely involved in the solar-Fe(VI) process. Through building a kinetic model, Fe(IV) and Fe(V) were observed to play an equally significant role in the solar-Fe(VI) process. Afterward, the reaction mechanism of the photochemistry of Fe(VI) was elaborated. Fe(IV) formed from Fe(VI) photolysis and then decomposed to Fe(II) which reacted with Fe(VI) to form Fe(V). Furthermore, the effect of pH on carbamazepine (CBZ) degradation was studied and the quantum yields of Fe(VI) were determined, with (1.98 ± 0.16)× 10-3 mol∙einstein-1, (5.90 ± 0.27)× 10-4 mol∙einstein-1, and (1.66 ± 0.14)× 10-4 mol∙einstein-1 at pH 7.0, 8.0, and 9.0, respectively. Inorganic ions, including Cl-, HCO3-, and Br- displayed negligible influence on the CBZ degradation, whereas humic acid inhibited the CBZ degradation. Finally, the solar-Fe(VI) process exhibited good applicability in authentic waters and under different irradiation (natural sunlight, ultraviolet light, and visible light from solar cut-off emission). Overall, this study provides a new routine for efficient micropollutant elimination and reveals the photochemistry of Fe(VI).
Collapse
Affiliation(s)
- Jiamin Mai
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Tao Yang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
20
|
Cai A, Ling X, Wang L, Sun Q, Zhou S, Chu W, Li X, Deng J. Insight into UV-LED/PS/Fe(Ⅲ) and UV-LED/PMS/Fe(Ⅲ) for p-arsanilic acid degradation and simultaneous arsenate immobilization. WATER RESEARCH 2022; 223:118989. [PMID: 35998556 DOI: 10.1016/j.watres.2022.118989] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/06/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
As a feed additive, p-arsanilic acid (p-ASA) is hardly metabolized in animal bodies and is excreted chemically unchanged via feces and urine, which can be transformed into more toxic inorganic arsenic species and other organic by-products upon degradation in the aquatic environment. In this study, UV-LED/persulfate (PS)/Fe(Ⅲ) and UV-LED/peroxymonosulfate (PMS)/Fe(Ⅲ) processes were developed to remove p-ASA and immobilize the formed inorganic arsenic via tuning solution pH. UV-LED/PMS/Fe(Ⅲ) (90.8%) presented the best performance for p-ASA degradation at pH 3.0, and the p-ASA degradation in these processes both followed the pseudo-first-order kinetics. The ∙OH played the major role in UV-LED/PS/Fe(Ⅲ) and UV-LED/PMS/Fe(Ⅲ) systems. Solution pH greatly affected the p-ASA degradation and the maximum removal can be achieved at pH 3.0 due to the presence of more Fe(OH)(H2O)52+. The dosages of Fe(III) and PMS (PS), SO42- and HCO3- significantly influenced the performance of p-ASA oxidation, while HA, Cl- and NO3- slightly affected the p-ASA degradation. According to quantum chemical calculation, radical addition on the C atom in the C-As bond of p-ASA was corroborated to be the dominant reaction pathway by SO4∙- and ∙OH. Additionally, the reactive sites and reasonable degradation pathways of p-ASA were proposed based on DFT calculation and HPLC/MS analysis. The release of inorganic arsenic in both processes can be effectively immobilized and the toxicity of the reaction solution dramatically reduced by adjusting solution pH to 6.0. UV-LED/PMS/Fe(Ⅲ) process was found to be more cost-effective than UV-LED/PS/Fe(Ⅲ) process at the low oxidant dosages.
Collapse
Affiliation(s)
- Anhong Cai
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xiao Ling
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Lei Wang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Qian Sun
- Afflicated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Shiqing Zhou
- College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Xueyan Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jing Deng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China.
| |
Collapse
|
21
|
Environmental Behavior and Remediation Methods of Roxarsone. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Roxarsone (ROX) is used extensively in the broiler chicken industry, and most is excreted in poultry litter. ROX degradation produces inorganic arsenic, which causes arsenic contamination of soil and aquatic environment. Furthermore, elevated arsenic concentrations are found in livers of chickens fed ROX. Microorganisms, light, and ions are the main factors that promote ROX degradation in the environment. The adsorption of ROX on different substances and its influencing factors have also been studied extensively. Additionally, the remediation method, combining adsorption and degradation, can effectively restore ROX contamination. Based on this, the review reports the ecological hazards, discussed the transformation and adsorption of ROX in environmental systems, documents the biological response to ROX, and summarizes the remediation methods of ROX contamination. Most previous studies of ROX have been focused on identifying the mechanisms involved under theoretical conditions, but more attention should be paid to the behavior of ROX under real environmental conditions, including the fate and transport of ROX in the real environment. ROX remediation methods at real contaminated sites should also be assessed and verified. The summary of previous studies on the environmental behavior and remediation methods of ROX is helpful for further research in the future.
Collapse
|
22
|
Xie X, Li J, Luo L, Liao W, Luo S. Phenylarsonics in concentrated animal feeding operations: Fate, associated risk, and treatment approaches. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128394. [PMID: 35158239 DOI: 10.1016/j.jhazmat.2022.128394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Phenylarsonics are present as additives in animal feed in some countries. As only a small fraction of these additives is metabolized in animals, they mostly end up in the environment. A comprehensive investigation of the fate of these additives is crucial for evaluating their risks. This review aims to provide a clear understanding of the transformation mechanism of phenylarsonics in vivo and in vitro and to evaluate their fate and associated risks. Degradation of phenylarsonics releases toxic As species (mainly as inorganic arsenic (iAs)). Trivalent phenylarsonics are the metabolites or biotic degradation intermediates of phenylarsonics. The cleavage of As groups from trivalent phenylarsonics catalyzed by C-As lyase or other unknown pathways generates arsenite (As(III)). As(III) can be further oxidized to arsenate (As(V)) and methylated to methyl-arsenic species. The half-lives associated with abiotic degradation of phenylarsonics ranged from a few minutes to tens of hours, while those associated with biotic degradation ranged from several days to hundreds of days. Abiotic degradation resulted in a higher yield of iAs than biotic degradation. The use of phenylarsonics led to elevated total As and iAs levels in animal products and environmental matrices, resulting in As exposure risk to humans. The oxidation of phenylarsonics to As(V) facilitated the sorptive removal of As, which provides a general approach for treating these compounds. This review provides solid evidence that the use of phenylarsonics has adverse effects on both human health and environmental safety, and therefore, supports their withdrawal from the global market.
Collapse
Affiliation(s)
- Xiande Xie
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jingxia Li
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Wenjuan Liao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Shuang Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
23
|
Ma C, Huang R, Huangfu X, Ma J, He Q. Light- and H 2O 2-Mediated Redox Transformation of Thallium in Acidic Solutions Containing Iron: Kinetics and Mechanistic Insights. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5530-5541. [PMID: 35435677 DOI: 10.1021/acs.est.2c00034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The redox transformation between the oxidation states of thallium (Tl(I) and Tl(III)) is the key to influencing its toxicity, reactivity, and mobility. Dissolved iron (Fe) is widely distributed in the environment and coexists at a high level with Tl in acidic mine drainages (AMDs). While ultraviolet (UV) light and H2O2 can directly (by inducing Tl(III) reduction) and indirectly (by inducing Fe(III) to form reactive intermediates) impact the redox cycles of Tl in Fe(III)-containing solutions, the kinetics and mechanism remain largely unclear. This study is the first to investigate the UV light- and H2O2-mediated Tl redox kinetics in acidic Fe(III) solutions. The results demonstrate that UV light and H2O2 could directly reduce Tl(III) to Tl(I), with the extent of reduction dependent on the presence of Fe(III) and the solution pH. At pH 3.0, Tl(I) was completely oxidized to Tl(III), which can be ascribed to the generation of hydroxyl radicals (•OH) from the Fe(III) photoreduction or Fe(III) reaction with H2O2. The kinetics of Tl(I) oxidation were strongly affected by the Fe(III) concentration, pH, light source, and water matrix. Kinetic models incorporating Tl redox kinetics with Fe redox kinetics were developed and satisfactorily interpreted Tl(III) reduction and Tl(I) oxidation under the examined conditions. These findings emphasize the roles of the UV light- and H2O2-driven Fe cycles in influencing the redox state of Tl, with implications for determining its mobility and fate in the environment.
Collapse
Affiliation(s)
- Chengxue Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ruixing Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
24
|
Gao Y, Fan W, Zhang Z, Zhou Y, Zeng Z, Yan K, Ma J, Hanna K. Transformation mechanisms of iopamidol by iron/sulfite systems: Involvement of multiple reactive species and efficiency in real water. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128114. [PMID: 34971989 DOI: 10.1016/j.jhazmat.2021.128114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Although the ability of iron/sulfite system for decontamination purposes has been investigated, the complex reactive species generated and the underlying transformation mechanisms remain elusive. Here, we have comprehensively examined the transformation of iopamidol (IPM), a representative of iodinated X-ray contrast media, by iron catalyzed sulfite oxidation process under different water chemistry conditions. Multiple reactive intermediates including Fe(IV), SO4•-, and SO5•- were identified by conducting a series of experiments. Eight transformation products were detected by mass spectrometry analysis, and correlation with the nature of involved reactive species has been made. Further, the transformation pathways including amide hydrolysis, deiodination, amino and hydroxyl groups oxidation were proposed. Interestingly, these transformation products could be removed through adsorption to iron precipitates formed via pH adjustment. Combining Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, we revealed an effective way to reduce the amount of transformation products in the treated solutions. Since the iron/sulfite process appears to be less sensitive to natural organic matter, it exhibited very good efficiency for IPM removal in real water samples, even with a high organic carbon loading. These findings may have strong implications in the development of novel oxidation process based on the sulfite/iron systems for wastewater treatment.
Collapse
Affiliation(s)
- Yuan Gao
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Wenxia Fan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhong Zhang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yang Zhou
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Zhu Zeng
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Kai Yan
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Khalil Hanna
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, UMR CNRS 6226, 11 Allée de Beaulieu, F-35708 Cedex 7 Rennes, France.
| |
Collapse
|
25
|
Wu S, Yang T, Mai J, Tang L, Liang P, Zhu M, Huang C, Li Q, Cheng X, Liu M, Ma J. Enhanced removal of organoarsenic by chlorination: Kinetics, effect of humic acid, and adsorbable chlorinated organoarsenic. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126820. [PMID: 34418831 DOI: 10.1016/j.jhazmat.2021.126820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
In this study, the effective removal of organoarsenic by the combined process of "chlorination + Fe(II)" was achieved. Chlorine could effectively degrade roxarsone (ROX) over pH from 5 to 10. The fitting results of acid-base protonation model proved that the degradation of ROX was mainly attributed to the reaction of HOCl and deprotonated ROX. The transformation of arsenic species conformed to the fitting results of two-channel kinetic model, in which 32.4% of ROX was oxidized to As(V) via electron transfer pathway (ii) and the rest was converted into monochloro-ROX via electrophilic substitution pathway (i). Humic acid inhibited the degradation of ROX due to the competitive consumption of chlorine and the restraint on the pathway ii. Subsequently, an enhanced removal of total arsenic achieved after chlorination, due to that the generating As(V) and monochloro-ROX were easier adsorbed compared with ROX, over 97.8% of total arsenic was removed by ferric (oxyhydr)oxides which in-situ formed from the oxidation of Fe(II). Additionally, toxicity studies indicated that the acute toxicity was significantly eliminated by adding Fe(II) after chlorination, likely due to the removal of As(V) and chlorinated products. Furthermore, organoarsenic was also effectively removed by the combined process of "chlorination + Fe(II)" in real water.
Collapse
Affiliation(s)
- Sisi Wu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Tao Yang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China.
| | - Jiamin Mai
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Liuyan Tang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Ping Liang
- School of Applied and Physics Materials, Wuyi University, Jiangmen 529020, China
| | - Mengyang Zhu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Cui Huang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Qiuhua Li
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Minchao Liu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
26
|
Sun J, Zhou S, Sheng D, Li N, Wang J, Jiang C. Elimination of β-N-methylamino-l-alanine (BMAA) during UV/chlorine process: Influence factors, transformation pathway and DBP formation. CHEMOSPHERE 2021; 284:131426. [PMID: 34323795 DOI: 10.1016/j.chemosphere.2021.131426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
As a new cyanobacterial neurotoxin generated by cyanobacteria, BMAA was closely related to amyotrophic lateral sclerosis-parkinsonism dementia complex (ALS/PDC). In this study, the degradation of BMAA by UV/chlorine process was investigated under the impacts of chlorine dosage, NOM dosage, pH and alkalinity. Results showed that only 10% of BMAA was removed by UV irradiation and 46.8% by chlorination in 5 min, however, 98.6% of BMAA was removed by UV/chlorine process in 5 min. The reaction rates were increased under alkaline conditions, but all achieved complete degradation in 5 min. Besides, HCO3- had slight inhibition, while NOM had significant inhibition on the degradation of BMAA. Furthermore, based on the detected degradation products of BMAA during UV/chlorine process, the possible degradation pathways were concluded. Overall, outcomes of this study exhibited that the use of the UV/chlorine process for BMAA degradation was appropriate in practical applications.
Collapse
Affiliation(s)
- Julong Sun
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Shiqing Zhou
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China.
| | - Da Sheng
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Nan Li
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Jue Wang
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Changbo Jiang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| |
Collapse
|