1
|
Zhou A, Subramanian PSG, El-Naggar S, Shisler JL, Verma V, Nguyen TH. Capsid and genome damage are the leading inactivation mechanisms of aerosolized porcine respiratory coronavirus at different relative humidities. Appl Environ Microbiol 2025; 91:e0231924. [PMID: 40192313 DOI: 10.1128/aem.02319-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/17/2025] [Indexed: 04/17/2025] Open
Abstract
Relative humidity (RH) varies widely in indoor environments based on temperature, outdoor humidity, heating systems, and other environmental conditions. This study explored how RH affects aerosolized porcine respiratory coronavirus (PRCV), a model for coronaviruses, over a time range from 0 min to a maximum of 1 h, and the molecular mechanism behind viral infectivity reduction. These questions were answered by quantifying: (i) viral-host receptor interactions, (ii) capsid integrity, (iii) viral genome integrity, and (iv) virus infectivity. We found RH did not alter PRCV-receptor interactions. RHs 45-55% and 65-75% damaged viral genomes (2 log10 reduction and 1 log10 reduction, respectively, in terms of median sample value), whereas RHs 55-65% decreased capsid integrity (2 log10 reduction). No apparent virion damage was observed in RH 75-85%. Two assays were used to quantify virus presence: qPCR for detecting the viral genomes and plaque-forming unit assay for detecting the virus replication. Our results indicated that the qPCR assay overestimated the concentrations of infectious viruses, and RNase treatment with long-range RT-qPCR performed better than one-step RT-qPCR. We propose that understanding the influence of RH on the stability of aerosolized viruses provides critical information for detecting and preventing the indoor transmission of coronaviruses. IMPORTANCE Indoor environments can impact the stability of respiratory viruses, which can then affect the transmission rates. The mechanisms of how relative humidity (RH) affects virus infectivity still remain unclear. This study found RH inactivates porcine respiratory coronavirus by damaging its capsid and genome. The finding highlights the potential role of controlling indoor RH levels as a strategy to reduce the risk of coronavirus transmission.
Collapse
Affiliation(s)
- Aijia Zhou
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - P S Ganesh Subramanian
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Salma El-Naggar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Joanna L Shisler
- Department of Microbiology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Vishal Verma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- Carle Illinois College of Medicine, Urbana, Illinois, USA
| |
Collapse
|
2
|
Baudart C, Briot T. Ultraviolet C Decontamination Devices in a Hospital Pharmacy: An Evaluation of Their Contribution. PHARMACY 2025; 13:9. [PMID: 39998007 PMCID: PMC11859781 DOI: 10.3390/pharmacy13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/08/2025] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
PURPOSE The COVID-19 pandemic led to a major interest in ultraviolet C (UVC) disinfection devices and accelerated the implementation of UVC devices in healthcare facilities due to their proven efficacy in the inactivation of various pathogens. While UVC technology offers several advantages, some drawbacks remain. This report, drawing on studies, guidelines, and practical experiences related to the use of UVC technology in healthcare settings, examines the efficacy, advantages, and drawbacks of UVC devices, and their applications in aseptic drug-compounding pharmaceutical units. SUMMARY Studies, guidelines, and practical experiences were selected. UVC technology offers advantages such as rapid disinfection, reduced reliance on chemical agents, minimal waste, and freedom from manual disinfection variability, making it particularly valuable for maintaining aseptic conditions in compounding environments. However, some drawbacks persist, as it is a germ-dependent method and there is currently no standardized method for ensuring effectiveness. CONCLUSIONS This opinion paper highlights the effectiveness of UCV technology in pharmaceutical compounding units, proving that it is a viable alternative to the traditionally used manual and operator-dependent methods. However, there is a need for standardized methods to evaluate UVC devices.
Collapse
Affiliation(s)
- Clara Baudart
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Pharmacy Department, 69317 Lyon, France;
| | - Thomas Briot
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Pharmacy Department, 69317 Lyon, France;
- LAGEPP, CNRS UMR5007, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
| |
Collapse
|
3
|
Wang L, Morán J, Olson BA, Yang M, Hogan CJ, Torremorell M. Aerodynamic Size-Dependent Collection and Inactivation of Virus-Laden Aerosol Particles in an Electrostatic Precipitator. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39259020 PMCID: PMC11430179 DOI: 10.1021/acs.est.4c03820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Electrostatic precipitators (ESPs) may enable high particle collection efficiency with minimal pressure drop in HVAC systems. However, studies of pathogen collection and inactivation in ESPs at medium to higher flow rates are limited. Here, a single-stage, wire-plate ESP operated at flow rates of 51 and 85 m3 h-1 was used to study the removal of virus-laden aerosol particles for three different airborne viruses: (1) bovine coronavirus (BCoV), (2) influenza A virus (IAV), and (3) porcine reproductive and respiratory virus (PRRSV). Size-resolved measurements of collection efficiency were obtained using Andersen cascade impactors (ACI) sampling upstream and downstream of the ESP. All measurements were analyzed based on three distinctive but complementary methods: (1) fluorimetry to assess physical collection, (2) RT-qPCR to assess viral RNA concentrations and (3) virus titration to assess virus viability. In general, log reductions by virus titration were highest followed by those from RT-qPCR, and last fluorimetry, suggesting that a portion of virus may be potentially inactivated in flight in the ESP. An effective migration (deposition) velocity ranging from 3.10 to 10.05 cm s-1 was also determined using the spatially resolved measurements of virus collection on the ESP plates.
Collapse
Affiliation(s)
- Lan Wang
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - José Morán
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bernard A Olson
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - My Yang
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Christopher J Hogan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Montserrat Torremorell
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota 55108, United States
| |
Collapse
|
4
|
Gong J, Or CY, Sze ETP, Man-Ngai Chan S, Wu PL, Poon PMY, Law AKY, Ulrychová L, Hodek J, Weber J, Ouyang H, Yang M, Eilts SM, Torremorell M, Knobloch Y, Hogan CJ, Atallah C, Davies J, Winkler J, Gordon R, Zarghanishiraz R, Zabihi M, Christianson C, Taylor D, Rabinowitz A, Baylis J, Brinkerhoff J, Little JP, Li R, Moldenhauer J, Mansour MK. Effect of multifunctional cationic polymer coatings on mitigation of broad microbial pathogens. Microbiol Spectr 2024; 12:e0409723. [PMID: 39101823 PMCID: PMC11370243 DOI: 10.1128/spectrum.04097-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/12/2024] [Indexed: 08/06/2024] Open
Abstract
Infection control measures to prevent viral and bacterial infection spread are critical to maintaining a healthy environment. Pathogens such as viruses and pyogenic bacteria can cause infectious complications. Viruses such as SARS-CoV-2 are known to spread through the aerosol route and on fomite surfaces, lasting for a prolonged time in the environment. Developing technologies to mitigate the spread of pathogens through airborne routes and on surfaces is critical, especially for patients at high risk for infectious complications. Multifunctional coatings with a broad capacity to bind pathogens that result in inactivation can disrupt infectious spread through aerosol and inanimate surface spread. This study uses C-POLAR, a proprietary cationic, polyamine, organic polymer with a charged, dielectric property coated onto air filtration material and textiles. Using both SARS-CoV-2 live viral particles and bovine coronavirus models, C-POLAR-treated material shows a dramatic 2-log reduction in circulating viral inoculum. This reduction is consistent in a static room model, indicating simple airflow through a static C-POLAR hanging can capture significant airborne particles. Finally, Gram-positive and Gram-negative bacteria are applied to C-POLAR textiles using a viability indicator to demonstrate eradication on fomite surfaces. These data suggest that a cationic polymer surface can capture and eradicate human pathogens, potentially interrupting the infectious spread for a more resilient environment. IMPORTANCE Infection control is critical for maintaining a healthy home, work, and hospital environment. We test a cationic polymer capable of capturing and eradicating viral and bacterial pathogens by applying the polymer to the air filtration material and textiles. The data suggest that the simple addition of cationic material can result in the improvement of an infectious resilient environment against viral and bacterial pathogens.
Collapse
Affiliation(s)
- Jianliang Gong
- C-POLAR Technologies Inc., West Vancouver, British Columbia, Canada
| | - Chun-Yin Or
- C-POLAR Technologies Inc., West Vancouver, British Columbia, Canada
| | - Eric Tung-Po Sze
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Sidney Man-Ngai Chan
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China
| | - Pak-Long Wu
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China
| | - Peggy Miu-Yee Poon
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China
| | - Anthony K. Y. Law
- Department of Mechanical Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Lucie Ulrychová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
- Department of Genetics and Microbiology, Charles University, Faculty of Sciences, Prague, Czechia
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Hui Ouyang
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Mechanical Engineering University of Texas-Dallas, Richardson, Texas, USA
| | - My Yang
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - Stephanie M. Eilts
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Montserrat Torremorell
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - Yaakov Knobloch
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christopher J. Hogan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christine Atallah
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Juliette Davies
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - John Winkler
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Ryan Gordon
- School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | - Reza Zarghanishiraz
- School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | - Mojtaba Zabihi
- School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | - Cole Christianson
- School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | - Deanne Taylor
- School of Nursing, University of British Columbia, Kelowna, British Columbia, Canada
- Interior Health Authority, Kelowna, British Columbia, Canada
- Rural Coordination Center of British Columbia, Vancouver, British Columbia, Canada
| | - Alan Rabinowitz
- Rural Coordination Center of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- St. Paul’s Hospital, Vancouver, British Columbia, Canada
| | - Jared Baylis
- Interior Health Authority, Kelowna, British Columbia, Canada
- Department of Emergency Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joshua Brinkerhoff
- School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | - Jonathan P. Little
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Ri Li
- School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | | | - Michael K. Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Park H, Shin GW, Lee SM, Jeong GW, Kim HY, Kim H, Choi HW, Lee-Kwon W, Kwon HM. One-hit kill: On the inactivation of RNA viruses by ultraviolet (UV)-C-induced genomic damage. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112949. [PMID: 38865816 DOI: 10.1016/j.jphotobiol.2024.112949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Large scale outbreaks of infectious respiratory disease have repeatedly plagued the globe over the last 100 years. The scope and strength of the outbreaks are getting worse as pathogenic RNA viruses are rapidly evolving and highly evasive to vaccines and anti-viral drugs. Germicidal UV-C is considered as a robust agent to disinfect RNA viruses regardless of their evolution. While genomic damage by UV-C has been known to be associated with viral inactivation, the precise relationship between the damage and inactivation remains unsettled as genomic damage has been analyzed in small areas, typically under 0.5 kb. In this study, we assessed genomic damage by the reduced efficiency of reverse transcription of regions of up to 7.2 kb. Our data seem to indicate that genomic damage was directly proportional to the size of the genome, and a single hit of damage was sufficient for inactivation of RNA viruses. The high efficacy of UV-C is already effectively adopted to inactivate airborne RNA viruses.
Collapse
Affiliation(s)
- Hyun Park
- Department of Biological Sciences and Biomedical Engineering, Ulsan National Institute of Science and Technology Ulsan, Republic of Korea
| | - Go Woon Shin
- Department of Biological Sciences and Biomedical Engineering, Ulsan National Institute of Science and Technology Ulsan, Republic of Korea
| | - Sang Min Lee
- Department of Biological Sciences and Biomedical Engineering, Ulsan National Institute of Science and Technology Ulsan, Republic of Korea
| | - Gyu Won Jeong
- Department of Biological Sciences and Biomedical Engineering, Ulsan National Institute of Science and Technology Ulsan, Republic of Korea
| | - Hui Young Kim
- Department of Biological Sciences and Biomedical Engineering, Ulsan National Institute of Science and Technology Ulsan, Republic of Korea
| | - Hajin Kim
- Biomedical Engineering, Ulsan National Institute of Science and Technology Ulsan, Republic of Korea
| | | | - Whaseon Lee-Kwon
- Department of Biological Sciences and Biomedical Engineering, Ulsan National Institute of Science and Technology Ulsan, Republic of Korea.
| | - Hyug Moo Kwon
- Department of Biological Sciences and Biomedical Engineering, Ulsan National Institute of Science and Technology Ulsan, Republic of Korea.
| |
Collapse
|
6
|
Guo J, Lv M, Liu Z, Qin T, Qiu H, Zhang L, Lu J, Hu L, Yang W, Zhou D. Comprehensive performance evaluation of six bioaerosol samplers based on an aerosol wind tunnel. ENVIRONMENT INTERNATIONAL 2024; 183:108402. [PMID: 38150804 DOI: 10.1016/j.envint.2023.108402] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Choosing a suitable bioaerosol sampler for atmospheric microbial monitoring has been a challenge to researchers interested in environmental microbiology, especially during a pandemic. However, a comprehensive and integrated evaluation method to fully assess bioaerosol sampler performance is still lacking. Herein, we constructed a customized wind tunnel operated at 2-20 km/h wind speed to systematically and efficiently evaluate the performance of six frequently used samplers, where various aerosols, including Arizona test dust, bacterial spores, gram-positive and gram-negative bacteria, phages, and viruses, were generated. After 10 or 60 min of sampling, the physical and biological sampling efficiency and short or long-term sampling capabilities were determined by performing aerodynamic particle size analysis, live microbial culturing, and a qPCR assay. The results showed that AGI-30 and BioSampler impingers have good physical and biological sampling efficiencies for short-term sampling. However, their ability to capture aerosols at low concentrations is restricted. SASS 2300 and BSA-350 wet-wall cyclones had excellent enrichment ratios and high microbial cultivability in both short-term and long-term sampling; however, they were not suitable for quantitative studies of aerosols. Polycarbonate filter samplers showed outstanding performance in physical and long-term sampling but lacked the ability to maintain microbial activity, which can be improved by gelatin filter samplers. However, limitations remain for some fragile microorganisms, such as E. coli phage PhiX174 and coronavirus GX_P2V. In addition, the effects of wind speed and direction should be considered when sampling particles larger than 4 µm. This study provides an improved strategy and guidance for the characterization and selection of a bioaerosol sampler for better measurement and interpretation of collected ambient bioaerosols.
Collapse
Affiliation(s)
- Jianshu Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Meng Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhijian Liu
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, China
| | - Tongtong Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hongying Qiu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lili Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jianchun Lu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| |
Collapse
|
7
|
Ouyang H, Wang L, Sapkota D, Yang M, Morán J, Li L, Olson BA, Schwartz M, Hogan CJ, Torremorell M. Control technologies to prevent aerosol-based disease transmission in animal agriculture production settings: a review of established and emerging approaches. Front Vet Sci 2023; 10:1291312. [PMID: 38033641 PMCID: PMC10682736 DOI: 10.3389/fvets.2023.1291312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Transmission of infectious agents via aerosols is an ever-present concern in animal agriculture production settings, as the aerosol route to disease transmission can lead to difficult-to-control and costly diseases, such as porcine respiratory and reproductive syndrome virus and influenza A virus. It is increasingly necessary to implement control technologies to mitigate aerosol-based disease transmission. Here, we review currently utilized and prospective future aerosol control technologies to collect and potentially inactivate pathogens in aerosols, with an emphasis on technologies that can be incorporated into mechanically driven (forced air) ventilation systems to prevent aerosol-based disease spread from facility to facility. Broadly, we find that control technologies can be grouped into three categories: (1) currently implemented technologies; (2) scaled technologies used in industrial and medical settings; and (3) emerging technologies. Category (1) solely consists of fibrous filter media, which have been demonstrated to reduce the spread of PRRSV between swine production facilities. We review the mechanisms by which filters function and are rated (minimum efficiency reporting values). Category (2) consists of electrostatic precipitators (ESPs), used industrially to collect aerosol particles in higher flow rate systems, and ultraviolet C (UV-C) systems, used in medical settings to inactivate pathogens. Finally, category (3) consists of a variety of technologies, including ionization-based systems, microwaves, and those generating reactive oxygen species, often with the goal of pathogen inactivation in aerosols. As such technologies are typically first tested through varied means at the laboratory scale, we additionally review control technology testing techniques at various stages of development, from laboratory studies to field demonstration, and in doing so, suggest uniform testing and report standards are needed. Testing standards should consider the cost-benefit of implementing the technologies applicable to the livestock species of interest. Finally, we examine economic models for implementing aerosol control technologies, defining the collected infectious particles per unit energy demand.
Collapse
Affiliation(s)
- Hui Ouyang
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
- Department of Mechanical Engineering, University of Texas-Dallas, Richardson, TX, United States
| | - Lan Wang
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Deepak Sapkota
- Department of Mechanical Engineering, University of Texas-Dallas, Richardson, TX, United States
| | - My Yang
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - José Morán
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Li Li
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Bernard A. Olson
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Mark Schwartz
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
- Schwartz Farms, Sleepy Eye, MN, United States
| | - Christopher J. Hogan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Montserrat Torremorell
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
8
|
Acharya A, Surbaugh K, Thurman M, Wickramaratne C, Myers P, Mittal R, Pandey K, Klug E, Stein SJ, Ravnholdt AR, Herrera VL, Rivera DN, Williams P, Santarpia JL, Kaushik A, Dhau JS, Byrareddy SN. Efficient trapping and destruction of SARS-CoV-2 using PECO-assisted Molekule air purifiers in the laboratory and real-world settings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115487. [PMID: 37729804 DOI: 10.1016/j.ecoenv.2023.115487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted human-to-human via aerosols and air-borne droplets. Therefore, capturing and destroying viruses from indoor premises are essential to reduce the probability of human exposure and virus transmission. While the heating, ventilation, and air conditioning (HVAC) systems help in reducing the indoor viral load, a targeted approach is required to effectively remove SARS-CoV-2 from indoor air to address human exposure concerns. The present study demonstrates efficient trapping and destruction of SARS-CoV-2 via nano-enabled filter technology using the UV-A-stimulated photoelectrochemical oxidation (PECO) process. Aerosols containing SARS-CoV-2 were generated by nebulization inside an air-controlled test chamber where an air purifier (Air Mini+) was placed. The study demonstrated the efficient removal of SARS-CoV-2 (99.98 %) from the test chamber in less than two minutes and PECO-assisted destruction (over 99%) on the filtration media in 1 h. Furthermore, in a real-world scenario, the Molekule Air-Pro air purifier removed SARS-CoV-2 (a negative RT-qPCR result post-running the filter device) from the circulating air in a COVID-19 testing facility. Overall, the ability of two FDA-approved class II medical devices, Molekule Air-Mini+ and Air-Pro air purifiers, to remove and destroy SARS-CoV-2 in indoor settings was successfully demonstrated. The study indicates that as the "tripledemic" of COVID-19, influenza, and respiratory syncytial virus (RSV) overwhelm the healthcare facilities in the USA, the use of a portable air filtration device will help contain the spread of the viruses in close door facilities, such as in schools and daycare facilities.
Collapse
Affiliation(s)
- Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68131, USA
| | - Kerri Surbaugh
- Research and Development, Molekule, Inc., 3802 Spectrum Blvd, Tampa, FL 33612, USA
| | - Michellie Thurman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68131, USA
| | | | - Philip Myers
- Research and Development, Molekule, Inc., 3802 Spectrum Blvd, Tampa, FL 33612, USA
| | - Rajat Mittal
- Clean Energy Research Center, University of South Florida, Tampa, FL 33612, USA
| | - Kabita Pandey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68131, USA
| | - Elizabeth Klug
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68131, USA
| | - Sarah J Stein
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ashley R Ravnholdt
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vicki L Herrera
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Danielle N Rivera
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paul Williams
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Joshua L Santarpia
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ajeet Kaushik
- Department of Environmental Engineering, Florida Polytechnic University, 4700 Research Way, Lakeland, FL 33805, USA; Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68131, USA
| | - Jaspreet S Dhau
- Research and Development, Molekule, Inc., 3802 Spectrum Blvd, Tampa, FL 33612, USA.
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68131, USA; Department of Environmental Engineering, Florida Polytechnic University, 4700 Research Way, Lakeland, FL 33805, USA; Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68131, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68131, USA.
| |
Collapse
|
9
|
Sung JCC, Wu PL, So EYM, Wu KC, Chan SMN, Kwong KWY, Sze ETP. Assessment of novel antiviral filter using pseudo-type SARS-CoV-2 virus in fast air velocity vertical-type wind tunnel. Sci Rep 2023; 13:13947. [PMID: 37626166 PMCID: PMC10457382 DOI: 10.1038/s41598-023-41245-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023] Open
Abstract
Current evidence suggests that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can remain suspended spread in aerosols for longer period of time under poorly ventilated indoor setting. To minimize spreading, application of antiviral filter to capture infectious aerosols and to inactivate SARS-CoV-2 can be a promising solution. This study aimed to develop a method to assess simultaneously the filtration and removal efficiency of aerosolized pseudo-type SARS-CoV-2 using a vertical-type wind tunnel with relatively high face velocity (1.3 m/s). Comparing with the untreated spunlace non-woven filter, the C-POLAR™ treated filter increased the filtration efficiency from 74.2 ± 11.5% to 97.2 ± 1.7%, with the removal efficiency of 99.4 ± 0.051%. The results provided not only solid evidence to support the effectiveness of the cationic polymeric coated filter in fighting against the SARS-CoV-2 pandemic, but also a method to test viral filtration and removal efficiency under relative fast air velocity and with a safer environment to the operators.
Collapse
Affiliation(s)
| | - Pak-Long Wu
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China
| | - Ellis Yung-Mau So
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China
| | - Kam-Chau Wu
- Research Department, DreamTec Cytokines Limited, Hong Kong, China
| | - Sidney Man-Ngai Chan
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China
| | | | - Eric Tung-Po Sze
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China.
| |
Collapse
|
10
|
Li LX, Nissly RH, Swaminathan A, Bird IM, Boyle NR, Nair MS, Greenawalt DI, Gontu A, Cavener VS, Sornberger T, Freihaut JD, Kuchipudi SV, Bahnfleth WP. Inactivation of HCoV-NL63 and SARS-CoV-2 in aqueous solution by 254 nm UV-C. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 245:112755. [PMID: 37423001 DOI: 10.1016/j.jphotobiol.2023.112755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/29/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Ultraviolet germicidal irradiation (UVGI) is a highly effective means of inactivating many bacteria, viruses, and fungi. UVGI is an attractive viral mitigation strategy against coronaviruses, including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the coronavirus disease-2019 (COVID-19) pandemic. This investigation measures the susceptibility of two human coronaviruses to inactivation by 254 nm UV-C radiation. Human coronavirus NL63 and SARS-CoV-2 were irradiated in a collimated, dual-beam, aqueous UV reactor. By measuring fluence and integrating it in real-time, this reactor accounts for the lamp output transients during UVGI exposures. The inactivation rate constants of a one-stage exponential decay model were determined to be 2.050 cm2/mJ and 2.098 cm2/mJ for the NL63 and SARS-CoV-2 viruses, respectively. The inactivation rate constant for SARS-CoV-2 is within 2% of that of NL63, indicating that in identical inactivation environments, very similar UV 254 nm deactivation susceptibilities for these two coronaviruses would be achieved. Given the inactivation rate constant obtained in this study, doses of 1.1 mJ/cm2, 2.2 mJ/cm2, and 3.3 mJ/cm2 would result in a 90%, 99%, and 99.9% inactivation of the SARS-CoV-2 virus, respectively. The inactivation rate constant obtained in this study is significantly higher than values reported from many 254 nm studies, which suggests greater UV susceptibility to the UV-C than what was believed. Overall, results from this study indicate that 254 nm UV-C is effective for inactivation of human coronaviruses, including SARS-CoV-2.
Collapse
Affiliation(s)
- Lily X Li
- Pennsylvania State University, Department of Architectural Engineering, 104 Engineering Unit A, University Park, PA, 16802, United States of America
| | - Ruth H Nissly
- Pennsylvania State University, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, University Park, PA 16802, United States of America
| | - Anand Swaminathan
- Pennsylvania State University, Department of Architectural Engineering, 104 Engineering Unit A, University Park, PA, 16802, United States of America
| | - Ian M Bird
- Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA 16802, United States of America
| | - Nina R Boyle
- Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA 16802, United States of America
| | - Meera Surendran Nair
- Pennsylvania State University, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, University Park, PA 16802, United States of America
| | - Denver I Greenawalt
- Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA 16802, United States of America
| | - Abhinay Gontu
- Pennsylvania State University, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, University Park, PA 16802, United States of America
| | - Victoria S Cavener
- Pennsylvania State University, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, University Park, PA 16802, United States of America
| | - Ty Sornberger
- Pennsylvania State University, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, University Park, PA 16802, United States of America
| | - James D Freihaut
- Pennsylvania State University, Department of Architectural Engineering, 104 Engineering Unit A, University Park, PA, 16802, United States of America.
| | - Suresh V Kuchipudi
- Pennsylvania State University, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, University Park, PA 16802, United States of America; Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA 16802, United States of America.
| | - William P Bahnfleth
- Pennsylvania State University, Department of Architectural Engineering, 104 Engineering Unit A, University Park, PA, 16802, United States of America.
| |
Collapse
|
11
|
Truong CS, Muthukutty P, Jang HK, Kim YH, Lee DH, Yoo SY. Filter-Free, Harmless, and Single-Wavelength Far UV-C Germicidal Light for Reducing Airborne Pathogenic Viral Infection. Viruses 2023; 15:1463. [PMID: 37515151 PMCID: PMC10385069 DOI: 10.3390/v15071463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Germicidal lamps that primarily emit 254 nm ultraviolet (UV) radiation have been effectively utilized for surface sterilization, but they cannot be used on human skin and eyes due to their harmful and genotoxic activity. Recent reports have shown that far UV-C light (207-222 nm) can efficiently kill pathogens with potentially no harm to exposed human tissues. However, these methods still require additional filtering and/or further protective equipment. In this study, we demonstrate a filter-free, harmless, and single-wavelength far UV-C 207 nm germicidal light source that can be used to inactivate different respiratory viruses. It can be exploited as a safe and effective disinfection tool for various airborne viruses. We successfully developed a single-wavelength far UV-C source that produces an exact wavelength of 207 nm. We examined its safety on human skin and corneal cell lines, as well as its effects on inactivating different airborne viruses, such as coronavirus, adenovirus, and vaccinia virus. We expect that our far UV-C lamps can be safely and conveniently used to reduce COVID-19 infections and protect both our living spaces and hospitals from the threat of contamination by possible new or mutant viruses.
Collapse
Affiliation(s)
- Cao-Sang Truong
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Palaniyandi Muthukutty
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Ho Kyung Jang
- SUNJE HI TEK Co., Ltd., Busan 46047, Republic of Korea
| | - Young-Ho Kim
- Department of Molecular Biology and Immunology, College of Medicine, Kosin University, Busan 49267, Republic of Korea
| | - Dong Hoon Lee
- SUNJE HI TEK Co., Ltd., Busan 46047, Republic of Korea
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
12
|
Zhang L, Guo Y, Tie J, Yao Z, Feng Z, Wu Q, Wang X, Luo H. Grating-like DBD plasma for air disinfection: Dose and dose-response characteristics. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130780. [PMID: 36669408 DOI: 10.1016/j.jhazmat.2023.130780] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/02/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Atmospheric pressure dielectric barrier discharge (DBD) plasma is an emerging technique for effective bioaerosol decontamination and is promising to be used in indoor environments to reduce infections. However, fundamental knowledge of the dose and dose-response characteristics of plasma-based disinfection technology is very limited. By examining the single-pass removal efficiency of S. lentus aerosol by in-duct grating-like DBD plasma reactors with varied discharge setups (gap distance, electrode size, number of discharge layers, frequency, dielectric material), it was found that the specific input energy (SIE) could be served as the dose for disinfection, and the efficiency was exponentially dependent on SIE in most cases. The corresponding susceptibility constants (Z values) were obtained hereinafter. Humidity was a prominent factor boosting the efficiency with a Z value of 0.36 L/J at relative humidity (RH) of 20% and 1.68 L/J at RH of 60%. MS2 phage showed a much higher efficiency of 2.66-3.08 log10 of reduction than those of S. lentus (38-85%) and E. coli (42%-95%) under the same condition. Using SIE as the dose, the performance of plasma reactors in the literature was compared and evaluated. This work provides a theoretical and engineering basis for air disinfection by plasma-based technology.
Collapse
Affiliation(s)
- Liyang Zhang
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuntao Guo
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, China.
| | - Jinfeng Tie
- Disinfection and Infection Control, Chinese PLA Center for Disease Prevention and Control, Beijing 100071, China.
| | - Zenghui Yao
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Zihao Feng
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Qiong Wu
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Xinxin Wang
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Haiyun Luo
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
de Oliveira SV, Neves FDD, dos Santos DC, Monteiro MBB, Schaufelberger MS, Motta BN, de Oliveira IP, Setúbal Destro Rodrigues MF, Franco ALDS, Cecatto RB. The effectiveness of phototherapy for surface decontamination against SARS-Cov-2. A systematic review. JOURNAL OF BIOPHOTONICS 2023; 16:e202200306. [PMID: 36560919 PMCID: PMC9880673 DOI: 10.1002/jbio.202200306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
COVID-19 appeared in December 2019, needing efforts of science. Besides, a range of light therapies (photodynamic therapy, ultraviolet [UV], laser) has shown scientific alternatives to conventional decontamination therapies. Investigating the efficacy of light-based therapies for environment decontamination against SARS-CoV2, a PRISMA systematic review of Phototherapies against SARS-CoV or MERS-CoV species discussing changes in viral RT-PCR was done. After searching MEDLINE/PubMed, EMBASE, and Literatura Latino-Americana e do Caribe em Ciências da Saúde we have found studies about cell cultures irradiation (18), blood components irradiation (10), N95 masks decontamination (03), inanimate surface decontamination (03), aerosols decontamination (03), hospital rooms irradiation (01) with PDT, LED, and UV therapy. The best quality results showed an effective low time and dose UV irradiation for environments and inanimate surfaces without human persons as long as the devices have safety elements dependent on the surfaces, viral charge, humidity, radiant exposure. To interpersonal contamination in humans, PDT or LED therapy seems very promising and are encouraged.
Collapse
Affiliation(s)
- Susyane Vieira de Oliveira
- Post Graduate Program Biophotonics Applied to Health Sciences, Universidade Nove de Julho/UNINOVESao PauloBrazil
| | | | | | | | | | | | | | | | | | - Rebeca Boltes Cecatto
- Post Graduate Program Biophotonics Applied to Health Sciences, Universidade Nove de Julho/UNINOVESao PauloBrazil
- Instituto do Cancer do Estado de Sao Paulo, School of Medicine of the University of Sao PauloSao PauloBrazil
| |
Collapse
|
14
|
Zhang H, Lai ACK. Evaluation of Single-Pass Disinfection Performance of Far-UVC Light on Airborne Microorganisms in Duct Flows. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17849-17857. [PMID: 36469399 DOI: 10.1021/acs.est.2c04861] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Far-UVC irradiation (222 nm) is considered an emerging and sustainable solution for future infection and pandemic challenges. We examined the disinfection performance of a krypton-chloride lamp, with a quasi-monochromatic UVC peak at 222 nm, for inactivating airborne microorganisms in a full-scale ventilation duct system. Single-pass disinfection efficacy of far-UVC was determined and compared with that of a conventional mercury-type UVC (254 nm) lamp. Four bacteria, Escherichia coli (E. coli), Pseudomonas alcaligenes (P. alcaligenes), Serratia marcescens (S. marcescens), and Staphylococcus epidermidis (S. epidermidis), as well as bacteriophage P22, were tested under UV exposure with different velocities of duct flows. The data revealed that as the air velocity increased from 0.7 to 4 m/s, the far-UVC disinfection efficacies would decrease by 42, 47, 35, 39, and 33% for these five microorganisms, respectively. The inactivation rate constants to far-UVC light were 4.9, 7.5, 3.3, 6.3, and 3.0 cm2/mJ for aerosolized E. coli, P. alcaligenes, S. marcescens, S. epidermidis, and bacteriophage P22, respectively. Far-UVC irradiation showed a comparable disinfection ability on airborne microorganisms compared with the 254 nm UV irradiation. This first study of far-UVC in real duct applications provides a better understanding of the disinfection performance of this solution in bioaerosol inactivation. It offers a valuable database in the sizing and design of excimer lamps for novel portable air purifiers or in-duct disinfection units.
Collapse
Affiliation(s)
- Huihui Zhang
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong00000, China
| | - Alvin C K Lai
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong00000, China
| |
Collapse
|
15
|
Meller S, Al Khatri MSA, Alhammadi HK, Álvarez G, Alvergnat G, Alves LC, Callewaert C, Caraguel CGB, Carancci P, Chaber AL, Charalambous M, Desquilbet L, Ebbers H, Ebbers J, Grandjean D, Guest C, Guyot H, Hielm-Björkman A, Hopkins A, Kreienbrock L, Logan JG, Lorenzo H, Maia RDCC, Mancilla-Tapia JM, Mardones FO, Mutesa L, Nsanzimana S, Otto CM, Salgado-Caxito M, de los Santos F, da Silva JES, Schalke E, Schoneberg C, Soares AF, Twele F, Vidal-Martínez VM, Zapata A, Zimin-Veselkoff N, Volk HA. Expert considerations and consensus for using dogs to detect human SARS-CoV-2-infections. Front Med (Lausanne) 2022; 9:1015620. [PMID: 36569156 PMCID: PMC9773891 DOI: 10.3389/fmed.2022.1015620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sebastian Meller
- Department of Small Animal Medicine & Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | | | - Hamad Khatir Alhammadi
- International Operations Department, Ministry of Interior of the United Arab Emirates, Abu Dhabi, United Arab Emirates
| | - Guadalupe Álvarez
- Faculty of Veterinary Science, University of Buenos Aires, Buenos Aires, Argentina
| | - Guillaume Alvergnat
- International Operations Department, Ministry of Interior of the United Arab Emirates, Abu Dhabi, United Arab Emirates
| | - Lêucio Câmara Alves
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, Brazil
| | - Chris Callewaert
- Center for Microbial Ecology and Technology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Charles G. B. Caraguel
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Paula Carancci
- Faculty of Veterinary Science, University of Buenos Aires, Buenos Aires, Argentina
| | - Anne-Lise Chaber
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Marios Charalambous
- Department of Small Animal Medicine & Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Loïc Desquilbet
- École Nationale Vétérinaire d’Alfort, IMRB, Université Paris Est, Maisons-Alfort, France
| | | | | | - Dominique Grandjean
- École Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Claire Guest
- Medical Detection Dogs, Milton Keynes, United Kingdom
| | - Hugues Guyot
- Clinical Department of Production Animals, Fundamental and Applied Research for Animals & Health Research Unit, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Anna Hielm-Björkman
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Amy Hopkins
- Medical Detection Dogs, Milton Keynes, United Kingdom
| | - Lothar Kreienbrock
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Hanover, Germany
| | - James G. Logan
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Arctech Innovation, The Cube, Dagenham, United Kingdom
| | - Hector Lorenzo
- Faculty of Veterinary Science, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | - Fernando O. Mardones
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal and Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leon Mutesa
- Center for Human Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
- Rwanda National Joint Task Force COVID-19, Kigali, Rwanda
| | | | - Cynthia M. Otto
- Penn Vet Working Dog Center, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Marília Salgado-Caxito
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal and Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | - Esther Schalke
- Bundeswehr Medical Service Headquarters, Koblenz, Germany
| | - Clara Schoneberg
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Anísio Francisco Soares
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Recife, Brazil
| | - Friederike Twele
- Department of Small Animal Medicine & Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Victor Manuel Vidal-Martínez
- Laboratorio de Parasitología y Patología Acuática, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN Unidad Mérida, Mérida, Yucatán, Mexico
| | - Ariel Zapata
- Faculty of Veterinary Science, University of Buenos Aires, Buenos Aires, Argentina
| | - Natalia Zimin-Veselkoff
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal and Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Holger A. Volk
- Department of Small Animal Medicine & Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
- Center for Systems Neuroscience Hannover, Hanover, Germany
| |
Collapse
|
16
|
Antiviral activity of nano-monocaprin against Phi6 as a surrogate for SARS-CoV-2. Int Microbiol 2022; 26:379-387. [PMID: 36422769 PMCID: PMC9685086 DOI: 10.1007/s10123-022-00300-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022]
Abstract
The COVID-19 pandemic involving SARS-CoV-2 has raised interest in using antimicrobial lipid formulations to inhibit viral entry into their host cells or to inactivate them. Lipids are a part of the innate defense mechanism against pathogens. Here, we evaluated the use of nano-monocaprin (NMC) in inhibiting enveloped (phi6) and unenveloped (MS2) bacteriophages. NMC was prepared using the sonochemistry technique. Size and morphology analysis revealed the formation of ~ 8.4 ± 0.2-nm NMC as measured by dynamic light scattering. We compared the antiviral activity of NMC with molecular monocaprin (MMC) at 0.5 mM and 2 mM concentrations against phi6, which we used as a surrogate for SARS-CoV-2. The synthesized NMC exhibited 50% higher antiviral activity against phi6 than MMC at pH 7 using plaque assay. NMC inactivated phi6 stronger at pH 4 than at pH 7. To determine if NMC is toxic to mammalian cells, we used MTS assay to assess its IC50 for HPDE and HeLa cell lines, which were ~ 203 and 221 µM, respectively. NMC may be used for prophylactic application either as a drop or spray since many viruses enter the human body through the mucosal lining of the nose, eyes, and lungs.
Collapse
|
17
|
Dhabarde N, Khaiboullina S, Uppal T, Adhikari K, Verma SC, Subramanian VR. Inactivation of SARS-CoV-2 and Other Human Coronaviruses Aided by Photocatalytic One-Dimensional Titania Nanotube Films as a Self-Disinfecting Surface. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50463-50474. [PMID: 36335476 DOI: 10.1021/acsami.2c03226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
SARS-CoV-2 and its variants that continue to emerge have necessitated the implementation of effective disinfection strategies. Developing self-disinfecting surfaces can be a potential route for reducing fomite transmissions of infectious viruses. We show the effectiveness of TiO2 nanotubes (T_NTs) on photocatalytic inactivation of human coronavirus, HCoV-OC43, as well as SARS-CoV-2. T_NTs were synthesized by the anodization process, and their impact on photocatalytic inactivation was evaluated by the detection of residual viral genome copies (quantitative real-time quantitative reverse transcription polymerase chain reaction) and infectious viruses (infectivity assays). T_NTs with different structural morphologies, wall thicknesses, diameters, and lengths were prepared by varying the time and applied potential during anodization. The virucidal efficacy was tested under different UV-C exposure times to understand the photocatalytic reaction's kinetics. We showed that the T_NT presence boosts the inactivation process and demonstrated complete inactivation of SARS-CoV-2 as well as HCoV-OC43 within 30 s of UV-C illumination. The remarkable cyclic stability of these T_NTs was revealed through a reusability experiment. The spectroscopic and electrochemical analyses have been reported to correlate and quantify the effects of the physical features of T_NT with photoactivity. We anticipate that the proposed one-dimensional T_NT will be applicable for studying the surface inactivation of other coronaviruses including SARS-CoV-2 variants due to similarities in their genomic structure.
Collapse
Affiliation(s)
- Nikhil Dhabarde
- Chemical and Materials Engineering Department, University of Nevada, LME 309, MS 388, Reno, Nevada 89557, United States
| | - Svetlana Khaiboullina
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, 1664 N Virginia Street, Reno, Nevada 89557, United States
| | - Timsy Uppal
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, 1664 N Virginia Street, Reno, Nevada 89557, United States
| | - Kabita Adhikari
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, 1664 N Virginia Street, Reno, Nevada 89557, United States
| | - Subhash C Verma
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, 1664 N Virginia Street, Reno, Nevada 89557, United States
| | - Vaidyanathan Ravi Subramanian
- Chemical and Materials Engineering Department, University of Nevada, LME 309, MS 388, Reno, Nevada 89557, United States
| |
Collapse
|
18
|
Nguyen TT, He C, Carter R, Ballard EL, Smith K, Groth R, Jaatinen E, Kidd TJ, Nguyen TK, Stockwell RE, Tay G, Johnson GR, Bell SC, Knibbs LD. The Effectiveness of Ultraviolet-C (UV-C) Irradiation on the Viability of Airborne Pseudomonas aeruginosa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192013706. [PMID: 36294279 PMCID: PMC9602727 DOI: 10.3390/ijerph192013706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 05/17/2023]
Abstract
Pseudomonas aeruginosa (Pa) is the predominant bacterial pathogen in people with cystic fibrosis (CF) and can be transmitted by airborne droplet nuclei. Little is known about the ability of ultraviolet band C (UV-C) irradiation to inactivate Pa at doses and conditions relevant to implementation in indoor clinical settings. We assessed the effectiveness of UV-C (265 nm) at up to seven doses on the decay of nebulized Pa aerosols (clonal Pa strain) under a range of experimental conditions. Experiments were done in a 400 L rotating sampling drum. A six-stage Andersen cascade impactor was used to collect aerosols inside the drum and the particle size distribution was characterized by an optical particle counter. UV-C effectiveness was characterized relative to control tests (no UV-C) of the natural decay of Pa. We performed 112 tests in total across all experimental conditions. The addition of UV-C significantly increased the inactivation of Pa compared with natural decay alone at all but one of the UV-C doses assessed. UV-C doses from 246-1968 µW s/cm2 had an estimated effectiveness of approximately 50-90% for airborne Pa. The effectiveness of doses ≥984 µW s/cm2 were not significantly different from each other (p-values: 0.365 to ~1), consistent with a flattening of effectiveness at higher doses. Modelling showed that delivering the highest dose associated with significant improvement in effectiveness (984 µW s/cm2) to the upper air of three clinical rooms would lead to lower room doses from 37-49% of the 8 h occupational limit. Our results suggest that UV-C can expedite the inactivation of nebulized airborne Pa under controlled conditions, at levels that can be delivered safely in occupied settings. These findings need corroboration, but UV-C may have potential applications in locations where people with CF congregate, coupled with other indoor and administrative infection control measures.
Collapse
Affiliation(s)
- Thi Tham Nguyen
- School of Public Health, The University of Queensland, Brisbane, QLD 4006, Australia
- Correspondence:
| | - Congrong He
- International Laboratory for Air Quality & Health, School of Earth and Atmospheric Sciences, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Robyn Carter
- Centre for Children’s Health Research, Brisbane, QLD 4101, Australia
| | - Emma L. Ballard
- QIMR Berghofer Institute of Medical Research, Brisbane, QLD 4006, Australia
| | - Kim Smith
- Centre for Children’s Health Research, Brisbane, QLD 4101, Australia
| | - Robert Groth
- International Laboratory for Air Quality & Health, School of Earth and Atmospheric Sciences, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Esa Jaatinen
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Timothy J. Kidd
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4032, Australia
- Pathology Queensland, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4006, Australia
| | - Thuy-Khanh Nguyen
- QIMR Berghofer Institute of Medical Research, Brisbane, QLD 4006, Australia
| | | | - George Tay
- The Prince Charles Hospital, Brisbane, QLD 4032, Australia
| | - Graham R. Johnson
- International Laboratory for Air Quality & Health, School of Earth and Atmospheric Sciences, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Scott C. Bell
- Centre for Children’s Health Research, Brisbane, QLD 4101, Australia
- The Prince Charles Hospital, Brisbane, QLD 4032, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Luke D. Knibbs
- Public Health Unit, Sydney Local Health District, Camperdown, NSW 2050, Australia
- Faculty of Medicine and Health, School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
19
|
Fischer RJ, Port JR, Holbrook MG, Yinda KC, Creusen M, ter Stege J, de Samber M, Munster VJ. UV-C Light Completely Blocks Aerosol Transmission of Highly Contagious SARS-CoV-2 Variants WA1 and Delta in Hamsters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12424-12430. [PMID: 36001075 PMCID: PMC9437662 DOI: 10.1021/acs.est.2c02822] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Behavioral and medical control measures have not been effective in containing the spread of SARS-CoV-2 in large part due to the unwillingness of populations to adhere to "best practices". Ultraviolet light with wavelengths of between 200 and 280 nm (UV-C) and, in particular, germicidal ultraviolet light, which refers to wavelengths around 254 nm, have the potential to unobtrusively reduce the risk of SARS-CoV-2 transmission in enclosed spaces. We investigated the effectiveness of a strategy using UV-C light to prevent airborne transmission of the virus in a hamster model. Treatment of environmental air with 254 nm UV-C light prevented transmission of SARS-CoV-2 between individuals in a model using highly susceptible Syrian golden hamsters. The prevention of transmission of SARS-CoV-2 in a natural system by treating elements of the surrounding environment is one more weapon in the arsenal to combat COVID. The results presented indicate that coupling mitigation strategies utilizing UV-C light, along with current methods to reduce transmission risk, have the potential to allow a return to normal indoor activities.
Collapse
Affiliation(s)
- Robert J. Fischer
- Laboratory
of Virology, National Institute of Allergy
and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840 United States
| | - Julia R. Port
- Laboratory
of Virology, National Institute of Allergy
and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840 United States
| | - Myndi G. Holbrook
- Laboratory
of Virology, National Institute of Allergy
and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840 United States
| | - Kwe Claude Yinda
- Laboratory
of Virology, National Institute of Allergy
and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840 United States
| | - Martin Creusen
- Signify, High Tech Campus 48, 5656 AE Eindhoven, The Netherlands
| | - Jeroen ter Stege
- UVConsult
BV, Hoofdstraat 249, 1611 AG Bovenkarspel, The Netherlands
| | - Marc de Samber
- Signify, High Tech Campus 48, 5656 AE Eindhoven, The Netherlands
| | - Vincent J. Munster
- Laboratory
of Virology, National Institute of Allergy
and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840 United States
| |
Collapse
|
20
|
Ruetalo N, Berger S, Niessner J, Schindler M. Inactivation of aerosolized SARS-CoV-2 by 254 nm UV-C irradiation. INDOOR AIR 2022; 32:e13115. [PMID: 36168221 PMCID: PMC9538331 DOI: 10.1111/ina.13115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 06/12/2023]
Abstract
Surface residing SARS-CoV-2 is efficiently inactivated by UV-C irradiation. This raises the question whether UV-C-based technologies are also suitable to decontaminate SARS-CoV-2- containing aerosols and which doses are needed to achieve inactivation. Here, we designed a test bench to generate aerosolized SARS-CoV-2 and exposed the aerosols to a defined UV-C dose. Our results demonstrate that the exposure of aerosolized SARS-CoV-2 with a low average dose in the order of 0.42-0.51 mJ/cm2 UV-C at 254 nm resulted in more than 99.9% reduction in viral titers. Altogether, UV-C-based decontamination of aerosols seems highly effective to achieve a significant reduction in SARS-CoV-2 infectivity.
Collapse
Affiliation(s)
- Natalia Ruetalo
- Institute for Medical Virology and Epidemiology of Viral DiseasesUniversity Hospital TübingenTübingenGermany
| | - Simon Berger
- Institute for Flow in Additively Manufactured Porous MediaHochschule HeilbronnHeilbronnGermany
| | - Jennifer Niessner
- Institute for Flow in Additively Manufactured Porous MediaHochschule HeilbronnHeilbronnGermany
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral DiseasesUniversity Hospital TübingenTübingenGermany
| |
Collapse
|
21
|
Zhang L, Guo Y, Chang X, Yao Z, Wei X, Feng Z, Zhang D, Zhou Q, Wang X, Luo H. In-duct grating-like dielectric barrier discharge system for air disinfection. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129075. [PMID: 35650753 PMCID: PMC9072810 DOI: 10.1016/j.jhazmat.2022.129075] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 05/04/2023]
Abstract
In the context of spreading Coronavirus disease 2019 (COVID-19), the combination of heating, ventilation, and air-conditioning (HVAC) system with air disinfection device is an effective way to reduce transmissible infections. Atmospheric-pressure non-equilibrium plasma is an emerging technique for fast pathogen aerosol abatement. In this work, in-duct disinfectors based on grating-like dielectric barrier discharge (DBD) plasmas with varied electrode arrangements were established and evaluated. The highest airborne bacterial inactivation efficiency was achieved by 'vertical' structure, namely when aerosol was in direct contact with the discharge region, at a given discharge power. For all reactors, the efficiency was linearly correlated to the discharge power (R2 =0.929-0.994). The effects of environmental factors were examined. Decreased airflow rates boosted the efficiency, which reached 99.8% at the velocity of 0.5 m/s with an aerosol residence time of ~3.6 ms. Increasing humidity (relative humidity (RH)=20-60%) contributed to inactivation efficacy, while high humidity (RH=70%-90%) led to a saturated efficiency, possibly due to the disruption of discharge uniformity. As suggested by the plasma effluent treatment and scavenger experiments, gaseous short-lived chemical species or charged particles were concluded as the major agents accounting for bacterial inactivation. This research provides new hints for air disinfection by DBD plasmas.
Collapse
Affiliation(s)
- Liyang Zhang
- Department of Electrical Engineering, Tsinghua University, Beijing, China
| | - Yuntao Guo
- Department of Electrical Engineering, Tsinghua University, Beijing, China.
| | - Xuanyu Chang
- Marine Design and Research Institute of China (MARIC), Shanghai, China
| | - Zenghui Yao
- School of Electrical and Electronic Engineering, North China Electric Power University, Beijing, China
| | - Xiaodong Wei
- Marine Design and Research Institute of China (MARIC), Shanghai, China
| | - Zihao Feng
- Department of Electrical Engineering, Tsinghua University, Beijing, China
| | - Dongheyu Zhang
- Department of Electrical Engineering, Tsinghua University, Beijing, China
| | - Qun Zhou
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Xinxin Wang
- Department of Electrical Engineering, Tsinghua University, Beijing, China
| | - Haiyun Luo
- Department of Electrical Engineering, Tsinghua University, Beijing, China.
| |
Collapse
|
22
|
Snelling WJ, Afkhami A, Turkington HL, Carlisle C, Cosby SL, Hamilton JWJ, Ternan NG, Dunlop PSM. Efficacy of single pass UVC air treatment for the inactivation of coronavirus, MS2 coliphage and Staphylococcus aureus bioaerosols. JOURNAL OF AEROSOL SCIENCE 2022; 164:106003. [PMID: 35496770 PMCID: PMC9040443 DOI: 10.1016/j.jaerosci.2022.106003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 05/03/2023]
Abstract
There is strong evidence that SARS-CoV-2 is spread predominantly by airborne transmission, with high viral loads released into the air as respiratory droplets and aerosols from the infected subject. The spread and persistence of SARS-CoV-2 in diverse indoor environments reinforces the urgent need to supplement distancing and PPE based approaches with effective engineering measures for microbial decontamination - thereby addressing the significant risk posed by aerosols. We hypothesized that a portable, single-pass UVC air treatment device (air flow 1254 L/min) could effectively inactivate bioaerosols containing bacterial and viral indicator organisms, and coronavirus without reliance on filtration technology, at reasonable scale. Robust experiments demonstrated UVC dose dependent inactivation of Staphylococcus aureus (UV rate constant (k) = 0.098 m2/J) and bacteriophage MS2, with up to 6-log MS2 reduction achieved in a single pass through the system (k = 0.119 m2/J). The inclusion of a PTFE diffuse reflector increased the effective UVC dose by up to 34% in comparison to a standard Al foil reflector (with identical lamp output), resulting in significant additional pathogen inactivation (1-log S. aureus and MS2, p < 0.001). Complete inactivation of bovine coronavirus bioaerosols was demonstrated through tissue culture infectivity (2.4-log reduction) and RT-qPCR analysis - confirming single pass UVC treatment to effectively deactivate coronavirus to the limit of detection of the culture-based method. Scenario-based modelling was used to investigate the reduction in risk of airborne person-to-person transmission based upon a single infected subject within the small room. Use of the system providing 5 air changes per hour was shown to significantly reduce airborne viral load and maintain low numbers of RNA copies when the infected subject remained in the room, reducing the risk of airborne pathogen transmission to other room users. We conclude that the application of single-pass UVC systems (without reliance on HEPA filtration) could play a critical role in reducing the risk of airborne pathogen transfer, including SARS-CoV2, in locations where adequate fresh air ventilation cannot be implemented.
Collapse
Affiliation(s)
- William J Snelling
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, University of Ulster, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
| | - Arsalan Afkhami
- Nanotechnology and Integrated BioEngineering Centre (NIBEC), Ulster University, Newtownabbey, Northern Ireland, United Kingdom
| | - Hannah L Turkington
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Stormont, Belfast, Northern Ireland, United Kingdom
| | - Claire Carlisle
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Stormont, Belfast, Northern Ireland, United Kingdom
| | - S Louise Cosby
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Stormont, Belfast, Northern Ireland, United Kingdom
| | - Jeremy W J Hamilton
- Nanotechnology and Integrated BioEngineering Centre (NIBEC), Ulster University, Newtownabbey, Northern Ireland, United Kingdom
| | - Nigel G Ternan
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, University of Ulster, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
| | - Patrick S M Dunlop
- Nanotechnology and Integrated BioEngineering Centre (NIBEC), Ulster University, Newtownabbey, Northern Ireland, United Kingdom
| |
Collapse
|
23
|
Thornton GM, Fleck BA, Fleck N, Kroeker E, Dandnayak D, Zhong L, Hartling L. The impact of heating, ventilation, and air conditioning design features on the transmission of viruses, including the 2019 novel coronavirus: A systematic review of ultraviolet radiation. PLoS One 2022; 17:e0266487. [PMID: 35395010 PMCID: PMC8992995 DOI: 10.1371/journal.pone.0266487] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 03/22/2022] [Indexed: 01/14/2023] Open
Abstract
Respiratory viruses are capable of transmitting via an aerosol route. Emerging evidence suggests that SARS-CoV-2 which causes COVID-19 can be spread through airborne transmission, particularly in indoor environments with poor ventilation. Heating, ventilation, and air conditioning (HVAC) systems can play a role in mitigating airborne virus transmission. Ultraviolet germicidal irradiation (UVGI), a feature that can be incorporated into HVAC systems, can be used to impede the ability of viruses to replicate and infect a host. We conducted a systematic review of the scientific literature examining the effectiveness of HVAC design features in reducing virus transmission-here we report results for ultraviolet (UV) radiation. We followed international standards for conducting systematic reviews and developed an a priori protocol. We conducted a comprehensive search to January 2021 of published and grey literature using Ovid MEDLINE, Compendex, and Web of Science Core. Two reviewers were involved in study selection, data extraction, and risk of bias assessments. We presented study characteristics and results in evidence tables, and synthesized results across studies narratively. We identified 32 relevant studies published between 1936 and 2020. Research demonstrates that: viruses and bacteriophages are inactivated by UV radiation; increasing UV dose is associated with decreasing survival fraction of viruses and bacteriophages; increasing relative humidity is associated with decreasing susceptibility to UV radiation; UV dose and corresponding survival fraction are affected by airflow pattern, air changes per hour, and UV device location; and UV radiation is associated with decreased transmission in both animal and human studies. While UV radiation has been shown to be effective in inactivating viruses and reducing disease transmission, practical implementation of UVGI in HVAC systems needs to consider airflow patterns, air changes per hour, and UV device location. The majority of the scientific literature is comprised of experimental, laboratory-based studies. Further, a variety of viruses have been examined; however, there are few studies of coronaviruses and none to date of SARS-CoV-2. Future field studies of UVGI systems could address an existing research gap and provide important information on system performance in real-world situations, particularly in the context of the current COVID-19 pandemic. This comprehensive synthesis of the scientific evidence examining the impact of UV radiation on virus transmission can be used to guide implementation of systems to mitigate airborne spread and identify priorities for future research. Trial registration PROSPERO 2020 CRD42020193968.
Collapse
Affiliation(s)
- Gail M. Thornton
- Department of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Brian A. Fleck
- Department of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Natalie Fleck
- Department of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Emily Kroeker
- Department of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Dhyey Dandnayak
- Department of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Lexuan Zhong
- Department of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Lisa Hartling
- Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
24
|
Kong M, Li L, Eilts SM, Li L, Hogan CJ, Pope ZC. Localized and Whole-Room Effects of Portable Air Filtration Units on Aerosol Particle Deposition and Concentration in a Classroom Environment. ACS ES&T ENGINEERING 2022; 2:653-669. [PMID: 37552723 PMCID: PMC8864773 DOI: 10.1021/acsestengg.1c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 05/14/2023]
Abstract
In indoor environments with limited ventilation, recirculating portable air filtration (PAF) units may reduce COVID-19 infection risk via not only the direct aerosol route (i.e., inhalation) but also via an indirect aerosol route (i.e., contact with the surface where aerosol particles deposited). We systematically investigated the impact of PAF units in a mock classroom, as a supplement to background ventilation, on localized and whole-room surface deposition and particle concentration. Fluorescently tagged particles with a volumetric mean diameter near 2 μm were continuously introduced into the classroom environment via a breathing simulator with a prescribed inhalation-exhalation waveform. Deposition velocities were inferred on >50 horizontal and vertical surfaces throughout the classroom, while aerosol concentrations were spatially monitored via optical particle spectrometry. Results revealed a particle decay rate consistent with expectations based upon the reported clean air delivery rates of the PAF units. Additionally, the PAF units reduced peak concentrations by a factor of around 2.5 compared to the highest concentrations observed and led to a statistically significant reduction in deposition velocities for horizontal surfaces >2.5 m from the aerosol source. Our results not only confirm that PAF units can reduce particle concentrations but also demonstrate that they may lead to reduced particle deposition throughout an indoor environment when properly positioned with respect to the location of the particle source(s) within the room (e.g., where the largest group of students sit) and the predominant air distribution profile of the room.
Collapse
Affiliation(s)
- Meng Kong
- Well Living Lab, Rochester,
Minnesota 55902, United States
| | - Linhao Li
- Well Living Lab, Rochester,
Minnesota 55902, United States
| | - Stephanie M. Eilts
- Department of Mechanical Engineering,
University of Minnesota, Minneapolis, Minnesota 55455,
United States
| | - Li Li
- Department of Mechanical Engineering,
University of Minnesota, Minneapolis, Minnesota 55455,
United States
| | - Christopher J. Hogan
- Department of Mechanical Engineering,
University of Minnesota, Minneapolis, Minnesota 55455,
United States
| | - Zachary C. Pope
- Well Living Lab, Rochester,
Minnesota 55902, United States
- Mayo Clinic, Department of Physiology and
Biomedical Engineering, Rochester, Minnesota 55905, United
States
| |
Collapse
|
25
|
Baldridge KC, Edmonds K, Dziubla T, Hilt JZ, Dutch RE, Bhattacharyya D. Demonstration of Hollow Fiber Membrane-Based Enclosed Space Air Remediation for Capture of an Aerosolized Synthetic SARS-CoV-2 Mimic and Pseudovirus Particles. ACS ES&T ENGINEERING 2022; 2:251-262. [PMID: 37406036 PMCID: PMC8768008 DOI: 10.1021/acsestengg.1c00369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Reduction of airborne viral particles in enclosed spaces is critical in controlling pandemics. Three different hollow fiber membrane (HFM) modules were investigated for viral aerosol separation in enclosed spaces. Pore structures were characterized by scanning electron microscopy, and air transport properties were measured. Particle removal efficiency was characterized using aerosols generated by a collision atomizer from a defined mixture of synthetic nanoparticles including SARS-CoV-2 mimics (protein-coated 100 nm polystyrene). HFM1 (polyvinylidene fluoride, ~50-1300 nm pores) demonstrated 96.5-100% efficiency for aerosols in the size range of 0.3-3 μm at a flow rate of 18.6 ± 0.3 SLPM (~1650 LMH), whereas HFM2 (polypropylene, ~40 nm pores) and HFM3 (hydrophilized polyether sulfone, ~140-750 nm pores) demonstrated 99.65-100% and 98.8-100% efficiency at flow rates of 19.7 ± 0.3 SLPM (~820 LMH) and 19.4 ± 0.2 SLPM (~4455 LMH), respectively. Additionally, lasting filtration with minimal fouling was demonstrated using ambient aerosols over 2 days. Finally, each module was evaluated with pseudovirus (vesicular stomatitis virus) aerosol, demonstrating 99.3% (HFM1), >99.8% (HFM2), and >99.8% (HFM3) reduction in active pseudovirus titer as a direct measure of viral particle removal. These results quantified the aerosol separation efficiency of HFMs and highlight the need for further development of this technology to aid the fight against airborne viruses and particulate matter concerning human health.
Collapse
Affiliation(s)
- Kevin C Baldridge
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Kearstin Edmonds
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40508, United States
| | - Thomas Dziubla
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - J Zach Hilt
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Rebecca E Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40508, United States
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
26
|
Fischer RJ, Port JR, Holbrook MG, Yinda KC, Creusen M, Ter Stege J, de Samber M, Munster VJ. UV-C light completely blocks highly contagious Delta SARS-CoV-2 aerosol transmission in hamsters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.01.10.475722. [PMID: 35043111 PMCID: PMC8764719 DOI: 10.1101/2022.01.10.475722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Behavioral and medical control measures are not effective in containing the spread of SARS-CoV-2. Here we report on the effectiveness of a preemptive environmental strategy using UV-C light to prevent airborne transmission of the virus in a hamster model and show that UV-C exposure completely prevents airborne transmission between individuals.
Collapse
Affiliation(s)
- Robert J Fischer
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Julia R Port
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Myndi G Holbrook
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kwe Claude Yinda
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Martin Creusen
- Signify, High Tech Campus 48, 5656 AE, Eindhoven, The Netherlands
| | - Jeroen Ter Stege
- UVConsult BV, Hoofdstraat 249, 1611AG Bovenkarspel, The Netherlands
| | - Marc de Samber
- Signify, High Tech Campus 48, 5656 AE, Eindhoven, The Netherlands
| | - Vincent J Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
27
|
Thornton GM, Fleck BA, Kroeker E, Dandnayak D, Fleck N, Zhong L, Hartling L. The impact of heating, ventilation, and air conditioning design features on the transmission of viruses, including the 2019 novel coronavirus: A systematic review of ventilation and coronavirus. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000552. [PMID: 36962357 PMCID: PMC10021902 DOI: 10.1371/journal.pgph.0000552] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
Abstract
Aerosol transmission has been a pathway for the spread of many viruses. Similarly, emerging evidence has determined aerosol transmission for Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) and the resulting COVID-19 pandemic to be significant. As such, data regarding the effect of Heating, Ventilation, and Air Conditioning (HVAC) features to control and mitigate virus transmission is essential. A systematic review was conducted to identify and comprehensively synthesize research examining the effectiveness of ventilation for mitigating transmission of coronaviruses. A comprehensive search was conducted in Ovid MEDLINE, Compendex, Web of Science Core to January 2021. Study selection, data extraction, and risk of bias assessments were performed by two authors. Evidence tables were developed and results were described narratively. Results from 32 relevant studies showed that: increased ventilation rate was associated with decreased transmission, transmission probability/risk, infection probability/risk, droplet persistence, virus concentration, and increased virus removal and virus particle removal efficiency; increased ventilation rate decreased risk at longer exposure times; some ventilation was better than no ventilation; airflow patterns affected transmission; ventilation feature (e.g., supply/exhaust, fans) placement influenced particle distribution. Few studies provided specific quantitative ventilation parameters suggesting a significant gap in current research. Adapting HVAC ventilation systems to mitigate virus transmission is not a one-solution-fits-all approach. Changing ventilation rate or using mixing ventilation is not always the only way to mitigate and control viruses. Practitioners need to consider occupancy, ventilation feature (supply/exhaust and fans) placement, and exposure time in conjunction with both ventilation rates and airflow patterns. Some recommendations based on quantitative data were made for specific scenarios (e.g., using air change rate of 9 h-1 for a hospital ward). Other recommendations included using or increasing ventilation, introducing fresh air, using maximum supply rates, avoiding poorly ventilated spaces, assessing fan placement and potentially increasing ventilation locations, and employing ventilation testing and air balancing checks. Trial registration: PROSPERO 2020 CRD42020193968.
Collapse
Affiliation(s)
- Gail M Thornton
- Faculty of Engineering, Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Brian A Fleck
- Faculty of Engineering, Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Emily Kroeker
- Faculty of Engineering, Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Dhyey Dandnayak
- Faculty of Engineering, Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Natalie Fleck
- Faculty of Engineering, Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Lexuan Zhong
- Faculty of Engineering, Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Lisa Hartling
- Faculty of Medicine & Dentistry, Department of Pediatrics, University of Alberta, Edmonton, Canada
| |
Collapse
|
28
|
Brought to Light: How Ultraviolet Disinfection Can Prevent the Nosocomial Transmission of COVID-19 and Other Infectious Diseases. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol1030035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The novel coronavirus disease 2019 (COVID-19) pandemic has brought to light the role of environmental hygiene in controlling disease transmission. Healthcare facilities are hot spots for infectious pathogens where physical distancing and personal protective equipment (PPE) are not always sufficient to prevent disease transmission. Healthcare facilities need to consider adjunct strategies to prevent transmission of infectious pathogens. In combination with current infection control procedures, many healthcare facilities are incorporating ultraviolet (UV) disinfection into their routines. This review considers how pathogens are transmitted in healthcare facilities, the mechanism of UV microbial inactivation and the documented activity of UV against clinical pathogens. Emphasis is placed on the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) as well as multidrug resistant organisms (MDROs) that are commonly transmitted in healthcare facilities. The potential benefits and limitations of UV technologies are discussed to help inform healthcare workers, including clinical studies where UV technology is used in healthcare facilities.
Collapse
|
29
|
Qiao Y, Yang M, Marabella IA, McGee DA, Olson BA, Torremorell M, Hogan CJ. Wind tunnel-based testing of a photoelectrochemical oxidative filter-based air purification unit in coronavirus and influenza aerosol removal and inactivation. INDOOR AIR 2021; 31:2058-2069. [PMID: 33960547 PMCID: PMC8242653 DOI: 10.1111/ina.12847] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/17/2021] [Accepted: 04/12/2021] [Indexed: 05/27/2023]
Abstract
Recirculating air purification technologies are employed as potential means of reducing exposure to aerosol particles and airborne viruses. Toward improved testing of recirculating air purification units, we developed and applied a medium-scale single-pass wind tunnel test to examine the size-dependent collection of particles and the collection and inactivation of viable bovine coronavirus (BCoV, a betacoronavirus), porcine respiratory coronavirus (PRCV, an alphacoronavirus), and influenza A virus (IAV), by a commercial air purification unit. The tested unit, the Molekule Air Mini, incorporates a MERV 16 filter as well as a photoelectrochemical oxidating layer. It was found to have a collection efficiency above 95.8% for all tested particle diameters and flow rates, with collection efficiencies above 99% for supermicrometer particles with the minimum collection efficiency for particles smaller than 100 nm. For all three tested viruses, the physical tracer-based log reduction was near 2.0 (99% removal). Conversely, the viable virus log reductions were found to be near 4.0 for IAV, 3.0 for BCoV, and 2.5 for PRCV, suggesting additional inactivation in a virus family- and genus-specific manner. In total, this work describes a suite of test methods which can be used to rigorously evaluate the efficacy of recirculating air purification technologies.
Collapse
Affiliation(s)
- Yuechen Qiao
- Department of Mechanical EngineeringCollege of Science and EngineeringUniversity of MinnesotaMinneapolisMNUSA
| | - My Yang
- Department of Veterinary Population MedicineCollege of Veterinary MedicineUniversity of MinnesotaSaint PaulMNUSA
| | - Ian A. Marabella
- Department of Mechanical EngineeringCollege of Science and EngineeringUniversity of MinnesotaMinneapolisMNUSA
| | - Devin A.J. McGee
- Department of Mechanical EngineeringCollege of Science and EngineeringUniversity of MinnesotaMinneapolisMNUSA
| | - Bernard A. Olson
- Department of Mechanical EngineeringCollege of Science and EngineeringUniversity of MinnesotaMinneapolisMNUSA
| | - Montserrat Torremorell
- Department of Veterinary Population MedicineCollege of Veterinary MedicineUniversity of MinnesotaSaint PaulMNUSA
| | - Christopher J. Hogan
- Department of Mechanical EngineeringCollege of Science and EngineeringUniversity of MinnesotaMinneapolisMNUSA
| |
Collapse
|
30
|
Viana Martins CP, Xavier CSF, Cobrado L. Disinfection methods against SARS-CoV-2: a systematic review. J Hosp Infect 2021; 119:84-117. [PMID: 34673114 PMCID: PMC8522489 DOI: 10.1016/j.jhin.2021.07.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/01/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022]
Abstract
Background Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of coronavirus disease 2019, has caused millions of deaths worldwide. The virus is transmitted by inhalation of infectious particles suspended in the air, direct deposition on mucous membranes and indirect contact via contaminated surfaces. Disinfection methods that can halt such transmission are important in this pandemic and in future viral infections. Aim To highlight the efficacy of several disinfection methods against SARS-CoV-2 based on up-to-date evidence found in the literature. Methods Two databases were searched to identify studies that assessed disinfection methods used against SARS-CoV-2. In total, 1229 studies were identified and 60 of these were included in this review. Quality assessment was evaluated by the Office of Health Assessment and Translation's risk-of-bias tool. Findings Twenty-eight studies investigated disinfection methods on environmental surfaces, 16 studies investigated disinfection methods on biological surfaces, four studies investigated disinfection methods for airborne coronavirus, and 16 studies investigated methods used to recondition personal protective equipment (PPE). Conclusions Several household and hospital disinfection agents and ultraviolet-C (UV-C) irradiation were effective for inactivation of SARS-CoV-2 on environmental surfaces. Formulations containing povidone-iodine can provide virucidal action on the skin and mucous membranes. In the case of hand hygiene, typical soap bars and alcohols can inactivate SARS-CoV-2. Air filtration systems incorporated with materials that possess catalytic properties, UV-C devices and heating systems can reduce airborne viral particles effectively. The decontamination of PPE can be conducted safely by heat and ozone treatment.
Collapse
Affiliation(s)
| | - C S F Xavier
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - L Cobrado
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal; CINTESIS, Centre for Health Technology and Science Research, Porto, Portugal; Burn Unit and Department of Plastic and Reconstructive Surgery, University Hospital Centre of São João, Porto, Portugal
| |
Collapse
|
31
|
Geldert A, Su A, Roberts AW, Golovkine G, Grist SM, Stanley SA, Herr AE. Mapping of UV-C dose and SARS-CoV-2 viral inactivation across N95 respirators during decontamination. Sci Rep 2021; 11:20341. [PMID: 34645859 PMCID: PMC8514565 DOI: 10.1038/s41598-021-98121-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/03/2021] [Indexed: 11/24/2022] Open
Abstract
During public health crises like the COVID-19 pandemic, ultraviolet-C (UV-C) decontamination of N95 respirators for emergency reuse has been implemented to mitigate shortages. Pathogen photoinactivation efficacy depends critically on UV-C dose, which is distance- and angle-dependent and thus varies substantially across N95 surfaces within a decontamination system. Due to nonuniform and system-dependent UV-C dose distributions, characterizing UV-C dose and resulting pathogen inactivation with sufficient spatial resolution on-N95 is key to designing and validating UV-C decontamination protocols. However, robust quantification of UV-C dose across N95 facepieces presents challenges, as few UV-C measurement tools have sufficient (1) small, flexible form factor, and (2) angular response. To address this gap, we combine optical modeling and quantitative photochromic indicator (PCI) dosimetry with viral inactivation assays to generate high-resolution maps of "on-N95" UV-C dose and concomitant SARS-CoV-2 viral inactivation across N95 facepieces within a commercial decontamination chamber. Using modeling to rapidly identify on-N95 locations of interest, in-situ measurements report a 17.4 ± 5.0-fold dose difference across N95 facepieces in the chamber, yielding 2.9 ± 0.2-log variation in SARS-CoV-2 inactivation. UV-C dose at several on-N95 locations was lower than the lowest-dose locations on the chamber floor, highlighting the importance of on-N95 dose validation. Overall, we integrate optical simulation with in-situ PCI dosimetry to relate UV-C dose and viral inactivation at specific on-N95 locations, establishing a versatile approach to characterize UV-C photoinactivation of pathogens contaminating complex substrates such as N95s.
Collapse
Affiliation(s)
- Alisha Geldert
- The UC Berkeley - UCSF Graduate Program in Bioengineering, University of California Berkeley, 308B Stanley Hall, Mailcode 1762, Berkeley, CA, 94720, USA
| | - Alison Su
- The UC Berkeley - UCSF Graduate Program in Bioengineering, University of California Berkeley, 308B Stanley Hall, Mailcode 1762, Berkeley, CA, 94720, USA
| | - Allison W Roberts
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Guillaume Golovkine
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Samantha M Grist
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Sarah A Stanley
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
- School of Public Health, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Amy E Herr
- The UC Berkeley - UCSF Graduate Program in Bioengineering, University of California Berkeley, 308B Stanley Hall, Mailcode 1762, Berkeley, CA, 94720, USA.
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
32
|
Buchan AG, Yang L, Welch D, Brenner DJ, Atkinson KD. Improved estimates of 222 nm far-UVC susceptibility for aerosolized human coronavirus via a validated high-fidelity coupled radiation-CFD code. Sci Rep 2021; 11:19930. [PMID: 34620923 PMCID: PMC8497589 DOI: 10.1038/s41598-021-99204-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Transmission of SARS-CoV-2 by aerosols has played a significant role in the rapid spread of COVID-19 across the globe. Indoor environments with inadequate ventilation pose a serious infection risk. Whilst vaccines suppress transmission, they are not 100% effective and the risk from variants and new viruses always remains. Consequently, many efforts have focused on ways to disinfect air. One such method involves use of minimally hazardous 222 nm far-UVC light. Whilst a small number of controlled experimental studies have been conducted, determining the efficacy of this approach is difficult because chamber or room geometry, and the air flow within them, influences both far-UVC illumination and aerosol dwell times. Fortunately, computational multiphysics modelling allows the inadequacy of dose-averaged assessment of viral inactivation to be overcome in these complex situations. This article presents the first validation of the WYVERN radiation-CFD code for far-UVC air-disinfection against survival fraction measurements, and the first measurement-informed modelling approach to estimating far-UVC susceptibility of viruses in air. As well as demonstrating the reliability of the code, at circa 70% higher, our findings indicate that aerosolized human coronaviruses are significantly more susceptible to far-UVC than previously thought.
Collapse
Affiliation(s)
- Andrew G Buchan
- School of Engineering and Materials Science, Queen Mary University of London, E1 4NS, London, UK.
| | - Liang Yang
- School of Water, Energy and Environment (SWEE), Cranfield University, Bedford, MK43 0AL, UK
| | - David Welch
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Kirk D Atkinson
- Faculty of Energy Systems and Nuclear Science, Ontario Tech University, Oshawa, Ontario, L1G 0C5, Canada
| |
Collapse
|
33
|
Poormohammadi A, Bashirian S, Rahmani AR, Azarian G, Mehri F. Are photocatalytic processes effective for removal of airborne viruses from indoor air? A narrative review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43007-43020. [PMID: 34128162 PMCID: PMC8203310 DOI: 10.1007/s11356-021-14836-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
A wide variety of methods have been applied in indoor air to reduce the microbial load and reduce the transmission rate of acute respiratory diseases to personnel in healthcare sittings. In recent months, with the occurrence of COVID-19 pandemic, the role of portable ventilation systems in reducing the load of virus in indoor air has received much attention. The present study delineates a comprehensive up-to-date overview of the available photocatalysis technologies that have been applied for inactivating and removing airborne viruses. The detection methods for identifying viral particles in air and the main mechanisms involving in virus inactivation during photocatalysis are described and discussed. The photocatalytic processes could effectively decrease the load of viruses in indoor air. However, a constant viral model may not be generalizable to other airborne viruses. In photocatalytic processes, temperature and humidity play a distinct role in the inactivation of viruses through changing photocatalytic rate. The main mechanisms for inactivation of airborne viruses in the photocatalytic processes included chemical oxidation by the reactive oxygen species (ROS), the toxicity of metal ions released from metal-containing photocatalysts, and morphological damage of viruses.
Collapse
Affiliation(s)
- Ali Poormohammadi
- Center of Excellence for Occupational Health, Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Bashirian
- Department of Public Health, School of Health, Social Determinants of Health Research Center, Health Sciences & Technology Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Reza Rahmani
- Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ghasem Azarian
- Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Freshteh Mehri
- Nutrition Health Research Center, Health Sciences & Technology Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
34
|
Kuzniewski S. Prevalence, environmental fate, treatment strategies, and future challenges for wastewater contaminated with SARS-CoV-2. REMEDIATION (NEW YORK, N.Y.) 2021; 31:97-110. [PMID: 34539159 PMCID: PMC8441782 DOI: 10.1002/rem.21691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected in untreated and treated wastewater and studies have shown that the concentration of SARS-CoV-2 is proportional to the prevalence of the coronavirus disease 2019 (COVID-19) in communities. This article presents a literature review of the prevalence of SARS-CoV-2 in wastewater, its environmental fate, recommended treatment strategies for contaminated wastewater, and treatment challenges to be faced in the future. The environmental fate of SARS-CoV-2 in wastewater is not straightforward because it can be a source of infection when present in the treated wastewater depending on the permeability of the wastewater treatment plant containment area, and can also leach into aquifers, which may serve as drinking water supplies. Secondly, there are different practices that can mitigate the SARS-CoV-2 infection rate from infected feces and urine. The World Health Organization has recommended the use of ultraviolet radiation (UV), disinfection, and filtration for wastewater contaminated with SARS-CoV-2, processes also common in wastewater treatment facilities. This article discusses these strategies referencing studies performed with surrogate viruses and shows that SARS-CoV-2 treatment can be complicated due to the interference from other aqueous chemical and physical factors. Considering that COVID-19 is not the first and certainly not the last pandemic, it is imperative to develop an effective multitreatment strategy for wastewater contaminated with contagious viruses and, preferably, those that are compatible with current wastewater treatment methods.
Collapse
|
35
|
Lombini M, Diolaiti E, De Rosa A, Lessio L, Pareschi G, Bianco A, Cortecchia F, Fiorini M, Fiorini G, Malaguti G, Zanutta A. Design of optical cavity for air sanification through ultraviolet germicidal irradiation. OPTICS EXPRESS 2021; 29:18688-18704. [PMID: 34154120 DOI: 10.1364/oe.422437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/10/2021] [Indexed: 05/19/2023]
Abstract
The transmission of airborne pathogens represents a major threat to worldwide public health. Ultraviolet light irradiation can contribute to the sanification of air to reduce the pathogen transmission. We have designed a compact filter for airborne pathogen inactivation by means of UVC LED sources, whose effective irradiance is enhanced thanks to high reflective surfaces. We used ray-tracing and computational fluid dynamic simulations to model the device and to maximize the performance inside the filter volume. Simulations also show the inhibition of SARS-Cov-2 in the case of high air fluxes. This study demonstrates that current available LED technology is effective for air sanification purposes.
Collapse
|