1
|
Yin S, Calvillo Solís JJ, Sandoval-Pauker C, Puerto-Diaz D, Villagrán D. Advances in PFAS electrochemical reduction: Mechanisms, materials, and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137943. [PMID: 40117777 DOI: 10.1016/j.jhazmat.2025.137943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/23/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic chemicals that pose significant risks to both human and environmental health due to their widespread use and stability. Traditional remediation methods, such as adsorption and filtration, concentrate PFAS without breaking them down. Alternative methods, such as pyrolysis, chemical oxidation, and photodegradation, often require costly and complex conditions. Electrochemical technology is a promising alternative for PFAS removal. In particular, electrochemical reduction has been emerging in recent years as a promising alternative to promote C-F dissociation and H/F exchange reactions, thus generating less fluorinated compounds. This review summarizes the advances in technologies for PFAS electrochemical reduction, with proposed electrochemical reduction mechanisms, the factors that influence the removal of PFAS, and the challenges and future directions associated with these methods. Novel materials, such as nanocatalysts, molecularly inspired networks, or 2D/3D materials, are stable in aqueous environments and exhibit high electrochemical activity toward C-F bond dissociation. In addition, the above materials show potential for scalable applications in PFAS treatment, although further research is needed to optimize their performance. This review also aims to understand the opportunities and challenges in PFAS electrochemical reduction, offering insights for future research and development.
Collapse
Affiliation(s)
- Sheng Yin
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, USA; New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jonathan J Calvillo Solís
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), USA
| | - Christian Sandoval-Pauker
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), USA; Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Diego Puerto-Diaz
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), USA
| | - Dino Villagrán
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), USA.
| |
Collapse
|
2
|
Zhang H, Xu H, Qin B, Fu Y, Yao Y, Zhao Y, Qin C. Review on the sources, distribution and treatment of per- and polyfluoroalkyl substances in global groundwater. ENVIRONMENTAL RESEARCH 2025; 275:121387. [PMID: 40086577 DOI: 10.1016/j.envres.2025.121387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have garnered increasing global attention due to their widespread occurrence in groundwater and the potential health risks to humans. This review aimed to clarify the occurrence and treatment of PFAS in groundwater by summarizing literature published in the Web of Science Core Collection from January 2000 to April 2024. Information on 461 reported PFAS-contaminated groundwater sites was compiled, revealing key characteristics of pollution sources and concentrations. The data indicated that firefighting training activities were a major source of PFAS groundwater contamination, accounting for 41 % of cases, followed by other fluorinated industrial activities, landfill leachate, and wastewater leakage. Non-point sources, such as atmospheric deposition, contributed to a lesser extent. The concentrations distribution of 25 PFAS showed a chain-length dependency, with short-chain PFAS generally exhibiting higher concentrations than long-chain PFAS. Additionally, the review systematically examined the application of separation methods and destructive methods at both laboratory and pilot/field-scales for PFAS-contaminated groundwater. Resins were favored for ex-situ treatment, whereas colloidal activated carbon (CAC) was more commonly used for in-situ treatment. In-situ direct injection of CAC was considered a highly promising approach for remediating PFAS source zones and plumes, offering advantages such as minimal surface disruption, high adsorption capacity and long-term effectiveness. Finally, the research focus and development trends in categories and treatment methods for PFAS in groundwater were noted. Overall, this review identified research gaps in the occurrence and treatment of PFAS in groundwater, and suggested further optimization of CAC-based methods to address the challenges of PFAS-contaminated groundwater.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China
| | - Huichao Xu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China
| | - Bing Qin
- Sinopec Research Institute of Petroleum Processing Co., LTD, Beijing, 100083, China
| | - Yufeng Fu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China
| | - Yu Yao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China
| | - Yongsheng Zhao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China
| | - Chuanyu Qin
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China.
| |
Collapse
|
3
|
Hu S, Lv Y, Hou X, Li J, Hou Y, Fu X, Xu T. BDD electrode pulsed alternating electrochemical oxidation of sulfamethazine in antibiotic wastewater: Process optimization and degradation mechanism. ENVIRONMENTAL RESEARCH 2025; 275:121375. [PMID: 40081652 DOI: 10.1016/j.envres.2025.121375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
To address the issues of electrode passivation and high electric energy consumption (EEC) associated with the removal of antibiotic wastewater using traditional direct current electrocatalytic oxidation (DCEO) with Boron-Doped Diamond (BDD) electrodes, this study aims to develop an efficient, low-cost, and self-cleaning BDD electrode pulsed alternating electrocatalytic oxidation (BDD-PAEO) technology. The experimental findings demonstrated that, under optimal conditions, the BDD-PAEO mode achieved a 99.9% removal efficiency for sulfamethazine (SMZ). Furthermore, the removal efficiency of COD in the BDD-PAEO mode consistently remained above 93% in 10 experimental cycles. Compared with the BDD-DCEO mode, the EEC of the BDD-PAEO mode is reduced by 17.39%, and the current efficiency (CE) is increased by 47.15%. The ·OH was confirmed to be the main active oxidant species for degradation of SMZ by free radical quenching experiments, electron paramagnetic resonance (EPR) and three-dimensional excitation-emission matrix (3D-EEM) spectroscopy. The degradation pathway of SMZ was revealed by density functional theory (DFT) calculation and gas chromatography-mass spectrometry (GC-MS) analysis. Toxicity estimation illustrated that BDD-PAEO technology can effectively reduce the toxicity of wastewater after SMZ degradation. This study shows BDD-PAEO technology's high potential for efficient SMZ degradation and toxicity reduction in antibiotic wastewater, offering a novel treatment solution.
Collapse
Affiliation(s)
- Simeng Hu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yongshang Lv
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xifei Hou
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jiahao Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yaxuan Hou
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xiaohua Fu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Tao Xu
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
4
|
Wang R, Zhao Y, Dang X, Sun Y, Kong D, Wang X, Bai S, Arotiba OA, Ma J. Unveiling the environmental sustainability of Ti 4O 7 electrified membrane for perfluorooctanoic acid removal. WATER RESEARCH 2025; 277:123310. [PMID: 39987582 DOI: 10.1016/j.watres.2025.123310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/31/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
Emerging electrified membrane (EM) technology offers an efficient approach for decentralized water purification. However, EM currently faces the challenge of unknown environmental sustainability, which presents a critical knowledge gap impeding its scale-up implementation. In this work, we aim to explore the environmental impacts of EM technology via a "cradle-to-grave" life cycle assessment, benchmarked against sequential ultrafiltration-nanofiltration. Our study found that the current EM technology shows higher greenhouse gas (GHG) emissions (19.70 kgCO2e g-1) than ultrafiltration-nanofiltration (8.60 kgCO2e g-1) for micropollutants removal. Electro-filtration operation dominates the total environmental impacts of EM process, driven primarily by the supporting electrolyte and electricity consumption. Notably, transitioning to greener electrolytes at lower concentrations can reduce GHG emissions by up to 66%, while switching to low-carbon-grid electricity through renewable energy sources will achieve a 33% reduction. Overall, this work enhances understanding of the environmental impacts of EM technology, emphasizing electrolyte optimization and carbon-intensity-reduction of electricity as critical factors for its sustainable development.
Collapse
Affiliation(s)
- Runzhi Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yumeng Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Xuhui Dang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Ye Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Dezhen Kong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xiaoxiong Wang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Shunwen Bai
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Omotayo A Arotiba
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa; Centre for Nanomaterials and Science Research, University of Johannesburg, Johannesburg, South Africa
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
5
|
Verma PK, Nayak SK, Bhardwaj K, Yamijala SSRKC. Realizing Direct Hot-Electron Transfer from Metal Nanoparticles to Per- and Polyfluoroalkyl Substances. J Phys Chem Lett 2025; 16:4536-4546. [PMID: 40305111 DOI: 10.1021/acs.jpclett.5c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of forever synthetic chemicals. They are widely utilized in industries and household appliances because of their remarkable stability and distinctive oil- and water-repellent properties. Despite their broad applications, unfortunately, PFAS are hazardous to all forms of life, including humans. In recent years, the environmental persistence of PFAS has raised significant interest in degrading these substances. However, the strong C-F bonds in these chemicals pose several challenges to their degradation. Plasmons of noble metal nanoparticles (NPs) offer many exciting applications, including photocatalytic reactions. However, an atomistic understanding of plasmon-driven processes remains elusive. In this work, using the real-time time-dependent density functional theory, we have studied the real-time formation of plasmons, hot-carrier generation, and subsequent direct hot-carrier transfer from metal NPs to the PFAS. Our simulations show that there is an apparent direct hot-electron transfer from NPs to PFAS. Moreover, using Ehrenfest dynamics simulations, we demonstrated that the transferred hot electrons can efficiently degrade PFAS without requiring any external thermal bath. Thus, our work provides an atomistic picture of plasmon-induced direct hot-carrier transfer from NPs to PFAS and the efficient degradation of PFAS. We strongly believe that this work generates the impetus to utilize plasmonic NPs to mitigate PFAS.
Collapse
Affiliation(s)
- P K Verma
- Center for Atomistic Modelling and Materials Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Samir Kumar Nayak
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Khushboo Bhardwaj
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sharma S R K C Yamijala
- Center for Atomistic Modelling and Materials Design, Indian Institute of Technology Madras, Chennai 600036, India
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
- Center for Molecular Materials and Functions, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
6
|
Ajam F, Khourshidi A, Rabieian M, Taghavijeloudar M. Per-and polyfluoroalkyl degradation in a hybrid dielectric barrier discharge plasma and electrooxidation system through involving more reactive species by air and water circulation. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137287. [PMID: 39854989 DOI: 10.1016/j.jhazmat.2025.137287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
The presence of PFAS in water matrices has become a global environmental issue in the last half-century. Dielectric barrier discharge (DBD) and electrooxidation (EO) showed potential for PFAS degradation but have yet to find practical application due to relatively high energy consumption. In this study, a hybrid DBD-EO system for efficient degradation of PFAS was developed by involving more reactive oxygen, sulfate radicals (SO4•-) and nitrogen species (RONS). The results showed that using the hybrid DBD-EO system under optimal conditions (applied voltage = 6 kV and current density = 7.5 mA/cm2) could increase PFOA degradation efficiency from 65.0 % (DBD) and 62.5 % (EO) to 89.14 %. While the EE/O decreased from 67.0 kWh/m3 (DBD) and 47.82 kWh/m3 (EO) to 21.61 kWh/m3. In addition, the effect of operational parameters and water matrices revealed that the hybrid DBD-EO system had high potential for PFOA removal from water under various conditions. According to the EPR and DFT calculation results, integration of reactive species in EO (SO4•-, •OH, O2•-) and ONOOH) and DBD (•OH, O2•-, NO2•-, 1O2 and ONOOH) processes in the DBD-EO system led to efficient degradation of PFOA through a mechanism of decarboxylation/defluorination cycle. Our findings suggested the combination of DBD and EO is a promising approach for complete degradation of PFAS from water with low energy consumption and minimal environmental side effects.
Collapse
Affiliation(s)
- Fatemeh Ajam
- Department of Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol 47148-7313, Iran
| | - Amirhossein Khourshidi
- Department of Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol 47148-7313, Iran
| | - Masoud Rabieian
- Department of Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol 47148-7313, Iran
| | - Mohsen Taghavijeloudar
- Department of Civil and Environmental Engineering, Seoul National University, Seoul 151-744, South Korea.
| |
Collapse
|
7
|
Pierpaoli M, Jakóbczyk P, Szopińska M, Ryl J, Giosué C, Wróbel M, Strugala G, Łuczkiewicz A, Fudala-Książek S, Bogdanowicz R. Optimizing electrochemical removal of perfluorooctanoic acid in landfill leachate using ceramic carbon foam electrodes by coupling CFD simulation and reactor design. CHEMOSPHERE 2025; 376:144282. [PMID: 40056818 DOI: 10.1016/j.chemosphere.2025.144282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/11/2025] [Accepted: 03/01/2025] [Indexed: 03/10/2025]
Abstract
Perfluorooctanoic acid (PFOA), a persistent and bioaccumulative pollutant classified as a 'forever chemical', poses a global environmental and health risk due to its widespread use and resistance to degradation. The development of effective and efficient removal technologies is crucial to mitigate its long-term impacts. In this study, we present a novel approach to address the growing concern of emerging contaminants, particularly PFOA, in landfill leachate. We investigate the use of ceramic carbon foam electrodes (CCFE) as a cost-effective and efficient alternative to traditional electrode materials for the electrochemical degradation of PFOA. Computed microtomography was used to reconstruct the actual three-dimensional geometries of the samples from which porosities were calculated. We also coupled computational fluid dynamics simulations of the actual geometries and optimized the working conditions to minimize pressure drop and improve treatment efficiency. Our design significantly reduces energy requirements by operating at lower potentials, a critical factor in sustainable waste management practices. The optimized CCFE system demonstrated superior performance in the degradation of PFOA in landfill leachate, offering a promising solution for the treatment of emerging contaminants. This study not only provides a viable method for mitigating the environmental impact of PFOA but also sets a precedent for the development of low-energy, high-efficiency treatment technologies for various persistent pollutants. In addition, the proposed solution, as part of closed-loop water systems, will enhance water reuse and recycling, thereby preserving and regenerating natural water bodies.
Collapse
Affiliation(s)
- Mattia Pierpaoli
- Faculty of Electronics, Telecommunications and Informatics, Department of Metrology and Optoelectronics, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, Gdańsk, 80-233, Poland.
| | - Paweł Jakóbczyk
- Faculty of Electronics, Telecommunications and Informatics, Department of Metrology and Optoelectronics, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, Gdańsk, 80-233, Poland.
| | - Małgorzata Szopińska
- Faculty of Civil and Environmental Engineering, Department of Environmental Engineering Technology Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, Gdańsk, 80-233, Poland.
| | - Jacek Ryl
- Faculty of Applied Physics and Mathematics, Division of Electrochemistry and Surface Physical Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, Gdańsk, 80-233, Poland.
| | - Chiara Giosué
- Department of Materials, Environmental Sciences and Urban Planning (SIMAU), Università Politecnica Delle Marche, Via Brecce Bianche 12, Ancona, 60131, Italy.
| | - Maciej Wróbel
- Faculty of Electronics, Telecommunications and Informatics, Department of Metrology and Optoelectronics, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, Gdańsk, 80-233, Poland.
| | - Gabriel Strugala
- Faculty of Mechanical Engineering and Ship Technology, Department of Materials Science and Technology, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, Gdańsk, 80-233, Poland.
| | - Aneta Łuczkiewicz
- Faculty of Civil and Environmental Engineering, Department of Environmental Engineering Technology Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, Gdańsk, 80-233, Poland.
| | - Sylwia Fudala-Książek
- Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, Gdańsk, 80-233, Poland.
| | - Robert Bogdanowicz
- Faculty of Electronics, Telecommunications and Informatics, Department of Metrology and Optoelectronics, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, Gdańsk, 80-233, Poland.
| |
Collapse
|
8
|
Saffar-Avval S, Gharehveran MM, Alvarez Ruiz R, Lee LS, Chaplin BP. Matrix Effects on Electrochemical Oxidation of Per- and Polyfluoroalkyl Substances in Sludge Centrate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8263-8273. [PMID: 40245167 DOI: 10.1021/acs.est.4c13720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
This study investigated the electrochemical oxidation of per- and polyfluoroalkyl substances (PFAS) using a Ti4O7 anode in centrate from sludge dewatering. Synthetic solutions containing perfluorooctanoic acid (PFOA), other PFAS, and inorganic constituents (phosphate, ammonium, chloride, carbonate, and acetate salts) found in centrate were studied to assess their impact on the oxidation process. PFOA removal decreased from 95% in a stable electrolyte (NaClO4) to 81% in a Na2HPO4 electrolyte and 30% in a solution mimicking concentrated centrate. X-ray photoelectron spectroscopy detected phosphate and nitrogen species on the electrode surface. At potentials required to oxidize PFAS (>3.0 V/SHE), phosphate and ammonium were oxidized to radicals that blocked electrode sites, inhibiting PFAS removal and shifting PFOA oxidation from first-order kinetics. The kinetics were accurately modeled using a Langmuir-Hinshelwood approach with a transient inhibition term. Results suggested that phosphate, ammonium, and bicarbonate ions reduced hydroxyl radical availability, thereby limiting PFOA defluorination. In concentrated centrate, 95% of the chemical oxygen demand and 93% of total PFAS were removed after 233 s of electrolysis at 30 mA cm-2. However, partial degradation of perfluorohexanoic acid and accumulation of perfluoroheptanoic acid, attributed to inorganic electrode fouling, suggested the need for a multistage reactor system for more complete PFAS mineralization.
Collapse
Affiliation(s)
- Shirin Saffar-Avval
- Department of Chemical Engineering, University of Illinois Chicago, 929 W. Taylor St., Chicago, Illinois 60607, United States
| | | | - Rodrigo Alvarez Ruiz
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Linda S Lee
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907, United States
- Interdisciplinary Ecological Sciences & Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brian P Chaplin
- Department of Chemical Engineering, University of Illinois Chicago, 929 W. Taylor St., Chicago, Illinois 60607, United States
| |
Collapse
|
9
|
Yang K, He Z. Integrating oxidation and reduction processes in electrochemical wastewater treatment for contaminant removal with byproduct control. WATER RESEARCH 2025; 282:123632. [PMID: 40300238 DOI: 10.1016/j.watres.2025.123632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/20/2025] [Accepted: 04/11/2025] [Indexed: 05/01/2025]
Abstract
Electrochemical technologies offer a promising approach for recalcitrant contaminants removal, but toxic halogenated byproducts from the treatment pose a critical challenge. Herein, an integrated electrochemical oxidation (EO) and reduction (ER) process was developed for both contaminant removal and byproduct control. The anodic EO achieved > 90 % contaminant removal and generated > 0.6 μM THM4 and > 0.8 μM HAA5 when treating a saline wastewater. A trace amount of Br- led to the production of reactive bromine species and the brominated byproducts. Carbonates made EO more compound-specific by scavenging halogen radicals to CO3•- and reduced the THM4 and HAA5 formation by 16 % and 31 %, respectively. The cathodic ER removed > 80 % of THM4 and > 50 % of HAA5 through direct reduction and H*-mediated indirect reduction pathways with the final concentrations of ∼ 0.1 μM THM4 and ∼ 0.4 μM HAA5. HAAs could achieve complete dehalogenation via ER and form the non-halogenated products. Throughout the treatment of the integrated process, phenolic contaminant was completely removed by the anodic EO with the kobs > 0.045 min-1, and the formed halogenated byproducts were subsequently removed by the cathodic ER to meet the national and global standards, with a total energy consumption of ∼ 4.5 kWh m-3. The results of this study would encourage the further exploration of enhanced electrochemical wastewater treatment with minimized byproduct residues.
Collapse
Affiliation(s)
- Kaichao Yang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
10
|
Wang X, Qiu L, Chen Z, Chen H, Wang J, Zhang Y, Xu Y, Kong D, Zhang M, Gu C. New Insights into the Reductive Destruction of Per- and Polyfluoroalkyl Substances in Hydrated Electron-Based Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5786-5795. [PMID: 40080663 DOI: 10.1021/acs.est.4c08548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) make up a class of highly toxic and persistent chemicals that have been widely detected in different environmental matrices. Recently, various hydrated electron-based techniques have been developed to destroy these compounds. However, the molecular mechanisms controlled by different hydrated electron photosensitizers are still unclear. Herein, we investigated the PFAS transformation processes in different hydrated electron-based systems, i.e., UV/Na2SO3, UV/indole, and UV/3-indoleacetic acid (IAA), using different perfluorocarboxylic acids (PFCA) as model compounds. By monitoring the production and decay of hydrated electrons, molecular interactions, and the generated intermediates, we systematically revealed the structure-property-performance mechanism of different systems. In the UV/Na2SO3 system, the disordered attack of hydrated electrons induced rapid destruction for either long or short-chain PFCA. However, the lower hydrated electron efficiency limited the final defluorination ratio. In the UV/indole system, the interaction between indole and PFCA promoted the directed transfer of hydrated electrons, resulting in a significantly higher destruction efficiency for long-chain PFCA than for short-chain PFCA. However, the self-quenching of hydrated electrons in the UV/IAA system led to the ineffective decomposition for all PFCA. This study provides mechanistic insights into the hydrated electron-induced PFAS decomposition processes, which would expand the designing strategies for improving PFAS destruction efficiency.
Collapse
Affiliation(s)
- Xinhao Wang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, Nanjing University, Nanjing 210023, P. R. China
| | - Longlong Qiu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, Nanjing University, Nanjing 210023, P. R. China
| | - Zhanghao Chen
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, Nanjing University, Nanjing 210023, P. R. China
- Quanzhou Institute for Environmental Protection Industry, Nanjing University, Quanzhou 362000, P. R. China
| | - Hanyang Chen
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, Nanjing University, Nanjing 210023, P. R. China
| | - Jiabao Wang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, Nanjing University, Nanjing 210023, P. R. China
| | - Yueqing Zhang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environment and Ecology of China, Nanjing 210042, China
| | - Yichen Xu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, Nanjing University, Nanjing 210023, P. R. China
| | - Deyang Kong
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environment and Ecology of China, Nanjing 210042, China
| | - Ming Zhang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, Nanjing University, Nanjing 210023, P. R. China
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Cheng Gu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, Nanjing University, Nanjing 210023, P. R. China
- Quanzhou Institute for Environmental Protection Industry, Nanjing University, Quanzhou 362000, P. R. China
| |
Collapse
|
11
|
Liu X, Shu Y, Pan Y, Zeng G, Zhang M, Zhu C, Xu Y, Wan A, Wang M, Han Q, Liu B, Wang Z. Electrochemical destruction of PFAS at low oxidation potential enabled by CeO 2 electrodes utilizing adsorption and activation strategies. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137043. [PMID: 39754874 DOI: 10.1016/j.jhazmat.2024.137043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/22/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
The persistence and ecological impact of per- and poly-fluoroalkyl substances (PFAS) in water sources necessitate effective and energy-efficient treatment solutions. This study introduces a novel approach using cerium dioxide (CeO2) electrodes enhanced with oxygen vacancy (Ov) to catalyze the defluorination of PFAS. By leveraging the unique affinity between cerium and fluorine-containing species, our approach enables adsorptive preconcentration and catalytic degradation at low oxidation potentials (1.37 V vs. SHE). Demonstrating high removal and defluorination efficiencies of perfluorooctanoic acid (PFOA) at 94.0 % and 73.0 %, respectively, our approach also proves effective in the environmental matrix. It minimizes the impacts of co-existing natural organic matter and chloride ions, crucial benefits of operating at lower oxidation potentials. The role of Ov in CeO2 is validated by both experimental results and density functional theory modeling, demonstrating that these sites can activate the C-F bond and substantially reduce the energy barriers for defluorination. Consequently, our CeO2-based method not only achieves defluorination efficiencies comparable to more energy-intensive techniques but does so while requiring less than 0.62 kWh/m3 per order. This positions our approach as a promising, cost-effective alternative for the remediation of PFAS-contaminated waters, emphasizing its relevance and effectiveness in environmental remediation scenarios.
Collapse
Affiliation(s)
- Xun Liu
- School of Environment, Harbin Institute of Technology, Harbin 150086, PR China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Yufei Shu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Yu Pan
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Guoshen Zeng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Meng Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Chaoqun Zhu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Youmei Xu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Aling Wan
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Mengxia Wang
- School of Environment, Harbin Institute of Technology, Harbin 150086, PR China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Qi Han
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Bei Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Zhongying Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, PR China.
| |
Collapse
|
12
|
Liang Y, Wang A, Liang S, Sun K, Xie R, Zheng C, Zhang S, Tang C, Cheng D, Wang J, Huang Q, Lin H. Durable Ti 4O 7 Heterojunction Composite Membrane Encapsulating N-Doped Graphene Nanosheets for Efficient Electro-Oxidation of GenX and Other PFAS in Fluorochemical Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4745-4755. [PMID: 40008448 DOI: 10.1021/acs.est.4c09423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Rational interfacial engineering design of an electrocatalyst, such as a heterojunction structure, can effectively enhance its catalytic activity. This study aims to address a critical challenge associated with the use of carbon material@Ti4O7 heterojunction composite electrodes for wastewater treatment─electrode stability over long-term operation. Herein, we report a highly stabilized interfacial engineering strategy, i.e., the use of conductive inorganic CeO2 as a "cement" to firmly encapsulate N-doped graphene oxide nanosheets (N-GS) on the Ti4O7 surface. The defect-rich N-GS encapsulated on the Ti4O7 surface significantly enhances interfacial charge transfer. This enhancement results in the N-GS/CeO2@Ti4O7 heterojunction composite electrode exhibiting excellent efficiency in the electro-oxidation of hexafluoropropylene oxide dimer acid (HFPO-DA or GenX). Furthermore, a flow-through N-GS/CeO2@Ti4O7 reactive electrochemical membrane system effectively mineralizes other 35 PFASs in a real fluorochemical wastewater sample, achieving a high defluorination rate of 70-90% and exhibiting better performance in PFAS destruction and energy efficiency compared to the UV/KI-SO32- process. Results of this study enhance our understanding of the electrochemical oxidation of PFAS and offer valuable insight into the design of stabilized Ti4O7 heterojunction composites. These findings are instrumental in advancing the development of effective treatments for PFAS-contaminated environments.
Collapse
Affiliation(s)
- Yiyang Liang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Anqi Wang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Shangtao Liang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, Georgia 30223, United States
| | - Kai Sun
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China
| | - Ruzhen Xie
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Chuanen Zheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Sihan Zhang
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Caiming Tang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Dengmiao Cheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Jinxia Wang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, Georgia 30223, United States
| | - Hui Lin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| |
Collapse
|
13
|
Zeidabadi FA, Abbasi P, Esfahani EB, Mohseni M. Integrating kinetic modeling and experimental insights: PFAS electrochemical degradation in concentrated streams with a focus on organic and inorganic effects. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136624. [PMID: 39637779 DOI: 10.1016/j.jhazmat.2024.136624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
This study investigated the impact of organic and inorganic constituents on electrochemical degradation of per- and poly-fluoroalkyl substances (PFAS) in a sulfate-based brine from regeneration of spent ion exchange (IX) resin. The system's performance was assessed in the presence of natural organic matter (NOM) and common inorganic constituents: chloride, nitrate, and bicarbonate. Results revealed distinct outcomes based on constituent type, concentration, and specific PFAS variant. NOM hindered PFAS decomposition, especially for more hydrophobic compounds. Chloride reduced degradation and defluorination efficiencies through competitive interactions with PFAS for the anode's active sites and scavenging effects on SO4•- and •OH. Nitrate and bicarbonate minimally impacted degradation but significantly reduced defluorination. Investigating the electrochemical process in real brine solutions showed higher efficiency and lower electrical energy consumption when methanol was distilled, as methanol scavenges reactive radicals and competes for active anode sites. A kinetic model was also developed to determine the direct electron transfer (DET) and mass transfer coefficients for the species present, considering both surface and bulk solution interactions. The model predicted mass transfer (mol m-2 s-1) and DET (m2 mol-1 s-1) coefficients of 6:2 FTCA, PFOA, GenX, and PFBA to be (5.0 ×10-10, 3.7 ×1011), (1.0 ×10-9, 8.0 ×108), (6.0 ×10-8, 7.5 ×108), and (6.2 ×10-8, 4.2 ×108), respectively.
Collapse
Affiliation(s)
- Fatemeh Asadi Zeidabadi
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada
| | - Pezhman Abbasi
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada
| | - Ehsan Banayan Esfahani
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada
| | - Madjid Mohseni
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada.
| |
Collapse
|
14
|
Zhu G, Yang H, Fan X, Quan X, Liu Y. Promoting SO 4·- and ·OH Generation from Sulfate Solution toward Efficient Electrochemical Oxidation of Organic Contaminants at a B/N-Doped Diamond Flow-Through Electrode. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2317-2326. [PMID: 39841974 DOI: 10.1021/acs.est.4c12215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Electrochemical oxidation via in situ-generated reactive oxygen species (ROS) is effective for the mineralization of refractory organic pollutants. However, the oxidation performance is usually limited by the low yield and utilization efficiency of ROS. Herein, a B/N-doped diamond (BND) flow-through electrode with enhanced SO4·-/·OH generation and utilization was designed for electrochemical oxidation of organic pollutants in sulfate solution. Both its SO4·-/·OH yields and SO4·- selectivity were improved by regulating B/N doping, and the production and utilization of SO4·-/·OH were facilitated by flow-through mode. BND showed fast PFOA oxidation with kinetic constants of 2.56-4.58 h-1 at low current densities of 2.0-5.0 mA cm-2. Its energy consumption for PFOA oxidation was 2.15-6.46 kWh m-3, which was lower than those of state-of-the-art electrodes under similar conditions. The BND anode was also efficient for treating organic fluorine wastewater and coking wastewater. The superior performance was contributed by its enhanced SO4·-/·OH yields and utilization, as well as high SO4·- selectivity.
Collapse
Affiliation(s)
- Genwang Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Haolei Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xinfei Fan
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yanming Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
15
|
Rehnstam S, Smith SJ, Ahrens L. Suspect and non-target screening of per- and polyfluoroalkyl substances (PFAS) and other halogenated substances in electrochemically oxidized landfill leachate and groundwater. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136316. [PMID: 39488114 DOI: 10.1016/j.jhazmat.2024.136316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/07/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Release of persistent and potentially toxic per- and polyfluoroalkyl substances (PFAS) and other halogenated compounds into the aqueous environment is an emerging issue and advanced treatment methods are needed for their removal from contaminated water. Destructive treatment methods for PFAS exist, but there is a risk of incomplete degradation, resulting in creation of transformation products during treatment. This study assessed the potential of electrochemical oxidation (EO) for destruction of PFAS and other halogenated compounds, and their transformation products. Suspect and non-target screening were used to explore the chemical space of these samples and identify compounds present before and after the treatment, including transformation products. In total, 21 PFAS classes and 53 individual PFAS were identified using suspect and non-target screening, with confidence level (CL) 3d or higher. Two new classes of PFAS (FASHN and MeOH-FASA) were discovered for the first time. Suspect screening of PFAS revealed that hydro-substituted and ether PFAS could be formed during EO. A total of 12 chlorinated and two brominated compounds were also detected and confirmed with CL 1-3, with six compounds determined to be transformation products. Formation of ammonium oxidation byproducts was hypothesized as being responsible for most identified transformation products formed during EO.
Collapse
Affiliation(s)
- Svante Rehnstam
- Swedish University of Agricultural Sciences (SLU), Department of Aquatic Sciences and Assessment, Lennart Hjelms vag 9, 756 51 Uppsala, Sweden.
| | - Sanne J Smith
- Swedish University of Agricultural Sciences (SLU), Department of Aquatic Sciences and Assessment, Lennart Hjelms vag 9, 756 51 Uppsala, Sweden; Delft University of Technology, Department of Water Management, Stevinweg 1, 2628 CN Delft, the Netherlands
| | - Lutz Ahrens
- Swedish University of Agricultural Sciences (SLU), Department of Aquatic Sciences and Assessment, Lennart Hjelms vag 9, 756 51 Uppsala, Sweden
| |
Collapse
|
16
|
Meng Z, Wilsey MK, Müller AM. Role of LiOH in Aqueous Electrocatalytic Defluorination of Perfluorooctanoic Sulfonate: Efficient Li-F Ion Pairing Prevents Anode Fouling by Produced Fluoride. ACS Catal 2024; 14:16577-16588. [PMID: 39569161 PMCID: PMC11574766 DOI: 10.1021/acscatal.4c04523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/23/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) pose a significant environmental and health threat due to their high toxicity, widespread use, and persistence in the environment. Electrochemical methods have emerged as promising approaches for PFAS destruction, offering cost-effective and energy-efficient solutions. We established recently that electrocatalysis with nonprecious materials enabled the complete defluorination of perfluorooctanesulfonate (PFOS) in aqueous 8.0 M LiOH. Here, we reveal the mechanistic role of LiOH in the efficient aqueous electrocatalytic PFOS defluorination. Our results demonstrate that synergistic effects of high lithium and high hydroxide ion concentrations are essential for complete PFOS defluorination. Two-dimensional NMR data of electrolytes post pulsed electrolysis provide experimental evidence for Li-F ion pairing, which plays a crucial role in preventing anode fouling by produced fluoride, thus enabling sustained C-F bond cleavage. This Li-F ion pairing was increased at high pH, and elevated temperatures enhanced diffusion of Li-F ion pairs into the bulk electrolyte. High hydroxide ion concentrations additionally removed fluoride from the anode surface by competitive adsorption, corroborated by XPS data. Our findings provide quantitative mechanistic insights into the electrocatalytic defluorination process and offer a general route of enhancing the efficiency of anodic PFAS defluorination.
Collapse
Affiliation(s)
- Ziyi Meng
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Madeleine K Wilsey
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Astrid M Müller
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
17
|
Zeng Y, Dai Y, Yin L, Huang J, Hoffmann MR. Rethinking alternatives to fluorinated pops in aqueous environment and corresponding destructive treatment strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174200. [PMID: 38936705 DOI: 10.1016/j.scitotenv.2024.174200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/25/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Alternatives are being developed to replace fluorinated persistent organic pollutants (POPs) listed in the Stockholm Convention, bypass environmental regulations, and overcome environmental risks. However, the extensive usage of fluorinated POPs alternatives has revealed potential risks such as high exposure levels, long-range transport properties, and physiological toxicity. Therefore, it is imperative to rethink the alternatives and their treatment technologies. This review aims to consider the existing destructive technologies for completely eliminating fluorinated POPs alternatives from the earth based on the updated classification and risks overview. Herein, the types of common alternatives were renewed and categorized, and their risks to the environment and organisms were concluded. The efficiency, effectiveness, energy utilization, sustainability, and cost of various degradation technologies in the treatment of fluorinated POPs alternatives were reviewed and evaluated. Meanwhile, the reaction mechanisms of different fluorinated POPs alternatives are systematically generalized, and the correlation between the structure of alternatives and the degradation characteristics was discussed, providing mechanistic insights for their removal from the environment. Overall, the review supplies a theoretical foundation and reference for the control and treatment of fluorinated POPs alternatives pollution.
Collapse
Affiliation(s)
- Yuxin Zeng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | - Yunrong Dai
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Lifeng Yin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | - Jun Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), School of Environment, POPs Research Center, Tsinghua University, Beijing 100084, PR China.
| | - Michael R Hoffmann
- Department of Environmental Science & Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| |
Collapse
|
18
|
Fu K, Huang J, Luo F, Fang Z, Yu D, Zhang X, Wang D, Xing M, Luo J. Understanding the Selective Removal of Perfluoroalkyl and Polyfluoroalkyl Substances via Fluorine-Fluorine Interactions: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39264176 DOI: 10.1021/acs.est.4c06519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
As regulatory standards for per- and polyfluoroalkyl substances (PFAS) become increasingly stringent, innovative water treatment technologies are urgently demanded for effective PFAS removal. Reported sorbents often exhibit limited affinity for PFAS and are frequently hindered by competitive background substances. Recently, fluorinated sorbents (abbreviated as fluorosorbents) have emerged as a potent solution by leveraging fluorine-fluorine (F···F) interactions to enhance selectivity and efficiency in PFAS removal. This review delves into the designs and applications of fluorosorbents, emphasizing how F···F interactions improve PFAS binding affinity. Specifically, the existence of F···F interactions results in removal efficiencies orders of magnitude higher than other counterpart sorbents, particularly under competitive conditions. Furthermore, we provide a detailed analysis of the fundamental principles underlying F···F interactions and elucidate their synergistic effects with other sorption forces, which contribute to the enhanced efficacy and selectivity. Subsequently, we examine various fluorosorbents and their synthesis and fluorination techniques, underscore the importance of accurately characterizing F···F interactions through advanced analytical methods, and emphasize the significance of this interaction in developing selective sorbents. Finally, we discuss challenges and opportunities associated with employing advanced techniques to guide the design of selective sorbents and advocate for further research in the development of sustainable and cost-effective treatment technologies leveraging F···F interactions.
Collapse
Affiliation(s)
- Kaixing Fu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jinjing Huang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Fang Luo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhuoya Fang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Deyou Yu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Xiaolin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Dawei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P. R. China
| | - Mingyang Xing
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jinming Luo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
19
|
Saleh L, Lin Z, Ersan MS, Coutanceau C, Westerhoff P, Croué JP. Effect of electrolyte composition on electrocatalytic transformation of perfluorooctanoic acid (PFOA) in high pH medium. CHEMOSPHERE 2024; 363:142879. [PMID: 39033861 DOI: 10.1016/j.chemosphere.2024.142879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Recent regulatory actions aim to limit per- and polyfluoroalkyl substances (PFAS) concentrations in drinking water and wastewaters. Regenerable anion exchange resin (AER) is an effective separation process to remove PFAS from water but will require PFAS post-treatment of the regeneration wastestream. Electrocatalytic (EC) processes using chemically boron-doped diamond electrodes, stable in a wide range of chemical compositions show potential to defluorinate PFOA in drinking water and wastewater treatments. Chemical composition and concentration of mineral salts in supporting electrolytes affect AER regeneration efficiency, and play a crucial role in the EC processes. Their impact on PFAS degradation remains understudied. This study investigates the impact of 17 brine electrolytes with different compositions on perfluorooctanoic acid (PFOA) degradation in an alkaline medium and explores the correlation between the rate of PFOA degradation and the solution's conductivity. Results show that higher electrolyte concentrations and conductivity lead to faster PFOA degradation rates. The presence of chloride anions have negligible impact on the degradation rate. However, the presence of nitrate salts reduce PFOA degradation efficiency. Additionally, the use of mixed electrolytes may be a promising approach for reducing the cost of EC operations. PFOA degradation was not influenced by the pH of the bulk solution.
Collapse
Affiliation(s)
- Lama Saleh
- Institut de Chimie des Milieux et des Matériaux, Université de Poitiers, France.
| | - Zunhui Lin
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA.
| | - Mahmut S Ersan
- Department of Civil Engineering, University of North Dakota, Grand Forks, ND, USA.
| | - Christophe Coutanceau
- Institut de Chimie des Milieux et des Matériaux, Université de Poitiers, France; French Research Network on Hydrogen (FRH2), CNRS, France.
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA.
| | - Jean-Philippe Croué
- Institut de Chimie des Milieux et des Matériaux, Université de Poitiers, France.
| |
Collapse
|
20
|
Wang Q, Zhang G, Zhang C, Xu F, Zhang Y, Fu W, Liu J, Li J. Enhanced Mineralization of Organic Pollutants through Atomic Hydrogen-Mediated Alternative Transformation Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11185-11192. [PMID: 38869092 DOI: 10.1021/acs.est.4c02545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Electrocatalytic hydrogen atom-hydroxyl radical (H*-·OH) redox system is a promising approach for contaminant removal and mineralization. However, its working mechanism, especially the effect of H*, remains unclear, hindering its practical application. Herein, we constructed an electrochemical reactor equipped with our self-made Pd-loaded Ti/TiO2 nanotube cathode and a commercial boron-doped diamond anode. After fulfilling the electrode characterization and free radical detection, we employed coumarin and 7-azido-4-methylcoumarin as probes to confirm the participation of H* in the transformation of organic compounds. A comprehensive study on the degradation kinetics, reaction, and mineralization mechanisms using benzoic acid (BA) and 4-chlorophenol (4-CP) as model compounds was further conducted. The rate constants and total organic carbon removal of BA and 4-CP in the redox system increased compared with those of the individual oxidation and reduction processes. Theoretical calculations demonstrate that H* opens up alternative pathways for BA and 4-CP ring cleavage, forming quinones as reactive intermediates. Furthermore, H* facilitates the mineralization of the typical intermediates, maleic acid and fumaric acid, through C=C bond addition and H-abstraction from the 1,1-diol structure. The presence of H* provides alternative pathways for pollutant transformation, consequently reducing the treatment duration.
Collapse
Affiliation(s)
- Qiancheng Wang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Chao Zhang
- College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Fu Xu
- Suzhou Suwater Environment Science Technology Co., LTD., Suzhou 215011, China
| | - Yixiang Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wenjie Fu
- College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Jianyun Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Jinghong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
21
|
Trzcinski AP, Harada KH. Comparison of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorobutane sulfonate (PFBS) removal in a combined adsorption and electrochemical oxidation process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172184. [PMID: 38575007 DOI: 10.1016/j.scitotenv.2024.172184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/08/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
This study focused on three of the most studied PFAS molecules, namely perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorobutane sulfonate (PFBS). They were compared in terms of their adsorption capacity onto graphite intercalated compound (GIC), a low surface area, highly conductive and cheap adsorbent. The adsorption on GIC followed a pseudo second order kinetics and the maximum adsorption capacity using Langmuir was 53.9 μg/g for PFOS, 22.3 μg/g for PFOA and 0.985 μg/g for PFBS due to electrostatic attraction and hydrophobic interactions. GIC was added into an electrochemical oxidation reactor and >100 μg/L PFOS was found to be fully degraded (<10 ng/L) leaving degradation by-products such as PFHpS, PFHxS, PFPeS, PFBS, PFOA, PFHxA and PFBA below 100 ng/L after 5 cycles of adsorption onto GIC for 20 min followed by regeneration at 28 mA/cm2 for 10 min. PFBS was completely removed due to degradation by aqueous electrons on GIC flakes. Up to 98 % PFOA was removed by the process after 3 cycles of adsorption onto GIC for 20 min followed by regeneration at 25 mA/cm2 for 10 min. When PFBS was spiked individually, only 17 % was removed due to poor adsorption on GIC. There was a drop of 3-40 % by treating PFOS, PFOA and smaller sulfonates in a real water matrix under the same electrochemical conditions (20 mA/cm2), but PFOS and PFOA removal percentage were 95 and 68 % after 20 min at 20 mA/cm2.
Collapse
Affiliation(s)
- Antoine P Trzcinski
- School of Agriculture and Environmental Science, University of Southern Queensland, West Street, 4350, Queensland, Australia.
| | - Kouji H Harada
- Department of health and environmental sciences, Graduate school of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
22
|
Zeidabadi FA, Esfahani EB, McBeath ST, Mohseni M. Managing PFAS exhausted Ion-exchange resins through effective regeneration/electrochemical process. WATER RESEARCH 2024; 255:121529. [PMID: 38554630 DOI: 10.1016/j.watres.2024.121529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/03/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
This study proposes an integrated approach that combines ion-exchange (IX) and electrochemical technologies to tackle problems associated with PFAS contamination. Our investigation centers on evaluating the recovery and efficiency of IX/electrochemical systems in the presence of five different salts, spanning dosages from 0.1 % to 8 %. The outcomes reveal a slight superiority for NaCl within the regeneration system, with sulfate and bicarbonate also showing comparable efficacy. Notably, the introduction of chloride ion (Cl-) into the electrochemical system results in substantial generation of undesirable chlorate (ClO3-) and perchlorate (ClO4-) by-products, accounting for ∼18 % and ∼81 % of the consumed Cl-, respectively. Several agents, including H2O2, KI, and Na2S2O3, exhibited effective mitigation of ClO3- and ClO4- formation. However, only H2O2 demonstrated a favorable influence on the degradation and defluorination of PFOA. The addition of 0.8 M H2O2 resulted in the near-complete removal of ClO3- and ClO4-, accompanied by 1.3 and 2.2-fold enhancements in the degradation and defluorination of PFOA, respectively. Furthermore, a comparative analysis of different salts in the electrochemical system reveals that Cl- and OH- ions exhibit slower performance, possibly due to competitive interactions with PFOA on the anode's reactive sites. In contrast, sulfate and bicarbonate salts consistently demonstrate robust decomposition efficiencies. Despite the notable enhancement in IX regeneration efficacy facilitated by the presence of methanol, particularly for PFAS-specific resins, this enhancement comes at the cost of reduced electrochemical decomposition of all PFAS. The average decay rate ratio of all PFAS in the presence of 50 % methanol, compared to its absence, falls within the range of 0.11-0.39. In conclusion, the use of 1 % Na2SO4 salt stands out as a favorable option for the integrated IX/electrochemical process. This choice not only eliminates the need to introduce an additional chemical (e.g., H2O2) into the wastewater stream, but also ensures both satisfactory regeneration recovery and efficiency in the decomposition process through electrochemical treatment.
Collapse
Affiliation(s)
- Fatemeh Asadi Zeidabadi
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada
| | - Ehsan Banayan Esfahani
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada
| | - Sean T McBeath
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Madjid Mohseni
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada.
| |
Collapse
|
23
|
Hübner U, Spahr S, Lutze H, Wieland A, Rüting S, Gernjak W, Wenk J. Advanced oxidation processes for water and wastewater treatment - Guidance for systematic future research. Heliyon 2024; 10:e30402. [PMID: 38726145 PMCID: PMC11079112 DOI: 10.1016/j.heliyon.2024.e30402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Advanced oxidation processes (AOPs) are a growing research field with a large variety of different process variants and materials being tested at laboratory scale. However, despite extensive research in recent years and decades, many variants have not been transitioned to pilot- and full-scale operation. One major concern are the inconsistent experimental approaches applied across different studies that impede identification, comparison, and upscaling of the most promising AOPs. The aim of this tutorial review is to streamline future studies on the development of new solutions and materials for advanced oxidation by providing guidance for comparable and scalable oxidation experiments. We discuss recent developments in catalytic, ozone-based, radiation-driven, and other AOPs, and outline future perspectives and research needs. Since standardized experimental procedures are not available for most AOPs, we propose basic rules and key parameters for lab-scale evaluation of new AOPs including selection of suitable probe compounds and scavengers for the measurement of (major) reactive species. A two-phase approach to assess new AOP concepts is proposed, consisting of (i) basic research and proof-of-concept (technology readiness levels (TRL) 1-3), followed by (ii) process development in the intended water matrix including a cost comparison with an established process, applying comparable and scalable parameters such as UV fluence or ozone consumption (TRL 3-5). Subsequent demonstration of the new process (TRL 6-7) is briefly discussed, too. Finally, we highlight important research tools for a thorough mechanistic process evaluation and risk assessment including screening for transformation products that should be based on chemical logic and combined with complementary tools (mass balance, chemical calculations).
Collapse
Affiliation(s)
- Uwe Hübner
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748, Garching, Germany
- Xylem Services GmbH, Boschstraße 4-14, 32051, Herford, Germany
| | - Stephanie Spahr
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587, Berlin, Germany
| | - Holger Lutze
- Department of Civil and Environmental Engineering, Institute IWAR, Chair of Environmental Analytics and Pollutants, Technical University of Darmstadt, Franziska-Braun-Straße 7, 64287, Darmstadt, Germany
- IWW Water Centre, Moritzstraße 26, 45476, Mülheim an der Ruhr, Germany
- Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, 45141, Essen, Germany
| | - Arne Wieland
- Xylem Services GmbH, Boschstraße 4-14, 32051, Herford, Germany
| | - Steffen Rüting
- Xylem Services GmbH, Boschstraße 4-14, 32051, Herford, Germany
| | - Wolfgang Gernjak
- Catalan Institute for Water Research (ICRA), 17003, Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| | - Jannis Wenk
- University of Bath, Department of Chemical Engineering and Water Innovation & Research Centre (WIRC@Bath), Bath, BA2 7AY, United Kingdom
| |
Collapse
|
24
|
Wang Y, Zhang J, Zhang W, Yao J, Liu J, He H, Gu C, Gao G, Jin X. Electrostatic Field in Contact-Electro-Catalysis Driven C-F Bond Cleavage of Perfluoroalkyl Substances. Angew Chem Int Ed Engl 2024; 63:e202402440. [PMID: 38426574 DOI: 10.1002/anie.202402440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
Perfluoroalkyl substances (PFASs) are persistent and toxic to human health. It is demanding for high-efficient and green technologies to remove PFASs from water. In this study, a novel PFAS treatment technology was developed, utilizing polytetrafluoroethylene (PTFE) particles (1-5 μm) as the catalyst and a low frequency ultrasound (US, 40 kHz, 0.3 W/cm2) for activation. Remarkably, this system can induce near-complete defluorination for different structured PFASs. The underlying mechanism relies on contact electrification between PTFE and water, which induces cumulative electrons on PTFE surface, and creates a high surface voltage (tens of volts). Such high surface voltage can generate abundant reactive oxygen species (ROS, i.e., O2⋅-, HO⋅, etc.) and a strong interfacial electrostatic field (IEF of 109~1010 V/m). Consequently, the strong IEF significantly activates PFAS molecules and reduces the energy barrier of O2⋅- nucleophilic reaction. Simultaneously, the co-existence of surface electrons (PTFE*(e-)) and HO⋅ enables synergetic reduction and oxidation of PFAS and its intermediates, leading to enhanced and thorough defluorination. The US/PTFE method shows compelling advantages of low energy consumption, zero chemical input, and few harmful intermediates. It offers a new and promising solution for effectively treating the PFAS-contaminated drinking water.
Collapse
Affiliation(s)
- Yanfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
- School of Life and Environmental Sciences, Shaoxing University, Huancheng Road 508, Shaoxing, 312000, China
| | - Jing Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
- Suzhou High School Of Jiangsu Province, Renmin Road 699, Suzhou, 215007, China
| | - Wenkai Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Jiaming Yao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Jinyong Liu
- Department of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Huan He
- School of Environment, Nanjing, Normal University, Nanjing, 210023, China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Guandao Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
- Chongqing Innovation Research Institute of Nanjing University, Chongqing, 401121, China
| | - Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
- School of Environment, Nanjing, Normal University, Nanjing, 210023, China
| |
Collapse
|
25
|
Asadi Zeidabadi F, Banayan Esfahani E, Moreira R, McBeath ST, Foster J, Mohseni M. Structural dependence of PFAS oxidation in a boron doped diamond-electrochemical system. ENVIRONMENTAL RESEARCH 2024; 246:118103. [PMID: 38181849 DOI: 10.1016/j.envres.2024.118103] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Driven by long-term persistence and adverse health impacts of legacy perfluorooctanoic acid (PFOA), production has shifted towards shorter chain analogs (C4, perfluorobutanoic acid (PFBA)) or fluorinated alternatives such as hexafluoropropylene oxide dimer acid (HFPO-DA, known as GenX) and 6:2 fluorotelomer carboxylic acid (6:2 FTCA). Yet, a thorough understanding of treatment processes for these alternatives is limited. Herein, we conducted a comprehensive study using an electrochemical approach with a boron doped diamond anode in Na2SO4 electrolyte for the remediation of PFOA common alternatives, i.e., PFBA, GenX, and 6:2 FTCA. The degradability, fluorine recovery, transformation pathway, and contributions from electro-synthesized radicals were investigated. The results indicated the significance of chain length and structure, with shorter chains being harder to break down (PFBA (65.6 ± 5.0%) < GenX (84.9 ± 3.3%) < PFOA (97.9 ± 0.1%) < 6:2 FTCA (99.4 ± 0.0%) within 120 min of electrolysis). The same by-products were observed during the oxidation of both low and high concentrations of parent PFAS (2 and 20 mg L-1), indicating that the fundamental mechanism of PFAS degradation remained consistent. Nevertheless, the ratio of these by-products to the parent PFAS concentration varied which primarily arises from the more rapid PFAS decomposition at lower dosages. For all experiments, the main mechanism of PFAS oxidation was initiated by direct electron transfer at the anode surface. Sulfate radical (SO4•-) also contributed to the oxidation of all PFAS, while hydroxyl radical (•OH) only played a role in the decomposition of 6:2 FTCA. Total fluorine recovery of PFBA, GenX, and 6:2 FTCA were 96.5%, 94.0%, and 76.4% within 240 min. The more complex transformation pathway of 6:2 FTCA could explain its lower fluorine recovery. Detailed decomposition pathways for each PFAS were also proposed through identifying the generated intermediates and fluorine recovery. The proposed pathways were also assessed using 19F Nuclear Magnetic Resonance (NMR) spectroscopy.
Collapse
Affiliation(s)
- Fatemeh Asadi Zeidabadi
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada
| | - Ehsan Banayan Esfahani
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada
| | - Raphaell Moreira
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada
| | - Sean T McBeath
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA, 01002, United States
| | - Johan Foster
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada
| | - Madjid Mohseni
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada.
| |
Collapse
|
26
|
Antonopoulou M, Spyrou A, Tzamaria A, Efthimiou I, Triantafyllidis V. Current state of knowledge of environmental occurrence, toxic effects, and advanced treatment of PFOS and PFOA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169332. [PMID: 38123090 DOI: 10.1016/j.scitotenv.2023.169332] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are anthropogenic synthetic compounds, with high chemical and thermal stability and a persistent, stable and bioaccumulative nature that renders them a potential hazard for the environment, its organisms, and humans alike. Perfluorooctane sulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA) are the most well-known substances of this category and even though they are phased out from production they are still highly detectable in several environmental matrices. As a result, they have been spread globally in water sources, soil and biota exerting toxic and detrimental effects. Therefore, up and coming technologies, namely advanced oxidation processes (AOPs) and advanced reduction processes (ARPs) are being tested for their implementation in the degradation of these pollutants. Thus, the present review compiles the current knowledge on the occurrence of PFOS and PFOA in the environment, the various toxic effects they have induced in different organisms as well as the ability of AOPs and ARPs to diminish and/or eliminate them from the environment.
Collapse
Affiliation(s)
- Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, 30131 Agrinio, Greece.
| | - Alexandra Spyrou
- Department of Sustainable Agriculture, University of Patras, 30131 Agrinio, Greece
| | - Anna Tzamaria
- Department of Sustainable Agriculture, University of Patras, 30131 Agrinio, Greece
| | - Ioanna Efthimiou
- Department of Biology, Section of Genetics Cell Biology and Development, University of Patras, 26500 Patras, Greece
| | | |
Collapse
|
27
|
Yadav M, Osonga FJ, Sadik OA. Unveiling nano-empowered catalytic mechanisms for PFAS sensing, removal and destruction in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169279. [PMID: 38123092 DOI: 10.1016/j.scitotenv.2023.169279] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/14/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are organofluorine compounds used to manufacture various industrial and consumer goods. Due to their excellent physical and thermal stability ascribed to the strong CF bond, these are ubiquitously present globally and difficult to remediate. Extensive toxicological and epidemiological studies have confirmed these substances to cause adverse health effects. With the increasing literature on the environmental impact of PFAS, the regulations and research have also expanded. Researchers worldwide are working on the detection and remediation of PFAS. Many methods have been developed for their sensing, removal, and destruction. Amongst these methods, nanotechnology has emerged as a sustainable and affordable solution due to its tunable surface properties, high sorption capacities, and excellent reactivities. This review comprehensively discusses the recently developed nanoengineered materials used for detecting, sequestering, and destroying PFAS from aqueous matrices. Innovative designs of nanocomposites and their efficiency for the sensing, removal, and degradation of these persistent pollutants are reviewed, and key insights are analyzed. The mechanistic details and evidence available to support the cleavage of the CF bond during the treatment of PFAS in water are critically examined. Moreover, it highlights the challenges during PFAS quantification and analysis, including the analysis of intermediates in transitioning nanotechnologies from the laboratory to the field.
Collapse
Affiliation(s)
- Manavi Yadav
- Department of Chemistry and Environmental Sciences, New Jersey Institutes of Technology (NJIT), United States of America
| | - Francis J Osonga
- Department of Chemistry and Environmental Sciences, New Jersey Institutes of Technology (NJIT), United States of America
| | - Omowunmi A Sadik
- Department of Chemistry and Environmental Sciences, New Jersey Institutes of Technology (NJIT), United States of America.
| |
Collapse
|
28
|
Mostefaoui N, Oturan N, Bouafia SC, Hien SA, Gibert-Vilas M, Lesage G, Pechaud Y, Tassin B, Oturan M, Trellu C. Integration of electrochemical processes in a treatment system for landfill leachates based on a membrane bioreactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168841. [PMID: 38036133 DOI: 10.1016/j.scitotenv.2023.168841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
The use of electrocoagulation (EC) and anodic oxidation (AO) processes was studied for improving a treatment system for landfill leachates based on a membrane bioreactor (MBR) and a nanofiltration step. The main limitation of the current full-scale system is related to the partial removal of organic compounds that leads to operation of the nanofiltration unit with a highly concentrated feed solution. Application of the EC before the MBR participated in partial removal of the organic load (40 %) with limited energy consumption (2.8 kWh m-3) but with additional production of iron hydroxide sludge. Only AO allowed for non-selective removal of organic compounds. As a standalone process, AO would require a sharp increase of the energy consumption (116 kWh for 81 % removal of total organic carbon). But using lower electric charge and combining AO with EC and MBR processes would allow for achieving high overall removal yields with limited energy consumption. For example, the overall removal yield of total organic carbon was 65 % by application of AO after EC, with an energy consumption of 21 kWh m-3. Results also showed that such treatment strategy might allow for a significant increase of the biodegradability of the effluent before treatment by the MBR. The MBR might then be dedicated to the removal of the residual organic load as well as to the removal of the nitrogen load. The data obtained in this study also showed that the lower electric charge required for integrating AO in a coupled process would allow for strongly decreasing the formation of undesired by-products such as ClO3- and ClO4-.
Collapse
Affiliation(s)
- Nabil Mostefaoui
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France; Laboratory of Reaction Engineering, Faculty of Mechanical Engineering and Process Engineering USTHB, BP 32, El-Allia, Bab-Ezzouar, Algiers 16111, Algeria
| | - Nihal Oturan
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France
| | - Souad Chergui Bouafia
- Laboratory of Reaction Engineering, Faculty of Mechanical Engineering and Process Engineering USTHB, BP 32, El-Allia, Bab-Ezzouar, Algiers 16111, Algeria
| | - Sié Alain Hien
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France; Laboratoire des Procédés Industriels, de Synthèse de l'Environnement et des Energies Nouvelles (LAPISEN), Institut National Polytechnique Houphouët-Boigny, BP 1313, Yamoussoukro, Côte d'Ivoire
| | - Màxim Gibert-Vilas
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France
| | - Geoffroy Lesage
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
| | - Yoan Pechaud
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France
| | - Bruno Tassin
- Laboratoire Eau Environnement et Systèmes Urbains, LEESU, Ecole des Ponts, Université Paris-Est Créteil, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France
| | - Mehmet Oturan
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France
| | - Clément Trellu
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France.
| |
Collapse
|
29
|
Hamid N, Junaid M, Sultan M, Yoganandham ST, Chuan OM. The untold story of PFAS alternatives: Insights into the occurrence, ecotoxicological impacts, and removal strategies in the aquatic environment. WATER RESEARCH 2024; 250:121044. [PMID: 38154338 DOI: 10.1016/j.watres.2023.121044] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
Due to increasing regulations on the production and consumption of legacy per- and polyfluoroalkyl substances (PFAS), the global use of PFAS substitutes increased tremendously, posing serious environmental risks owing to their bioaccumulation, toxicity, and lack of removal strategies. This review summarized the spatial distribution of alternative PFAS and their ecological risks in global freshwater and marine ecosystems. Further, toxicological effects of novel PFAS in various freshwater and marine species were highlighted. Moreover, degradation mechanisms for alternative PFAS removal from aquatic environments were compared and discussed. The spatial distribution showed that 6:2 chlorinated polyfluorinated ether sulfonate (6:2 CI-PFAES, also known as F-53B) was the most dominant emerging PFAS found in freshwater. Additionally, the highest levels of PFBS and PFBA were observed in marine waters (West Pacific Ocean). Moreover, short-chain PFAS exhibited higher concentrations than long-chain congeners. The ecological risk quotients (RQs) for phytoplankton were relatively higher >1 than invertebrates, indicating a higher risk for freshwater phytoplankton species. Similarly, in marine water, the majority of PFAS substitutes exhibited negligible risk for invertebrates and fish, and posed elevated risks for phytoplanktons. Reviewed studies showed that alternative PFAS undergo bioaccumulation and cause deleterious effects such as oxidative stress, hepatoxicity, neurotoxicity, histopathological alterations, behavioral and growth abnormalities, reproductive toxicity and metabolism defects in freshwater and marine species. Regarding PFAS treatment methods, photodegradation, photocatalysis, and adsorption showed promising degradation approaches with efficiencies as high as 90%. Finally, research gaps and future perspectives for alternative PFAS toxicological implications and their removal were offered.
Collapse
Affiliation(s)
- Naima Hamid
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Ocean Pollution and Ecotoxicology (OPEC) Research Group, Universiti Malaysia Terengganu, Malaysia.
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China.
| | - Marriya Sultan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Suman Thodhal Yoganandham
- Department of Environmental Engineering, Changwon National University, Changwon, 51140, Republic of Korea
| | - Ong Meng Chuan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Ocean Pollution and Ecotoxicology (OPEC) Research Group, Universiti Malaysia Terengganu, Malaysia
| |
Collapse
|
30
|
Vatankhah H, Anderson RH, Ghosh R, Willey J, Leeson A. A review of innovative approaches for onsite management of PFAS-impacted investigation derived waste. WATER RESEARCH 2023; 247:120769. [PMID: 37931356 DOI: 10.1016/j.watres.2023.120769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
The historic use of aqueous film-forming foam (AFFF) has led to widespread detection of per- and polyfluoroalkyl substance (PFAS) in groundwater, soils, sediments, drinking water, wastewater, and receiving aquatic systems throughout the United States (U.S.). Prior to any remediation activities, in order to identify the PFAS-impacted source zones and select the optimum management approach, extensive site investigations need to be conducted. These site investigations have resulted in the generation of considerable amount of investigation-derived waste (IDW) which predominantly consists of well purging water and drill fluid, equipment washing residue, soil, drill cuttings, and residues from the destruction of asphalt and concrete surfaces. IDW is often impacted by varying levels of PFAS which poses a substantial challenge concerning disposal to prevent potential mobilization of PFAS, logistical complexities, and increasing requirement for storage as a result of accumulation of the associated wastes. The distinct features of IDW involve the intermittent generation of waste, substantial volume of waste produced, and the critical demand for onsite management. This article critically focuses on innovative technologies and approaches employed for onsite treatment and management of PFAS-impacted IDW. The overall objective of this study centers on developing and deploying end-of-life treatment technology systems capable of facilitating unrestricted disposal, discharge, and/or IDW reuse on-site, thereby reducing spatial footprints and mobilization time.
Collapse
Affiliation(s)
- Hooman Vatankhah
- Strategic Environmental Research and Development Program and the Environmental Security Technology Certification Program, Arlington, VA, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA.
| | | | | | | | - Andrea Leeson
- Strategic Environmental Research and Development Program and the Environmental Security Technology Certification Program, Arlington, VA, USA
| |
Collapse
|
31
|
Li Z, Lu Y, Chen T, He A, Huang Y, Li L, Pan W, Li J, Zhu N, Wang Y, Jiang G. Generation Mechanism of Perfluorohexanesulfonic Acid from Polyfluoroalkyl Sulfonamide Derivatives During Chloramination in Drinking Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18462-18472. [PMID: 36633968 DOI: 10.1021/acs.est.2c07881] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs), including perfluorohexanesulfonic acid (PFHxS), as emerging persistent organic pollutants widely detected in drinking water, have drawn increasing concern. The PFHxS contamination of drinking water always results from direct and indirect sources, especially the secondary generations through environmental transformations of precursors. However, the mechanism of the transformation of precursors to PFHXS during the drinking water treatment processes remains unclear. Herein, the potential precursors and formation mechanisms of PFHxS were explored during drinking water disinfection. Simultaneously, the factors affecting PFHxS generation were also examined. This study found PFHxS could be generated from polyfluoroalkyl sulfonamide derivatives during chlorination and chloramination. The fate and yield of PFHxS varied from different precursors and disinfection processes. In particular, monochloramine more favorably formed PFHxS. Several perfluoroalkyl oxidation products and decarboxylation intermediates were detected and identified in the chloraminated samples using Fourier-transform ion cyclotron resonance mass spectrometry. Combined with density functional theory calculations, the results indicated that the indirect oxidation via the attack of the nitrogen atom in sulfonamide groups might be the dominant pathway for generating PFHxS during chloramination, and the process could be highly affected by the monochloramine dose, pH, and temperature. This study provides important evidence of the secondary formation of PFHxS during drinking water disinfection and scientific support for chemical management of PFHxS and PFHxS-related compounds.
Collapse
Affiliation(s)
- Zhigang Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Yao Lu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Tianyu Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Anen He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Ying Huang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Lingxiangyu Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Wenxiao Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Juan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Nali Zhu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Yawei Wang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Science, Beijing100049, China
| |
Collapse
|
32
|
Wilsey MK, Taseska T, Meng Z, Yu W, Müller AM. Advanced electrocatalytic redox processes for environmental remediation of halogenated organic water pollutants. Chem Commun (Camb) 2023; 59:11895-11922. [PMID: 37740361 DOI: 10.1039/d3cc03176d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Halogenated organic compounds are widespread, and decades of heavy use have resulted in global bioaccumulation and contamination of the environment, including water sources. Here, we introduce the most common halogenated organic water pollutants, their classification by type of halogen (fluorine, chlorine, or bromine), important policies and regulations, main applications, and environmental and human health risks. Remediation techniques are outlined with particular emphasis on carbon-halogen bond strengths. Aqueous advanced redox processes are discussed, highlighting mechanistic details, including electrochemical oxidations and reductions of the water-oxygen system, and thermodynamic potentials, protonation states, and lifetimes of radicals and reactive oxygen species in aqueous electrolytes at different pH conditions. The state of the art of aqueous advanced redox processes for brominated, chlorinated, and fluorinated organic compounds is presented, along with reported mechanisms for aqueous destruction of select PFAS (per- and polyfluoroalkyl substances). Future research directions for aqueous electrocatalytic destruction of organohalogens are identified, emphasizing the crucial need for developing a quantitative mechanistic understanding of degradation pathways, the improvement of analytical detection methods for organohalogens and transient species during advanced redox processes, and the development of new catalysts and processes that are globally scalable.
Collapse
Affiliation(s)
- Madeleine K Wilsey
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA.
| | - Teona Taseska
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
| | - Ziyi Meng
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA.
| | - Wanqing Yu
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
| | - Astrid M Müller
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA.
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
33
|
Wang Y, Ji Y, Li K, Huang Q. Foam fractionation and electrochemical oxidation for the treatment of per- and polyfluoroalkyl substances (PFAS) in environmental water samples. CHEMOSPHERE 2023; 339:139615. [PMID: 37499808 DOI: 10.1016/j.chemosphere.2023.139615] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Treatment of waters contaminated by per- and polyfluoroalkyl substances (PFAS) in large volumes remains a challenge to date. Treatment trains comprising separation and destruction technologies are promising to manage PFAS contamination. Foam fractionation (FF) and electrochemical oxidation (EO) are two cost-effective technologies for PFAS separation and destruction, respectively. This work systematically explored the performance of a treatment train of FF followed by EO (FF-EO) for treating PFAS in environmental water samples. For each treatment step, the dependence of the treatment performance on operational factors and other variables were analyzed statistically. The statistical analysis revealed PFAS enrichment and removal depend significantly on PFAS carbon chain length, solution conductivity, and PFAS concentration. Whether FF-EO treatment costs less energy than direct EO without FF mainly relies upon PFAS carbon chain length and TOC content in the sample. Both correlations were found to be linear. For all environmental water samples in this study, FF-EO is more energy-efficient than EO alone.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, USA
| | - Yuqing Ji
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, USA
| | - Ke Li
- College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Qingguo Huang
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, USA.
| |
Collapse
|
34
|
Duinslaeger N, Doni A, Radjenovic J. Impact of supporting electrolyte on electrochemical performance of borophene-functionalized graphene sponge anode and degradation of per- and polyfluoroalkyl substances (PFAS). WATER RESEARCH 2023; 242:120232. [PMID: 37352674 DOI: 10.1016/j.watres.2023.120232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
Graphene sponge anode functionalized with two-dimensional (2D) boron, i.e., borophene, was applied for electrochemical oxidation of C4-C8 per- and polyfluoroalkyl substances (PFASs). Borophene-doped graphene sponge outperformed boron-doped graphene sponge anode in terms of PFASs removal efficiencies and their electrochemical degradation; whereas at the boron-doped graphene sponge anode up to 35% of the removed PFASs was recovered after the current was switched off, the switch to a 2D boron enabled further degradation of the electrosorbed PFASs. Borophene-doped graphene sponge anode achieved 32-77% removal of C4-C8 PFASs in one-pass flow-through mode from a 10 mM phosphate buffer at 230 A m-2 of anodic current density. Higher molarity phosphate buffer (100 mM) resulted in lower PFASs removal efficiencies (11-60%) due to the higher resistance of the graphene sponge electrode in the presence of phosphate ions, as demonstrated by the electrochemical impedance spectroscopy (EIS) analyses. Electro-oxidation of PFASs was more efficient in landfill leachate despite its high organic loading, with up to 95% and 75% removal obtained for perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), versus 77% and 57% removal in the 10 mM phosphate buffer, respectively. Defluorination efficiencies as determined relative to the electrooxidized fraction of PFASs indicated up to 69% and 82% of defluorination of PFOS and PFOA in 10 mM phosphate buffer, which was decreased to 16 and 29% defluorination, respectively, for higher buffer molarity (100 mM) due to the worsened electrochemical performance of the sponge. In landfill leachate, relative defluorination efficiencies of PFOS and PFOA were 33% and 45%, respectively, indicating the inhibiting effect of complex organic and inorganic matrix of landfill leachate on the C-F bond breakage. This study demonstrates that electrochemical degradation of PFASs is possible to achieve in complex and brackish streams using a low-cost graphene sponge anode, without forming toxic chlorinated byproducts even in the presence of >7 g L-1 of chloride.
Collapse
Affiliation(s)
- Nick Duinslaeger
- Catalan Institute for Water Research (ICRA-CERCA), Emili Grahit 101, Girona 17003, Spain; University of Girona, Plaça de Sant Domènec, 3, 17004 Girona, Spain
| | - Ariadni Doni
- Catalan Institute for Water Research (ICRA-CERCA), Emili Grahit 101, Girona 17003, Spain; Aristotle University of Thessaloniki, Thessaloniki 541, 24, Greece
| | - Jelena Radjenovic
- Catalan Institute for Water Research (ICRA-CERCA), Emili Grahit 101, Girona 17003, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
35
|
Mukherjee P, Sathiyan K, Zidki T, Nadagouda MN, Sharma VK. Electrochemical degradation of per- and poly-fluoroalkyl substances in the presence of natural organic matter. Sep Purif Technol 2023; 325:124639. [PMID: 39498147 PMCID: PMC11534010 DOI: 10.1016/j.seppur.2023.124639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS), a contentious group of highly fluorinated, persistent, and potentially toxic chemicals, have been associated with human health risks. Currently, treatment processes that destroy PFAS are challenged by transforming these contaminants into additional toxic substances that may have unknown impacts on human health and the environment. Electrochemical oxidation (EO) is a promising method for scissoring long-chain PFAS, especially in the presence of natural organic matter (NOM), which interferes with most other treatment approaches used to degrade PFAS. The EO method can break the long-chain PFAS compound into short-chain analogs. The underlying mechanisms that govern the degradation of PFAS by electrochemical processes are presented in this review. The state-of-the-art anode and cathode materials used in electrochemical cells for PFAS degradation are overviewed. Furthermore, the reactor design to achieve high PFAS destruction is discussed. The challenge of treating PFAS in water containing NOM is elucidated, followed by EO implementation to minimize the influence of NOM on PFAS degradation. Finally, perspectives related to maximizing the readiness of EO technology and optimizing process parameters for the degradation of PFAS are briefly discussed.
Collapse
Affiliation(s)
- Poulami Mukherjee
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA
- Department of Chemical Sciences and the Centers for Radical Reactions and material research, Ariel University, Ariel 4077625, Israel
| | - Krishnamoorthy Sathiyan
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Tomer Zidki
- Department of Chemical Sciences and the Centers for Radical Reactions and material research, Ariel University, Ariel 4077625, Israel
| | - Mallikarjuna N. Nadagouda
- United States Environmental Protection Agency, Office of Research & Development, Center for Environmental Solutions & Emergency Response, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA
| | - Virender K. Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
36
|
Wang Z, Anand D, He Z. Phosphorus Recovery from Whole Digestate through Electrochemical Leaching and Precipitation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37364242 DOI: 10.1021/acs.est.3c02843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Phosphorus (P) recovery from biosolids can play an important role in a circular economy. Herein, an electrochemical phosphorus recovery cell (EPRC) was proposed and examined to recover P from municipal whole digestate via simultaneous leaching and precipitation. The anode of the EPRC released P as aqueous PO43--P through acidification, achieving the highest leaching efficiency of 93.3% under a current density of 30 A m-2. When the leached P solution was treated in the cathode, native metals including Ca and Fe facilitated electrochemically mediated PO43--P precipitation (EMP) and precipitated ∼99% of the leached P in the cathode chamber. Around 54.3-78.7% of total P existed in two harvestable forms: suspended solids in the cathode effluent and immobilized P in the cathode chamber. The solid products contained 28.42-33.51% of P2O5, comparable to the high-grade phosphate rock. Higher current densities reduced cathode scaling and resulted in a lower content of heavy metals in the solid products. An acidic solution was reused three times and effectively maintained cathode performance during a 42-cycle operation, achieving a consistent P recovery efficiency of nearly 80%. Those results have demonstrated the feasibility of the EPRC for recovering P from P-rich solid wastes.
Collapse
Affiliation(s)
- Zixuan Wang
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Daran Anand
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Zhen He
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
37
|
Najafinejad MS, Chianese S, Fenti A, Iovino P, Musmarra D. Application of Electrochemical Oxidation for Water and Wastewater Treatment: An Overview. Molecules 2023; 28:molecules28104208. [PMID: 37241948 DOI: 10.3390/molecules28104208] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
In recent years, the discharge of various emerging pollutants, chemicals, and dyes in water and wastewater has represented one of the prominent human problems. Since water pollution is directly related to human health, highly resistant and emerging compounds in aquatic environments will pose many potential risks to the health of all living beings. Therefore, water pollution is a very acute problem that has constantly increased in recent years with the expansion of various industries. Consequently, choosing efficient and innovative wastewater treatment methods to remove contaminants is crucial. Among advanced oxidation processes, electrochemical oxidation (EO) is the most common and effective method for removing persistent pollutants from municipal and industrial wastewater. However, despite the great progress in using EO to treat real wastewater, there are still many gaps. This is due to the lack of comprehensive information on the operating parameters which affect the process and its operating costs. In this paper, among various scientific articles, the impact of operational parameters on the EO performances, a comparison between different electrochemical reactor configurations, and a report on general mechanisms of electrochemical oxidation of organic pollutants have been reported. Moreover, an evaluation of cost analysis and energy consumption requirements have also been discussed. Finally, the combination process between EO and photocatalysis (PC), called photoelectrocatalysis (PEC), has been discussed and reviewed briefly. This article shows that there is a direct relationship between important operating parameters with the amount of costs and the final removal efficiency of emerging pollutants. Optimal operating conditions can be achieved by paying special attention to reactor design, which can lead to higher efficiency and more efficient treatment. The rapid development of EO for removing emerging pollutants from impacted water and its combination with other green methods can result in more efficient approaches to face the pressing water pollution challenge. PEC proved to be a promising pollutants degradation technology, in which renewable energy sources can be adopted as a primer to perform an environmentally friendly water treatment.
Collapse
Affiliation(s)
| | - Simeone Chianese
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031 Aversa, Italy
| | - Angelo Fenti
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031 Aversa, Italy
| | - Pasquale Iovino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Dino Musmarra
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031 Aversa, Italy
| |
Collapse
|
38
|
Wang Y, Xiao Y, Wang Y, Lin Q, Zhu Y, Ni Z, Qiu R. Electroreductive Defluorination of Unsaturated PFAS by a Quaternary Ammonium Surfactant-Modified Cathode via Direct Cathodic Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7578-7589. [PMID: 37116179 DOI: 10.1021/acs.est.2c08182] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Remediation of per- and polyfluoroalkyl substances (PFAS) in groundwater remains a technological challenge due to the trace concentrations of PFAS and the strength of their C-F bonds. This study investigated an electroreductive system with a quaternary ammonium surfactant-modified cathode for degrading (E)-perfluoro(4-methylpent-2-enoic acid) (PFMeUPA) at a low cathodic potential. A removal efficiency of 99.81% and defluorination efficiency of 78.67% were achieved under -1.6 V (vs Ag/AgCl) at the cathode modified by octadecyltrimethylammonium bromide (OTAB). The overall degradation procedure started with the adsorption of PFMeUPA onto the modified cathode. This adsorption process was promoted by hydrophobic and electrostatic interactions between the surfactants and PFMeUPA, of which the binding percentage, binding mode, and binding energy were determined via molecular dynamics (MD) simulations and density functional theory (DFT) calculations. The step-wise degradation pathway of PFMeUPA, including reductive defluorination and hydrogenation, was derived. Meanwhile, C-F bond breaking with direct electron transfer only was achieved for the first time in this study, which also showed that the C═C bond structure of PFAS facilitates the C-F cleavage. Overall, this study highlights the crucial role of quaternary ammonium surfactants in electron transfer and electrocatalytic activities in the electroreductive system and provides insights into novel remediation approaches on PFAS-contaminated groundwater.
Collapse
Affiliation(s)
- Yue Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Ye Xiao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yafei Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingqi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yanping Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhuobiao Ni
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
39
|
Smith SJ, Lauria M, Ahrens L, McCleaf P, Hollman P, Bjälkefur Seroka S, Hamers T, Arp HPH, Wiberg K. Electrochemical Oxidation for Treatment of PFAS in Contaminated Water and Fractionated Foam-A Pilot-Scale Study. ACS ES&T WATER 2023; 3:1201-1211. [PMID: 37090120 PMCID: PMC10111409 DOI: 10.1021/acsestwater.2c00660] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 05/03/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent synthetic contaminants that are present globally in water and are exceptionally difficult to remove during conventional water treatment processes. Here, we demonstrate a practical treatment train that combines foam fractionation to concentrate PFAS from groundwater and landfill leachate, followed by an electrochemical oxidation (EO) step to degrade the PFAS. The study combined an up-scaled experimental approach with thorough characterization strategies, including target analysis, PFAS sum parameters, and toxicity testing. Additionally, the EO kinetics were successfully reproduced by a newly developed coupled numerical model. The mean total PFAS degradation over the designed treatment train reached 50%, with long- and short-chain PFAS degrading up to 86 and 31%, respectively. The treatment resulted in a decrease in the toxic potency of the water, as assessed by transthyretin binding and bacterial bioluminescence bioassays. Moreover, the extractable organofluorine concentration of the water decreased by up to 44%. Together, these findings provide an improved understanding of a promising and practical approach for on-site remediation of PFAS-contaminated water.
Collapse
Affiliation(s)
- Sanne J. Smith
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07 Uppsala, Sweden
| | - Melanie Lauria
- Department
of Environmental Science, Stockholm University, Svante Arrhenius Väg 8, 10691 Stockholm, Sweden
| | - Lutz Ahrens
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07 Uppsala, Sweden
| | - Philip McCleaf
- Uppsala
Water and Waste AB, P.O. Box 1444, SE-751 44 Uppsala, Sweden
| | | | | | - Timo Hamers
- Amsterdam
Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Hans Peter H. Arp
- Norwegian
Geotechnical Institute (NGI), P.O. Box
3930, Ullevål Stadion, NO-0806 Oslo, Norway
- Department
of Chemistry, Norwegian University of Science
and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Karin Wiberg
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07 Uppsala, Sweden
| |
Collapse
|
40
|
Aumeier BM, Georgi A, Saeidi N, Sigmund G. Is sorption technology fit for the removal of persistent and mobile organic contaminants from water? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163343. [PMID: 37030383 DOI: 10.1016/j.scitotenv.2023.163343] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Persistent, Mobile, and Toxic (PMT) and very persistent and very mobile (vPvM) substances are a growing threat to water security and safety. Many of these substances are distinctively different from other more traditional contaminants in terms of their charge, polarity, and aromaticity. This results in distinctively different sorption affinities towards traditional sorbents such as activated carbon. Additionally, an increasing awareness on the environmental impact and carbon footprint of sorption technologies puts some of the more energy-intensive practices in water treatment into question. Commonly used approaches may thus need to be readjusted to become fit for purpose to remove some of the more challenging PMT and vPvM substances, including for example short chained per- and polyfluoroalkyl substances (PFAS). We here critically review the interactions that drive sorption of organic compounds to activated carbon and related sorbent materials and identify opportunities and limitations of tailoring activated carbon for PMT and vPvM removal. Other less traditional sorbent materials, including ion exchange resins, modified cyclodextrins, zeolites and metal-organic frameworks are then discussed for potential alternative or complementary use in water treatment scenarios. Sorbent regeneration approaches are evaluated in terms of their potential, considering reusability, potential for on-site regeneration, and potential for local production. In this context, we also discuss the benefits of coupling sorption to destructive technologies or to other separation technologies. Finally, we sketch out possible future trends in the evolution of sorption technologies for PMT and vPvM removal from water.
Collapse
Affiliation(s)
- Benedikt M Aumeier
- RWTH Aachen University, Institute of Environmental Engineering, Mies-van-der-Rohe-Strasse 1, 52074 Aachen, Germany.
| | - Anett Georgi
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, 04318 Leipzig, Germany
| | - Navid Saeidi
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, 04318 Leipzig, Germany
| | - Gabriel Sigmund
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Wien, Austria; Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
41
|
Mirabediny M, Sun J, Yu TT, Åkermark B, Das B, Kumar N. Effective PFAS degradation by electrochemical oxidation methods-recent progress and requirement. CHEMOSPHERE 2023; 321:138109. [PMID: 36787844 DOI: 10.1016/j.chemosphere.2023.138109] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The presence of per- and poly-fluoroalkyl substances (PFASs) in water is of global concern due to their high stability and toxicity even at very low concentrations. There are several technologies for the remediation of PFASs, but most of them are inadequate either due to limited effectiveness, high cost, or production of a large amount of sludge. Electrochemical oxidation (EO) technology shows great potential for large-scale application in the degradation of PFASs due to its simple procedure, low loading of chemicals, and least amount of waste. Here, we have reviewed the recent progress in EO methods for PFAS degradation, focusing on the last 10 years, to explore an efficient, cost-effective, and environmentally benign remediation technology. The effects of important parameters (e.g., anode material, current density, solution pH, electrolyte, plate distance, and electrical connector type) are summarized and evaluated. Also, the energy consumption, the consequence of different PFASs functional groups, and water matrices are discussed to provide an insight that is pivotal for developing new EO materials and technologies. The proposed degradation pathways of shorter-chain PFAS by-products during EO of PFAS are also discussed.
Collapse
Affiliation(s)
- Maryam Mirabediny
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney, 2052, Australia
| | - Jun Sun
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney, 2052, Australia
| | - Tsz Tin Yu
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney, 2052, Australia
| | - Björn Åkermark
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Biswanath Das
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden.
| | - Naresh Kumar
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney, 2052, Australia.
| |
Collapse
|
42
|
Deng Y, Wang F, Liu L, Chen D, Guo Y, Li Z. High density polyethylene (HDPE) and thermoplastic polyurethane (TPU) wristbands as personal passive samplers monitoring per- and polyfluoroalkyl substances (PFASs) exposure to postgraduate students. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130652. [PMID: 36603420 DOI: 10.1016/j.jhazmat.2022.130652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) present adverse effects for human health, which result in strong needs for reliable tools monitoring personal exposure to PFASs. This study manufactured two wristbands of high density polyethylene (HDPE) and thermoplastic polyurethane (TPU), and used the wristbands to monitor PFASs personal exposure. The analytical method was developed to measure 32 PFASs in the paired HDPE and TPU wristbands worn by 60 postgraduates. Twenty-nine of 32 PFASs were detected and hexafluoropropylene oxide dimer acid (HFPO-DA) was predominant individual PFASs with median concentrations of 337 and 554 pg/g for HDPE and TPU wristbands respectively. The gender and grade of students had moderate effects on PFASs distribution in the wristbands. Higher PFASs levels were determined in the two wristbands worn by the male students compared to the females, and the greatest PFASs concentration was observed in the wristbands worn by the first-year postgraduates, follow by second- and third-year postgraduates. Additionally, significant correlations between paired HDPE and TPU wristbands were observed for perfluorobutanoic acid (PFBA), perfluorohexane sulfonic acid (PFHxS), perfluoroheptane sulfonic acid (PFHpS), perfluorooctane sulfonic acid (PFOS), and HFPO-DA. These results suggest that HDPE and TPU wristbands can be used as effective tools for monitoring personal PFAS exposure.
Collapse
Affiliation(s)
- Yun Deng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Fei Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| | - Liangying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Da Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Zhe Li
- School of Engineering and Materials Science, Faculty of Science and Engineering, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
43
|
Luo Y, Khoshyan A, Al Amin M, Nolan A, Robinson F, Fenstermacher J, Niu J, Megharaj M, Naidu R, Fang C. Ultrasound-enhanced Magnéli phase Ti 4O 7 anodic oxidation of per- and polyfluoroalkyl substances (PFAS) towards remediation of aqueous film forming foams (AFFF). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160836. [PMID: 36521599 DOI: 10.1016/j.scitotenv.2022.160836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Per-and polyfluoroalkyl substances (PFAS) remediation is still a challenge. In this study, we propose a hybrid system that combines electrochemical treatment with ultrasound irradiation, aiming for an enhanced degradation of PFAS. Equipped with a titanium suboxide (Ti4O7) anode, the electrochemical cell is able to remove perfluorooctanoic acid (PFOA) effectively. Under the optimal conditions (50 mA/cm2 current density, 0.15 M Na2SO4 supporting electrolyte, and stainless steel/Ti4O7/stainless steel electrode configuration with a gap of ∼10 mm), the electrochemical process achieves ∼100 % PFOA removal and 43 % defluorination after 6 h. Applying ultrasound irradiation (130 kHz) alone offers a limited PFOA removal, with 33 % PFOA removal and 5.5 % defluorination. When the electrochemical process is combined with ultrasound irradiation, we observe a significant improvement in the remediation performance, with ∼100 % PFOA removal and 63.5 % defluorination, higher than the sum of 48.5 % (43 % achieved by the electrochemical process, plus 5.5 % by the ultrasound irradiation), implying synergistic removal/oxidation effects. The hybrid system also consistently shows the synergistic defluorination during degradation of other PFAS and the PFAS constituents in aqueous film forming foam (AFFF). We attribute the synergistic effect to an activated/cleaned electrode surface, improved mass transfer, and enhanced production of radicals.
Collapse
Affiliation(s)
- Yunlong Luo
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ashkan Khoshyan
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Md Al Amin
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Annette Nolan
- Ramboll Australia, The Junction, NSW 2291, Australia
| | | | | | - Junfeng Niu
- Suzhou institute of North China Electric Power University, Jiangsu 215000, PR China
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Cheng Fang
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
44
|
Fan Q, Gong T, Dong Q, Wang W. Uncovering hydrothermal treatment of per- and polyfluoroalkyl substances. ECO-ENVIRONMENT & HEALTH 2023; 2:21-23. [PMID: 38074453 PMCID: PMC10702917 DOI: 10.1016/j.eehl.2023.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/17/2023] [Accepted: 02/10/2023] [Indexed: 12/31/2024]
Abstract
Image 1.
Collapse
Affiliation(s)
- Qifeng Fan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Tiantian Gong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Qianling Dong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wenbing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
45
|
Sivagami K, Sharma P, Karim AV, Mohanakrishna G, Karthika S, Divyapriya G, Saravanathamizhan R, Kumar AN. Electrochemical-based approaches for the treatment of forever chemicals: Removal of perfluoroalkyl and polyfluoroalkyl substances (PFAS) from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160440. [PMID: 36436638 DOI: 10.1016/j.scitotenv.2022.160440] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/19/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Electrochemical based approaches for the treatment of recalcitrant water borne pollutants are known to exhibit superior function in terms of efficiency and rate of treatment. Considering the stability of Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are designated as forever chemicals, which generating from various industrial activities. PFAS are contaminating the environment in small concentrations, yet exhibit severe environmental and health impacts. Electro-oxidation (EO) is a recent development that treats PFAS, in which different reactive species generates at anode due to oxidative reaction and reductive reactions at the cathode. Compared to water and wastewater treatment methods those being implemented, electrochemical approaches demonstrate superior function against PFAS. EO completely mineralizes (almost 100 %) non-biodegradable organic matter and eliminate some of the inorganic species, which proven as a robust and versatile technology. Electrode materials, electrolyte concentration pH and the current density applying for electrochemical processes determine the treatment efficiency. EO along with electrocoagulation (EC) treats PFAS along with other pollutants from variety of industries showed highest degradation of 7.69 mmol/g of PFAS. Integrated approach with other processes was found to exhibit improved efficiency in treating PFAS using several electrodes boron-doped diamond (BDD), zinc, titanium and lead based with efficiency the range of 64 to 97 %.
Collapse
Affiliation(s)
- K Sivagami
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India.
| | - Pranshu Sharma
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India
| | - Ansaf V Karim
- Environmental Science and Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai, India
| | - Gunda Mohanakrishna
- School of Advanced Sciences, KLE Technological University, Hubli 580031, India.
| | - S Karthika
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India
| | - G Divyapriya
- Swiss Government Excellence Postdoctoral Scholar, Multi-Scale Robotics Lab (MSRL), Swiss Federal Institute of Technology (ETH) Zurich, Switzerland
| | - R Saravanathamizhan
- Department of Chemical Engineering, A.C. College of Technology, Anna University, India
| | - A Naresh Kumar
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
46
|
Fang Y, Meng P, Schaefer C, Knappe DRU. Removal and destruction of perfluoroalkyl ether carboxylic acids (PFECAs) in an anion exchange resin and electrochemical oxidation treatment train. WATER RESEARCH 2023; 230:119522. [PMID: 36577256 DOI: 10.1016/j.watres.2022.119522] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/18/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Perfluoroalkyl ether carboxylic acids (PFECAs) are a group of emerging recalcitrant contaminants that are being developed to replace legacy per- and polyfluoroalkyl substances (PFAS) in industrial applications and that are generated as by-products in fluoropolymer manufacturing. Here, we report on the removal and destruction of four structurally different PFECAs using an integrated anion exchange resin (AER) and electrochemical oxidation (ECO) treatment train. Results from this work illustrated that (1) flow-through columns packed with PFAS-selective AERs are highly effective for the removal of PFECAs and (2) PFECA affinity is strongly correlated with their hydrophobic features. Regeneration of the spent resin columns revealed that high percentage (e.g., 80%) of organic cosolvent is necessary for achieving 60-100% PFECA release, and regeneration efficiency was higher for a macroporous resin than a gel-type resin. Treatment of spent regenerants showed (1) >99.99% methanol removal was achieved by distillation, (2) >99.999% conversion of the four studied PFECAs was achieved during the ECO treatment of the still bottoms after 24 hours with an energy per order of magnitude of PFECA removal (EE/O) <1.03 kWh/m3 of total groundwater treated, and (3) >85% of the organic fluorine was recovered as inorganic fluoride. Trifluoroacetic acid (TFA), perfluoropropionic acid (PFPrA), and perfluoro-2-methoxyacetic acid (PFMOAA) were confirmed via high-resolution mass spectrometry as transformation products (TPs) in the treated still bottoms, and two distinctive degradation schemes and four reaction pathways are proposed for the four PFECAs. Lastly, dissolved organic matter (DOM) inhibited uptake, regeneration, and oxidation of PFECAs throughout the treatment train, suggesting pretreatment steps targeting DOM removal can enhance the system's treatment efficiency. Results from this work provide guidelines for developing effective separation-concentration-destruction treatment trains and meaningful insights for achieving PFECA destruction in impacted aquatic systems.
Collapse
Affiliation(s)
- Yida Fang
- CDM Smith, 14432 SE Eastgate Way, #100, Bellevue, Washington 98007, United States.
| | - Pingping Meng
- North Carolina State University, 915 Partners Way, Raleigh, North Carolina 27695, United States
| | - Charles Schaefer
- CDM Smith, 110 Fieldcrest Avenue, #8, Edison, New Jersey 08837, United States
| | - Detlef R U Knappe
- North Carolina State University, 915 Partners Way, Raleigh, North Carolina 27695, United States
| |
Collapse
|
47
|
Yang N, Yang S, Ma Q, Beltran C, Guan Y, Morsey M, Brown E, Fernando S, Holsen TM, Zhang W, Yang Y. Solvent-Free Nonthermal Destruction of PFAS Chemicals and PFAS in Sediment by Piezoelectric Ball Milling. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2023; 10:198-203. [PMID: 37034438 PMCID: PMC10074478 DOI: 10.1021/acs.estlett.2c00902] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/19/2023]
Abstract
Studies on the destruction of solid per- and polyfluoroalkyl substances (PFAS) chemicals and PFAS-laden solid wastes significantly lag behind the urgent social demand. There is a great need to develop novel treatment processes that can destroy nonaqueous PFAS at ambient temperatures and pressures. In this study, we develop a piezoelectric-material-assisted ball milling (PZM-BM) process built on the principle that ball collisions during milling can activate PZMs to generate ∼kV potentials for PFAS destruction in the absence of solvents. Using boron nitride (BN), a typical PZM, as an example, we successfully demonstrate the complete destruction and near-quantitative (∼100%) defluorination of solid PFOS and perfluorooctanoic acid (PFOA) after a 2 h treatment. This process was also used to treat PFAS-contaminated sediment. Approximately 80% of 21 targeted PFAS were destroyed after 6 h of treatment. The reaction mechanisms were determined to be a combination of piezo-electrochemical oxidation of PFAS and fluorination of BN. The PZM-BM process demonstrates many potential advantages, as the degradation of diverse PFAS is independent of functional group and chain configurations and does not require caustic chemicals, heating, or pressurization. This pioneering study lays the groundwork for optimizing PZM-BM to treat various PFAS-laden solid wastes.
Collapse
Affiliation(s)
- Nanyang Yang
- Department
of Civil and Environmental Engineering, Clarkson University, Potsdam, New York13699, United States
| | - Shasha Yang
- Department
of Civil and Environmental Engineering, Clarkson University, Potsdam, New York13699, United States
- Institute
for a Sustainable Environment, Clarkson
University, Potsdam, New York13699, United States
| | - Qingquan Ma
- John
A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey07102, United States
| | - Claudia Beltran
- Department
of Civil and Environmental Engineering, Clarkson University, Potsdam, New York13699, United States
| | - Yunqiao Guan
- Department
of Civil and Environmental Engineering, Clarkson University, Potsdam, New York13699, United States
| | - Madison Morsey
- Department
of Chemistry and Biomolecular Science, Clarkson
University, Potsdam, New York13699, United States
| | - Elizabeth Brown
- Department
of Civil and Environmental Engineering, Clarkson University, Potsdam, New York13699, United States
| | - Sujan Fernando
- Department
of Civil and Environmental Engineering, Clarkson University, Potsdam, New York13699, United States
| | - Thomas M. Holsen
- Department
of Civil and Environmental Engineering, Clarkson University, Potsdam, New York13699, United States
| | - Wen Zhang
- John
A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey07102, United States
| | - Yang Yang
- Department
of Civil and Environmental Engineering, Clarkson University, Potsdam, New York13699, United States
| |
Collapse
|
48
|
Li Z, Luo ZM, Huang Y, Wang JW, Ouyang G. Recent trends in degradation strategies of PFOA/PFOS substitutes. CHEMOSPHERE 2023; 315:137653. [PMID: 36581124 DOI: 10.1016/j.chemosphere.2022.137653] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The global elimination and restriction of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), respectively, have urged manufacturers to shift production to their substitutes which still pose threat to the environment with their bioaccumulation, toxicity and migration issues. In this context, efficient technologies and systematic mechanistic studies on the degradation of PFOA/PFOS substitutes are highly desirable. In this review, we summarize the progress in degrading PFOA/PFOS substitutes, including four kinds of mainstream methods. The pros and cons of the present technologies are analyzed, which renders the discussion of future prospects on rational optimizations. Additional discussion is made on the differences in the degradation of various kinds of substitutes, which is compared to the PFOA/PFOS and derives designing principles for more degradable F-containing compounds.
Collapse
Affiliation(s)
- Zizi Li
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhi-Mei Luo
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanjun Huang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jia-Wei Wang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
49
|
Asadi Zeidabadi F, Banayan Esfahani E, McBeath ST, Dubrawski KL, Mohseni M. Electrochemical degradation of PFOA and its common alternatives: Assessment of key parameters, roles of active species, and transformation pathway. CHEMOSPHERE 2023; 315:137743. [PMID: 36608884 DOI: 10.1016/j.chemosphere.2023.137743] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/24/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
This study investigates an electrochemical approach for the treatment of water polluted with per- and poly-fluoroalkyl substances (PFAS), looking at the impact of different variables, contributions from generated radicals, and degradability of different structures of PFAS. Results obtained from a central composite design (CCD) showed the importance of mass transfer, related to the stirring speed, and the amount of charge passed through the electrodes, related to the current density on decomposition rate of PFOA. The CCD informed optimized operating conditions which we then used to study the impact of solution conditions. Acidic condition, high temperature, and low initial concentration of PFOA accelerated the degradation kinetic, while DO had a negligible effect. The impact of electrolyte concentration depended on the initial concentration of PFOA. At low initial PFOA dosage (0.2 mg L-1), the rate constant increased considerably from 0.079 ± 0.001 to 0.259 ± 0.019 min-1 when sulfate increased from 0.1% to 10%, likely due to the production of SO4•-. However, at higher initial PFOA dosage (20 mg L-1), the rate constant decreased slightly from 0.019 ± 0.001 to 0.015 ± 0.000 min-1, possibly due to the occupation of active anode sites by excess amount of sulfate. SO4•- and •OH played important roles in decomposition and defluorination of PFOA, respectively. PFOA oxidation was initiated by one electron transfer to the anode or SO4•-, undergoing Kolbe decarboxylation where yielded perfluoroalkyl radical followed three reaction pathways with •OH, O2 and/or H2O. PFAS electrooxidation depended on the chemical structures where the decomposition rate constants (min-1) were in the order of 6:2 FTCA (0.031) > PFOA (0.019) > GenX (0.013) > PFBA (0.008). PFBA with a shorter chain length and GenX with -CF3 branching had slower decomposition than PFOA. While presence of C-H bonds makes 6:2 FTCA susceptible to the attack of •OH accelerating its decomposition kinetic. Conducting experiments in mixed solution of all studied PFAS and in natural water showed that the co-presence of PFAS and other water constituents (organic and inorganic matters) had adverse effects on PFAS decomposition efficiency.
Collapse
Affiliation(s)
- Fatemeh Asadi Zeidabadi
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada
| | - Ehsan Banayan Esfahani
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada
| | - Sean T McBeath
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA 01002, United States
| | - Kristian L Dubrawski
- Department of Civil Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Madjid Mohseni
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada.
| |
Collapse
|
50
|
Zhang M, Zhao X, Zhao D, Soong TY, Tian S. Poly- and Perfluoroalkyl Substances (PFAS) in Landfills: Occurrence, Transformation and Treatment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 155:162-178. [PMID: 36379166 DOI: 10.1016/j.wasman.2022.10.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Landfills have served as the final repository for > 50 % municipal solid wastes in the United States. Because of their widespread uses and persistence in the environment, per- and polyfluoroalkyl substances (PFAS) (>4000 on the global market) are ubiquitously present in everyday consumer, commercial and industrial products, and have been widely detected in both closed (tens ng/L) and active (thousands to ten thousands ng/L) landfills due to disposal of PFAS-containing materials. Along with the decomposition of wastes in-place, PFAS can be transformed and released from the wastes into leachate and landfill gas. Consequently, it is critical to understand the occurrence and transformation of PFAS in landfills and the effectiveness of landfills, as a disposal alternative, for long-term containment of PFAS. This article presents a state-of-the-art review on the occurrence and transformation of PFAS in landfills, and possible effect of PFAS on the integrity of modern liner systems. Based on the data published from 10 countries (250 + landfills), C4-C7 perfluoroalkyl carboxylic acids were found predominant in the untreated landfill leachate and neutral PFAS, primarily fluorotelomer alcohols, in landfill air. The effectiveness and limitations of the conventional leachate treatment technologies and emerging technologies were also evaluated to address PFAS released into the leachate. Among conventional technologies, reverse osmosis (RO) may achieve a high removal efficiency of 90-100 % based on full-scale data, which, however, is vulnerable to the organic fouling and requires additional disposal of the concentrate. Implications of these knowledge on PFAS management at landfills are discussed and major knowledge gaps are identified.
Collapse
Affiliation(s)
- Man Zhang
- CTI and Associates, Inc., 34705 W 12 Mile Rd Suite 230, Farmington Hills, MI 48331, USA.
| | - Xianda Zhao
- CTI and Associates, Inc., 34705 W 12 Mile Rd Suite 230, Farmington Hills, MI 48331, USA
| | - Dongye Zhao
- Environmental Engineering Program, Department of Civil & Environmental Engineering, Auburn University, Auburn AL 36849, USA; Department of Civil, Construction and Environmental Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA.
| | - Te-Yang Soong
- CTI and Associates, Inc., 34705 W 12 Mile Rd Suite 230, Farmington Hills, MI 48331, USA
| | - Shuting Tian
- Environmental Engineering Program, Department of Civil & Environmental Engineering, Auburn University, Auburn AL 36849, USA; Institute of Environmental Science, Taiyuan University of Science and Technology, Taiyuan, Shanxi 030024, China
| |
Collapse
|