1
|
Xu F, Jiang C, Liu Q, Yang R, Li W, Wei Y, Bao L, Tong H. Source identification of polycyclic aromatic hydrocarbons (PAHs) in river sediments within a hilly agricultural watershed of Southwestern China: an integrated study based on Pb isotopes and PMF method. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:174. [PMID: 40232549 DOI: 10.1007/s10653-025-02481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/25/2025] [Indexed: 04/16/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in sediments represent a pervasive environmental issue that poses significant ecological risks. This study employed a combination of geographic information systems, diagnostic ratios, correlation analysis, Pb isotope ratios, and positive matrix factorization (PMF) to elucidate the potential sources of 16 priority PAHs in river sediments from a hilly agricultural watershed in Southwestern China. The results indicated that PAHs concentrations ranged from 55.9 to 6083.5 ng/g, with a mean value of 1582.1 ± 1528.9 ng/g, reflecting high levels of contamination throughout the watershed. The predominant class of PAHs identified was high molecular weight (HMW) PAHs. Diagnostic ratios and correlation analysis suggested that the presence of PHAs is likely attributed primarily to emissions from industrial dust and combustion of coal and petroleum. Furthermore, correlation analysis revealed a significant association between Pb and PAHs, indicating potential shared sources for both pollutants. Additionally, Pb isotopic analysis demonstrated that aerosols may be the primary contributor to Pb accumulation within this environment. Given the similarity in origins between Pb and PAHs, it can be inferred that PAHs predominantly originate from aerosols associated with coal combustion, industrial dust emissions, and vehicle exhaust. This inference is further supported by PMF results which yielded consistent findings with those derived from Pb isotopes analysis. Moreover, PMF estimated three major sources contributing 57.63%, 23.57%, and 18.80%, respectively. These findings provide novel insights into identifying the sources of PAHs in river sediments within hilly agricultural watersheds in Southwest China, thereby establishing a scientific foundation for enhancing environmental quality in agricultural regions.
Collapse
Affiliation(s)
- Fen Xu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil and Water Pollution, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Chunmei Jiang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil and Water Pollution, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Qiang Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil and Water Pollution, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Rui Yang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil and Water Pollution, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Weiwei Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil and Water Pollution, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Yao Wei
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
- Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610041, People's Republic of China
| | - Linlin Bao
- Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610041, People's Republic of China
| | - Hongjin Tong
- Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
2
|
Vander Meulen IJ, Headley JV, McMartin DW. On the occurrence, behaviour, and fate of naphthenic acid fraction compounds in aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 960:178383. [PMID: 39787871 DOI: 10.1016/j.scitotenv.2025.178383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/04/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Naphthenic acids and naphthenic acid fraction compounds (NAFCs) are associated with production of unconventional petroleum resources, especially the Athabasca Oil Sands of Alberta, Canada. This complex mixture of acidic organic compounds is toxic to a variety of taxa, and so represents an important environmental management challenge. Thus, there is clear motivation to better understand the occurrence and characteristics of NAFCs in aquatic environments, their chemical behaviour, and environmental fate. Empowered by modern high-resolution mass spectrometry analyses, improved descriptions of the environmental occurrence of NAFCs have emerged. These studies include spatiotemporal survey studies describing the characteristics and quantities of NAFCs, as well as forensic methods working towards reliable source differentiations. Work has also proceeded in earnest to advance mechanistic understandings of how NAFCs are affected by passive phenomena, such as soil and sediment sorption, and chemically reactive mechanisms such as photolysis and biodegradation. Further advances describe the environmental fate and behaviour of NAFCs as they are transported and transformed across environmental compartments. In the context of Canadian oil sands, the available data describe NAFCs as a dynamic compound class that both affects and is affected by their receiving environment. By working towards a comprehensive understanding of the behaviour and fate of NAs and NAFCs, we might better anticipate the extent to which residual toxic effects may persist in reclaimed landscapes.
Collapse
Affiliation(s)
- Ian J Vander Meulen
- Department of Civil, Geological and Environmental Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, Saskatchewan S7N 5A9, Canada; Watershed Hydrology and Ecology Research Division, Science and Technology Branch, Environment and Climate Change Canada, 11 Innovation Blvd, Saskatoon, Saskatchewan S7N 3H5, Canada
| | - John V Headley
- Watershed Hydrology and Ecology Research Division, Science and Technology Branch, Environment and Climate Change Canada, 11 Innovation Blvd, Saskatoon, Saskatchewan S7N 3H5, Canada
| | - Dena W McMartin
- Department of Civil, Geological and Environmental Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, Saskatchewan S7N 5A9, Canada; University of Lethbridge, Office of the Vice President (Research), Lethbridge, Alberta, Canada.
| |
Collapse
|
3
|
Vignet C, Frank RA, Yang C, Shires K, Bree M, Sullivan C, Norwood WP, Hewitt LM, McMaster ME, Parrott JL. Long-term effects of an early-life exposure of fathead minnows to sediments containing bitumen. Part II: Behaviour, reproduction, and gonad histopathology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124840. [PMID: 39241948 DOI: 10.1016/j.envpol.2024.124840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
The oil sands area of northern Alberta has river sediments that contain natural bitumen. Eggs and fish in these rivers may be exposed to bitumen-related chemicals early in life. This paper assesses a short embryo-larval fish exposure to oil sands sediment and follows the fish behaviour as they mature in clean water and examines their breeding success as adults (5 months afterwards). The three different oil sands river sediments tested were: a sediment collected outside of the bitumen deposit (tested at 3 g/L, Reference sediment from upstream Steepbank River site), and two sediments collected within the deposit (each tested at low (1 g/L) and high (3 g/L) concentrations). The sediments within the bitumen deposit were from the Ells and Steepbank (Stp) Rivers, and both contained significant total PAHs (>170 ng/g wet weight sediment) and alkylated PAHs (>4480 ng/g). Fish were exposed to these sediments for 21 days (as eggs and larval fish), and then transferred permanently to clean water to mature and breed. There was a significant decrease in the number of egg clutches produced by fish exposed early in life to Stp downstream high sediment (compared to Reference sediment). There was also a decrease in overall cumulative egg production, with fish from Stp downstream high sediment producing just over 1000 eggs in total while fish exposed to Ref sediment produced nearly 6900 eggs. The fish with reduced egg production were also less social than expected as they matured, and they had a lower % of early vitellogenic eggs in their ovaries. Overall, the exposure shows that a single, brief exposure during early life stages to natural bitumen can affect fish in adulthood. Naturally occurring bitumen-derived PAHs can reduce fish reproductive output by complex mechanisms, measurable as lower ovary maturity and changes in social behaviour.
Collapse
Affiliation(s)
- C Vignet
- Environment and Climate Change Canada, 867 Lakeshore Rd., Burlington, ON, L7S 1A1, Canada; Current Address C Vignet: Biochemistry and Toxicology of Bioactives Compounds (BTSB), University of Toulouse, INU Champollion, Albi, 81000, France
| | - R A Frank
- Environment and Climate Change Canada, 867 Lakeshore Rd., Burlington, ON, L7S 1A1, Canada
| | - C Yang
- Environment and Climate Change Canada, 335 River Road, Ottawa, ON, Canada
| | - K Shires
- Environment and Climate Change Canada, 867 Lakeshore Rd., Burlington, ON, L7S 1A1, Canada
| | - M Bree
- Environment and Climate Change Canada, 867 Lakeshore Rd., Burlington, ON, L7S 1A1, Canada
| | - C Sullivan
- Environment and Climate Change Canada, 867 Lakeshore Rd., Burlington, ON, L7S 1A1, Canada
| | - W P Norwood
- Environment and Climate Change Canada, 867 Lakeshore Rd., Burlington, ON, L7S 1A1, Canada
| | - L M Hewitt
- Environment and Climate Change Canada, 867 Lakeshore Rd., Burlington, ON, L7S 1A1, Canada
| | - M E McMaster
- Environment and Climate Change Canada, 867 Lakeshore Rd., Burlington, ON, L7S 1A1, Canada
| | - J L Parrott
- Environment and Climate Change Canada, 867 Lakeshore Rd., Burlington, ON, L7S 1A1, Canada.
| |
Collapse
|
4
|
Cooke CA, Holland KM, Emmerton CA, Drevnick PE, Criscitiello AS, Newton B. Mountaintop Removal Coal Mining Contaminates Snowpack across a Broad Region. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11718-11726. [PMID: 38889109 PMCID: PMC11223467 DOI: 10.1021/acs.est.4c02596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
Mountaintop removal coal mining is a source of downstream pollution. Here, we show that mountaintop removal coal mining also pollutes ecosystems downwind. We sampled regional snowpack near the end of winter along a transect of sites located 3-60 km downwind of coal mining in the Elk River valley of British Columbia, Canada. Vast quantities of polycyclic aromatic compounds (PACs), a toxic class of organic contaminants, are emitted and transported atmospherically far from emission sources. Summed PAC (ΣPAC) snowpack concentrations ranged from 29-94,866 ng/L. Snowpack ΣPAC loads, which account for variable snowpack depth, ranged from <10 μg/m2 at sites >50 km southeast of the mines to >1000 μg/m2 at sites in the Elk River valley near mining operations, with one site >15,000 μg/m2. Outside of the Elk River valley, snowpack ΣPAC loads exhibited a clear spatial pattern decreasing away from the mines. The compositional fingerprint of this PAC pollution matches closely with Elk River valley coal. Beyond our study region, modeling results suggest a depositional footprint extending across western Canada and the northwestern United States. These findings carry important implications for receiving ecosystems and for communities located close to mountaintop removal coal mines exposed to air pollution elevated in PACs.
Collapse
Affiliation(s)
- Colin A. Cooke
- Environment
and Protected Areas, Government of Alberta, 9888 Jasper Ave, Edmonton, Alberta T5J 5C6, Canada
- Department
of Earth and Atmospheric Sciences, University
of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Kira M. Holland
- Department
of Earth and Atmospheric Sciences, University
of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Craig A. Emmerton
- Environment
and Protected Areas, Government of Alberta, 9888 Jasper Ave, Edmonton, Alberta T5J 5C6, Canada
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Paul E. Drevnick
- Environment
and Protected Areas, Government of Alberta, 3535 Research Road NW, Calgary, Alberta T2L 2K8, Canada
- Department
of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Alison S. Criscitiello
- Department
of Earth and Atmospheric Sciences, University
of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Brandi Newton
- Environment
and Protected Areas, Government of Alberta, 3535 Research Road NW, Calgary, Alberta T2L 2K8, Canada
| |
Collapse
|
5
|
Stalwick JA, Somers G, Eccles KM, Thomas PJ, Cunada C, Gurney KEB. Polycyclic aromatic compounds in a northern freshwater ecosystem: Patterns, sources, and the influences of environmental factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:123962. [PMID: 38614424 DOI: 10.1016/j.envpol.2024.123962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/27/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Polycyclic aromatic compounds (PACs) - a large group of organic chemicals naturally present in petroleum deposits (i.e., petrogenic) or released into the environment by incomplete combustion of organic materials (i.e., pyrogenic) - represent a potential risk to the health of aquatic ecosystems. In high latitude freshwater ecosystems, concentrations of PACs may be increasing, yet there are limited studies in such systems to assess change and to understand threats. Using 10 years of contemporary data from passive samplers deployed across five regions (n = 43 sites) in the Mackenzie River Basin, we (i) describe baseline levels of PACs, (ii) assess spatiotemporal patterns, and (iii) evaluate the extent to which environmental factors (fire, snowmelt, and proximity to oil infrastructure) influence concentrations in this system. Measured concentrations were low, relative to those in more southern systems, with mixtures primarily being dominated by non-alkylated, low molecular weight compounds. Concentrations were spatially consistent, except for two sites near Norman Wells (an area of active oil extraction) with increased levels. Similarly, observed annual variation was minimal, with 2014 having generally higher levels of PACs. We did not detect effects of fire, snowmelt, or oil infrastructure on concentrations. Taken together, our findings suggest that PACs in the Mackenzie River are currently at low levels and are primarily petrogenic in origin. They further indicate that ongoing monitoring and testing of environmental drivers (especially at finer spatial scales) are needed to better predict how ecosystem change will influence PAC levels in the basin and in other northern systems.
Collapse
Affiliation(s)
- Jordyn A Stalwick
- Science and Technology Branch, Environment and Climate Change Canada, Prairie Northern Wildlife Research Centre, 115 Perimeter Road, Saskatoon, SK, Canada, S7N 0X4.
| | - Gila Somers
- Department of Environment and Climate Change, Government of the Northwest Territories, 600 5102 50th Ave, Yellowknife, NT, Canada, X1A 2L9
| | - Kristin M Eccles
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, Canada, K1A 0K9
| | - Philippe J Thomas
- Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON, Canada, K1A 0H3
| | - Christopher Cunada
- Department of Environment and Climate Change, Government of the Northwest Territories, Highway 5, X0E 0P0, Fort Smith, NT, Canada
| | - Kirsty E B Gurney
- Science and Technology Branch, Environment and Climate Change Canada, Prairie Northern Wildlife Research Centre, 115 Perimeter Road, Saskatoon, SK, Canada, S7N 0X4
| |
Collapse
|
6
|
Zhang Y, Shotyk W, Pelletier R, Zaccone C, Noernberg T, Mullan-Boudreau G, Martin JW. Sources, spatial-distributions and fluxes of PAH-contaminated dusts in the Athabasca oil sands region. ENVIRONMENT INTERNATIONAL 2023; 182:108335. [PMID: 38006772 DOI: 10.1016/j.envint.2023.108335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023]
Abstract
Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) has increased in northern Alberta, Canada, due to industrial development in the Athabasca oil sands region (AOSR). However, the sources, summertime deposition fluxes and associated spatial patterns are poorly characterized, and the magnitude of contamination has not been directly contrasted with comparable measurements around large Canadian cities. PAHs were measured in Sphagnum moss collected from 30 bogs in the AOSR and compared with reference moss collected from various remote, rural and near-urban sites in Alberta and Ontario. At all 39 locations, strong correlations between depositional fluxes of PAHs and accumulation rates of ash (n = 117, r = 0.877, p < 0.001) implied that the main source of PAHs to moss was atmospheric deposition of particles. Average PAH concentrations at near-field AOSR sites (mean [SD], 62.4 [24.3] ng/g) were significantly higher than at far-field AOSR sites (44.9 [20.8] ng/g; p = 0.038) or the 7 reference sites in Alberta (20.6 [3.5] ng/g; p < 0.001). In fact, average PAH concentrations across the entire AOSR (7,850 km2) were approximately twice as high as in London, Ontario, or near petroleum upgrading and major traffic corridors in Edmonton, Alberta. A chemical mass balance model estimated that both delayed petcoke (33 % of PAHs) and fine tailings (38 % of PAHs) were the major sources of PAHs in the AOSR. Over the 2015 summer growing season, we estimate that 101-110 kg of PAHs (on 14,300-17,300 tonnes of PAH-containing dusts) were deposited to the AOSR within a 50 km radius of surface mining. Given that the highest PAH deposition was to the northern quadrant of the AOSR, which includes the First Nations community of Fort MacKay, further dust control measures should be considered to protect human and environmental health in the region.
Collapse
Affiliation(s)
- Yifeng Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - William Shotyk
- Department of Renewable Resources, University of Alberta, 348B South Academic Building, Edmonton, AB T6G 2H1, Canada
| | - Rick Pelletier
- Department of Renewable Resources, University of Alberta, 348B South Academic Building, Edmonton, AB T6G 2H1, Canada
| | - Claudio Zaccone
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Tommy Noernberg
- Department of Renewable Resources, University of Alberta, 348B South Academic Building, Edmonton, AB T6G 2H1, Canada
| | - Gillian Mullan-Boudreau
- Department of Renewable Resources, University of Alberta, 348B South Academic Building, Edmonton, AB T6G 2H1, Canada
| | - Jonathan W Martin
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2G3, Canada; Department of Environmental Science, Stockholm University, Stockholm SE-106 91, Sweden.
| |
Collapse
|
7
|
Ahad JME, Martel R, Calderhead AI. Isotope forensics of polycyclic aromatic compounds (PACs) in a contaminated shallow aquifer. CHEMOSPHERE 2023; 342:140169. [PMID: 37709057 DOI: 10.1016/j.chemosphere.2023.140169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/10/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
Diesel was accidently released into the shallow subsurface at an industrial site in the province of Québec, Canada, in the late 1980s. Subsequent remediation efforts removed much of the contamination; however, traces of petroleum hydrocarbons continue to impact the local aquifer. In addition to the historical diesel spill, more recent yet unconfirmed accidental releases from ongoing on-site and neighbouring industrial activities may have potentially contributed to elevated levels of polycyclic aromatic compounds (PACs) in groundwater. To identify the main source(s) of contamination, compound-specific stable carbon isotope ratios (δ13C) of PACs in groundwater monitoring wells were compared to those in asphalt produced from a nearby plant and in fuel oil #6 oil being used by local industry. The δ13C values of five individual compounds (biphenyl, C2-naphthalene, C1-fluorene, dibenzothiophene and phenanthrene) and two groups of combined C1-phenanthrenes/anthracenes in all groundwater samples were within analytical uncertainty (±0.5‰). Moreover, the δ13CPAC values in groundwater samples were distinct from those in asphalt and fuel oil #6, indicating negligible contributions from these sources. The similarity in δ13CPAC values across monitoring wells, including one situated in the former source zone containing a floating hydrocarbon phase, pointed to a common source of subsurface contamination that was attributed to the historical diesel spill. These results thus demonstrate that δ13CPAC values can be used for source apportionment in shallow aquifers decades after the original spill event.
Collapse
Affiliation(s)
- Jason M E Ahad
- Geological Survey of Canada, Natural Resources Canada, Québec, QC, G1K 9A9, Canada.
| | - Richard Martel
- INRS Eau Terre Environnement, Québec, QC, G1K 9A9, Canada
| | - Angus I Calderhead
- INRS Eau Terre Environnement, Québec, QC, G1K 9A9, Canada; Now at Environment and Climate Change Canada, Québec, QC, G1J 5E9, Canada
| |
Collapse
|
8
|
Vander Meulen IJ, Schock DM, Akhter F, Mundy LJ, Eccles KM, Soos C, Peru KM, McMartin DW, Headley JV, Pauli BD. Site-specific spatiotemporal occurrence and molecular congener distributions of naphthenic acids in Athabasca oil sands wetlands of Alberta, Canada. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122061. [PMID: 37330190 DOI: 10.1016/j.envpol.2023.122061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
The Athabasca oil sands region (AOSR) of Alberta, Canada is notable for its considerable unconventional petroleum extraction projects, where bitumen is extracted from naturally-occurring oil sands ore. The large scale of these heavy crude oil developments raises concerns because of their potential to distribute and/or otherwise influence the occurrence, behaviour, and fate of environmental contaminants. Naphthenic acids (NAs) are one such contaminant class of concern in the AOSR, so studies have examined the occurrence and molecular profiles of NAs in the region. We catalogued the spatiotemporal occurrence and characteristics of NAs in boreal wetlands in the AOSR over a 7-year period, using derivatized liquid chromatography-tandem mass spectrometry (LC-MS/MS). Comparing median concentrations of NAs across these wetlands revealed a pattern of NAs suggesting NAs in surface waters derived from oil sands deposits. Opportunistic wetlands that formed adjacent to reclaimed overburden and other reclamation activities had the highest concentrations of NAs and consistent patterns suggestive of bitumen-derived inputs. However, similar patterns in the occurrence of NAs were also observed in undeveloped natural wetlands located above the known surface-mineable oil sands deposit that underlies the region. Intra-annual sampling results along with inter-annual comparisons across wetlands demonstrated that differences in the spatial and temporal NA concentrations were dependent on local factors, particularly when naturally occurring oil sands ores were observed in the wetland or drainage catchment.
Collapse
Affiliation(s)
- Ian J Vander Meulen
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, 11 Innovation Boulevard, Saskatoon, SK, Canada; Department of Civil, Geological and Environmental Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, Canada
| | - Danna M Schock
- Keyano College, 8115 Franklin Ave, Fort McMurray, AB, T9H 2N7, Canada
| | - Fardausi Akhter
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, 115 Perimeter Road, Saskatoon, SK, Canada
| | - Lukas J Mundy
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, 1125 Colonel By Drive, Ottawa, ON, Canada
| | - Kristin M Eccles
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, 1125 Colonel By Drive, Ottawa, ON, Canada
| | - Catherine Soos
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, 115 Perimeter Road, Saskatoon, SK, Canada; Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, Canada
| | - Kerry M Peru
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, 11 Innovation Boulevard, Saskatoon, SK, Canada
| | - Dena W McMartin
- Department of Civil, Geological and Environmental Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, Canada; Office of the Vice President (Research), University of Lethbridge, 4401 University Drive West, Lethbridge, AB, Canada
| | - John V Headley
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, 11 Innovation Boulevard, Saskatoon, SK, Canada
| | - Bruce D Pauli
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, 1125 Colonel By Drive, Ottawa, ON, Canada.
| |
Collapse
|
9
|
Mindorff LM, Mahmoudi N, Hepditch SLJ, Langlois VS, Alam S, Martel R, Ahad JME. Isotopic and microbial evidence for biodegradation of diluted bitumen in the unsaturated zone. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121170. [PMID: 36736816 DOI: 10.1016/j.envpol.2023.121170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The oil sands region in Western Canada is one of the world's largest proven oil reserves. To facilitate pipeline transport, highly viscous oil sands bitumen is blended with lighter hydrocarbon fractions to produce diluted bitumen (dilbit). Anticipated increases in dilbit production and transport raise the risk of inland spills. To understand the behaviour of dilbit in the unsaturated or vadose zone following a surface spill, we ran parallel dilbit and conventional heavy crude exposures, along with an untreated control, using large soil-filled columns over 104 days. Phospholipid fatty acids (PLFAs), biomarkers for the active microbial population, were extracted from column soil cores. Stable carbon isotope contents (δ13C) of individual PLFAs and radiocarbon contents (Δ14C) of bulk PLFAs were characterized over the course of the experiment. The Δ14CPLFA values in soils impacted by dilbit (-221.1 to -54.7‰) and conventional heavy crude (-259.4 to -97.9‰) indicated similar levels of microbial uptake of fossil carbon. In contrast, Δ14CPLFA values in the control column (-46.1 to +53.7‰) reflected assimilation of more recently fixed organic carbon. Sequencing of 16S ribosomal RNA genes extracted from soil cores revealed a significant increase in the relative abundance of Polaromonas, a known hydrocarbon-degrader, following exposure to both types of oil. This study demonstrates that in the first several months following a surface spill, dilbit has a similar potential for biodegradation by a native shallow subsurface microbial community as conventional heavy crude oil.
Collapse
Affiliation(s)
- Leah M Mindorff
- Department of Earth and Planetary Sciences, McGill University, Montréal, QC, H3A 0E8, Canada; Geological Survey of Canada, Natural Resources Canada, Québec, QC, G1K 9A9, Canada
| | - Nagissa Mahmoudi
- Department of Earth and Planetary Sciences, McGill University, Montréal, QC, H3A 0E8, Canada
| | - Scott L J Hepditch
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, G1K 9A9, Canada
| | - Valerie S Langlois
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, G1K 9A9, Canada
| | - Samrat Alam
- Geological Survey of Canada, Natural Resources Canada, Québec, QC, G1K 9A9, Canada
| | - Richard Martel
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, G1K 9A9, Canada
| | - Jason M E Ahad
- Geological Survey of Canada, Natural Resources Canada, Québec, QC, G1K 9A9, Canada.
| |
Collapse
|
10
|
Shen M, Liu G, Zhou L, Yin H, Arif M, Leung KMY. Spatial distribution, driving factors and health risks of fine particle-bound polycyclic aromatic hydrocarbons (PAHs) from indoors and outdoors in Hefei, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158148. [PMID: 35988617 DOI: 10.1016/j.scitotenv.2022.158148] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Atmospheric particulate matter, especially in urban and industrial environments, can act as a source of different organic pollutants that can pose significant health impacts to residents. However, the pollution status and transport mechanisms of fine particle-bound polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor environments are uncertain. This study aimed to determine the spatial distribution and morphological characteristics of fine particle-bound PAHs and analyze the factors (source contributions and backward trajectories) that influence their concentrations. The results showed that mean concentrations of 16 PAHs were higher in indoor dust as compared to outdoor dust. In addition, the lowest concentrations of the 16 PAHs were found on the 11-20th floor, with smoking households > nonsmoking households (except Nap, Acy, and Ace). The 2-3 ring PAHs were more prominent in households with cooking activities. The particle size distribution showed that most of the particles were <62 μm in diameter, indicating that the indoor particles were smaller in size. Furthermore, the range of δ13C values in the outdoor dust (-30.17 ~ -28.63 ‰) samples was significantly lower than in indoor dust (-28.29 ~ -22.53 ‰). The results based on diagnostic ratios, positive matrix factorization (PMF) analysis and backward trajectory model analysis suggested that the sources of PAHs in indoor and outdoor dust were mixed, originated both locally and from neighboring provinces transported over long distances, especially concentrated in the Yangtze River Delta area. Finally, carcinogenic risk values for indoor dust were greater than those for outdoor dust. Therefore, it is recommended that local governments and industries with high PAH emissions should implement proper protocols to monitor and minimize the pollution levels of PAHs in the urban industrial environment in order to mitigate their health risks.
Collapse
Affiliation(s)
- Mengchen Shen
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China; Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Guijian Liu
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Li Zhou
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China; Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Hao Yin
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Muhammad Arif
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| |
Collapse
|
11
|
Cooke CA, Emmerton CA, Yi Y, Levesque L, Glozier N. Polycyclic Aromatic Compounds in Rivers Dominated by Petrogenic Sources after a Boreal Megafire. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9408-9416. [PMID: 35709477 DOI: 10.1021/acs.est.2c01671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic compounds (PACs) threaten the health of aquatic ecosystems. In northeastern Alberta, Canada, decades of oil sands mining and upgrading activities have increased PAC delivery into freshwaters. This PAC pollution adds to natural inputs from river erosion of bitumen-bearing McMurray Formation outcrops and wildfire inputs. Quantifying these petrogenic and pyrogenic PAC inputs, which is key for understanding industrial impacts, remains a challenge. To distinguish petrogenic from pyrogenic inputs, we characterized river water PACs before and after the 2016 Fort McMurray wildfire, one of the largest natural disasters in Canadian history. Samples of wildfire ash and outcropping bitumen allow us to distinguish between these important PAC sources. River PAC concentrations ranged over multiple orders of magnitude (10s-10 000s ng/L). Petrogenic PACs dominated most of the postfire period with only short-term episodes of pyrogenic signatures in burned watersheds due to the wash-in of ash from the watershed. Wildfire PAC inputs during these events resulted in exceptional increases in concentrations that met or exceeded high (petrogenic) background concentrations, driven by the natural erosion of outcropping bitumen. Our dataset offers the first quantification of these two important PAC sources in this industrialized region and provides new insight into the impacts of increasing wildfire frequency and severity across the Boreal Forest.
Collapse
Affiliation(s)
- Colin A Cooke
- Environment and Parks, Government of Alberta, Edmonton, Alberta T5J 5C6, Canada
- Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Craig A Emmerton
- Environment and Parks, Government of Alberta, Edmonton, Alberta T5J 5C6, Canada
- Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Yi Yi
- Environment and Parks, Government of Alberta, Edmonton, Alberta T5J 5C6, Canada
- Department of Geography, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Lucie Levesque
- Environment and Climate Change Canada, 11 Innovation Blvd, Saskatoon, Saskatchewan S7N 3H5, Canada
| | - Nancy Glozier
- Environment and Climate Change Canada, 11 Innovation Blvd, Saskatoon, Saskatchewan S7N 3H5, Canada
| |
Collapse
|
12
|
Incorporating Industrial and Climatic Covariates into Analyses of Fish Health Indicators Measured in a Stream in Canada’s Oil Sands Region. ENVIRONMENTS 2022. [DOI: 10.3390/environments9060073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Industrial and other human activities in Canada’s oil sands region (OSR) influence the environment. However, these impacts can be challenging to separate from natural stresses in flowing waters by comparing upstream reference sites to downstream exposure locations. For example, health indicators of lake chub (Couesius plumbeus) compared between locations in the Ells River (Upper and Lower) in 2013 to 2015 and 2018 demonstrated statistical differences. To further examine the potential sources of variation in fish, we also analyzed data at sites over time. When fish captured in 2018 were compared to pooled reference years (2013–2015), results indicated multiple differences in fish, but most of the differences disappeared when environmental covariates were included in the Elastic Net (EN) regularized regression models. However, when industrial covariates were included separately in the EN, the large differences in 2018 also disappeared, also suggesting the potential influence of these covariables on the health of fish. Further ENs incorporating both environmental and industrial covariates along with other variables which may describe industrial and natural influences, such as spring or summer precipitation and summer wind speeds and distance-based penalty factors, also support some of the suspected and potential mechanisms of impact. Further exploratory analyses simulating changes from zero and the mean (industrial) activity levels using the regression equations respectively suggest effects exceeding established critical effect sizes (CES) for fish measurements may already be present or effects may occur with small future changes in some industrial activities. Additional simulations also suggest that changing regional hydrological and thermal regimes in the future may also cause changes in fish measurements exceeding the CESs. The results of this study suggest the wide applicability of the approach for monitoring the health of fish in the OSR and beyond. The results also suggest follow-up work required to further evaluate the veracity of the suggested relationships identified in this analysis.
Collapse
|
13
|
Arciszewski TJ. A re-analysis and review of elemental and polycyclic aromatic compound deposition in snow and lake sediments from Canada's Oil Sands Region integrating industrial performance and climatic variables. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153254. [PMID: 35065131 DOI: 10.1016/j.scitotenv.2022.153254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Much of the research from Canada's oil sands region (OSR) shows contaminants of concern (CoCs) throughout the ambient environment surrounding the industrial facilities. While there are some well-established sources of the CoCs, there is also spatial and temporal variability suggesting activity intensity, changes in technology, types and amounts of fuels combusted at the facilities, and climate may affect the results of deposition studies. This study re-analysed published data on the deposition of elements and polycyclic aromatic compounds (PACs) in snow and the sediments of some lakes by incorporating production data from facilities and climate. Using the Elastic Net (EN) regularized regression, variables describing potential associations between facility-specific activity and climate on the deposition of CoCs were identified. Among the selected variables, the combustion of delayed petroleum coke at the Suncor Basemine was associated with the deposition of CoCs, including elements in snow and in some lakes. Similarly, combustion of petroleum coke at Syncrude Mildred Lake was also identified in some models. In both cases, the effects of petroluem coke combustion are likely associated with the emission and deposition of fly ash. The mass of stored petroleum coke was not selected in snow CoC models, but the speed of the wind was a common driver for PACs. However, the mass of stockpiled petcoke was more closely associated with both elements and PACs in lake sediments. While the potential influence of other variables on the occurrence of CoCs in the OSR was also identified, including the production of crude bitumen and synthetic crude, the use of process and natural gases, temperature, and precipitation, these analyses support much of the earlier work and provides additional nuance. While more work is required, these results suggest facility-specific production and climatic data can be coupled with existing approaches to improve the identification of sources of CoCs in Canada's OSR and practices associated with their release.
Collapse
Affiliation(s)
- T J Arciszewski
- Resource Stewardship Division, Alberta Environment and Parks, Calgary, Alberta, Canada.
| |
Collapse
|
14
|
Zhang X, Chen Z, Cheng L, Xu L, Bi X, Liu Q. Valorization of fluid petroleum coke for efficient catalytic destruction of biomass gasification tar. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127297. [PMID: 34601413 DOI: 10.1016/j.jhazmat.2021.127297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/05/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Large volumes of waste petroleum coke stockpiled in open yard not only represent a huge loss of valuable material but also pose a significant risk to the environment. This work proposed an innovative strategy for waste petroleum coke valorization by exploring its catalytic performance of biomass gasification tar destruction. Waste petroleum coke was firstly activated by potassium hydroxide (KOH) to obtain high specific surface area as well as low sulfur and ash contents. Petroleum coke derived catalyst showed superior performance than a commercial activated carbon derived catalyst for destruction of naphthalene as the tar model compound. The petroleum coke derived catalyst exhibited 99.1% naphthalene destruction efficiency at 800 °C but deactivated quickly under N2 atmosphere. Under H2 and steam atmospheres, the catalytic activities were 98.6% and 96.5% for 8 h, respectively. To study the correlation between catalytic performance and the structure of carbon catalyst, elemental analysis, scanning electron microscope (SEM) analysis, transmission electron microscope (TEM) analysis, X-ray powder diffraction (XRD) analysis, Brunauer-Emmett-Teller method (BET) analysis, Fourier transform infrared (FTIR) spectroscopy, temperature programmed oxidation (TPO) analysis and Raman spectroscopy were performed on both fresh and spent catalysts. Results demonstrated that the hydrogen-rich groups (small rings and amorphous carbon) and oxygen-containing groups may account for the good resistance to coke deposition under H2 and steam atmospheres.
Collapse
Affiliation(s)
- Xurui Zhang
- Clean Energy Research Center, Department of Chemical and Biological Engineering, The University of British Columbia, BC V6T 1Z3, Canada; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zezhou Chen
- College of Engineering, Huzhou University, Huzhou 313000, China
| | - Long Cheng
- Clean Energy Research Center, Department of Chemical and Biological Engineering, The University of British Columbia, BC V6T 1Z3, Canada
| | - Linlin Xu
- Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Xiaotao Bi
- Clean Energy Research Center, Department of Chemical and Biological Engineering, The University of British Columbia, BC V6T 1Z3, Canada.
| | - Qingya Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
15
|
Zhang Y, Pelletier R, Noernberg T, Donner MW, Grant-Weaver I, Martin JW, Shotyk W. Impact of the 2016 Fort McMurray wildfires on atmospheric deposition of polycyclic aromatic hydrocarbons and trace elements to surrounding ombrotrophic bogs. ENVIRONMENT INTERNATIONAL 2022; 158:106910. [PMID: 34607041 DOI: 10.1016/j.envint.2021.106910] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/30/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Fort McMurray and the Athabasca oil sands region (AOSR) experienced major wildfires in 2016, but the impact of these on regional deposition of polycyclic aromatic hydrocarbons (PAHs) and trace elements has not been reported nor compared to industrial sources of these pollutants in the region. Living moss (Sphagnum fuscum) was collected in triplicate from five ombrotrophic bogs in the AOSR after the wildfires, and analyzed for PAHs and trace elements. These post-wildfire data were compared to data from previous years at the same sites, and also to remote reference bogs in Alberta and Ontario. Elevated post-wildfire concentrations and flux of naphthalene and fluorene were observed at all five bogs in the AOSR, but no consistent trend was evident for higher molecular weight PAHs or the sum of priority PAHs (∑13PAH). Trace elements at most AOSR bogs were not elevated post-wildfire, except at one bog in the burned area (MIL), but even here the elements that were increased (1.7-5.6 × ) were likely of bitumen-origin (i.e., V, Ni, Se, Mo and Re). Significant post-wildfire correlations between PAHs and most trace elements suggested a common source, and few significant correlations were observed with retene, suggesting that wildfires were not the dominant source of most contaminants detected. Mass balance receptor models were used to apportion sources, indicating that the major sources of trace elements among five AOSR bogs post-wildfire were oil sands ore (mean 42%), haul road dust (17%), and petcoke (11%), whereas wildfire was always a minor source (3-4%). For PAHs at the most contaminated site (MIL), delayed petcoke (27%) and wildfire (25%) were the major sources, but the contribution of wildfire to PAHs at other sites was less or not discernable. Impacts of the 2016 wildfires on regional atmospheric deposition of major pollutants was less than from ongoing deposition of anthropogenic dust from oil sands activities.
Collapse
Affiliation(s)
- Yifeng Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Rick Pelletier
- Department of Renewable Resources, University of Alberta, 348B South Academic Building, Edmonton, AB T6G 2H1, Canada
| | - Tommy Noernberg
- Department of Renewable Resources, University of Alberta, 348B South Academic Building, Edmonton, AB T6G 2H1, Canada
| | - Mark W Donner
- Department of Renewable Resources, University of Alberta, 348B South Academic Building, Edmonton, AB T6G 2H1, Canada
| | - Iain Grant-Weaver
- Department of Renewable Resources, University of Alberta, 348B South Academic Building, Edmonton, AB T6G 2H1, Canada
| | - Jonathan W Martin
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2G3, Canada; Department of Environmental Science, Stockholm University, Stockholm SE-106 91, Sweden.
| | - William Shotyk
- Department of Renewable Resources, University of Alberta, 348B South Academic Building, Edmonton, AB T6G 2H1, Canada.
| |
Collapse
|
16
|
Exploring the Influence of Industrial and Climatic Variables on Communities of Benthic Macroinvertebrates Collected in Streams and Lakes in Canada’s Oil Sands Region. ENVIRONMENTS 2021. [DOI: 10.3390/environments8110123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Identifying and tracking the influence of industrial activities on streams and lakes is a priority for monitoring in Canada’s oil sands region (OSR). While differences in indicators are often found in waterbodies adjacent to mining facilities, the confounding influence of natural exposures to bitumen and other stressors can affect the identification of industrial effects. However, recent work suggests metrics of industrial activity at individual facilities, including production and fuel consumption, may be used in site-specific analyses to identify influence of the industry as a whole as well as individual operations. This study further examined the potential relationships between industrial and climatic variables on benthic communities from 13 streams and 4 lakes using publicly available data from the minable region and the Elastic Net (EN) variable selection technique. From the full set of possible industrial and climate variables, the EN commonly identified the negative influence of plant and fuel use of petroleum coke at the Suncor Basemine on benthic communities in streams and lakes. The fuel/plant use of petroleum coke at Suncor likely reflects the emission and regional deposition of delayed coke fly ash. Among the other industrial variables, crude bitumen production at Syncrude Mildred Lake and other facilities, steam injection rates, and petroleum coke stockpiling were also selected for some benthic invertebrate indices at some sites. Land disturbance metrics were also occasionally selected, but the analyses largely support the predominant influence of industrial facilities via (inferred) atmospheric pathways. While climate variables were also commonly selected by EN and follow-up work is needed, this study suggests that integrating industrial performance data into analyses of biota using a site-specific approach may have broad applicability in environmental monitoring in the OSR. More specifically, the approach used here may both resolve the long-standing challenge of natural confounding influences on monitoring the status of streams in the OSR and track the influence of industrial activities in biota below critical effect sizes.
Collapse
|
17
|
Hu C, Huang Y, Mei H, Guo H, Liu Z, Zhu J. Determination of stable nitrogen isotopic ratios of nitrate ions in ammonium nitrate. J Forensic Sci 2021; 67:720-725. [PMID: 34751449 DOI: 10.1111/1556-4029.14935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022]
Abstract
Ammonium nitrate (AN) is one of the most commonly used explosives in criminal cases. The comparison and source-tracing of AN is important for investigation of attribution and fingerprinting of an explosive used at different events. The stable isotope signature of AN is an important index for comparison and tracing. However, the characteristics of the stable nitrogen isotopic ratios of AN (δ15 NNH4NO3 ) alone are not sufficient to achieve a fine comparison between different AN samples. To increase the comparison index and further improve the discriminability between stable nitrogen isotopic ratios of different ANs, a method of isolation and analysis of nitrate ions in AN was established using stable-isotope-ratio mass spectrometry (IRMS). The method was based on the principle that strong alkali react with AN to produce ammonia and nitrate. After the isolation, stable nitrogen isotopes of nitrate ions (δ15 NNO3 ) were obtained using IRMS, and then the stable nitrogen isotopes of ammonium ions from AN (δ15 NNH4 ) was calculated according to the principle of mass balance. The results show that the method is effective for the isolation of nitrate ions without notable isotope fractionation. The developed method was applied to analyze and discriminate AN samples from eight different cities in China. Three samples out of the initial eight AN samples with similar δ15 NNH4NO3 values were further distinguished by their δ15 NNH4 and δ15 NNO3 values. The isolation and stable-nitrogen isotopic analysis method developed for nitrate ions in AN is simple and effective, thereby increasing the discriminability of the stable isotope ratios in AN.
Collapse
Affiliation(s)
- Can Hu
- Insititute of Forensic Science, Ministry of Public Security of China, Beijing, China
| | - Yang Huang
- Peoples' Public Security University of China, Beijing, China
| | - Hongcheng Mei
- Insititute of Forensic Science, Ministry of Public Security of China, Beijing, China
| | - Hongling Guo
- Insititute of Forensic Science, Ministry of Public Security of China, Beijing, China
| | - Zhanfang Liu
- Insititute of Forensic Science, Ministry of Public Security of China, Beijing, China
| | - Jun Zhu
- Insititute of Forensic Science, Ministry of Public Security of China, Beijing, China
| |
Collapse
|