1
|
Yu X, Zhang T, Guo J, Ma T, Shang J, Huang Y, Liu Y. Plants colonization accelerates galena oxidation, mineralogical transformation, and microbial community reshaping under the soil phytoremediation processes. ENVIRONMENTAL RESEARCH 2025; 267:120687. [PMID: 39733978 DOI: 10.1016/j.envres.2024.120687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 12/31/2024]
Abstract
The ongoing weathering of metal sulfides has substantially posed threats to the eco-systems. For remediating metal sulfides-contaminated soils, phytostabilization is a promising nature-based technique that immobilizing heavy metals (HMs) that dissolved from metal sulfides in the rhizosphere, preventing their leaching and migrating into soil and groundwater. However, the underlying mechanism regarding the mineral-root interaction involving primary metal sulfides such as galena (PbS) during the remediation processes has yet been well studied. This study aims to investigate the geochemical alterations, mineralogical transformations, and microbial community reshaping of galena-added soils during plants colonization using two representative plants, ryegrass (Lolium perenne L.) and alfalfa (Medicago sativa.). After 11 weeks of plants colonization, the morphology of galena surface was altered, as massive erosion pits (ca. 200 nm) were visualized by SEM (Scanning Electron Microscope). The microspectroscopic analyses indicated that the PbS may have transformed to PbCO3 and PbSO4 during the plants colonization. Additionally, the chemical sequential extraction revealed that the plants colonization could promote the soluble Pb to be associated with carbonates and amorphous Fe/Al (oxyhydr)oxides, thus limiting their bioavailability and mobility. Moreover, the key driving factors of microbial community alteration have shifted from pH and bioavailability Pb to cation exchange capacity (CEC) during the plants colonization process. These findings have uncovered the (bio)geochemical behaviors of PbS in soils during the phytostabilization processes, which may develop an integrated mechanism of mineralogical and geochemical stabilization of HMs for non-pollution outcomes.
Collapse
Affiliation(s)
- Xin Yu
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Tingrui Zhang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Junsheng Guo
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Taotao Ma
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Yuanfang Huang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Yunjia Liu
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China.
| |
Collapse
|
2
|
Geers AU, Buijs Y, Schostag MD, Elberling B, Bentzon-Tilia M. Exploring the biosynthesis potential of permafrost microbiomes. ENVIRONMENTAL MICROBIOME 2024; 19:96. [PMID: 39578925 PMCID: PMC11583570 DOI: 10.1186/s40793-024-00644-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Permafrost microbiomes are of paramount importance for the biogeochemistry of high latitude soils and while endemic biosynthetic domain sequences involved in secondary metabolism have been found in polar surface soils, the biosynthetic potential of permafrost microbiomes remains unexplored. Moreover, the nature of these ecosystems facilitates the unique opportunity to study the distribution and diversity of biosynthetic genes in relic DNA from ancient microbiomes. To explore the biosynthesis potential in permafrost, we used adenylation (AD) domain sequencing to evaluate non-ribosomal peptide (NRP) production in permafrost cores housing microbiomes separated at kilometer and kiloyear scales. RESULTS Permafrost microbiomes represented NRP repertoires significantly different from that of temperate soil microbiomes, but as for temperate soils, the estimated domain richness and diversity was strongly correlated to the bacterial taxonomic diversity across locations. Furthermore, we found significant differences in both community composition and AD domain composition across geographical and temporal distances. Overall, the vast majority of biosynthetic domains showed below 90% amino acid similarity to characterized BGCs, confirming the high degree of novelty of NRPs inherent to permafrost microbiomes. Using available metagenomic sequences, we further identified a high biosynthetic diversity beyond NRPs throughout arctic surface soils down to deep and ancient (megayear old) permafrost microbiomes. CONCLUSION We have shown that arctic permafrost microbiomes harbor a unique biosynthetic repertoire rich in hitherto undescribed NRPs. This diversity is driven by geographic separation across kilometer scales and by the bacterial taxonomic diversity between microbiomes confined in separate permafrost layers. Hence the permafrost biome represents a unique resource for studying secondary metabolism, and potentially for the discovery of novel drug leads.
Collapse
Affiliation(s)
- Aileen Ute Geers
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- River Ecosystems Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Yannick Buijs
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Morten Dencker Schostag
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Bo Elberling
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Bentzon-Tilia
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
3
|
Wang HY, Yu ZG, Zhou FW, Hernandez JC, Grandjean A, Biester H, Xiao KQ, Knorr KH. Microbial communities and functions are structured by vertical geochemical zones in a northern peatland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175273. [PMID: 39111416 DOI: 10.1016/j.scitotenv.2024.175273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Northern peatlands are important carbon pools; however, differences in the structure and function of microbiomes inhabiting contrasting geochemical zones within these peatlands have rarely been emphasized. Using 16S rRNA gene sequencing, metagenomic profiling, and detailed geochemical analyses, we investigated the taxonomic composition and genetic potential across various geochemical zones of a typical northern peatland profile in the Changbai Mountains region (Northeastern China). Specifically, we focused on elucidating the turnover of organic carbon, sulfur (S), nitrogen (N), and methane (CH4). Three geochemical zones were identified and characterized according to porewater and solid-phase analyses: the redox interface (<10 cm), shallow peat (10-100 cm), and deep peat (>100 cm). The redox interface and upper shallow peat demonstrated a high availability of labile carbon, which decreased toward deeper peat. In deep peat, anaerobic respiration and methanogenesis were likely constrained by thermodynamics, rather than solely driven by available carbon, as the acetate concentrations reached 90 μmol·L-1. Both the microbial community composition and metabolic potentials were significantly different (p < 0.05) among the redox interface, shallow peat, and deep peat. The redox interface demonstrated a close interaction between N, S, and CH4 cycling, mainly driven by Thermodesulfovibrionia, Bradyrhizobium, and Syntrophorhabdia metagenome-assembled genomes (MAGs). The archaeal Bathyarchaeia were indicated to play a significant role in the organic carbon, N, and S cycling in shallow peat. Although constrained by anaerobic respiration and methanogenesis, deep peat exhibited a higher metabolic potential for organic carbon degradation, primarily mediated by Acidobacteriota. In terms of CH4 turnover, subsurface peat (10-20 cm) was a CH4 production hotspot, with a net turnover rate of ∼2.9 nmol·cm-3·d-1, while the acetoclastic, hydrogenotrophic, and methylotrophic methanogenic pathways all potentially contributed to CH4 production. The results of this study improve our understanding of biogeochemical cycles and CH4 turnover along peatland profiles.
Collapse
Affiliation(s)
- Hong-Yan Wang
- Key Laboratory of Hydrometeorological Disaster Mechanism and Warning, Ministry of Water Resources, School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing 210044, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhi-Guo Yu
- Key Laboratory of Hydrometeorological Disaster Mechanism and Warning, Ministry of Water Resources, School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Feng-Wu Zhou
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Julio-Castillo Hernandez
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Annkathrin Grandjean
- University of Münster, Institute for Landscape Ecology, Ecohydrology and Biogeochemistry Group, Heisenbergstr. 2, Münster 48149, Germany
| | - Harald Biester
- Institut für Geoökologie, Technische Universitat Braunschweig, Langer Kamp 19C, Braunschweig 38106, Germany
| | - Ke-Qing Xiao
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Klaus-Holger Knorr
- University of Münster, Institute for Landscape Ecology, Ecohydrology and Biogeochemistry Group, Heisenbergstr. 2, Münster 48149, Germany.
| |
Collapse
|
4
|
Sipes K, Buongiorno J, Steen AD, Abramov AA, Abuah C, Peters SL, Gianonne RJ, Hettich RL, Boike J, Garcia SL, Vishnivetskaya TA, Lloyd KG. Depth-specific distribution of bacterial MAGs in permafrost active layer in Ny Ålesund, Svalbard (79°N). Syst Appl Microbiol 2024; 47:126544. [PMID: 39303414 DOI: 10.1016/j.syapm.2024.126544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024]
Abstract
Arctic soil microbial communities may shift with increasing temperatures and water availability from climate change. We examined temperature and volumetric liquid water content (VWC) in the upper 80 cm of permafrost-affected soil over 2 years (2018-2019) at the Bayelva monitoring station, Ny Ålesund, Svalbard. We show VWC increases with depth, whereas in situ temperature is more stable vertically, ranging from -5°C to 5 °C seasonally. Prokaryotic metagenome-assembled genomes (MAGs) were obtained at 2-4 cm vertical resolution collected while frozen in April 2018 and at 10 cm vertical resolution collected while thawed in September 2019. The most abundant MAGs were Acidobacteriota, Actinomycetota, and Chloroflexota. Actinomycetota and Chloroflexota increase with depth, while Acidobacteriota classes Thermoanaerobaculia Gp7-AA8, Blastocatellia UBA7656, and Vicinamibacteria Vicinamibacterales are found above 6 cm, below 6 cm, and below 20 cm, respectively. All MAGs have diverse carbon-degrading genes, and Actinomycetota and Chloroflexota have autotrophic genes. Genes encoding β -glucosidase, N-acetyl-β-D-glucosaminidase, and xylosidase increase with depth, indicating a greater potential for organic matter degradation with higher VWC. Acidobacteriota dominate the top 6 cm with their classes segregating by depth, whereas Actinomycetota and Chloroflexota dominate below ∼6 cm. This suggests that Acidobacteriota classes adapt to lower VWC at the surface, while Actinomycetota and Chloroflexota persist below 6 cm with higher VWC. This indicates that VWC may be as important as temperature in microbial climate change responses in Arctic mineral soils. Here we describe MAG-based Seqcode type species in the Acidobacteriota, Onstottus arcticum, Onstottus frigus, and Gilichinskyi gelida and in the Actinobacteriota, Mayfieldus profundus.
Collapse
Affiliation(s)
- Katie Sipes
- Department of Microbiology, University of Tennessee, Knoxville, United States.
| | - Joy Buongiorno
- Department of Microbiology, University of Tennessee, Knoxville, United States
| | - Andrew D Steen
- Department of Microbiology, University of Tennessee, Knoxville, United States; Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, United States
| | - Andrey A Abramov
- Soil Cryology Laboratory, Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, Russia
| | | | - Samantha L Peters
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Richard J Gianonne
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Robert L Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Julia Boike
- Alfred Wegener Institute for Polar and Marine Research, Potsdam, Germany; Department of Geography, Humboldt University, Berlin, Germany
| | - Sarahi L Garcia
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden; Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | | | - Karen G Lloyd
- Department of Microbiology, University of Tennessee, Knoxville, United States
| |
Collapse
|
5
|
Ali A, Vishnivetskaya TA, Chauhan A. Comparative analysis of prokaryotic microbiomes in high-altitude active layer soils: insights from Ladakh and global analogues using In-Silico approaches. Braz J Microbiol 2024; 55:2437-2452. [PMID: 38758507 PMCID: PMC11405653 DOI: 10.1007/s42770-024-01365-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
The active layer is the portion of soil overlaying the permafrost that freezes and thaws seasonally. It is a harsh habitat in which a varied and vigorous microbial population thrives. The high-altitude active layer soil in northern India is a unique and important cryo-ecosystem. However, its microbiology remains largely unexplored. It represents a unique reservoir for microbial communities with adaptability to harsh environmental conditions. In the Changthang region of Ladakh, the Tsokar area is a high-altitude permafrost-affected area situated in the southern part of Ladakh, at a height of 4530 m above sea level. Results of the comparison study with the QTP, Himalayan, Alaskan, Russian, Canadian and Polar active layers showed that the alpha diversity was significantly higher in the Ladakh and QTP active layers as the environmental condition of both the sites were similar. Moreover, the sampling site in the Ladakh region was in a thawing condition at the time of sampling which possibly provided nutrients and access to alternative nitrogen and carbon sources to the microorganisms thriving in it. Analysis of the samples suggested that the geochemical parameters and environmental conditions shape the microbial alpha diversity and community composition. Further analysis revealed that the cold-adapted methanogens were present in the Ladakh, Himalayan, Polar and Alaskan samples and absent in QTP, Russian and Canadian active layer samples. These methanogens could produce methane at slow rates in the active layer soils that could increase the atmospheric temperature owing to climate change.
Collapse
Affiliation(s)
- Ahmad Ali
- Department of Zoology, Panjab University, Sector 14, 160014, Chandigarh, India
| | | | - Archana Chauhan
- Department of Zoology, Panjab University, Sector 14, 160014, Chandigarh, India.
| |
Collapse
|
6
|
Mukhia S, Kumar A, Kumar R. Bacterial community distribution and functional potentials provide key insights into their role in the ecosystem functioning of a retreating Eastern Himalayan glacier. FEMS Microbiol Ecol 2024; 100:fiae012. [PMID: 38305149 PMCID: PMC10876117 DOI: 10.1093/femsec/fiae012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/03/2024] Open
Abstract
Himalayan glaciers are receding at an exceptional rate, perturbing the local biome and ecosystem processes. Understanding the microbial ecology of an exclusively microbe-driven biome provides insights into their contributions to the ecosystem functioning through biogeochemical fluxes. Here, we investigated the bacterial communities and their functional potential in the retreating East Rathong Glacier (ERG) of Sikkim Himalaya. Amplicon-based taxonomic classification revealed the dominance of the phyla Proteobacteria, Bacteroidota, and candidate Patescibacteria in the glacial sites. Further, eight good-quality metagenome-assembled genomes (MAGs) of Proteobacteria, Patescibacteria, Acidobacteriota, and Choloflexota retrieved from the metagenomes elucidated the microbial contributions to nutrient cycling. The ERG MAGs showed aerobic respiration as a primary metabolic feature, accompanied by carbon fixation and complex carbon degradation potentials. Pathways for nitrogen metabolism, chiefly dissimilatory nitrate reduction and denitrification, and a complete sulphur oxidation enzyme complex for sulphur metabolism were identified in the MAGs. We observed that DNA repair and oxidative stress response genes complemented with osmotic and periplasmic stress and protein chaperones were vital for adaptation against the intense radiation and stress conditions of the extreme Himalayan niche. Current findings elucidate the microbiome and associated functional potentials of a vulnerable glacier, emphasizing their significant ecological roles in a changing glacial ecosystem.
Collapse
Affiliation(s)
- Srijana Mukhia
- Biotechnology Division, CSIR – Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur 176061, Himachal Pradesh, India
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Anil Kumar
- Biotechnology Division, CSIR – Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rakshak Kumar
- Biotechnology Division, CSIR – Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Tong J, Wu H, Jiang X, Ruan C, Li W, Zhang H, Pan S, Wang J, Ren J, Zhang C, Shi J. Dual Regulatory Role of Penicillium oxalicum SL2 in Soil: Phosphorus Solubilization and Pb Stabilization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:603-616. [PMID: 38109294 DOI: 10.1021/acs.est.3c08881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The mechanisms of the P. oxalicum SL2-mediated microbial community on phosphorus solubilization and Pb stabilization were investigated through a 90-day soil experiment. In the treatments inoculated with P. oxalicum SL2, the amount of P. oxalicum SL2-GFP remained at 77.8%-138.6% of the initial inoculation amount after 90 days, and the available phosphorus (AP) content increased 21.7%-40.8% while EDTA-Pb decreased 29.9%-43.2% compared with CK treatment. SEM-EDS results showed that P. oxalicum SL2 changed the agglomeration degree of microaggregates and promoted the combination of Pb with C and O elements. These phenomena were enhanced when applied with Ca3(PO4)2. Microbial community analysis showed that P. oxalicum SL2 improved soil microbial activity, in which the fungi absolute abundance increased about 15 times within 90 days. Correlation analyses and a partial least-squares path model showed that the activation of Penicillium, Ascobolus, Humicola, and Spizellomyces in a fungal community increased the content of oxalate and AP, which directly decreased EDTA-Pb content, while the change of Bacillus, Ramlibacter, Gemmatimonas, and Candidatus Solibacter in the bacterial community regulated Fe/Mn/S/N cycle-related functions, thus promoting the conversion of Pb to oxidizable state. Our findings highlight that P. oxalicum SL2 enhanced the microbial-induced phosphate precipitation process by activating soil microbial communities and regulating their ecological functions.
Collapse
Affiliation(s)
- Jianhao Tong
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hanxin Wu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohan Jiang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chendao Ruan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weilong Li
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haonan Zhang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Siyi Pan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing Wang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiayu Ren
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chun Zhang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Sannino C, Qi W, Rüthi J, Stierli B, Frey B. Distinct taxonomic and functional profiles of high Arctic and alpine permafrost-affected soil microbiomes. ENVIRONMENTAL MICROBIOME 2023; 18:54. [PMID: 37328770 PMCID: PMC10276392 DOI: 10.1186/s40793-023-00509-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Global warming is affecting all cold environments, including the European Alps and Arctic regions. Here, permafrost may be considered a unique ecosystem harboring a distinct microbiome. The frequent freeze-thaw cycles occurring in permafrost-affected soils, and mainly in the seasonally active top layers, modify microbial communities and consequently ecosystem processes. Although taxonomic responses of the microbiomes in permafrost-affected soils have been widely documented, studies about how the microbial genetic potential, especially pathways involved in C and N cycling, changes between active-layer soils and permafrost soils are rare. Here, we used shotgun metagenomics to analyze the microbial and functional diversity and the metabolic potential of permafrost-affected soil collected from an alpine site (Val Lavirun, Engadin area, Switzerland) and a High Arctic site (Station Nord, Villum Research Station, Greenland). The main goal was to discover the key genes abundant in the active-layer and permafrost soils, with the purpose to highlight the potential role of the functional genes found. RESULTS We observed differences between the alpine and High Arctic sites in alpha- and beta-diversity, and in EggNOG, CAZy, and NCyc datasets. In the High Arctic site, the metagenome in permafrost soil had an overrepresentation (relative to that in active-layer soil) of genes involved in lipid transport by fatty acid desaturate and ABC transporters, i.e. genes that are useful in preventing microorganisms from freezing by increasing membrane fluidity, and genes involved in cell defense mechanisms. The majority of CAZy and NCyc genes were overrepresented in permafrost soils relative to active-layer soils in both localities, with genes involved in the degradation of carbon substrates and in the degradation of N compounds indicating high microbial activity in permafrost in response to climate warming. CONCLUSIONS Our study on the functional characteristics of permafrost microbiomes underlines the remarkably high functional gene diversity of the High Arctic and temperate mountain permafrost, including a broad range of C- and N-cycling genes, and multiple survival and energetic metabolisms. Their metabolic versatility in using organic materials from ancient soils undergoing microbial degradation determine organic matter decomposition and greenhouse gas emissions upon permafrost thawing. Attention to their functional genes is therefore essential to predict potential soil-climate feedbacks to the future warmer climate.
Collapse
Affiliation(s)
- Ciro Sannino
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Weihong Qi
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics SIB, Geneva, Switzerland
| | - Joel Rüthi
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Beat Stierli
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland.
| |
Collapse
|
9
|
Nam NN, Do HDK, Loan Trinh KT, Lee NY. Metagenomics: An Effective Approach for Exploring Microbial Diversity and Functions. Foods 2023; 12:2140. [PMID: 37297385 PMCID: PMC10252221 DOI: 10.3390/foods12112140] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Various fields have been identified in the "omics" era, such as genomics, proteomics, transcriptomics, metabolomics, phenomics, and metagenomics. Among these, metagenomics has enabled a significant increase in discoveries related to the microbial world. Newly discovered microbiomes in different ecologies provide meaningful information on the diversity and functions of microorganisms on the Earth. Therefore, the results of metagenomic studies have enabled new microbe-based applications in human health, agriculture, and the food industry, among others. This review summarizes the fundamental procedures on recent advances in bioinformatic tools. It also explores up-to-date applications of metagenomics in human health, food study, plant research, environmental sciences, and other fields. Finally, metagenomics is a powerful tool for studying the microbial world, and it still has numerous applications that are currently hidden and awaiting discovery. Therefore, this review also discusses the future perspectives of metagenomics.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 72820, Vietnam
| | - Kieu The Loan Trinh
- Department of BioNano Technology, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
10
|
Wu X, Almatari AL, Cyr WA, Williams DE, Pfiffner SM, Rivkina EM, Lloyd KG, Vishnivetskaya TA. Microbial life in 25-m-deep boreholes in ancient permafrost illuminated by metagenomics. ENVIRONMENTAL MICROBIOME 2023; 18:33. [PMID: 37055869 PMCID: PMC10103415 DOI: 10.1186/s40793-023-00487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
This study describes the composition and potential metabolic adaptation of microbial communities in northeastern Siberia, a repository of the oldest permafrost in the Northern Hemisphere. Samples of contrasting depth (1.75 to 25.1 m below surface), age (from ~ 10 kyr to 1.1 Myr) and salinity (from low 0.1-0.2 ppt and brackish 0.3-1.3 ppt to saline 6.1 ppt) were collected from freshwater permafrost (FP) of borehole AL1_15 on the Alazeya River, and coastal brackish permafrost (BP) overlying marine permafrost (MP) of borehole CH1_17 on the East Siberian Sea coast. To avoid the limited view provided with culturing work, we used 16S rRNA gene sequencing to show that the biodiversity decreased dramatically with permafrost age. Nonmetric multidimensional scaling (NMDS) analysis placed the samples into three groups: FP and BP together (10-100 kyr old), MP (105-120 kyr old), and FP (> 900 kyr old). Younger FP/BP deposits were distinguished by the presence of Acidobacteriota, Bacteroidota, Chloroflexota_A, and Gemmatimonadota, older FP deposits had a higher proportion of Gammaproteobacteria, and older MP deposits had much more uncultured groups within Asgardarchaeota, Crenarchaeota, Chloroflexota, Patescibacteria, and unassigned archaea. The 60 recovered metagenome-assembled genomes and un-binned metagenomic assemblies suggested that despite the large taxonomic differences between samples, they all had a wide range of taxa capable of fermentation coupled to nitrate utilization, with the exception of sulfur reduction present only in old MP deposits.
Collapse
Affiliation(s)
- Xiaofen Wu
- Center for Environmental Biotechnology, University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996-1605, USA
| | - Abraham L Almatari
- Center for Environmental Biotechnology, University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996-1605, USA
| | - Wyatt A Cyr
- Center for Environmental Biotechnology, University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996-1605, USA
| | - Daniel E Williams
- Center for Environmental Biotechnology, University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996-1605, USA
| | - Susan M Pfiffner
- Center for Environmental Biotechnology, University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996-1605, USA
| | - Elizaveta M Rivkina
- Soil Cryology Laboratory, Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, Russia, 142290
| | - Karen G Lloyd
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tatiana A Vishnivetskaya
- Center for Environmental Biotechnology, University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996-1605, USA.
- Soil Cryology Laboratory, Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, Russia, 142290.
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
11
|
Permafrost in the Cretaceous supergreenhouse. Nat Commun 2022; 13:7946. [PMID: 36572668 PMCID: PMC9792593 DOI: 10.1038/s41467-022-35676-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022] Open
Abstract
Earth's climate during the last 4.6 billion years has changed repeatedly between cold (icehouse) and warm (greenhouse) conditions. The hottest conditions (supergreenhouse) are widely assumed to have lacked an active cryosphere. Here we show that during the archetypal supergreenhouse Cretaceous Earth, an active cryosphere with permafrost existed in Chinese plateau deserts (astrochonological age ca. 132.49-132.17 Ma), and that a modern analogue for these plateau cryospheric conditions is the aeolian-permafrost system we report from the Qiongkuai Lebashi Lake area, Xinjiang Uygur Autonomous Region, China. Significantly, Cretaceous plateau permafrost was coeval with largely marine cryospheric indicators in the Arctic and Australia, indicating a strong coupling of the ocean-atmosphere system. The Cretaceous permafrost contained a rich microbiome at subtropical palaeolatitude and 3-4 km palaeoaltitude, analogous to recent permafrost in the western Himalayas. A mindset of persistent ice-free greenhouse conditions during the Cretaceous has stifled consideration of permafrost thaw as a contributor of C and nutrients to the palaeo-oceans and palaeo-atmosphere.
Collapse
|
12
|
Zhang G, Bai J, Tebbe CC, Huang L, Jia J, Wang W, Wang X, Yu L, Zhao Q. Plant invasion reconstructs soil microbial assembly and functionality in coastal salt marshes. Mol Ecol 2022; 31:4478-4494. [PMID: 35789059 DOI: 10.1111/mec.16600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 11/27/2022]
Abstract
Microbiologically driven ecosystem processes can be profoundly altered by alien plant invasions. The understanding of ecological mechanisms orchestrating different microbial constituents and their roles in emerging functional properties under plant invasions is limited. Here, we investigated soil microbial communities and functions using high-throughput amplicon sequencing and GeoChip technology, respectively, along a chronological gradient of smooth cordgrass invasion in salt marshes located in the Yellow River Estuary, China. We found a positive correlation between microbial diversity and the duration age of invasion, and both bacterial and fungal communities exerted orderly changes with invasion. Soil microbial metabolic potential, as indicated by the abundance of microbial functional genes involved in biogeochemical cycling, decreased in response to invasion. As a consequence, declined soil microbial metabolisms by plant invasion facilitated the carbon accumulation in invaded salt marshes. Bacteria and fungi exhibited distinct contributions to assembly processes along the invasion gradient: bacterial communities were mainly driven by selection and dispersal limitation, while fungi were dramatically shaped by stochastic processes. Soil microbial-mediated functions were taxon-specific, as indicated by community-function relationships. This study demonstrates the distinct contributions of microbial constituents to microbial community assembly and functions and sheds light on the implications of plant invasion on microbiologically driven ecosystem processes in coastal wetlands.
Collapse
Affiliation(s)
- Guangliang Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, P.R. China
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, P.R. China
| | - Christoph C Tebbe
- Thünen Institute of Biodiversity, Bundesallee 65, Braunschweig, Germany
| | - Laibin Huang
- Department of Land, Air, and Water Resources, University of California-, Davis, USA
| | - Jia Jia
- Henan Key Laboratory of Ecological Environment Protection and Restoration of Yellow River Basin, Yellow River Institute of Hydraulic Research, Zhengzhou, P.R. China
| | - Wei Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, P.R. China
| | - Xin Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, P.R. China
| | - Lu Yu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, P.R. China
| | - Qingqing Zhao
- Qilu University of Technology (Shandong Academy of Sciences), Ji' nan, P.R. China.,Ecology Institute of Shandong Academy of Sciences, Ji' nan, P.R. China
| |
Collapse
|