1
|
Su H, Han L, Ge M, Wang X, Zeng H, Zhao D, Xiong W, Wen L. Simultaneous determination of pesticide residues and rapid discrimination of corn production origin using ambient ionization mass spectrometry combined with machine learning. Food Chem 2025; 485:144585. [PMID: 40318328 DOI: 10.1016/j.foodchem.2025.144585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/11/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Food traceability is a critical aspect of quality control and food safety. In this study, a high-throughput analysis system with an analysis time of 13 min was developed for the detection of pesticide residues in corn, achieving low limits of detection (LODs) ranging from 0.59 to 14.38 μg/kg. Using this method, corn samples from different origins were found to contain distinct exogenous pesticide profiles and were classified into six categories. Based on these differential analytes, stoichiometric models were applied to explore spectral differences among the corn samples, while some cluster overlap was observed. Subsequently, the Random Forest (RF) model was employed to achieve excellent prediction performance with accuracies of 100 % in training and 98.1 % in external validation, indicating high accuracy in origin traceability. Therefore, this high-throughput system combined with machine learning shows great potential for the rapid detection of pesticide residues and origin identification, contributing significantly to food quality monitoring.
Collapse
Affiliation(s)
- Hang Su
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, PR China; Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, PR China
| | - Lifeng Han
- Dian Regional Forensic Science Institute·Zhejiang, Hangzhou 31000, Zhejiang, PR China
| | - Miaoxiu Ge
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, PR China
| | - Xiangyu Wang
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, PR China; Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, PR China
| | - Hongping Zeng
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, PR China; Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, PR China
| | - Dan Zhao
- China Innovation Instrument Co., Ningbo 315100, PR China
| | - Wei Xiong
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, PR China; China Innovation Instrument Co., Ningbo 315100, PR China.
| | - Luhong Wen
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, PR China; China Innovation Instrument Co., Ningbo 315100, PR China.
| |
Collapse
|
2
|
Chen X, Wang L, Liu K, Wang Q, Li R, Niu L, Wu H. Maternal exposure to polystyrene nanoplastics induces sex-specific kidney injury in offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118006. [PMID: 40073780 DOI: 10.1016/j.ecoenv.2025.118006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/17/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
Maternal exposure to polystyrene nanoplastics (PS-NPs) during pregnancy and lactation has been linked to adverse effects on offspring kidney development, with sex-specific outcomes. This study investigated the impact of maternal PS-NPs exposure on kidney weight, histology, transcriptomics, and functional pathways in offspring mice. Offspring exposed to PS-NPs exhibited significantly lower body weight (P < 0.05) and an increased kidney-to-body weight ratio (P < 0.05), particularly in males. Histological analysis revealed a reduction in glomerular number in PS-NP-treated groups. Transcriptome profiling identified 758 differentially expressed genes (DEGs) in male and 101 DEGs in female offspring, with males showing a more pronounced alteration in gene expression. KEGG pathway enrichment highlighted disruptions in immune response, cell cycle regulation, and metabolism, with males exhibiting more extensive pathway changes than females. Additionally, PS-NPs exposure increased renal fibrosis (P < 0.05), with molecular analyses confirming sex-specific gene expression patterns linked to fibrosis and apoptosis. Immunohistochemical analysis revealed enhanced macrophage infiltration and cleaved caspase-3 expression, indicating heightened immune and apoptotic responses in males. Further investigation identified small molecules BI-D1870 and Resatorvid as potential therapeutic agents, reducing fibrosis, inflammation, and apoptosis in male and female offspring, respectively. These findings demonstrate that maternal PS-NPs exposure induces sex-specific kidney injury in offspring, disrupting key biological processes and pathways. The study underscores the need for targeted therapeutic interventions to mitigate these effects and highlights potential compounds for future treatment.
Collapse
Affiliation(s)
- Xiuli Chen
- Department of Gynecology and Obstetrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine of Henan University, Zhengzhou, Henan 450003, China.
| | - Li Wang
- Department of Gynecology and Obstetrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine of Henan University, Zhengzhou, Henan 450003, China
| | - Kan Liu
- Department of Gynecology and Obstetrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine of Henan University, Zhengzhou, Henan 450003, China
| | - Qiuming Wang
- Department of Gynecology and Obstetrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine of Henan University, Zhengzhou, Henan 450003, China
| | - Ranhong Li
- Department of Gynecology and Obstetrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine of Henan University, Zhengzhou, Henan 450003, China
| | - Leilei Niu
- Department of Gynecology and Obstetrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine of Henan University, Zhengzhou, Henan 450003, China
| | - Haiying Wu
- Department of Gynecology and Obstetrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine of Henan University, Zhengzhou, Henan 450003, China.
| |
Collapse
|
3
|
Wu C, Su W, Yang Z, Li D, Gu L, Chen X, Hu Y, Zhu X, Li J, Jia H, Ma X. Responses of cotton growth, physiology, and soil properties to polyethylene microplastics in arid areas. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:110. [PMID: 40072632 DOI: 10.1007/s10653-025-02416-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/23/2025] [Indexed: 03/14/2025]
Abstract
Microplastics (MPs), as a global environmental issue, have unclear impacts on agricultural ecosystems. Cotton, as a major agricultural crop in Xinjiang, requires plastic film covering to ensure its yield. The widespread use of plastic film (commonly made of polyethylene) in cotton cultivation has led to significant concerns about microplastic pollution in cotton fields. However, there is limited research on the effects of MPs on cotton growth and cotton field ecosystems. This study investigates the effects of different concentrations and particle sizes of polyethylene microplastics (PE-MPs) on the physiological changes in cotton plants and the physicochemical properties of the soil. The results show that cotton seedling growth was inhibited in all treatment groups, with a clear dose-dependent effect. In the 200 μm-1wt% treatment group, the cotton seedlings' antioxidant system experienced severe stress, reflected by significant increases in malondialdehyde and total soluble proteins by 58.95% and 94.29%, respectively, which suppressed plant growth and caused a significant reduction in cotton plant height by 41.95%. Additionally, the inhibition of leaf photosynthesis by PE-MPs was more pronounced as the particle size decreased. Under higher concentrations (1wt%, 3wt%), the transpiration rate (Tr) and stomatal conductance (Gs) were significantly suppressed. In the 2 μm-1wt% treatment group, Gs and Tr decreased significantly by 44.35% and 36.21%, respectively, compared to the control group. Furthermore, the addition of PE-MPs significantly increased the organic matter and available nitrogen content in the soil, with a dose-dependent effect. At the highest concentration (3wt%), the available nitrogen content increased by 1.78, 1.86, and 1.68 times, respectively, compared to the control group. These findings demonstrate the impact of PE-MPs on cotton seedlings and soil properties, providing strong evidence for the ecological risks of MPs in plastic film-covered agricultural fields.
Collapse
Affiliation(s)
- Chengcheng Wu
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, 830052, People's Republic of China
| | - Wenhao Su
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, 830052, People's Republic of China
| | - Zailei Yang
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, 830052, People's Republic of China
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Urumqi, 830052, People's Republic of China
| | - Deqiang Li
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, People's Republic of China
| | - Linzhu Gu
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, 830052, People's Republic of China
| | - Xinyue Chen
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, 830052, People's Republic of China
| | - Yang Hu
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, 830052, People's Republic of China
| | - Xinping Zhu
- College of Biological and Resource Environment, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.
| | - Jun Li
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, People's Republic of China.
| | - Hongtao Jia
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, 830052, People's Republic of China
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Urumqi, 830052, People's Republic of China
| | - Xingwang Ma
- Institute of Soil Fertilizer and Agricultural Water Saving, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, People's Republic of China
| |
Collapse
|
4
|
Kapelewska J, Karpińska J, Klekotka U, Piotrowska-Niczyporuk A. Effect of polyethylene microplastic biodegradation by algae on their sorption properties and toxicity. CHEMOSPHERE 2025; 370:143993. [PMID: 39706491 DOI: 10.1016/j.chemosphere.2024.143993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Microplastics (MPs) in aquatic environments constitute an ideal surface for biofilm formation, facilitating or hindering the transport of contaminants. This study aims to provide knowledge on the sorption behavior of high-density polyethylene (μ-HDPE) after algal degradation toward UV filters. Up to now, the oxidation of μ-HDPE using the microalga Acutodesmus obliquus has not been studied. The results obtained by infrared spectroscopy (IR), scanning electron microscopy (SEM), and porosimetry analysis revealed a biofilm formation on the surface of μ-HDPE and the presence of carbonyl and double bond functional groups. Also, this is the first time that the simultaneous sorption of benzophenone (BPh), 4-methylbenzylidene camphor (4MBC), benzophenone 3 (BPh3), and benzophenone 2 (BPh2) onto biofilm-covered HDPE (biofilm-HDPE) in water have been studied. Filters' sorption on biofilm-HDPE particles follows pseudo-second-order kinetics, and film diffusion was the stage that limited the sorption rate. The Langmuir isothermal model describes the adsorption process for 4MBC, BPh, and BPh2 well, and the linear model is fit for the sorption of BPh3. Hydrophobic interactions, van der Waals forces, electrostatic, and π-π bon are the main mechanisms responsible for the sorption. Biological analysis indicated that HDPE at concentrations of 500 mg L-1 inhibits A. obliquus growth and reduces the levels of proteins, sugars, and chlorophylls. In contrast, the activity of antioxidant enzymes and the contents of small molecular weight antioxidants significantly increased in algal cells treated with microplastic. These findings confirm the toxicity of μ-HDPE and demonstrate the induction of defense mechanisms in A. obliquus as a response to environmental pollutants.
Collapse
Affiliation(s)
- Justyna Kapelewska
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K Street, 15-245, Bialystok, Poland.
| | - Joanna Karpińska
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K Street, 15-245, Bialystok, Poland
| | - Urszula Klekotka
- Department of Materials Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K Street, 15-245, Bialystok, Poland
| | - Alicja Piotrowska-Niczyporuk
- Department of Plant Biology and Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J Street, 15-245, Bialystok, Poland
| |
Collapse
|
5
|
Cottom JW, Cook E, Velis CA. A local-to-global emissions inventory of macroplastic pollution. Nature 2024; 633:101-108. [PMID: 39232151 PMCID: PMC11374682 DOI: 10.1038/s41586-024-07758-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 06/26/2024] [Indexed: 09/06/2024]
Abstract
Negotiations for a global treaty on plastic pollution1 will shape future policies on plastics production, use and waste management. Its parties will benefit from a high-resolution baseline of waste flows and plastic emission sources to enable identification of pollution hotspots and their causes2. Nationally aggregated waste management data can be distributed to smaller scales to identify generalized points of plastic accumulation and source phenomena3-11. However, it is challenging to use this type of spatial allocation to assess the conditions under which emissions take place12,13. Here we develop a global macroplastic pollution emissions inventory by combining conceptual modelling of emission mechanisms with measurable activity data. We define emissions as materials that have moved from the managed or mismanaged system (controlled or contained state) to the unmanaged system (uncontrolled or uncontained state-the environment). Using machine learning and probabilistic material flow analysis, we identify emission hotspots across 50,702 municipalities worldwide from five land-based plastic waste emission sources. We estimate global plastic waste emissions at 52.1 [48.3-56.3] million metric tonnes (Mt) per year, with approximately 57% wt. and 43% wt. open burned and unburned debris, respectively. Littering is the largest emission source in the Global North, whereas uncollected waste is the dominant emissions source across the Global South. We suggest that our findings can help inform treaty negotiations and develop national and sub-national waste management action plans and source inventories.
Collapse
Affiliation(s)
- Joshua W Cottom
- School of Civil Engineering, University of Leeds, Leeds, United Kingdom
| | - Ed Cook
- School of Civil Engineering, University of Leeds, Leeds, United Kingdom
| | - Costas A Velis
- School of Civil Engineering, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
6
|
Kaushik A, Singh A, Kumar Gupta V, Mishra YK. Nano/micro-plastic, an invisible threat getting into the brain. CHEMOSPHERE 2024; 361:142380. [PMID: 38763401 DOI: 10.1016/j.chemosphere.2024.142380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/21/2024]
Abstract
Due to weather and working/operational conditions, plastic degradation produces toxic and non-biodegradable nano and microplastics (N/M-Ps, ranging from 10 nm to 5 mm), and over time these N/M-Ps have integrated with the human cycle through ingestion and inhalation. These N/M-Ps, as serious emerging pollutants, are causing considerable adverse health issues due to up-taken by the cells, tissue, and organs, including the brain. It has been proven that N/M-Ps can cross the blood-brain barrier (via olfactory and blood vessels) and affect the secretion of neuroinflammatory (cytokine and chemokine), transporters, and receptor markers. Neurotoxicity, neuroinflammation, and brain injury, which may result in such scenarios are a serious concern and may cause brain disorders. However, the related pathways and pathogenesis are not well-explored but are the focus of upcoming emerging research. Therefore, as a focus of this editorial, well-organized multidisciplinary research is required to explore associated pathways and pathogenesis, leading to brain mapping and nano-enabled therapeutics in acute and chronic N/M - Ps exposure.
Collapse
Affiliation(s)
- Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, USA.
| | - Avtar Singh
- Research and Development, Molekule Inc., 3802 Spectrum Blvd., Tampa, FL, 33612, USA.
| | - V Kumar Gupta
- School of Biotechnology, Dublin City University, Dublin, Ireland.
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark.
| |
Collapse
|
7
|
Tasseron PF, van Emmerik THM, Vriend P, Hauk R, Alberti F, Mellink Y, van der Ploeg M. Defining plastic pollution hotspots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173294. [PMID: 38763189 DOI: 10.1016/j.scitotenv.2024.173294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/27/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Plastic pollution in the natural environment poses a growing threat to ecosystems and human health, prompting urgent needs for monitoring, prevention and clean-up measures, and new policies. To effectively prioritize resource allocation and mitigation strategies, it is key to identify and define plastic hotspots. UNEP's draft global agreement on plastic pollution mandates prioritizing hotspots, suggesting a potential need for a defined term. Yet, the delineation of hotspots varies considerably across plastic pollution studies, and a definition is often lacking or inconsistent without a clear purpose and boundaries of the term. In this paper, we applied four common definitions of hotspot locations to plastic pollution datasets ranging from urban areas to a global scale. Our findings reveal that these hotspot definitions encompass between 0.8 % to 93.3 % of the total plastic pollution, covering <0.1 % to 50.3 % of the total locations. Given this wide range of results and the possibility of temporal inconsistency in hotspots, we emphasize the need for fit-for-purpose criteria and a unified approach to defining plastic hotspots. Therefore, we designed a step-wise framework to define hotspots by determining the purpose, units, spatial scale, temporal scale, and threshold values. Incorporating these steps in research and policymaking yields a harmonized definition of hotspots, facilitating the development of effective plastic pollution prevention and reduction measures.
Collapse
Affiliation(s)
- Paolo F Tasseron
- Hydrology and Environmental Hydraulics Group, Wageningen University and Research, 6708 PB, Wageningen, the Netherlands; Amsterdam Institute for Advanced Metropolitan Solutions, 1018 JA Amsterdam, the Netherlands.
| | - Tim H M van Emmerik
- Hydrology and Environmental Hydraulics Group, Wageningen University and Research, 6708 PB, Wageningen, the Netherlands
| | - Paul Vriend
- Rijkswaterstaat, Ministry of Infrastructure and Water Management, 2515 XP The Hague, the Netherlands
| | - Rahel Hauk
- Hydrology and Environmental Hydraulics Group, Wageningen University and Research, 6708 PB, Wageningen, the Netherlands
| | - Francesca Alberti
- Amsterdam Institute for Advanced Metropolitan Solutions, 1018 JA Amsterdam, the Netherlands
| | - Yvette Mellink
- Aquatic Ecology and Water Quality Group, Wageningen University and Research, 6709 PB Wageningen, the Netherlands
| | - Martine van der Ploeg
- Hydrology and Environmental Hydraulics Group, Wageningen University and Research, 6708 PB, Wageningen, the Netherlands
| |
Collapse
|
8
|
Xue Y, Lu H, Feng S, Kang J, Guan Y, Li H, Zhang K, Weiss L. Standardization of monitoring data reassesses spatial distribution of aquatic microplastics concentrations worldwide. WATER RESEARCH 2024; 254:121356. [PMID: 38430756 DOI: 10.1016/j.watres.2024.121356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Microplastics are found in continental and oceanic waters worldwide, but their spatial distribution shows an intricate pattern. Their driving factors remain difficult to identify and widely discussed due to insufficient and unstandardized monitoring data. Here, based on in situ experiments and hundreds of river samples from the Qinghai-Tibet Plateau, we formulate a model to standardize aquatic microplastic measurements. The model was applied to existing data on a global scale. These data are standardized to a 20 µm mesh size, resulting in a new spatial distribution of aquatic microplastic densities, with average concentrations of 554.93 ± 1352.42 items/m3 in Europe, 2558.90 ± 4799.62 in North America and 1741.94 ± 3225.09 in Asia. Excessive contaminations (microplastic concentration > 10⁴ items/m3) are in the Yangtze River, the Charleston Harbor Estuary, the Bodega Bay and the Winyah Bay. We show that, based on these standardized concentrations, new driving factors could be used to predict the global or regional microplastic distribution in continental waters, such as the Human Development Index with a correlation of 75.86% on a global scale, the nighttime lights with a correlation of 37.26 ± 0.30% in Europe and 39.02 ± 0.54% in Asia, and the Mismanagement Plastic Waste with a correlation of 61.21 ± 19.86% in North America. Mapping standardized concentrations of aquatic microplastics enables a better comparison of contamination levels between regions and reveals more accurate hotspots to better adapt remediation efforts and future plastic pollution scenarios.
Collapse
Affiliation(s)
- Yuxuan Xue
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Lu
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Sansan Feng
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiajie Kang
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300354, China
| | - Yanlong Guan
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hengchen Li
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keli Zhang
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Lisa Weiss
- University of Toulouse, IRD, CNRS, CNES, UPS, Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS), Toulouse F31400, France; University of Brest, IRD, CNRS, Ifremer, Laboratoire d'Océanographie Physique et Spatiale (LOPS), IUEM, Plouzané F29280, France
| |
Collapse
|
9
|
De Boever S, Devisscher L, Vinken M. Unraveling the micro- and nanoplastic predicament: A human-centric insight. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170262. [PMID: 38253106 DOI: 10.1016/j.scitotenv.2024.170262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Micro- and nanoplastics are vast anthropogenic pollutants in our direct surroundings with a robust environmental stability and a potential for a long-lasting and increasing global circulation. This has raised concerns among the public and policy makers for human health upon exposure to these particles. The micro- and nanoplastic burden on humans is currently under debate, along with criticism on the experimental approaches used in hazard assessment. The present review presents an overview of the human-relevant aspects associated with the current micro-and nanoplastic burden. We focus on environmental circulation and the estimation of exposure quantities to humans, along with a state-of-the-art overview of particle accumulation in over 15 human organs and other specimen. Additionally, data regarding particle characteristics used in toxicity testing was extracted from 91 studies and discussed considering their environmental and human relevance.
Collapse
Affiliation(s)
- Sybren De Boever
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Basic and Applied Medical Sciences, Liver Research Centre Ghent, Faculty of Medicine and Health Sciences, Universiteit Gent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
10
|
Anusha JR, Citarasu T, Uma G, Vimal S, Kamaraj C, Kumar V, Muzammil K, Mani Sankar M. Recent advances in nanotechnology-based modifications of micro/nano PET plastics for green energy applications. CHEMOSPHERE 2024; 352:141417. [PMID: 38340992 DOI: 10.1016/j.chemosphere.2024.141417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/06/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Poly(ethylene terephthalate) (PET) plastic is an omnipresent synthetic polymer in our lives, which causes negative impacts on the ecosystem. It is crucial to take mandatory action to control the usage and sustainable disposal of PET plastics. Recycling plastics using nanotechnology offers potential solutions to the challenges associated with traditional plastic recycling methods. Nano-based degradation techniques improve the degradation process through the influence of catalysts. It also plays a crucial role in enhancing the efficiency and effectiveness of recycling processes and modifying them into value-added products. The modified PET waste plastics can be utilized to manufacture batteries, supercapacitors, sensors, and so on. The waste PET modification methods have massive potential for research, which can play major role in removing post-consumer plastic waste. The present review discusses the effects of micro/nano plastics in terrestrial and marine ecosystems and its impacts on plants and animals. Briefly, the degradation and bio-degradation methods in recent research were explored. The depolymerization methods used for the production of monomers from PET waste plastics were discussed in detail. Carbon nanotubes, fullerene, and graphene nanosheets synthesized from PET waste plastics were delineated. The reuse of nanotechnologically modified PET waste plastics for potential green energy storage products, such as batteries, supercapacitors, and sensors were presented in this review.
Collapse
Affiliation(s)
- J R Anusha
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, Tamilnadu, 629 502, India
| | - T Citarasu
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, Tamilnadu, 629 502, India
| | - G Uma
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, Tamilnadu, 629 502, India
| | - S Vimal
- Department of Biochemistry, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamilnadu, India.
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu - 603203, India
| | - Vinay Kumar
- Department of Community Medicine, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| | - M Mani Sankar
- Department of Biochemistry, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamilnadu, India
| |
Collapse
|
11
|
Li Y, Ye Y, Rihan N, Zhu B, Jiang Q, Liu X, Zhao Y, Che X. Polystyrene nanoplastics exposure alters muscle amino acid composition and nutritional quality of Pacific whiteleg shrimp (Litopenaeus vannamei). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168904. [PMID: 38016548 DOI: 10.1016/j.scitotenv.2023.168904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
Litopenaeus vannamei were exposed to 80-nm polystyrene nanoplastics (NPs) at different concentrations (0, 0.1, 1, 5, and 10 mg/L) for 28 days to study the effects on muscle nutritional quality. Our results showed that with increasing NPs concentrations, the survival rate, specific gain rate, and protein efficiency ratio decreased but the feed conversion ratio increased. There was no significant difference in moisture, ash, and crude lipid content in the muscle, and a general decrease in crude protein content was observed. However, the total amino acid and semi-essential amino acid contents decreased. The spacing between muscle fibers and the melting morphology of muscle increased. The hardness of muscle flesh texture increased, but springiness, cohesiveness, and chewiness decreased. Regarding antioxidant enzyme activity, the activity of catalase decreased, but the total antioxidant capacity, superoxide dismutase activity, and reduced glutathione first increased and then decreased. The expression level of the growth-related genes retinoid X receptor (RXR), chitin synthase (CHS), and calmodulin A (CaM) first increased then decreased, but calcium/calmodulin-dependent protein kinase I (CaMKI), ecdysteroid receptor (EcR), chitinase 5 (CHT5), cell division cycle 2 (Cdc2), and cyclin-dependent kinase 2 (CDK2) decreased. Our results suggest that exposure to NPs can inhibit growth by inducing oxidative stress, which leads to muscle tissue damage and changes in amino acid composition. These results will provide a theoretical reference for the risk assessment of NPs and the ecological health aquaculture of shrimp.
Collapse
Affiliation(s)
- Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Na Rihan
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Bihong Zhu
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China.
| | - Xuan Che
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China.
| |
Collapse
|
12
|
Hua Z, Zhang T, Luo J, Bai H, Ma S, Qiang H, Guo X. Internalization, physiological responses and molecular mechanisms of lettuce to polystyrene microplastics of different sizes: Validation of simulated soilless culture. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132710. [PMID: 37832437 DOI: 10.1016/j.jhazmat.2023.132710] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
Microplastics (MPs) exists widely in the environment, and the resulting pollution of MPs has become a global environmental problem. Plants can absorb MPs through their roots. However, studies on the mechanism of the effect of root exposure to different size MPs on vegetables are limited. Here, we use Polystyrene (PS) MPs with different particle sizes to investigate the internalization, physiological response and molecular mechanism of lettuce to MPs. MPs may accumulate in large amounts in lettuce roots and migrate to the aboveground part through the vascular bundle, while small particle size MPs (SMPs, 100 nm) have stronger translocation ability than large particle size MPs (LMPs, 500 nm). MPs can cause physiological and biochemical responses and transcriptome changes in lettuce. SMPs and LMPs resulted in reduced biomass (38.27 % and 48.22 % reduction in fresh weight); caused oxidative stress (59.33 % and 47.74 % upregulation of SOD activity in roots) and differential gene expression (605 and 907 DEGs). Signal transduction, membrane transport and alteration of synthetic and metabolic pathways may be the main causes of physiological toxicity of lettuce. Our study provides important information for understanding the behavior and fate of MPs in edible vegetables, especially the physiological toxicity of MPs to edible vegetables, in order to assess the potential threat of MPs to food safety and agricultural sustainable development.
Collapse
Affiliation(s)
- Zhengdong Hua
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Tianli Zhang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Junqi Luo
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Haoduo Bai
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Sirui Ma
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hong Qiang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| |
Collapse
|
13
|
Li J, Weng H, Liu S, Li F, Xu K, Wen S, Chen X, Li C, Nie Y, Liao B, Wu J, Kantawong F, Xie X, Yu F, Li G. Embryonic exposure of polystyrene nanoplastics affects cardiac development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167406. [PMID: 37769743 DOI: 10.1016/j.scitotenv.2023.167406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Micro- and nanoplastics have recently been detected in human blood and placentas, indicating inevitable embryonic exposure to these particles. However, their influence on human embryogenesis and the underlying mechanisms are still unknown. In this study, the effects of polystyrene nanoplastics (PS-NPs) exposure on cardiac differentiation of human embryonic stem cells (hESCs) were evaluated. Uptake of PS-NPs not only caused cellular injury, but also regulated cardiac-related pathways as revealed by RNA-sequencing. Consequently, the efficiency of cardiomyocyte differentiation from hESCs was compromised, leading to immature of cardiomyocytes and smaller cardiac organoids with impaired contractility. Mechanistically, PS-NPs promoted mitochondrial oxidative stress, activated P38/Erk MAPK signaling pathway, blocked autophagy flux, and eventually reduced the pluripotency of hESCs. Consistently, in vivo exposure of PS-NPs from cleavage to gastrula period of zebrafish embryo led to reduced cardiac contraction and blood flow. Collectively, this study suggests that PS-NPs is a risk factor for fetal health, especially for heart development.
Collapse
Affiliation(s)
- Jingyan Li
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Huimin Weng
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Shuang Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Fan Li
- Public Center of Experimental Technology & Model Animal and Human Disease Research of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Ke Xu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Shan Wen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Xi Chen
- Public Center of Experimental Technology & Model Animal and Human Disease Research of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Chang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Yongmei Nie
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Bin Liao
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jianming Wu
- Public Center of Experimental Technology & Model Animal and Human Disease Research of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Xiang Xie
- Public Center of Experimental Technology & Model Animal and Human Disease Research of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Fengxu Yu
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Guang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
14
|
Krikech I, Oliveri Conti G, Pulvirenti E, Rapisarda P, Castrogiovanni M, Maisano M, Le Pennec G, Leermakers M, Ferrante M, Cappello T, Ezziyyani M. Microplastics (≤ 10 μm) bioaccumulation in marine sponges along the Moroccan Mediterranean coast: Insights into species-specific distribution and potential bioindication. ENVIRONMENTAL RESEARCH 2023; 235:116608. [PMID: 37429403 DOI: 10.1016/j.envres.2023.116608] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/12/2023]
Abstract
Microplastics (MPs) are pervasive in marine environments and widely recognized as emerging environmental pollutants due to the multifaceted risks they exert on living organisms and ecosystems. Sponges (Phylum Porifera) are essential suspension-feeding organisms that may be highly susceptible to MPs uptake due to their global distribution, unique feeding behavior, and sedentary lifestyle. However, the role of sponges in MP research remains largely underexplored. In the present study, we investigate the presence and abundance of MPs (≤10 μm size) in four sponge species, namely Chondrosia reniformis, Ircinia variabilis, Petrosia ficiformis, and Sarcotragus spinosulus collected from four sites along the Mediterranean coast of Morocco, as well as their spatial distribution. MPs analysis was conducted using an innovative Italian patented extraction methodology coupled with SEM-EDX detection. Our findings reveal the presence of MPs in all collected sponge specimens, indicating a pollution rate of 100%. The abundance of MPs in the four sponge species ranged from 3.95×105 to 1.05×106 particles per gram dry weight of sponge tissue, with significant differences observed among sampling sites but no species-specific differences. These results imply that the uptake of MPs by sponges is likely influenced by aquatic environmental pollution rather than the sponge species themselves. The smallest and largest MPs were identified in C. reniformis and P. ficiformis, with median diameters of 1.84 μm and 2.57 μm, respectively. Overall, this study provides the first evidence and an important baseline for the ingestion of small MP particles in Mediterranean sponges, introducing the hypothesis that they may serve as valuable bioindicators of MP pollution in the near future.
Collapse
Affiliation(s)
- Imad Krikech
- Department of Life Sciences, Polydisciplinary Faculty of Larache, Abdelmalek Essaadi University, 745 BP, 92004 Larache, Morocco; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Gea Oliveri Conti
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Eloise Pulvirenti
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Paola Rapisarda
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Maria Castrogiovanni
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Gaël Le Pennec
- Laboratoire de Biotechnologie et de Chimie Marines, EMR CNRS 6076, Université de Bretagne Sud, EA 3884-IUEM, BP 92116, 56321 Lorient, Brittany, France
| | - Martine Leermakers
- Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Margherita Ferrante
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy.
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy.
| | - Mohammed Ezziyyani
- Department of Life Sciences, Polydisciplinary Faculty of Larache, Abdelmalek Essaadi University, 745 BP, 92004 Larache, Morocco.
| |
Collapse
|
15
|
Yang C. Understanding the efficiency of "political attention and governance action" on marine waste discharge in the coastal provinces in China. MARINE POLLUTION BULLETIN 2023; 195:115458. [PMID: 37659380 DOI: 10.1016/j.marpolbul.2023.115458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023]
Abstract
This study examines the "black box" of the policy process by evaluating the efficiency of "political attention and governance action" as a two-stage continuum and investigating the influencing factors in marine waste discharge governance. The results of empirical analysis in the 11 Chinese coastal provincial regions suggest that the overall efficiency fluctuated from 1999 to 2016 with a minor reduction. The developed provinces such as Jiangsu, Zhejiang, Shanghai and Guangdong have low efficiency in overall evaluation. In the first stage, the transferring efficiency from political attention to actions does not change considerably despite fluctuations in 2012-2016. The second-stage efficiency, or the efficiency of the governance actions, has been declining since 2008 except for a brief spike in 2014. There exists a feedback impact between the two stages. Economic competition, as measured by the average GDP of neighbouring provinces, has more negative impacts on the first-stage efficiency.
Collapse
Affiliation(s)
- Chao Yang
- School of Public Policy and Management, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China; School of Safety Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China.
| |
Collapse
|
16
|
Khanjani MH, Sharifinia M, Mohammadi AR. The impact of microplastics on bivalve mollusks: A bibliometric and scientific review. MARINE POLLUTION BULLETIN 2023; 194:115271. [PMID: 37429180 DOI: 10.1016/j.marpolbul.2023.115271] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Bivalves are important members of the ecosystem and their populations are declining globally, making them a concern for their role in ecosystem services and the fishing industry. Bivalves are excellent bioindicators of MPs pollution due to their widespread distribution, filtering capabilities, and close association with human health. Microplastics (MPs) have direct and indirect impacts on bivalves, affecting their physiology, habitat structure, food sources, and persistence of organic pollutants. This review provides an extensive overview of the impact of MPs on bivalves, covering various aspects such as their economic significance, ecological roles, and importance in biomonitoring environmental quality. The article presents the current state of knowledge on the sources and pathways of MPs in aquatic environments and their effects on bivalves. The mechanisms underlying the effects of MPs on bivalves, including ingestion, filtration activity, feeding inhibition, accumulation, bioaccumulation, and reproduction, are also discussed. Additionally, a bibliometric analysis of research on MPs in bivalves is presented, highlighting the number of papers, geographical distribution, and keyword clusters relating to MPs. Finally, the review emphasizes the importance of ongoing research and the development of mitigation strategies to reduce the negative effects of MPs pollution on bivalves and their habitats in oceans and coastal waters.
Collapse
Affiliation(s)
- Mohammad Hossein Khanjani
- Department of Fisheries Sciences and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Kerman, Iran
| | - Moslem Sharifinia
- Shrimp Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr 75169-89177, Iran.
| | - Ali Reza Mohammadi
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Iran.
| |
Collapse
|
17
|
Zhang Y, Li Y, Liu J. Global decadal assessment of life below water and on land. iScience 2023; 26:106420. [PMID: 37035006 PMCID: PMC10074189 DOI: 10.1016/j.isci.2023.106420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/01/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
The United Nations (UN) has adopted the 17 Sustainable Development Goals (SDGs), aiming to provide human welfare and conserve the planet, now and into the future. Two of the SDGs directly address biodiversity conservation and sustainable development - SDG 14 (life below water) and SDG 15 (life on land). Although the UN has issued annual reports on SDGs, the reports did not consistently reveal the progress over time, because of inconsistent methods such as estimation based on different indicators across years. Our research examined the dynamics of the same 10 indicators for SDGs 14 and 15 between 2010 and 2020. Results indicate that the overall SDG 14 scores had a small growth between 2010 and 2020, whereas the substantial increase in SDG 15 scores spotlighted the conservation efforts and sustainable use of terrestrial ecosystem services, especially in countries with biodiversity hotspots. Globally, there was more progress in terms of SDG 15 scores during 2015-2020 than during 2010-2015 (before the UN adopted SDGs in 2015). Surprisingly, SDG 14 score had smaller progress during 2015-2020 than during 2010-2015. Special attention should be given to low-income countries lagging in sustainable development performance when implementing the post-2020 global biodiversity framework.
Collapse
Affiliation(s)
- Yuqian Zhang
- Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, USA
- Environmental Science and Policy Program, Michigan State University, East Lansing, MI 48823, USA
| | - Yingjie Li
- Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, USA
- Environmental Science and Policy Program, Michigan State University, East Lansing, MI 48823, USA
- Natural Capital Project, Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - Jianguo Liu
- Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, USA
| |
Collapse
|
18
|
Lusher AL, Primpke S. Finding the Balance between Research and Monitoring: When Are Methods Good Enough to Understand Plastic Pollution? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6033-6039. [PMID: 37070279 PMCID: PMC10116587 DOI: 10.1021/acs.est.2c06018] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Indexed: 06/19/2023]
Abstract
Plastic pollution is an international environmental problem. Desire to act is shared from the public to policymakers, yet motivation and approaches are diverging. Public attention is directed to reducing plastic consumption, cleaning local environments, and engaging in citizen science initiatives. Policymakers and regulators are working on prevention and mitigation measures, while international, regional, and national bodies are defining monitoring recommendations. Research activities are focused on validating approaches to address goals and comparing methods. Policy and regulation are eager to act on plastic pollution, often asking questions researchers cannot answer with available methods. The purpose of monitoring will define which method is implemented. A clear and open dialogue between all actors is essential to facilitate communication on what is feasible with current methods, further research, and development needs. For example, some methods can already be used for international monitoring, yet limitations including target plastic types and sizes, sampling strategy, available infrastructure and analytical capacity, and harmonization of generated data remain. Time and resources to advance scientific understanding must be balanced against the need to answer pressing policy issues.
Collapse
Affiliation(s)
- Amy L. Lusher
- Norwegian
Institute for Water Research, Økernveien 94, 0579 Oslo, Norway
- Department
of Biological Sciences, University of Bergen, Thormølens Gate 53, 5008 Bergen, Norway
| | - Sebastian Primpke
- Alfred-Wegener-Institute
Helmholtz Centre for Polar and Marine Research, Biologische Anstalt
Helgoland, Kurpromenade 201, 27498 Helgoland, Germany
| |
Collapse
|
19
|
Sun Z, Wen Y, Zhang F, Fu Z, Yuan Y, Kuang H, Kuang X, Huang J, Zheng L, Zhang D. Exposure to nanoplastics induces mitochondrial impairment and cytomembrane destruction in Leydig cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114796. [PMID: 36948006 DOI: 10.1016/j.ecoenv.2023.114796] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Plastic particle pollution poses an emerging threat to ecological and human health. Laboratory animal studies have illustrated that nano-sized plastics can accumulate in the testis and cause testosterone deficiency and spermatogenic impairment. In this study, TM3 mouse Leydig cells were in vitro exposed to polystyrene nanoparticles (PS-NPs, size 20 nm) at dosages of 50, 100 and 150 μg/mL to investigate their cytotoxicity. Our results demonstrated that PS-NPs can be internalized into TM3 Leydig cells and led to a concentration-dependent decline in cell viability. Furthermore, PS-NPs stimulation amplified ROS generation and initiated cellular oxidative stress and apoptosis. Moreover, PS-NPs treatment affected the mitochondrial DNA copy number and collapsed the mitochondrial membrane potential, accompanied by a disrupted energy metabolism. The cells exposed to PS-NPs also displayed a down-regulated expression of steroidogenesis-related genes StAR, P450scc and 17β-HSD, along with a decrease in testosterone secretion. In addition, treatment with PS-NPs destructed plasma membrane integrity, as presented by increase in lactate dehydrogenase release and depolarization of cell membrane potential. In summary, these data indicated that exposure to PS-NPs in vitro produced cytotoxic effect on Leydig cells by inducing oxidative injury, mitochondrial impairment, apoptosis, and cytomembrane destruction. Our results provide new insights into male reproductive toxicity caused by NPs.
Collapse
Affiliation(s)
- Zhangbei Sun
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China
| | - Yiqian Wen
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China
| | - Fan Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China
| | - Zhendong Fu
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China
| | - Yangyang Yuan
- Clinical Medical Experimental Center of Nanchang University, Nanchang 330031, PR China
| | - Haibin Kuang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China
| | - Xiaodong Kuang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China
| | - Jian Huang
- Clinical Medical Experimental Center of Nanchang University, Nanchang 330031, PR China
| | - Liping Zheng
- Clinical Medical Experimental Center of Nanchang University, Nanchang 330031, PR China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang 330006, PR China.
| | - Dalei Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang 330006, PR China.
| |
Collapse
|
20
|
Zhang W, Sik Ok Y, Bank MS, Sonne C. Macro- and microplastics as complex threats to coral reef ecosystems. ENVIRONMENT INTERNATIONAL 2023; 174:107914. [PMID: 37028266 DOI: 10.1016/j.envint.2023.107914] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/03/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
The impacts of macroplastics (macro-), microplastics (MPs, <5mm), and nanoplastics (NPs, <100 nm) on corals and their complex reef ecosystems are receiving increased attention and visibility. MPs represent a major, contemporary, sustainability challenge with known and unknown effects on the ocean, and coral reef ecosystems worldwide. However, the fate and transport processes of macro-, MPs, and NPs and their direct and indirect impacts on coral reef ecosystems remains poorly understood. In this study, we verify and briefly summarize MPs distribution and pollution patterns in coral reefs from various geographical regions and discuss potential risks. The main interaction mechanisms show that MPs may substantially affect coral feeding performance, proper skeletal formation, and overall nutrition and, thus, there is an urgent need to address this rapidly growing environmental problem. From a management perspective, macro-, MPs, and NPs should, ideally, all be included in environmental monitoring frameworks, as possible, to aid in identifying those geographical areas that are most heavily impacted and to support future prioritization of conservation efforts. The potential solutions to the macro-, MP, and NP pollution problem include raising public awareness of plastic pollution, developing robust, environmental, conservation efforts, promoting a circular economy, and propelling industry-supported technological innovations to reduce plastic use and consumption. Global actions to curb plastic inputs, and releases of macro-, MP, and NP particles, and their associated chemicals, to the environment are desperately needed to secure the overall health of coral reef ecosystems and their inhabitants. Global scale horizon scans, gap analyses, and other future actions are necessary to gain and increase momentum to properly address this massive environmental problem and are in good accordance with several relevant UN sustainable development goals to sustain planetary health.
Collapse
Affiliation(s)
- Wei Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Korea
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Korea.
| | - Michael S Bank
- Institute of Marine Research, Bergen, Norway; University of Massachusetts Amherst, Amherst, MA, USA
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| |
Collapse
|
21
|
Luo Y, Naidu R, Fang C. Accelerated transformation of plastic furniture into microplastics and nanoplastics by fire. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120737. [PMID: 36436658 DOI: 10.1016/j.envpol.2022.120737] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Numerous plastic items are known to gradually degrade and release microplastics and nanoplastics under certain conditions, which can be significantly accelerated by fire combustion. Unfortunately there is a limited knowledge about this burning process because the characterisation on microplastics and nanoplastics is still a challenge. In this study, an outdoor plastic chair is subjected to a combustion process, the change in the surface functional groups (due to different degree of burning) and the release of microplastics and nanoplastics are investigated. During the combustion process, the plastic is molten, burned and deposited on solid surfaces including concrete, stone and glass. Scanning electron microscopy (SEM) results show that the peeling off the deposited plastic generates a large number of fragments. Through Raman imaging, these fragments are characterised as polypropylene (PP) microplastics and nanoplastics due to appearance of characteristic peaks. To further increase the sensitivity, several algorithms are tested and optimised, including logic-based, non-supervised principal component analysis (PCA)-based, algebra-based and their hybrids (to intentionally correct the non-supervised PCA) to enable the effective extraction of the key information towards plastics characterisation, particularly by distinguishing the signal from the background noise towards the visualisation of the different degrees of burning. Based on the findings from Raman imaging and SEM, it is estimated that tens of microplastics and nanoplastics are created per μm2. Overall Raman imaging can be a suitable approach to characterise the microplastics and nanoplastics in a complex background, such as the fire-burned plastic items.
Collapse
Affiliation(s)
- Yunlong Luo
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan NSW, 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan NSW, 2308, Australia
| | - Cheng Fang
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan NSW, 2308, Australia.
| |
Collapse
|
22
|
Wang Z, Praetorius A. Integrating a Chemicals Perspective into the Global Plastic Treaty. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2022; 9:1000-1006. [PMID: 36530847 PMCID: PMC9753957 DOI: 10.1021/acs.estlett.2c00763] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 06/01/2023]
Abstract
Driven by the growing concern about plastic pollution, countries have agreed to establish a global plastic treaty addressing the full life cycle of plastics. However, while plastics are complex materials consisting of mixtures of chemicals such as additives, processing aids, and nonintentionally added substances, it is at risk that the chemical aspects of plastics may be overlooked in the forthcoming treaty. This is highly concerning because a large variety of over 10,000 chemical substances may have been used in plastic production, and many of them are known to be hazardous to human health and the environment. In this Global Perspective, we further highlight an additional, generally overlooked, but critical aspect that many chemicals in plastics hamper the technological solutions envisioned to solve some of the major plastic issues: mechanical recycling, waste-to-energy, chemical recycling, biobased plastics, biodegradable plastics, and durable plastics. Building on existing success stories, we outline three concrete recommendations on how the chemical aspects can be integrated into the global plastic treaty to ensure its effectiveness: (1) reducing the complexity of chemicals in plastics, (2) ensuring the transparency of chemicals in plastics, and (3) aligning the right incentives for a systematic transition.
Collapse
Affiliation(s)
- Zhanyun Wang
- Empa
− Swiss Federal Laboratories for Materials Science and Technology,
Technology and Society Laboratory, 9014 St. Gallen, Switzerland
| | - Antonia Praetorius
- Institute
for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam 1090, GE, Netherlands
| |
Collapse
|
23
|
The ecological impact of plastic pollution in a changing climate. Emerg Top Life Sci 2022; 6:389-402. [PMID: 36398707 DOI: 10.1042/etls20220016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022]
Abstract
Assessing three interlinked issues, plastic pollution, climate change and biodiversity loss separately can overlook potential interactions that may lead to positive or negative impacts on global ecosystem processes. Recent studies suggest that threatened species and ecosystems are vulnerable to both plastic pollution and climate change stressors. Here we consider the connectivity and state of knowledge between these three environmental issues with a focus on the Global South. Nine out of top ten Long-Term Climate Risk Index (CRI) (2000-2019) ranked countries are located within the Global South, yet research is focused in the Global North. A literature search for the top ten Long-Term Climate Risk Index (CRI) (2000-2019) ranked countries matched a total of 2416 (3.3% of global publications) search results on climate change, with 56 (4% of the global publications) on plastic pollution, and seven (7.7% of the global publications) on both climate change and plastic pollution. There is a strong correlation between the Global South and high biodiversity hotspots, high food insecurity and low environmental performance. Using Bangladesh as a case study, we show the erosion rates and sea level rise scenarios that will increase ocean-bound plastic pollution and impact high biodiversity areas. Poverty alleviation and promoting renewable energy and green practices can significantly reduce the stress on the environment. We recommend that these connected planetary threats can be best addressed through a holistic and collaborative approach to research, a focus on the Global South, and an ambitious policy agenda.
Collapse
|
24
|
Cao Y, Zhang B, Cai Q, Zhu Z, Liu B, Dong G, Greer CW, Lee K, Chen B. Responses of Alcanivorax species to marine alkanes and polyhydroxybutyrate plastic pollution: Importance of the ocean hydrocarbon cycles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120177. [PMID: 36116568 DOI: 10.1016/j.envpol.2022.120177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Understanding microbial responses to hydrocarbon and plastic pollution are crucial for limiting the detrimental impacts of environmental contaminants on marine ecosystems. Herein, we reported a new Alcanivorax species isolated from the North Atlantic Ocean capable of degrading alkanes and polyhydroxybutyrate (PHB) plastic (one of the emerging bioplastics that may capture the future plastic market). The whole-genome sequencing showed that the species harbors three types of alkane 1-monooxygenases (AlkB) and one PHB depolymerase (PhaZ) to initiate the degradation of alkanes and plastics. Growth profiling demonstrated that n-pentadecane (C15, the main alkane in the marine environment due to cyanobacterial production other than oil spills) and PHB could serve as preferential carbon sources. However, the cell membrane composition, PhaZ activity, and expression of three alkB genes were utterly different when grown on C15 and PHB. Further, Alcanivorax was a well-recognized alkane-degrader that participated in the ocean hydrocarbon cycles linking with hydrocarbon production and removal. Our discovery supported that the existing biogeochemical processes may add to the marine ecosystem's resilience to the impacts of plastics.
Collapse
Affiliation(s)
- Yiqi Cao
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Qinhong Cai
- Gaia Refinery, Saint John, NB E2J 2E7, Canada
| | - Zhiwen Zhu
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Bo Liu
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Guihua Dong
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Charles W Greer
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montreal, QC H4P 2R2, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, ON K1A 0E6, Canada
| | - Bing Chen
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| |
Collapse
|
25
|
Xu Y, Rillig MC, Waldman WR. New separation protocol reveals spray painting as a neglected source of microplastics in soils. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:3363-3369. [PMID: 36467872 PMCID: PMC9712295 DOI: 10.1007/s10311-022-01500-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/03/2022] [Indexed: 06/05/2023]
Abstract
Microplastics are recently discovered contaminants, yet knowledge on their sources and analysis is limited. For instance, paint microplastics are poorly known because soil separation protocols using flotation solutions cannot separate paint microplastics due to the higher density of paint microplastic versus common microplastics. Here, we designed a new two-step density separation protocol for paint microplastics, allowing paint microplastics to be separated from the soil without digestion. Paint particles were separated from soil samples collected around the graffiti wall at the Mauerpark, Berlin, then quantified according to their shape and color characteristic. The presence of polymers as binders in the paint particles was verified by Fourier transform infrared spectroscopy. Results show concentrations from 1.1 × 105 to 2.9 × 105 microplastics per Kg of dry soil, representing the highest microplastic concentration ever reported in the literature. Particle concentrations decreased and the median size increased with soil depth. Our results provide first evidence that spray painting, a technique with a wide range of applications from industry to art, leaves a legacy of environmental microplastic in soils that has so far gone unnoticed. Supplementary Information The online version contains supplementary material available at 10.1007/s10311-022-01500-2.
Collapse
Affiliation(s)
- Yaqi Xu
- Institute of Biology, Freie Universität Berlin, Altensteinstrasse 6, 14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Königin-Luise-Strasse 4-6, 14195 Berlin, Germany
| | - Matthias C. Rillig
- Institute of Biology, Freie Universität Berlin, Altensteinstrasse 6, 14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Königin-Luise-Strasse 4-6, 14195 Berlin, Germany
| | - Walter R. Waldman
- Center of Science and Technology for the Sustainability, Federal University of São Carlos, Sorocaba, Brazil
| |
Collapse
|
26
|
Žuna Pfeiffer T, Špoljarić Maronić D, Stević F, Galir Balkić A, Bek N, Martinović A, Mandir T, Nikolašević R, Janjić D. Plastisphere development in relation to the surrounding biotic communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119380. [PMID: 35500716 DOI: 10.1016/j.envpol.2022.119380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/05/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
To study the early colonization processes, polyethylene terephthalate (PET) microfragments were immersed in Lake Sakadaš and the Drava River and sampled weekly together with the surrounding biotic communities - phytoplankton, zooplankton, epixylon in the lake and epilithon in the river. At the end of the study, a rise in water level occurred in the river, which altered the environmental conditions and plankton communities. In studied environments, all of the sampled biotic communities were diverse and abundant. Plastispheres formed in both waters by the seventh day of incubation and developed rapidly, reaching a peak in abundance on the last day of the study. Initial colonization was supported equally by planktonic and periphytic taxa in both environments, but after initial settlement, plastisphere assemblages were affected differently in the river and lake. This study suggests that PET microfragments are a suitable substrate for microphyte settlement and may provide an important pathway for their transport in dynamic freshwater floodplains and river systems.
Collapse
Affiliation(s)
- Tanja Žuna Pfeiffer
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica Cara Hadrijana 8/A, HR-31000, Osijek, Croatia
| | - Dubravka Špoljarić Maronić
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica Cara Hadrijana 8/A, HR-31000, Osijek, Croatia
| | - Filip Stević
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica Cara Hadrijana 8/A, HR-31000, Osijek, Croatia.
| | - Anita Galir Balkić
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica Cara Hadrijana 8/A, HR-31000, Osijek, Croatia
| | - Nikolina Bek
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica Cara Hadrijana 8/A, HR-31000, Osijek, Croatia
| | - Ana Martinović
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica Cara Hadrijana 8/A, HR-31000, Osijek, Croatia
| | - Tomislav Mandir
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica Cara Hadrijana 8/A, HR-31000, Osijek, Croatia
| | - Rahela Nikolašević
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica Cara Hadrijana 8/A, HR-31000, Osijek, Croatia
| | - Doris Janjić
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica Cara Hadrijana 8/A, HR-31000, Osijek, Croatia
| |
Collapse
|
27
|
Qin M, Gong J, Zeng G, Song B, Cao W, Shen M, Chen Z. The role of microplastics in altering arsenic fractionation and microbial community structures in arsenic-contaminated riverine sediments. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128801. [PMID: 35405589 DOI: 10.1016/j.jhazmat.2022.128801] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
The ability of microplastics (MPs) to interact with environmental pollutants is of great concern. Riverine sediments, as sinks for multi-pollutants, have been rarely studied for MPs risk evaluation. Meanwhile, MPs generated from biodegradable plastics are questioning the safety of the promising materials. In this study, we investigated the effects of typical non-degradable polyethylene (PE) and biodegradable polylactic acid (PLA) MPs on sediment enzymes, arsenic (As) fractionation, and microbial community structures in As-contaminated riverine sediments. The results indicated that the presence of MPs (1% and 3%, w/w) led As transformed into more labile and bioavailable fractions in riverine sediments, especially under higher As and MPs levels. Analysis on microbial activities and community structures confirmed the strong potential of MPs in inhibiting microbial activities and shifting bacterial community succession patterns through enrichment of certain microbiota. Moreover, biodegradable PLA MPs presented stronger alterations in arsenic fractionation and microbial community structures than PE MPs did, which might be jointly attributed to adsorption behaviors, microbial alterations, and potential PLA degradation behaviors. The study indicated that MPs contamination increased As mobility and bioavailability, and shifted microbial communities in riverine sediments. Moreover, biodegradable MPs might lead to stronger microbial alterations and increases in As bioavailability, acting as a threat to ecological safety, which needed further exploration.
Collapse
Affiliation(s)
- Meng Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Jilai Gong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, 410019, PR China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China.
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Weicheng Cao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Maocai Shen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Zengping Chen
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
28
|
Molina E, Benedé S. Is There Evidence of Health Risks From Exposure to Micro- and Nanoplastics in Foods? Front Nutr 2022; 9:910094. [PMID: 35836585 PMCID: PMC9274238 DOI: 10.3389/fnut.2022.910094] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
The human health impact of exposure to micro (MP) and nanoplastics (NP) from food remains unknown. There are several gaps in knowledge that prevent a complete risk assessment of them. First, the fact that some plastics may be chemically harmful, either directly toxic themselves or because they absorb and carry other components, which makes these particles may possess 3 types of hazards, physical, chemical and biological. In addition, the levels at which toxic effects may occur are unknown and there is a lack of studies to estimate the levels to which we are exposed. Plastic particles can induce physical stress and damage, apoptosis, necrosis, inflammation, oxidative stress and immune responses, which could contribute to the development of diseases such as cancer, metabolic disorders, and neurodevelopmental conditions, among others. In addition, they may have effects on other pathologies that have not yet been studied, such as food allergy, where they could act modifying the digestibility of food allergens, increasing intestinal permeability, promoting an intestinal inflammatory environment or causing intestinal dysbiosis, which could promote food allergen sensitization. However, given the limited information on the presence of MP and especially NP in food, further research is needed to estimate whether they could amplify the risk of allergic sensitization to food proteins and to elucidate the risk to human health.
Collapse
Affiliation(s)
| | - Sara Benedé
- Food Allergy Group, Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM), Spanish National Research Council, Madrid, Spain
| |
Collapse
|
29
|
Hu Q, Ok YS, Wang CH. Sustainable and Highly Efficient Recycling of Plastic Waste into Syngas via a Chemical Looping Scheme. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8953-8963. [PMID: 35648174 DOI: 10.1021/acs.est.2c01645] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Converting plastic waste into valuable products (syngas) is a promising approach to achieve sustainable cities and communities. Here, we propose for the first time to convert plastic waste into syngas via the Fe2AlOx-based chemical looping technology in a two-zone reactor. The Fe2AlOx-based redox cycle was achieved with the pyrolysis of plastic waste in the upper zone, followed by the decomposition and thermal cracking of hydrocarbon vapors, and the oxidation and water splitting in the lower zone (850 °C) enabled a higher carbon conversion (81.03%) and syngas concentration (92.84%) when compared with the mixed feeding process. The iron species could provide lattice oxygen and meanwhile act as the catalyst for the deep decomposition of hydrocarbons into CO and the accumulation of deposited carbon in the reduction step. Meanwhile, the introduced water would be split by the reduced iron and deposited carbon to further produce H2 and CO in the following oxidation step. A high hydrogen yield of 85.82 mmol/g HDPE with a molar ratio of H2/CO of 2.03 was achieved from the deconstruction of plastic waste, which lasted for five cycles. This proof of concept demonstrated a sustainable and highly efficient pathway for the recycling of plastic waste into valuable chemicals.
Collapse
Affiliation(s)
- Qiang Hu
- NUS Environmental Research Institute, National University of Singapore, Singapore 138602, Singapore
- Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yong Sik Ok
- Korea Biochar Research Centre, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Chi-Hwa Wang
- Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
30
|
Dissanayake PD, Kim S, Sarkar B, Oleszczuk P, Sang MK, Haque MN, Ahn JH, Bank MS, Ok YS. Effects of microplastics on the terrestrial environment: A critical review. ENVIRONMENTAL RESEARCH 2022; 209:112734. [PMID: 35065936 DOI: 10.1016/j.envres.2022.112734] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 05/27/2023]
Abstract
Microplastics are emerging contaminants and there has been growing concern regarding their impacts on aquatic and terrestrial environments. This review provides a comprehensive overview of the current knowledge regarding the sources, occurrences, fates, and risks associated with microplastic contamination in terrestrial environments. This contamination occurs via multiple sources, including primary microplastics (including synthetic materials) and secondary microplastics (derived from the breakdown of larger plastic particles). Microplastic contamination can have both beneficial and detrimental effects on soil properties. Additionally, microplastics have been shown to interact with a wide array of contaminants, including pesticides, persistent organic pollutants, heavy metals, and antibiotics, and may act as a vector for contaminant transfer in terrestrial environments. Microplastics and their associated chemicals can be transferred through food webs and may accumulate across multiple trophic levels, resulting in potential detrimental health effects for humans and other organisms. Although several studies have focused on the occurrence and impacts of microplastic contamination in marine environments, their sources, fate, transport, and effects in terrestrial environments are less studied and not well understood. Therefore, further research focusing on the fate, transport, and impacts of microplastics in relation to soil properties, polymer composition and forms, and land-use types is needed. The development of standardized and harmonized methods for analyzing microplastics in soil-plant ecosystems is essential. Future work should also consider the many interactions of microplastics with soil quality and ecotoxicological impacts on biota in the context of global environmental change.
Collapse
Affiliation(s)
- Pavani Dulanja Dissanayake
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea; Soils and Plant Nutrition Division, Coconut Research Institute, Lunuwila, 61150, Sri Lanka
| | - Soobin Kim
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Mee Kyung Sang
- Division of Agricultural Microbiology, National Institute of Agricultural Science, Rural Development Administration, Wanju, 55365, Republic of Korea.
| | - Md Niamul Haque
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea; Department of Marine Science, College of Natural Sciences, & Research Institute of Basic Sciences, Incheon National University, Incheon, 22012, Republic of Korea
| | - Jea Hyung Ahn
- Division of Agricultural Microbiology, National Institute of Agricultural Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Michael S Bank
- Institute of Marine Research, Bergen, Norway; Department of Environmental Conservation, University of Massachusetts, Amherst, MA, USA
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
31
|
Wang C, Wang L, Ok YS, Tsang DCW, Hou D. Soil plastisphere: Exploration methods, influencing factors, and ecological insights. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128503. [PMID: 35739682 DOI: 10.1016/j.jhazmat.2022.128503] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 06/15/2023]
Abstract
Microplastic (MP), an emerging contaminant, is globally prevalent and poses potential environmental threats and ecological risks to both aquatic and terrestrial ecosystems. When MPs enter into natural environments, they may serve as artificial substrates for microbial colonization and plastisphere formation, providing new ecological niches for microorganisms. Recent studies of the plastisphere have focused on aquatic ecosystems. However, our understanding of the soil plastisphere e.g. its formation process, microbial ecology, co-transport of organic pollutants and heavy metals, and effects on biogeochemical processes is still very limited. This review summarizes latest methods used to explore the soil plastisphere, assesses the factors influencing the microbial ecology of the soil plastisphere, and sheds light on potential ecological risks caused by the soil plastisphere. The formation and succession of soil plastisphere communities can be driven by MP characteristics and soil environmental factors. The soil plastisphere may affect a series of ecological processes, especially the co-transport of environmental contaminants, biodegradation of MPs, and soil carbon cycling. We aim to narrow the knowledge gap between the soil and aquatic plastisphere, and provide valuable guidance for future research on the soil plastisphere in MP-contaminated soils.
Collapse
Affiliation(s)
- Chengqian Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
32
|
Amato-Lourenço LF, Dos Santos Galvão L, Wiebeck H, Carvalho-Oliveira R, Mauad T. Atmospheric microplastic fallout in outdoor and indoor environments in São Paulo megacity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153450. [PMID: 35093355 DOI: 10.1016/j.scitotenv.2022.153450] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Plastics are widely used by society, and their degradation into millimetre fragments, called microplastics (MPs), has become a global environmental threat to ecosystems and human health. However, airborne MPs' presence and fallout fluxes from the atmosphere are poorly understood and can vary significantly by different conditions, especially in megacities of low- and middle-income countries, where high levels of vehicular air pollution, a high-density population, high plastic use, and inadequate disposal are environmental threats related to airborne MPs. In this study, we investigate the amount, chemical composition, and morphological characteristics of outdoor and indoor airborne MPs fallout in the megacity of São Paulo and assess the influence of weather and seasons on airborne MPs fallout. The results were as follows: MPs were found in all samples with an average fallout rate of 309.40 ± 214.71 MPs/m2/day in the indoor environment, and 123.20 ± 47.09 MPs/m2/day in the outdoor environment; MPs concentrations were higher in the indoor environment than the outdoor environment, with more fibres than particles; polyester fibres (100%), polyethylene (59%) and polypropylene (26%) particles were the dominant polymers indoors, while in outdoors, polyester fibres (76%) and polyethylene (67%) and polyethylene terephthalate (25%) particles were dominant. Fragment was the dominant morphology of particles found in indoor and outdoor samples (64% and 74%, respectively). Outdoor MPs fallout correlated positively with rainfall, wind velocity, and relative humidity. This evidence is the first on airborne MPs in a Latin America megacity and highlights the relevant role that this source plays in different environments.
Collapse
Affiliation(s)
- Luís Fernando Amato-Lourenço
- Department of Pathology (LIM-05), Faculty of Medicine, University of São Paulo, São Paulo, Brazil; Institute of Advanced Studies (IEA) Global Cities Program, University of São Paulo, São Paulo, Brazil.
| | - Luciana Dos Santos Galvão
- Laboratory of Chemistry and Manufactured Goods - Institute for Technological Research (IPT), São Paulo, SP, Brazil
| | - Hélio Wiebeck
- Department of Metallurgical Engineering and Materials, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | - Thais Mauad
- Department of Pathology (LIM-05), Faculty of Medicine, University of São Paulo, São Paulo, Brazil; Institute of Advanced Studies (IEA) Global Cities Program, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
33
|
Yuan W, Christie-Oleza JA, Xu EG, Li J, Zhang H, Wang W, Lin L, Zhang W, Yang Y. Environmental fate of microplastics in the world's third-largest river: Basin-wide investigation and microplastic community analysis. WATER RESEARCH 2022; 210:118002. [PMID: 34986458 DOI: 10.1016/j.watres.2021.118002] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 05/25/2023]
Abstract
Rivers have been recognized as major transport pathways for microplastics into the sea but large-scale quantitative data on the environmental fate of riverine microplastics remains limited, hindering proper risk assessment and development of regulatory measures. Microplastics in the whole Yangtze River Basin of China were systematically investigated by sampling the water, sediment, and soil. Microplastics were detected in all samples, with an average abundance of 1.27 items/L, 286.20 items/kg, and 338.09 items/kg for water, sediments, and soils, respectively, with polypropylene and polyethylene being the most abundant polymers. A generally increasing trend of microplastic abundance from upstream to downstream was identified, which were co-attributed by geographical and anthropogenic factors including elevation, longitude, distance from the nearest city, population density, urbanization rate, and land use. Microplastics in the sediments showed more prominent vertical migration than those in the soils, and the density and size of microplastics may be the key factors governing the migration of microplastics across different compartments. Community analysis showed that microplastics in different compartments were significantly different and highly correlated with geographical distance. Major cities at the middle and lower reaches were considered pivotal nodes of microplastic pollution in the Yangtze River Basin. Policy recommendations were also proposed towards better remediation of microplastic pollution involving riverine systems.
Collapse
Affiliation(s)
- Wenke Yuan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | | | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Jiawei Li
- Department of Geography, University of Manchester, Manchester M13 9PL, UK
| | - Haibo Zhang
- Zhejiang Provincial Key Laboratory of Soil Contamination Bioremediation, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Chinaww
| | - Wenfeng Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Li Lin
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430014, China
| | - Weihong Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
34
|
Deme GG, Ewusi-Mensah D, Olagbaju OA, Okeke ES, Okoye CO, Odii EC, Ejeromedoghene O, Igun E, Onyekwere JO, Oderinde OK, Sanganyado E. Macro problems from microplastics: Toward a sustainable policy framework for managing microplastic waste in Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150170. [PMID: 34517317 DOI: 10.1016/j.scitotenv.2021.150170] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Microplastic pollution is a ubiquitous and emerging environmental and public health concern in Africa due to increased plastic production, product and waste importation, and usage. While studies on the environmental monitoring and characterization of microplastics demonstrated the urgent need for a drastic reduction in plastic waste generation, the effectiveness of the various regulatory and policy interventions implemented or proposed in Africa countries remains poorly understood. We critically examined policies, legislations, and regulations enacted to control microplastic pollution in Africa to develop a sustainable, harmonized framework for the coordinated reduction of plastic waste generation across Africa. Analysis of the interventions revealed most African countries employed traditional perspective (i.e., command-and-control) approaches, whereby state instruments such as plastic ban, production and importation levies, and consumer taxes were enacted. However, the continued increase in microplastic waste generation suggests traditional perspective approaches might not be effective in Africa. Although rarely used in Africa, market-oriented approaches such as private-public waste management are often effective in controlling plastic pollution. Hence, we proposed a bottom-up hybrid regulatory approach for managing microplastics pollution in Africa, involving price-based, right-base, legislation and behavioral frameworks based on best practices in microplastic waste management.
Collapse
Affiliation(s)
- Gideon Gywa Deme
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Organization of African Academic Doctor (OAAD), Off Kamiti Road, P. O. Box 25305000100, Nairobi, Kenya
| | - David Ewusi-Mensah
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Organization of African Academic Doctor (OAAD), Off Kamiti Road, P. O. Box 25305000100, Nairobi, Kenya
| | - Oluwatosin Atinuke Olagbaju
- TOF-MR, PET/CT, Molecular Imaging Research Center, Harbin Medical University & Biological Trace Element Laboratory, Department of Physics and Engineering Physics, Obafemi Awolowo University, Ile-Ife, Nigeria; Organization of African Academic Doctor (OAAD), Off Kamiti Road, P. O. Box 25305000100, Nairobi, Kenya
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 41000, Enugu State, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka 41000, Enugu State, Nigeria; School of Environment and safety engineering, Jiangsu University, China; Organization of African Academic Doctor (OAAD), Off Kamiti Road, P. O. Box 25305000100, Nairobi, Kenya
| | - Charles Obinwanne Okoye
- School of Environment and safety engineering, Jiangsu University, China; Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria; Organization of African Academic Doctor (OAAD), Off Kamiti Road, P. O. Box 25305000100, Nairobi, Kenya
| | - Elijah Chibueze Odii
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria; Organization of African Academic Doctor (OAAD), Off Kamiti Road, P. O. Box 25305000100, Nairobi, Kenya
| | - Onome Ejeromedoghene
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China; Organization of African Academic Doctor (OAAD), Off Kamiti Road, P. O. Box 25305000100, Nairobi, Kenya
| | - Eghosa Igun
- Department of Environmental Management and Toxicology, Western Delta University, Ogara, Nigeria & Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physic, Chinese Academy of Sciences, Beijing; Organization of African Academic Doctor (OAAD), Off Kamiti Road, P. O. Box 25305000100, Nairobi, Kenya.
| | - Joseph Okoro Onyekwere
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria; Organization of African Academic Doctor (OAAD), Off Kamiti Road, P. O. Box 25305000100, Nairobi, Kenya.
| | - Olayinka Kehinde Oderinde
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China; Organization of African Academic Doctor (OAAD), Off Kamiti Road, P. O. Box 25305000100, Nairobi, Kenya
| | - Edmond Sanganyado
- Guangdong Provincial Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Organization of African Academic Doctor (OAAD), Off Kamiti Road, P. O. Box 25305000100, Nairobi, Kenya
| |
Collapse
|
35
|
Lusher AL, Hurley R, Arp HPH, Booth AM, Bråte ILN, Gabrielsen GW, Gomiero A, Gomes T, Grøsvik BE, Green N, Haave M, Hallanger IG, Halsband C, Herzke D, Joner EJ, Kögel T, Rakkestad K, Ranneklev SB, Wagner M, Olsen M. Moving forward in microplastic research: A Norwegian perspective. ENVIRONMENT INTERNATIONAL 2021; 157:106794. [PMID: 34358913 DOI: 10.1016/j.envint.2021.106794] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 05/26/2023]
Abstract
Given the increasing attention on the occurrence of microplastics in the environment, and the potential environmental threats they pose, there is a need for researchers to move quickly from basic understanding to applied science that supports decision makers in finding feasible mitigation measures and solutions. At the same time, they must provide sufficient, accurate and clear information to the media, public and other relevant groups (e.g., NGOs). Key requirements include systematic and coordinated research efforts to enable evidence-based decision making and to develop efficient policy measures on all scales (national, regional and global). To achieve this, collaboration between key actors is essential and should include researchers from multiple disciplines, policymakers, authorities, civil and industry organizations, and the public. This further requires clear and informative communication processes, and open and continuous dialogues between all actors. Cross-discipline dialogues between researchers should focus on scientific quality and harmonization, defining and accurately communicating the state of knowledge, and prioritization of topics that are critical for both research and policy, with the common goal to establish and update action plans for holistic benefit. In Norway, cross-sectoral collaboration has been fundamental in supporting the national strategy to address plastic pollution. Researchers, stakeholders and the environmental authorities have come together to exchange knowledge, identify knowledge gaps, and set targeted and feasible measures to tackle one of the most challenging aspects of plastic pollution: microplastic. In this article, we present a Norwegian perspective on the state of knowledge on microplastic research efforts. Norway's involvement in international efforts to combat plastic pollution aims at serving as an example of how key actors can collaborate synergistically to share knowledge, address shortcomings, and outline ways forward to address environmental challenges.
Collapse
Affiliation(s)
- Amy L Lusher
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway; Department of Biological Sciences, University of Bergen, NO-5020 Bergen, Norway.
| | - Rachel Hurley
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Hans Peter H Arp
- Norwegian Geotechnical Institute (NGI), P.O. Box 3930 Ullevål Stadion, NO-0806 Oslo, Norway; Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491 Trondheim, Norway
| | - Andy M Booth
- SINTEF Ocean, Brattørkaia 17 C, NO-7010 Trondheim, Norway
| | - Inger Lise N Bråte
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Geir W Gabrielsen
- Norwegian Polar Institute (NPI), Fram Centre, NO-9296 Tromsø, Norway
| | - Alessio Gomiero
- Norwegian Research Center (NORCE), Nygårdsporten 112, NO-5008 Bergen, Norway
| | - Tânia Gomes
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Bjørn Einar Grøsvik
- Institute of Marine Research (IMR), P.O. Box 1870 Nordnes, NO-5817 Bergen, Norway
| | - Norman Green
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Marte Haave
- Norwegian Research Center (NORCE), Nygårdsporten 112, NO-5008 Bergen, Norway; Department of Chemistry, University of Bergen, Allegaten 41, NO-5007 Bergen, Norway
| | | | | | - Dorte Herzke
- Norwegian Institute for Air Research (NILU), Fram Centre, NO-9296 Tromsø, Norway; Institute for Arctic and Marine Biology, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Erik J Joner
- Norwegian Institute for Bioeconomy Research (NIBIO), Høyskoleveien 7, NO-1431 Ås, Norway
| | - Tanja Kögel
- Department of Biological Sciences, University of Bergen, NO-5020 Bergen, Norway; Institute of Marine Research (IMR), P.O. Box 1870 Nordnes, NO-5817 Bergen, Norway
| | - Kirsten Rakkestad
- The Norwegian Scientific Committee for Food and Environment (VKM), P.O. Box 222 Skøyen, NO-0213 Oslo, Norway
| | - Sissel B Ranneklev
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Martin Wagner
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491 Trondheim, Norway
| | - Marianne Olsen
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway
| |
Collapse
|