1
|
Zhu Y, Yao S, Wang X, Wang J, Cao H, Tao Y. Variable cyanobacterial death modes caused by ciprofloxacin in the aquatic environment: Prioritizing antibiotic-photosynthetic protein interactions for risk assessment. WATER RESEARCH 2025; 271:122885. [PMID: 39642793 DOI: 10.1016/j.watres.2024.122885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Antibiotics continuously discharged into the aquatic environment pose threats to phototrophs via high-affinity binding to photosynthetic apparatuses and interfering with their energy metabolism and growth. However, studies attributed the sublethal effects of antibiotics on phototrophs to damaging photosystem (PS) II (PSII) proteins while neglecting PSI proteins as potential targets. Herein, we report that frequently detected ciprofloxacin (CIP) with concentrations of 3-8 μg/L was lethal to Microcystis aeruginosa, the widely distributed phytoplankton in freshwater, via damaging DNA. Besides, CIP damages on different photosynthetic proteins at different exposure levels were evidenced to influence the cyanobacterial death phenotypes. In detail, CIP at 3 μg/L bound to PSII D1 protein exclusively, activating the tricarboxylic acid cycle for energy and proline catabolism. This favored the execution of apoptosis-like regulated cell death (RCD). However, CIP at 8 μg/L exhibited additional binding to the PSI iron-sulfur reaction center, apart from PSII, inducing carbon and arginine starvation. This shifted the RCD from apoptosis-like RCD to mazEF-mediated RCD. Furthermore, microcystin-LR risks were elevated after CIP exposure with enhanced microcystin-LR release and biosynthesis for apoptosis-like and mazEF-mediated RCD, respectively. Thus, the present study underscores the intricate interactions between antibiotics and different photosynthetic apparatuses, which alter antibiotic lethal effects at different exposure levels. This could provide new perspectives on the risk assessment and prediction of antibiotics from the standpoint of chemical-photosynthesis interactions.
Collapse
Affiliation(s)
- Yinjie Zhu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Tsinghua University-Kunming Joint Research Center for Dianchi Plateau Lake, Tsinghua University, Beijing 100084, PR China
| | - Shishi Yao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China
| | - Xiaoxiong Wang
- Institute for Ocean Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Jian Wang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Tsinghua University-Kunming Joint Research Center for Dianchi Plateau Lake, Tsinghua University, Beijing 100084, PR China
| | - Huansheng Cao
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu 215300, PR China
| | - Yi Tao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Tsinghua University-Kunming Joint Research Center for Dianchi Plateau Lake, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
2
|
Wang S, Li Y, Cai L, Yang X, Pi K, Li Z. Enhanced coagulation of Microcystis aeruginosa using titanium xerogel coagulant. CHEMOSPHERE 2025; 370:144017. [PMID: 39732406 DOI: 10.1016/j.chemosphere.2024.144017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/03/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024]
Abstract
Cyanobacterial blooms are prevalent globally and present a significant threat to water security. Titanium salt coagulants have garnered considerable attention due to their superior coagulation properties and the absence of metal residue risks. This paper explored the influencing factors in the coagulation process of titanium xerogel coagulant (TXC), the alterations in cell activity during floc storage, and the release of cyanobacterial organic matters, thereby determining the application scope of TXC for cyanobacterial water treatment. The findings indicated that at a TXC dosage of 8 mg Ti/L, the removal rate of Microcystis aeruginosa (M. aeruginosa) exceeded 86% across a pH range of 5-9. The coagulation performance with anions HCO3-, CO32- and H2PO4-/HPO42- was unsatisfactory at concentrations of 10, 20, and 50 mg/L, with corresponding chlorophyll a (Chl-a) levels of 168, 129, and 196 μg/L, respectively. While the presence of Cl-, NO3-, SO42-, K+, NH4+, Ca2+ and Mg2+ had little influence on the removal efficiency. At sodium alginate (SA) concentration of 6 mg/L, the Chl-a content was 116 μg/L, with humic acid (HA) not affecting M. aeruginosa removal but hindering turbidity reduction, leaving a residual turbidity of 11 NTU. Following TXC treatment, a floc storage study with cyanobacteria-laden surface water showed a decrease in microcystins (MCs) content. The low residual titanium concentration post-TXC coagulation (<0.06 mg/L) and MCs reduction contributed to reduced effluent toxicity, indicating TXC's versatile applicability for treating cyanobacterial-contaminated waters.
Collapse
Affiliation(s)
- Shulian Wang
- Key Laboratory of Health Intelligent Perception and Ecological Restoration of River and Lake, Ministry of Education, Hubei University of Technology, Wuhan, 430068, China.
| | - Yanqun Li
- Key Laboratory of Health Intelligent Perception and Ecological Restoration of River and Lake, Ministry of Education, Hubei University of Technology, Wuhan, 430068, China.
| | - Lu Cai
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan, 430079, China.
| | - Xian Yang
- Key Laboratory of Health Intelligent Perception and Ecological Restoration of River and Lake, Ministry of Education, Hubei University of Technology, Wuhan, 430068, China.
| | - Kewu Pi
- Key Laboratory of Health Intelligent Perception and Ecological Restoration of River and Lake, Ministry of Education, Hubei University of Technology, Wuhan, 430068, China.
| | - Zhu Li
- Key Laboratory of Health Intelligent Perception and Ecological Restoration of River and Lake, Ministry of Education, Hubei University of Technology, Wuhan, 430068, China; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, 430068, China.
| |
Collapse
|
3
|
Yun TS, Bhatia M, Cornelius SM, Jeon Y, Bishop WM, Kang DW, Seo Y. Release of algal organic matter from cyanobacteria following application of USEPA-registered chemical algaecides. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122822. [PMID: 39413636 DOI: 10.1016/j.jenvman.2024.122822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/19/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024]
Abstract
Increased occurrence of harmful algal blooms significantly impedes uses of freshwater resources, especially as potable water supply. Rapid mitigation using algaecides is common; however, the potential release of algal organic matter (AOM) and cyanotoxins poses challenges due to the difficulty of removal with conventional water treatment and negative health impacts. This study evaluated four USEPA-registered algaecides for their efficacy against Microcystis aeruginosa growth and AOM and cyanotoxin release. Successful inhibition of cell growth was achieved in both unialgal and mixed culture samples at concentrations of 0.2 mg Cu/L for copper-based algaecides and 6 mg H2O2/L for peroxide-based algaecides. At 12 h after treatment (HAT), a significant increase in dissolved phycocyanin was observed, which was more pronounced with copper-based algaecides. Microbial byproduct-related and simple aromatic proteins were measured in the unialgal culture, while microbial byproduct-related proteins and humic-like substances were dominant in the mixed culture samples. In both unialgal and mixed-culture experiments, 0.2 mg Cu/L application of copper-based algaecides was the minimum dosage for cyanobacterial cell inhibition and the lowest release of AOM and cyanotoxins, with Oximycin P5 at 6 mg H2O2/L yielding similar results among peroxide-based algaecides. These results help inform water supply managers on algaecide use toward maintaining integrity of drinking water quality.
Collapse
Affiliation(s)
- Tae-Suh Yun
- Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3006 Nitschke Hall, Toledo, OH, 43606, United States of America
| | - Mudit Bhatia
- Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3006 Nitschke Hall, Toledo, OH, 43606, United States of America
| | - Sara M Cornelius
- Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3006 Nitschke Hall, Toledo, OH, 43606, United States of America
| | - Youchul Jeon
- Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3006 Nitschke Hall, Toledo, OH, 43606, United States of America
| | - West M Bishop
- SePRO Research and Technology Campus, 16013 Watson Seed Farm Rd., Whitakers, NC, 27891, United States of America
| | - Dae-Wook Kang
- Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3006 Nitschke Hall, Toledo, OH, 43606, United States of America
| | - Youngwoo Seo
- Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3006 Nitschke Hall, Toledo, OH, 43606, United States of America; Department of Chemical Engineering, University of Toledo, Mail Stop 307, 3048 Nitschke Hall, Toledo, OH, 43606, United States of America.
| |
Collapse
|
4
|
Zhu Y, Ding J, Wang X, Wang X, Cao H, Teng F, Yao S, Lin Z, Jiang Y, Tao Y. Optimizing UVA and UVC synergy for effective control of harmful cyanobacterial blooms. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100455. [PMID: 39114557 PMCID: PMC11305005 DOI: 10.1016/j.ese.2024.100455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 08/10/2024]
Abstract
Harmful cyanobacterial blooms (HCBs) pose a global ecological threat. Ultraviolet C (UVC) irradiation at 254 nm is a promising method for controlling cyanobacterial proliferation, but the growth suppression is temporary. Resuscitation remains a challenge with UVC application, necessitating alternative strategies for lethal effects. Here, we show synergistic inhibition of Microcystis aeruginosa using ultraviolet A (UVA) pre-irradiation before UVC. We find that low-dosage UVA pre-irradiation (1.5 J cm-2) combined with UVC (0.085 J cm-2) reduces 85% more cell densities compared to UVC alone (0.085 J cm-2) and triggers mazEF-mediated regulated cell death (RCD), which led to cell lysis, while high-dosage UVA pre-irradiations (7.5 and 14.7 J cm-2) increase cell densities by 75-155%. Our oxygen evolution tests and transcriptomic analysis indicate that UVA pre-irradiation damages photosystem I (PSI) and, when combined with UVC-induced PSII damage, synergistically inhibits photosynthesis. However, higher UVA dosages activate the SOS response, facilitating the repair of UVC-induced DNA damage. This study highlights the impact of UVA pre-irradiation on UVC suppression of cyanobacteria and proposes a practical strategy for improved HCBs control.
Collapse
Affiliation(s)
- Yinjie Zhu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Tsinghua University-Kunming Joint Research Center for Dianchi Plateau Lake, Tsinghua University, Beijing, 100084, China
| | - Jian Ding
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Xiaoxiong Wang
- Institute for Ocean Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xuejian Wang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Huansheng Cao
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, 215300, China
| | - Fei Teng
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Tsinghua University-Kunming Joint Research Center for Dianchi Plateau Lake, Tsinghua University, Beijing, 100084, China
| | - Shishi Yao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Tsinghua University-Kunming Joint Research Center for Dianchi Plateau Lake, Tsinghua University, Beijing, 100084, China
| | - Zhiru Lin
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Tsinghua University-Kunming Joint Research Center for Dianchi Plateau Lake, Tsinghua University, Beijing, 100084, China
| | - Yuelu Jiang
- Institute for Ocean Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yi Tao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Tsinghua University-Kunming Joint Research Center for Dianchi Plateau Lake, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
5
|
Zhang Y, Wang X, Sun Y. A newly identified algicidal bacterium of Pseudomonas fragi YB2: Algicidal compounds and effects. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135490. [PMID: 39141946 DOI: 10.1016/j.jhazmat.2024.135490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/03/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Harmful algal bloom (HAB) is an unresolved existing problem worldwide. Here, we reported a novel algicidal bacterium, Pseudomonas fragi YB2, capable of lysing multiple algal species. To Chlorella vulgaris, YB2 exhibited a maximum algicidal rate of 95.02 % at 120 h. The uniqueness of YB2 lies in its ability to self-produce three algicidal compounds: 2-methyl-1, 3-cyclohexanedione (2-MECHD), N-phenyl-2-naphthylamine, and cyclo (Pro-Leu). The algicidal properties of 2-MECHD have not been previously reported. YB2 significantly affected the chloroplast and mitochondrion, thus decreasing in chlorophyll a by 4.74 times for 120 h and succinate dehydrogenase activity by 103 times for 36 h. These physiological damages disrupted reactive oxygen species and Ca2+ homeostasis at the cellular level, increasing cytosolic superoxide dismutase (23 %), catalase (35 %), and Ca2+ influx. Additionally, the disruption of Ca2+ homeostasis rarely reported in algicidal bacteria-algae interaction was observed using the non-invasive micro-test technology. We proposed a putative algicidal mechanism based on the algicidal outcomes and physiological algicidal effects and explored the potential of YB2 through an algicidal simulation test. Overall, this study is the first to report the algicidal bacterium P. fragi and identify a novel algicidal compound, 2-MECHD, providing new insights and a potent microbial resource for the biocontrol of HAB.
Collapse
Affiliation(s)
- Yini Zhang
- School of Environment, Northeast Normal University, Changchun 130117, Jilin, PR China.
| | - Xiaoyu Wang
- School of Environment, Northeast Normal University, Changchun 130117, Jilin, PR China.
| | - Yu Sun
- School of Environment, Northeast Normal University, Changchun 130117, Jilin, PR China.
| |
Collapse
|
6
|
Li L, Xie G, Dong P, Tang H, Wu L, Zhang L. Anticyanobacterial effect of p-coumaric acid on Limnothrix sp. determined by proteomic and metabolomic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171632. [PMID: 38471589 DOI: 10.1016/j.scitotenv.2024.171632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/23/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Regulating photosynthetic machinery is a powerful but challenging strategy for selectively inhibiting bloom-forming cyanobacteria, in which photosynthesis mainly occurs in thylakoids. P-coumaric acid (p-CA) has several biological properties, including free radical scavenging and antibacterial effects, and studies have shown that it can damage bacterial cell membranes, reduce chlorophyll a in cyanobacteria, and effectively inhibit algal growth at concentrations exceeding 0.127 g/L. Allelochemicals typically inhibit cyanobacteria by inhibiting photosynthesis; however, research on inhibiting harmful algae using phenolic acids has focused mainly on their inhibitory and toxic effects and metabolite levels, and the molecular mechanism by which p-CA inhibits photosynthesis remains unclear. Thus, we examined the effect of p-CA on the photosynthesis of Limnothrix sp. in detail. We found that p-CA inhibits algal growth and damages photosynthesis-related proteins in Limnothrix sp., reduces carotenoid and allophycocyanin levels, and diminishes the actual quantum yield of Photosystem II (PSII). Moreover, p-CA significantly altered algal cell membrane protein systems, and PSII loss resulting from p-CA exposure promoted reactive oxygen species production. It significantly altered algae cell membrane protein systems. Finally, p-CA was found to be environmentally nontoxic; 80 % of 48-h-old Daphnia magna larvae survived when exposed to 0.15 g/L p-CA. These findings provide insight into the mechanism of cyanobacterial inhibition by p-CA, providing a more practical approach to controlling harmful algal blooms.
Collapse
Affiliation(s)
- Lingzhi Li
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Gengxin Xie
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Pan Dong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Hui Tang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Liping Wu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Liang Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
7
|
Peng P, Zhou L, Yilimulati M, Zhang S. Unleashing the power of acetylacetone: Effective control of harmful cyanobacterial blooms with ecological safety. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168644. [PMID: 38000755 DOI: 10.1016/j.scitotenv.2023.168644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Harmful algal blooms resulting from eutrophication pose a severe threat to human health. Acetylacetone (AA) has emerged as a potential chemical for combatting cyanobacterial blooms, but its real-world application remains limited. In this study, we conducted a 42-day evaluation of AA's effectiveness in controlling blooms in river water, with a focus on the interplay between ecological community structure, organism functional traits, and water quality. At a concentration of 0.2 mM, AA effectively suppressed the growth of Cyanobacteria (88 %), Bacteroidia (49 %), and Alphaproteobacteria (52 %), while promoting the abundance of Gammaproteobacteria (5.0 times) and Actinobacteria (7.2 times) that are associated with the degradation of organic matter. Notably, after dosing of AA, the OD680 (0.07 ± 0.02) and turbidity (8.6 ± 2.1) remained at a satisfactory level. AA induced significant disruptions in two photosynthesis and two biosynthesis pathways (P < 0.05), while simultaneously enriching eight pathways of xenobiotics biodegradation and metabolism. This enrichment facilitated the reduction of organic pollutants and supported improved water quality. Importantly, AA treatment decreased the abundance of two macrolide-related antibiotic resistance genes (ARGs), ereA and vatE, while slightly increased the abundance of two aminoglycoside-related ARGs, aacA and strB. Overall, our findings establish AA as an efficient and durable algicide with favorable ecological safety. Moreover, this work contributes to the development of effective strategies for maintaining and restoring the health and resilience of aquatic ecosystems impacted by harmful algal blooms.
Collapse
Affiliation(s)
- Peng Peng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lang Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mihebai Yilimulati
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
8
|
Wang X, Luo Y, Zhang S, Zhou L. Acetylacetone effectively controlled the secondary metabolites of Microcystis aeruginosa under simulated sunlight irradiation. J Environ Sci (China) 2024; 135:285-295. [PMID: 37778804 DOI: 10.1016/j.jes.2022.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 10/03/2023]
Abstract
Inactivation of cyanobacterial cells and simultaneous control of secondary metabolites is of significant necessity for the treatment of cyanobacteria-laden water. Acetylacetone (AcAc) has been reported a specific algicide to inactivate Microcystis aeruginosa (M. aeruginosa) and an effective light activator to degrade pollutants. This study systematically investigated the photodegradation ability of AcAc under xenon (Xe) irradiation on the secondary metabolites of M. aeruginosa, mainly algal organic matter (AOM), especially toxic microcystin-LR (MC-LR). Results showed that AcAc outperformed H2O2 in destructing the protein-like substances, humic acid-like matters, aromatic proteins and fulvic-like substances of AOM. For MC-LR (250 µg/L), 0.05 mmol/L AcAc attained the same degradation efficiency (87.0%) as 0.1 mmol/L H2O2. The degradation mechanism of Xe/AcAc might involve photo-induced energy/electron transfer and formation of carbon center radicals. Alkaline conditions (pH > 9.0) were detrimental to the photoactivity of AcAc, corresponding to the observed degradation rate constant (k1 value) of MC-LR drastically decreasing to 0.0013 min-1 as solution pH exceeded 9.0. The PO43- and HCO3- ions had obvious inhibition effects, whereas NO3- slightly improved k1 value from 0.0277 min-1 to 0.0321 min-1. The presence of AOM did not significantly inhibit MC-LR degradation in Xe/AcAc system. In addition, the biological toxicity of MC-LR was greatly reduced after photoreaction. These results demonstrated that AcAc was an alternative algicidal agent to effectively inactivate algal cells and simultaneously control the secondary metabolites after cell lysis. Nevertheless, the concentration and irradiation conditions should be further optimized in practical application.
Collapse
Affiliation(s)
- Xiaomeng Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yixin Luo
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shujuan Zhang
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Wang J, Chen W, Wang T, Reid E, Krall C, Kim J, Zhang T, Xie X, Huang CH. Bacteria and Virus Inactivation: Relative Efficacy and Mechanisms of Peroxyacids and Chlor(am)ine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18710-18721. [PMID: 36995048 PMCID: PMC10690719 DOI: 10.1021/acs.est.2c09824] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Peroxyacids (POAs) are a promising alternative to chlorine for reducing the formation of disinfection byproducts. However, their capacity for microbial inactivation and mechanisms of action require further investigation. We evaluated the efficacy of three POAs (performic acid (PFA), peracetic acid (PAA), and perpropionic acid (PPA)) and chlor(am)ine for inactivation of four representative microorganisms (Escherichia coli (Gram-negative bacteria), Staphylococcus epidermidis (Gram-positive bacteria), MS2 bacteriophage (nonenveloped virus), and Φ6 (enveloped virus)) and for reaction rates with biomolecules (amino acids and nucleotides). Bacterial inactivation efficacy (in anaerobic membrane bioreactor (AnMBR) effluent) followed the order of PFA > chlorine > PAA ≈ PPA. Fluorescence microscopic analysis indicated that free chlorine induced surface damage and cell lysis rapidly, whereas POAs led to intracellular oxidative stress through penetrating the intact cell membrane. However, POAs (50 μM) were less effective than chlorine at inactivating viruses, achieving only ∼1-log PFU removal for MS2 and Φ6 after 30 min of reaction in phosphate buffer without genome damage. Results suggest that POAs' unique interaction with bacteria and ineffective viral inactivation could be attributed to their selectivity toward cysteine and methionine through oxygen-transfer reactions and limited reactivity for other biomolecules. These mechanistic insights could inform the application of POAs in water and wastewater treatment.
Collapse
Affiliation(s)
- Junyue Wang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Wensi Chen
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ting Wang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Elliot Reid
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Caroline Krall
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Juhee Kim
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Tianqi Zhang
- School
of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique FÉdÉrale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Xing Xie
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ching-Hua Huang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
10
|
Ajayan KV, Chaithra PJ, Sridharan K, Sruthi P, Harikrishnan E, Harilal CC. Synergistic influence of iodine and hydrogen peroxide towards the degradation of harmful algal bloom of Microcystis aeruginosa. ENVIRONMENTAL RESEARCH 2023; 237:116926. [PMID: 37598850 DOI: 10.1016/j.envres.2023.116926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Cyanobacterial blooming due to the influence of temperature and increased nutrients in ponds/lakes aided by the runoff from agricultural lands, is a serious environmental issue. The presence of cyanotoxins in water may poison the health of aquatic organisms, animals, and humans. In this study, we focus on chemical assisted degradation of Microcystis aeruginosa- an alga that is of special relevance owing to its consistent blooming, especially in tropical regions. The study aims to ascertain the individual iodine (I) and hydrogen peroxide (H2O2) and their combination (hereinafter referred to as IH) effects on the degradation of Microcystis aeruginosa. As expected, the collected pond water revealed the presence of metal ions viz., Ni, Zn, Pb, Cu and Mn, which enriched the blooming of M. aeruginosa. Interestingly, a complete rupture of the cells - pigment loss, biochemical degradation and oxidative damage-was observed by the IH solution after exposure for ∼9 h under ambient conditions. In comparison to control (original water without chemicals), the addition IH completely eliminated the pigments phycocyanin (99.5%) and allophycocyanin (98%), and degraded ∼81% and 91% of carbohydrates and proteins, respectively due to the synergistic action of I and H. Superior degradation of algae through a simple and eco-friendly approach presented in this study could be explored more effectively towards its large-scale applicability.
Collapse
Affiliation(s)
- K V Ajayan
- Biomass Laboratory, Environmental Science Division, Department of Botany, University of Calicut, Tenjipalam, Malappuram, Kerala, 673 635, India.
| | - P J Chaithra
- Department of Environmental Science, University of Calicut, Tenjipalam, Malappuram, Kerala, 673635, India
| | - Kishore Sridharan
- Department of Nanoscience and Technology, University of Calicut, Tenjipalam, Malappuram, Kerala, 673635, India
| | - P Sruthi
- PG Department of Botany, Payyanur College, Kannur University, Edat, 670327, Kerala, India
| | - E Harikrishnan
- PG Department of Botany, Payyanur College, Kannur University, Edat, 670327, Kerala, India
| | - C C Harilal
- Biomass Laboratory, Environmental Science Division, Department of Botany, University of Calicut, Tenjipalam, Malappuram, Kerala, 673 635, India; Department of Environmental Science, University of Calicut, Tenjipalam, Malappuram, Kerala, 673635, India.
| |
Collapse
|
11
|
Hu J, Effiong K, Liu M, Xiao X. Broad spectrum and species specificity of plant allelochemicals 1,2-benzenediol and 3-indoleacrylic acid against marine and freshwater harmful algae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:166356. [PMID: 37595905 DOI: 10.1016/j.scitotenv.2023.166356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Allelochemicals derived from plants have shown great potential in mitigating harmful algal blooms (HABs), although different algal species can respond differently to these chemicals. Therefore, we first investigated the allelopathic effects of two newly identified plant-derived allelochemicals, 1,2-benzenediol (1,2-BD) and 3-indoleacrylic acid (3-IDC), on six algal species. Then we further evaluated the allelopathic responses of two bloom-forming species, Microcystis aeruginosa FACHB-905 and Heterosigma akashiwo to 1,2-BD. Results showed that 1,2-BD had a broader antialgal spectrum than 3-IDC. Allelopathic response analysis indicated that 1,2-BD consistently and stably inhibit the growth of M. aeruginosa FACHB-905, with inhibitory mechanism being disruption of photosynthetic activity, overwhelming of the antioxidant system and activation of programmed cell death (PCD). H. akashiwo displayed resistance to 1,2-BD during exposure, and the growth inhibition was mainly attributed to PCD. Therefore, the species-specific allelopathic responses provide new insights for controlling HABs using 1,2-BD and 3-IDC.
Collapse
Affiliation(s)
- Jing Hu
- Department of Marine Science, Ocean College, Zhejiang University, Zhoushan 316021, China; Key Laboratory of Marine Ecological Monitoring and Restoration Technologies of Ministry of Natural Resources, Shanghai 201206, China
| | - Kokoette Effiong
- Department of Marine Science, Ocean College, Zhejiang University, Zhoushan 316021, China; Key Laboratory of Marine Ecological Monitoring and Restoration Technologies of Ministry of Natural Resources, Shanghai 201206, China; Department of Marine Biology, Akwa Ibom State University (AKSU), P.M.B 1157, Uyo, Akwa Ibom State, Nigeria
| | - Muyuan Liu
- Department of Marine Science, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Xi Xiao
- Department of Marine Science, Ocean College, Zhejiang University, Zhoushan 316021, China; Key Laboratory of Marine Ecological Monitoring and Restoration Technologies of Ministry of Natural Resources, Shanghai 201206, China; Donghai Laboratory, Zhoushan, Zhejiang 316021, China; Key Laboratory of Watershed Non-point Source Pollution Control and Water Eco-security of Ministry of Water Resources, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Brentjens ET, Beall EAK, Zucker RM. Analysis of Microcystis aeruginosa physiology by spectral flow cytometry: Impact of chemical and light exposure. PLOS WATER 2023; 2:1-30. [PMID: 38516272 PMCID: PMC10953801 DOI: 10.1371/journal.pwat.0000177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
M. aeruginosa fluorescent changes were observed using a Cytek Aurora spectral flow cytometer that contains 5 lasers and 64 narrow band detectors located between 365 and 829 nm. Cyanobacteria were treated with different concentrations of H2O2 and then monitored after exposure between 1 and 8 days. The red fluorescence emission derived from the excitation of cyanobacteria with a yellow green laser (550 nm) was measured in the 652-669 nm detector while green fluorescence from excitation with a violet laser (405 nm) was measured in the 532-550 nm detector. The changes in these parameters were measured after the addition of H2O2. There was an initial increase in red fluorescence intensity at 24 hours. This was followed by a daily decrease in red fluorescence intensity. In contrast, green fluorescence increased at 24 hours and remained higher than the control for the duration of the 8-day study. A similar fluorescence intensity effect as H2O2 on M. aeruginosa fluorescence emissions was observed after exposure to acetylacetone, diuron (DCMU), peracetic acid, and tryptoline. Minimal growth was also observed in H2O2 treated cyanobacteria during exposure of H2O2 for 24 days. In another experiment, H2O2-treated cyanobacteria were exposed to high-intensity blue (14 mW) and UV (1 mW) lights to assess the effects of light stress on fluorescence emissions. The combination of blue and UV light with H2O2 had a synergistic effect on M. aeruginosa that induced greater fluorescent differences between control and treated samples than exposure to either stimulus individually. These experiments suggest that the early increase in red and green fluorescence may be due to an inhibition in the ability of photosynthesis to process photons. Further research into the mechanisms driving these increases in fluorescence is necessary.
Collapse
Affiliation(s)
- Emma T. Brentjens
- Oak Ridge Institute for Science and Education Research Participation Program hosted by U.S. Environmental Protection Agency, Oak Ridge, TN, United States of America
| | - Elizabeth A. K. Beall
- Oak Ridge Institute for Science and Education Research Participation Program hosted by U.S. Environmental Protection Agency, Oak Ridge, TN, United States of America
| | - Robert M. Zucker
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Office of Research and Development, RTP, NC, United States of America
| |
Collapse
|
13
|
Yu S, Xu C, Tang T, Zhang Y, Effiong K, Hu J, Bi Y, Xiao X. Down-regulation of iron/zinc ion transport and toxin synthesis in Microcystis aeruginosa exposed to 5,4'-dihydroxyflavone. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132396. [PMID: 37672994 DOI: 10.1016/j.jhazmat.2023.132396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
Flavonoids, common natural polyphenolic compounds from plants, have been proposed as highly effective and safe algicides. However, the molecular mechanism of flavonoids inhibiting Microcystis aeruginosa remains unclear. This study aims in exploring the global transcriptional changes and molecular docking in cyanobacterial cells in response to flavonoids. Transcriptomic analysis revealed that 5,4'-dihydroxyflavone (DHF) primarily affected the genes transcription of iron and zinc ion transport, resulting in the blockage of transport for iron (II), iron (III) and zinc (II), which eventually led to a decrease in intracellular iron and zinc content. 5,4'-DHF can also interfere with iron and zinc transport by binding to metal ion transport-related proteins, leading to eliminated biological activities in M. aeruginosa. Meanwhile, 5,4'-DHF inhibit microcystin synthesis and reduce the content of intercellular toxin by inhibiting the transcription of mcyC and binding with McyC protein, implying that 5,4'-DHF have potential to reduce the risk of microcystins in the environment. Moreover, iron starvation and down-regulation of photosynthesis-related genes transcription led to the inhibition of electron transport in photosynthetic system. These results provide more information for the inhibitory mechanism of flavonoids, and the inhibition of flavonoids on metal ion transmembrane transport provides a new perspective for the development of allelochemical algicides.
Collapse
Affiliation(s)
- Shumiao Yu
- Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan, Zhejiang 316021, China; Key Laboratory of Marine Ecological Monitoring and Restoration Technologies of the Ministry of Natural Resources of China, Shanghai 201206, China; Donghai Laboratory, Zhoushan, Zhejiang 316021, China
| | - Caicai Xu
- Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan, Zhejiang 316021, China
| | - Tao Tang
- Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan, Zhejiang 316021, China
| | - Yiyi Zhang
- Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan, Zhejiang 316021, China
| | - Kokoette Effiong
- Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan, Zhejiang 316021, China
| | - Jing Hu
- Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan, Zhejiang 316021, China
| | - Yonghong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xi Xiao
- Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan, Zhejiang 316021, China; Key Laboratory of Marine Ecological Monitoring and Restoration Technologies of the Ministry of Natural Resources of China, Shanghai 201206, China; Donghai Laboratory, Zhoushan, Zhejiang 316021, China; Key Laboratory of Watershed Non-point Source Pollution Control and Water Eco-security of Ministry of Water Resources, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Zhang C, Zhang G, Jin J, Zheng H, Zhou Z, Zhang S. Selenite-Catalyzed Reaction between Benzoquinone and Acetylacetone Deciphered the Enhanced Inhibition on Microcystis aeruginosa Growth. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6188-6195. [PMID: 37011377 DOI: 10.1021/acs.est.2c09682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The coexistence of selenite (Se(IV)) and acetylacetone (AA) generated a synergistic effect on the growth inhibition of a bloom-forming cyanobacterium, Microcystis aeruginosa. The mechanism behind this phenomenon is of great significance in the control of harmful algal blooms. To elucidate the role of Se(IV) in this effect, the reactions in ternary solutions composed of Se(IV), AA (or two other similar hydrogen donors), and quinones, especially benzoquinone (BQ), were investigated. The transformation kinetic results demonstrate that Se(IV) played a catalytic role in the reactions between AA (or ascorbic acid) and quinones. By comparison with five other oxyanions (sulfite, sulfate, nitrite, nitrate, and phosphate) and two AA derivatives, the formation of an AA-Se(IV) complexation intermediate was confirmed as a key step in the accelerated reactions between BQ and AA. To our knowledge, this is the first report on Se(IV) as a catalyst for quinone-involved reactions. Since both quinones and Se are essential in cells and there are many other chemicals of similar electron-donating properties to that of AA, the finding here shed light on the regulation of electron transport chains in a variety of processes, especially the redox balances that are tuned by quinones and glutathione.
Collapse
Affiliation(s)
- Chengyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Guoyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jiyuan Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Hongcen Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Zhiwei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
15
|
Guo Y, Zhao X, Yao Z, Qian Z, Wang Y, Xian Q. The effects of exogenous amino acids on production of microcystin variants in Microcystis aeruginosa. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106525. [PMID: 37087861 DOI: 10.1016/j.aquatox.2023.106525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/25/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Dissolved free amino acids are a significant component of dissolved organic nitrogen (DON) in natural waterbodies. The effects of four amino acids (glutamic acid, phenylalanine, leucine, and arginine) on the growth and microcystins (MCs) production of Microcystis aeruginosa were studied in batch culture. The profiles of five MCs variants and the expression levels of target genes involved in MCs biosynthesis and nitrogen metabolism were measured. When amino acids were used as the sole nitrogen source instead of nitrate at different levels (0.5, 2.0 and 8.0 mg/L based on N) in BG-11 medium, algal cell growth and intracellular MCs quotas were inhibited slightly by the treatments with glutamic acid and arginine. The treatments with phenylalanine and leucine, on the other hand, had a strong inhibitory effect on algal cell growth and MCs production. Moreover, the concentrations of Chlorophyll a, phycocyanin and allophycocyanin in cells cultured in glutamic acid, leucine and phenylalanine were lower than those in the control group with nitrate as nitrogen source. The existence of leucine or phenylalanine can lead to a significant increase in the relative abundance of MCs variants structured with the corresponding amino acids. The expression of microcystin-producing gene mcyD was downregulated while the gene pipX associated with nitrogen metabolism was upregulated during the cultivation of M. aeruginosa with amino acids as sole nitrogen source. M. aeruginosa undergoes significant alterations due to exogenous amino acids and exhibits advanced strategies for MCs production.
Collapse
Affiliation(s)
- Yaxin Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiating Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zongcheng Yao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zongyao Qian
- Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Yuting Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
16
|
Zhang X, Yang X, Huang Y, Hu J, Wu D, Yang N, Wang H. 2-Hydroxychalcone as a Novel Natural Photosynthesis Inhibitor against Bloom-Forming Cyanobacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15069-15079. [PMID: 36444958 DOI: 10.1021/acs.jafc.2c06665] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The control of harmful cyanobacterial blooms has been becoming a global challenge. The development of eco-friendly algicides with strong specificity is urgently needed. The photosynthetic apparatus is a promising target site for algicides to minimize the possible harmful effects on animals and humans. In this study, biologically derived 2-hydroxychalcone efficiently inhibited the growth of bloom-forming M. aeruginosa by selectively interfering with photosynthesis. 2-Hydroxychalcone targeting Photosystem II (PSII) inhibited electron transfer between the primary and secondary electron acceptors (QA and QB) and the binding of plastoquinone (PQ) molecules to the QB binding pocket at the acceptor side of PSII, as revealed by polyphasic chlorophyll (Chl) a fluorescence induction and QA- reoxidation kinetics. Molecular docking for 2-hydroxychalcone to D1 protein and the proteomic responses of M. aeruginosa suggested that 2-hydroxychalcone formed a stable monodentate ligand with the nonheme iron in D1 protein, provoking significant modulation of PSII proteins. The unique binding mode of 2-hydroxychalcone with PSII differentiated it from classical PSII inhibitors. Furthermore, 2-hydroxychalcone down-regulated the expression of microcystin (MC) synthesis-related genes to restrain MC synthesis and release. These results indicated the potential application of 2-hydroxychalcone as an algicide or a template scaffold for designing novel derivatives with superior algicidal activity.
Collapse
Affiliation(s)
- Xin Zhang
- College of Life Sciences, South-Central Minzu University, Wuhan, Hubei430074, China
| | - Xu Yang
- College of Life Sciences, South-Central Minzu University, Wuhan, Hubei430074, China
| | - Yichen Huang
- College of Life Sciences, South-Central Minzu University, Wuhan, Hubei430074, China
| | - Jinlu Hu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi710072, China
| | - Diao Wu
- College of Life Sciences, South-Central Minzu University, Wuhan, Hubei430074, China
| | - Niu Yang
- College of Life Sciences, South-Central Minzu University, Wuhan, Hubei430074, China
| | - Haiying Wang
- College of Life Sciences, South-Central Minzu University, Wuhan, Hubei430074, China
| |
Collapse
|
17
|
Xu C, Yu S, Hu J, Effiong K, Ge Z, Tang T, Xiao X. Programmed cell death process in freshwater Microcystis aeruginosa and marine Phaeocystis globosa induced by a plant derived allelochemical. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156055. [PMID: 35598674 DOI: 10.1016/j.scitotenv.2022.156055] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/25/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Harmful algal blooms (HAB) are a serious problem worldwide. Allelochemicals from natural plants were recently thought to be promising anti-algaecide in controlling harmful algae. However, the programmed cell death (PCD) process of algae under allelopathic pressure induced by 5,4'-dihydroxyflavone (5,4'-DHF) was poorly understood. In this study, two common and worldwide distributed microalgae, Microcystis aeruginosa and Phaeocystis globosa were selected as target algae, and the PCD processes induced by 5,4'-DHF were cross-compared between the two species. Both algae species were inhibited significantly by 5,4'-DHF with the relative sensitivity of 0.11. To uncover the PCD progress systematically, signals for PCD triggering, antioxidant enzyme activity, photosynthetic ability variation, caspase-like activities and typical indicators were investigated. In both species, typical indicators of PCD - phosphatidylserine externalization and chromatin condensation - were detected. The intracellular reactive oxygen species (ROS), nitric oxide (NO) and H2O2 were the potential signal molecules to stimulate PCD, and caspase-like activities were activated with an elevation of cytochrome c indicating the initiation of PCD in both species. However, P. globosa responded to 5,4'-DHF immediately after 3 h with the elevation of ROS and not in M. aeruginosa. Antioxidant enzyme activities of superoxide dismutase (SOD) and catalase (CAT) in M. aeruginosa and P. globosa also showed different patterns on day 3. Specifically, SOD activity in M. aeruginosa increased significantly while it decreased significantly in P. globosa, CAT activity in M. aeruginosa decreased significantly while it increased significantly in P. globosa (p < 0.05). Malondialdehyde (MDA) content in P. globosa increased significantly (p < 0.001) while it showed no variation in M. aeruginosa. Overall, this study is one of the earliest studies to explore the inhibition and action mechanism of plant derived flavonoids on harmful algae from the perspective of PCD, and provide new insights into the antialgal mechanism of allelochemicals.
Collapse
Affiliation(s)
- Caicai Xu
- Zhejiang University, Ocean College, 1 Zheda Road, Zhoushan, Zhejiang 316000, China
| | - Shumiao Yu
- Zhejiang University, Ocean College, 1 Zheda Road, Zhoushan, Zhejiang 316000, China
| | - Jing Hu
- Zhejiang University, Ocean College, 1 Zheda Road, Zhoushan, Zhejiang 316000, China
| | - Kokoette Effiong
- Zhejiang University, Ocean College, 1 Zheda Road, Zhoushan, Zhejiang 316000, China
| | - Zhiwei Ge
- Zhejiang University, Analysis Center of Agrobiology and Environmental Sciences, Hangzhou 310058, China
| | - Tao Tang
- Zhejiang University, Ocean College, 1 Zheda Road, Zhoushan, Zhejiang 316000, China
| | - Xi Xiao
- Zhejiang University, Ocean College, 1 Zheda Road, Zhoushan, Zhejiang 316000, China; Key Laboratory of Watershed Non-point Source Pollution Control and Water Eco-security of Ministry of Water Resources, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
18
|
Chotpatiwetchkul W, Chotsaeng N, Laosinwattana C, Charoenying P. Structure-Activity Relationship Study of Xanthoxyline and Related Small Methyl Ketone Herbicides. ACS OMEGA 2022; 7:29002-29012. [PMID: 36033657 PMCID: PMC9404509 DOI: 10.1021/acsomega.2c02704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/29/2022] [Indexed: 05/26/2023]
Abstract
Xanthoxyline (1), a small natural methyl ketone, was previously reported as a plant growth inhibitor. In this research, related methyl ketones bearing electron-donating and electron-withdrawing groups, together with heteroaromatics, were investigated against seed germination and seedling growth of Chinese amaranth (Amaranthus tricolor L.) and barnyard grass [Echinochloa crus-galli (L.) Beauv]. The structure-activity relationships (SARs) of methyl ketone herbicides were clarified, and which types and positions of substituents were crucially important for activity were also clarified. Indole derivatives, namely, 3-acetylindole (43) and 3-acetyl-7-azaindole (44) were found to be the most active methyl ketones that highly suppressed plant growth at low concentrations. The molecular docking on the 4-hydroxyphenylpyruvate dioxygenase (HPPD) enzyme indicated that carbonyl, aromatic, and azaindole were key interactions of HPPD inhibitors. This finding would be useful for the development of small ketone herbicides.
Collapse
Affiliation(s)
- Warot Chotpatiwetchkul
- Department
of Chemistry, School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Nawasit Chotsaeng
- Department
of Chemistry, School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
- Integrated
Applied Chemistry Research Unit, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Chamroon Laosinwattana
- Department
of Plant Production Technology, School of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Patchanee Charoenying
- Department
of Chemistry, School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
19
|
Yilimulati M, Zhou L, Shevela D, Zhang S. Acetylacetone Interferes with Carbon and Nitrogen Metabolism of Microcystis aeruginosa by Cutting Off the Electron Flow to Ferredoxin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9683-9692. [PMID: 35696645 DOI: 10.1021/acs.est.2c00776] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The regulation of photosynthetic machinery with a nonoxidative approach is a powerful but challenging strategy for the selective inhibition of bloom-forming cyanobacteria. Acetylacetone (AA) was recently found to be a target-selective cyanocide for Microcystis aeruginosa, but the cause and effect in the studied system are still unclear. By recording of the chemical fingerprints of the cells at two treatment intervals (12 and 72 h with 0.1 mM AA) with omics assays, the molecular mechanism of AA in inactivating Microcystis aeruginosa was elucidated. The results clearly reveal the effect of AA on ferredoxin and the consequent effects on the physiological and biochemical processes of Microcystis aeruginosa. In addition to its role as an electron acceptor of photosystem I, ferredoxin plays pivotal roles in the assimilation of nitrogen in cyanobacterial cells. The effect of AA on ferredoxin and on nonheme iron of photosystem II first cut off the photosynthetic electron transfer flow and then interrupted the synthesis of adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide phosphate (NADPH), which ultimately might affect carbon fixation and nitrogen assimilation metabolisms. The results here provide missing pieces in the current knowledge on the selective inhibition of cyanobacteria, which should shed light on the better control of harmful blooms.
Collapse
Affiliation(s)
- Mihebai Yilimulati
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Lang Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Dmitry Shevela
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187 Umeå, Sweden
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
20
|
Sang W, Du C, Liu X, Ni L, Li S, Xu J, Chen X, Xu J, Xu C. Effect of artemisinin sustained-release algaecide on the growth of Microcystis aeruginosa and the underlying physiological mechanisms. RSC Adv 2022; 12:16094-16104. [PMID: 35733687 PMCID: PMC9150219 DOI: 10.1039/d2ra00065b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/03/2022] [Indexed: 11/21/2022] Open
Abstract
The aim of the study was to determine the effect of phycobiliprotein and esterase activity of Microcystis aeruginosa cells on the effect of artemisinin slow-release algaecide. We analyzed the sustained stress of artemisinin slow-release algaecide and the associated changes in density, phycobiliprotein, and esterase activity in Microcystis aeruginosa (M. aeruginosa) and monitored changes in the physical and chemical properties of the algae during the process. The results showed that the cumulative release concentration of artemisinin sustained-release algaecide in different media was similar. When the total amount of artemisinin was kept at 5.00–5.30 mg L−1, the effect of artemisinin on algal cells and the release amount of slow-release algicides reached a dynamic balance, and the equilibrium concentration could inhibit the growth of M. aeruginosa. Artemisinin slow-release algaecide slowly released artemisinin and inhibited the content of phycobiliprotein in M. aeruginosa. The esterase activity recovered after 15 days and continued to increase. Artemisinin showed no harmful effect on M. aeruginosa and increased the metabolic activity of algal cells. M. aeruginosa may undergo programmed cell death, keeping the cell membrane structure intact. The use of micro-nano materials can increase the effect of allelochemicals on Microcystis aeruginosa. The slow release of allelopathic active substances from the algae inhibitor reduces the algal density of Microcystis aeruginosa cells. However, the enhanced metabolic activity of algal cells may be due to artemisinin causing PCD in Microcystis cells, keeping the cell membrane structure intact, thereby preventing algal cell rupture and release of a large amount of algal toxins. This study focuses on changes in algal density, phycobiliprotein and esterase activity of M. aeruginosa under the continuous stress of artemisinin sustained-release algaecide and the analysis of the physicochemical changes in the algae.![]()
Collapse
Affiliation(s)
- Wenlu Sang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, School of Environment, Hohai University Nanjing 210098 China
| | - Cunhao Du
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, School of Environment, Hohai University Nanjing 210098 China
| | - Xiaguo Liu
- Jiangsu Environmental Protection Group Suzhou Co., Ltd Suzhou 215000 China
| | - Lixiao Ni
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, School of Environment, Hohai University Nanjing 210098 China
| | - Shiyin Li
- School of Environment, Nanjing Normal University Nanjing 210097 China
| | - Jiawei Xu
- College of Water Conservancy and Hydropower Engineering, Hohai University 1 Xikang Road Nanjing 210098 China
| | - Xuqing Chen
- Cyanobacteria Management Office Wuxi 214071 China
| | - Jian Xu
- Cyanobacteria Management Office Wuxi 214071 China
| | - Chu Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, School of Environment, Hohai University Nanjing 210098 China
| |
Collapse
|