1
|
Ma L, Zhang J, Gao W, Wang X, Lu X, Wang H, Chen L, Sapsford DJ, Zhou J. Distinct mechanisms of stibnite (Sb 2S 3) oxidative dissolution mediated by acid-generating and alkali-generating microorganisms within a wide pH range. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138141. [PMID: 40179781 DOI: 10.1016/j.jhazmat.2025.138141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/05/2025]
Abstract
Indigenous microorganisms in antimony mining areas facilitate stibnite dissolution over a wide pH range, yet their mechanisms remain poorly studied. Herein, the acid-generating Bosea sp. AS-1 and the alkali-generating Pseudomonas sp. PS-3 were selected to interact with stibnite (Sb2S3) under initial acidic (pH value = 5) and alkaline (pH value = 8) conditions, respectively. Results indicated that AS-1 and PS-3 promoted stibnite dissolution compared to the sterile control irrespective of initial pH conditions, but through distinct mechanisms. AS-1 oxidized sulfide to sulfate by regulating the expression of SoxB and SoxC genes, thereby driving the stibnite dissolution and oxidation. Up to 18.63 mg/L total antimony (Sb(tot)) was released and the dissolved Sb(III) was completely oxidized to Sb(V). Moreover, AS-1 prevented the passivation layer formation by inhibiting sulfur oxidation intermediates accumulation. Conversely, PS-3 could not oxidize sulfur, but produced more extracellular polymeric substances which bound microorganisms closely to stibnite. The stibnite dissolution was facilitated through pH elevation from 5.0 to above 9.0 mediated by PS-3, releasing up to 35.56 mg/L Sb(tot). However, the accumulated sulfur oxidation intermediates facilitated the passivation layer formation, inhibiting further dissolution of stibnite. Additionally, less than 44 % of the soluble Sb(III) was oxidized to Sb(V). These results contribute to understanding the microbial-mediated transformation, mobilization and oxidation of antimony.
Collapse
Affiliation(s)
- Liyuan Ma
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Hunan Provincial Key Laboratory of Geochemical Processes and Resource Environmental Effects, Changsha, Hunan 410114, China; School of Engineering, Cardiff University, Cardiff CF243AA, United Kingdom.
| | - Jingkang Zhang
- Institute of Geological Survey, China University of Geosciences, Wuhan 430074, China
| | - Weikang Gao
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xingjie Wang
- Hunan Provincial Key Laboratory of Geochemical Processes and Resource Environmental Effects, Changsha, Hunan 410114, China; School of Engineering, Cardiff University, Cardiff CF243AA, United Kingdom; Institute of Geological Survey, China University of Geosciences, Wuhan 430074, China
| | - Xiaolu Lu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Hongmei Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Liran Chen
- Hunan Provincial Key Laboratory of Geochemical Processes and Resource Environmental Effects, Changsha, Hunan 410114, China
| | - Devin J Sapsford
- School of Engineering, Cardiff University, Cardiff CF243AA, United Kingdom
| | - Jianwei Zhou
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
2
|
Jing E, Yan L, Jiang G, Le XC. Environmental studies of priority persistent contaminants: A special issue dedicated to Professor Chuanyong Jing. J Environ Sci (China) 2025; 153:1-5. [PMID: 39855782 DOI: 10.1016/j.jes.2024.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Affiliation(s)
- Emma Jing
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada; University of Minnesota, Minneapolis, MN 55455, USA
| | - Li Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada.
| |
Collapse
|
3
|
Abu-Tahon MA, Housseiny MM, Aboelmagd HI, Daifalla N, Khalili M, Isichei AC, Ramadan A, Abu El-Saad AM, Seddek NH, Ebrahim D, Ali YH, Saeed IK, Rikabi HA, Eltaib L. A holistic perspective on the efficiency of microbial enzymes in bioremediation process: Mechanism and challenges: A review. Int J Biol Macromol 2025; 308:142278. [PMID: 40132713 DOI: 10.1016/j.ijbiomac.2025.142278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
Industrial activities, pharmaceutical contaminants, excessive agricultural inputs, and improper waste disposal have contributed to the widespread pollution of soil and water. Traditional remediation techniques, while effective, often generate secondary waste and are economically unfeasible. In contrast, microbial bioremediation offers a sustainable and cost-effective alternative by utilizing microorganisms and their enzymatic systems to degrade and detoxify pollutants. This review investigates the potential of microbial enzymes in remediation strategies for removing heavy metals and pharmaceutical contaminants from polluted environments. It analyzes the fundamental mechanisms by which microorganisms sequester and degrade these pollutants, emphasizing the enzymatic processes that facilitate their breakdown. Furthermore, it explores key microbial factors influencing bioremediation efficiency, including microbial diversity and environmental conditions. Additionally, it examines the challenges associated with scaling these bioremediation strategies for global environmental applications and provides insights for future research and implementation.
Collapse
Affiliation(s)
- Medhat A Abu-Tahon
- Department of Biological Sciences, College of Science, Northern Border University, Arar, Saudi Arabia.
| | - Manal M Housseiny
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Roxy, Heliopolis, P.C.11757, Cairo, Egypt
| | - Heba I Aboelmagd
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Nada Daifalla
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - May Khalili
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Adaugo C Isichei
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Abeer Ramadan
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Ahmed M Abu El-Saad
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Nermien H Seddek
- Department of Respiratory Care, College of Applied Medical Sciences-Jubail 4030, Imam Abdulrahman Bin Faisal University, Al Jubail, Saudi Arabia
| | - Doaa Ebrahim
- Department of Respiratory Care, College of Applied Medical Sciences-Jubail 4030, Imam Abdulrahman Bin Faisal University, Al Jubail, Saudi Arabia
| | - Yahia H Ali
- Department of Biological Sciences, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Intisar K Saeed
- Department of Biological Sciences, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Hind A Rikabi
- Department of Pharmacy Practice, College of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | - Lina Eltaib
- Department of Pharmaceutics, College of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| |
Collapse
|
4
|
da Costa L, Zopfi J, Alewell C, Lehmann MF, Lenz M. Antimony mobility in soils: current understanding and future research directions. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:833-848. [PMID: 40109006 DOI: 10.1039/d4em00743c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Antimony (Sb) has gained increased attention over the past few decades due to its possible detrimental effects on biota and its potential to leach and disperse from contaminated soils. The fate of Sb in the environment is largely controlled by its chemical speciation, as well as the speciation of solid phases (e.g. Mn/Fe-oxyhydroxides) that interact with Sb in soils. Microbes have the capacity to facilitate a multitude of oxidation and reduction reactions in soils. Therefore, they exert control over the reactivity of Sb in the environment, either directly and/or indirectly, by changing Sb speciation and/or affecting the redox state of soil solid phases. Here, we outline processes that determine the behaviour of Sb in soils. We conclude that based on laboratory studies there is a good theoretical understanding of pure soil components interacting with Sb species. However, comparatively little is known concerning the contribution of these interactions in complex natural systems that are dynamic in terms of biogeochemical conditions and that can hardly be simulated using laboratory incubations. We note that important biochemical foundations of microbially driven Sb conversions (i.e. molecular constraints on organisms, genes and enzymes involved) have emerged recently. Again, these are based on laboratory incubations and investigations in environments high in Sb. In this regard, an important remaining question is which microorganisms actively impact Sb speciation under real-world conditions, in particular where Sb concentrations are low. Multiple dissolved Sb species have been described in the literature. We note that more analytical development is needed to identify and quantify possible key Sb species in natural systems, as well as anthropogenically impacted environments with only moderate Sb concentrations. With these research needs addressed, we believe that the Sb fate in the environment can be more accurately assessed, and remediation options can be developed.
Collapse
Affiliation(s)
- Lara da Costa
- Institute for Ecopreneurship, School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Hofackerstrasse 30, 4132 Muttenz, Switzerland.
- University of Basel, Department of Environmental Science, Bernoullistrasse 30, 4056 Basel, Switzerland
| | - Jakob Zopfi
- University of Basel, Department of Environmental Science, Bernoullistrasse 30, 4056 Basel, Switzerland
| | - Christine Alewell
- University of Basel, Department of Environmental Science, Bernoullistrasse 30, 4056 Basel, Switzerland
| | - Moritz F Lehmann
- University of Basel, Department of Environmental Science, Bernoullistrasse 30, 4056 Basel, Switzerland
| | - Markus Lenz
- Institute for Ecopreneurship, School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Hofackerstrasse 30, 4132 Muttenz, Switzerland.
- Department of Environmental Technology, Wageningen University, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
5
|
Zhang T, Li H, Wu Y, Yuan Y, Du Y. Enhanced bio-reduction of Cr(VI) using Shewanella putrefaciens CN32 mediated by Fe(III) minerals and riboflavin synergistically. Biodegradation 2025; 36:25. [PMID: 40131546 DOI: 10.1007/s10532-025-10120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Iron minerals and the coupling of electron shuttle media can effectively overcome the problem of the insolubility of iron minerals and the higher cross-medium resistance consequently to enhance the bio-reduction rate of Cr(VI) by dissimilatory metal-reducing bacteria (DMRB). This study explored the potential synergistic enhancement of Cr(VI) bio-reduction by Shewanella putrefaciens CN32 in combination with three iron minerals (ferrihydrite, goethite and hematite) and riboflavin (RF). The addition of RF accelerates the transfer of electrons from bacterial cells to Fe minerals, which in turn promotes the production of large amounts of Fe(II). The results indicated that compared to the control group, the Cr(VI) reduction rates in the CN32/RF/hematite, goethite, ferrihydrite systems increased to 93.03%, 91.07%, and 86.83%, hematite was capable of generating 2.24 mM Fe(II) due to its stable structure and efficient synergy with riboflavin. Enhancement factor(EF) was used to quantify the synergistic effect of RF and iron minerals on the bio-reduction of Cr(VI). At all three reaction times, the FEF (KCN32+RF+Fe/KCN32) of three Fe(III) minerals were all greater than 1. XPS analysis revealed that the primary reduction products of Cr(VI) were identified as Cr(CH3C(O)CHC(O)CH3)3, Cr2O3 and Fe(II)-Cr(III) hydroxide, were predominantly deposited on both bacterial and mineral surfaces, thereby influencing their synergistic interactions. This study unveiled the dynamic synergistic mechanism changes of Cr(VI) reduction in different iron minerals environment,which offers new ideas for the remediation of Cr(VI) pollution.
Collapse
Affiliation(s)
- Tianle Zhang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Yichen Wu
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Yajue Yuan
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Yu Du
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
6
|
Rong Q, Zhang C, Ling C, Lu D, Jiang L. Mechanism of extracellular electron transport and reactive oxygen mediated Sb(III) oxidation by Klebsiella aerogenes HC10. J Environ Sci (China) 2025; 147:11-21. [PMID: 39003033 DOI: 10.1016/j.jes.2023.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 07/15/2024]
Abstract
Microbial oxidation and the mechanism of Sb(III) are key governing elements in biogeochemical cycling. A novel Sb oxidizing bacterium, Klebsiella aerogenes HC10, was attracted early and revealed that extracellular metabolites were the main fractions driving Sb oxidation. However, linkages between the extracellular metabolite driven Sb oxidation process and mechanism remain elusive. Here, model phenolic and quinone compounds, i.e., anthraquinone-2,6-disulfonate (AQDS) and hydroquinone (HYD), representing extracellular oxidants secreted by K. aerogenes HC10, were chosen to further study the Sb(III) oxidation mechanism. N2 purging and free radical quenching showed that oxygen-induced oxidation accounted for 36.78% of Sb(III) in the metabolite reaction system, while hydroxyl free radicals (·OH) accounted for 15.52%. ·OH and H2O2 are the main driving factors for Sb oxidation. Radical quenching, methanol purification and electron paramagnetic resonance (EPR) analysis revealed that ·OH, superoxide radical (O2•-) and semiquinone (SQ-•) were reactive intermediates of the phenolic induced oxidation process. Phenolic-induced ROS are one of the main oxidants in metabolites. Cyclic voltammetry (CV) showed that electron transfer of quinone also mediated Sb(III) oxidation. Part of Sb(V) was scavenged by the formation of the secondary Sb(V)-bearing mineral mopungite [NaSb(OH)6] in the incubation system. Our study demonstrates the microbial role of oxidation detoxification and mineralization of Sb and provides scientific references for the biochemical remediation of Sb-contaminated soil.
Collapse
Affiliation(s)
- Qun Rong
- College of Resources, Environment and Materials Guangxi University, Nanning 530004, China; School of Environment and Life Science, Nanning Normal University, Nanning 530001, China
| | - Chaolan Zhang
- College of Resources, Environment and Materials Guangxi University, Nanning 530004, China.
| | - Caiyuan Ling
- College of Resources, Environment and Materials Guangxi University, Nanning 530004, China
| | - Dingtian Lu
- College of Resources, Environment and Materials Guangxi University, Nanning 530004, China
| | - Linjiang Jiang
- College of Resources, Environment and Materials Guangxi University, Nanning 530004, China
| |
Collapse
|
7
|
Zhou Z, Yu H, Wang G, Li M, Shi K. High antimony resistance strain Enterobacter sp. Z1 mediates biomineralization of antimony trioxide. ENVIRONMENT INTERNATIONAL 2025; 195:109237. [PMID: 39721567 DOI: 10.1016/j.envint.2024.109237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/03/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
The increasing antimony (Sb) contamination prevalence poses a concern owing to its toxicity and potential carcinogenic properties. However, mechanisms underlying the microbial conversion of soluble Sb into insoluble Sb minerals remain unclear. In the present study, Enterobacter sp. Z1 strain demonstrated remarkable resistance to antimony potassium tartrate [Sb(III)] (>250 mM) in R2A medium. Furthermore, Enterobacter sp. Z1 produced antimony trioxide (Sb2O3) via biomineralization during cultivation. Omics analysis revealed the upregulation of pyruvate metabolism and accumulation of DL-3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) in the presence of Sb(III).Using pyruvate as the sole carbon source in a chemically defined medium significantly enhanced Sb(III) biomineralization ratio from 20.8 % to 90.4 % compared with that using R2A medium. Additionally, reduced Sb(III) biomineralization and intracellular pH levels were observed following aceE gene knockout in Enterobacter sp. Z1. However, this impaired phenotype was rescued by complementing the aceE gene or introducing purified AceE into the bacterial lysates. Notably, AceE exhibited binding affinity for Sb(III). Our findings revealed the pyruvate-HMG-CoA pathway as the mechanism underlying Sb biomineralization, facilitating the release of Sb ions from tartrate and maintaining intracellular pH stability, thereby catalyzing Sb2O3 synthesis. This study provides insights into the Sb biogeochemical cycle.
Collapse
Affiliation(s)
- Zijie Zhou
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongbo Yu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Gejiao Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingshun Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaixiang Shi
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
8
|
Sheng H, Liu W, Wang Y, Ye L, Jing C. Incorporation of Shewanella oneidensis MR-1 and goethite stimulates anaerobic Sb(III) oxidation by the generation of labile Fe(III) intermediate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124008. [PMID: 38641038 DOI: 10.1016/j.envpol.2024.124008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Dissimilatory iron-reducing bacteria (DIRB) affect the geochemical cycling of redox-sensitive pollutants in anaerobic environments by controlling the transformation of Fe morphology. The anaerobic oxidation of antimonite (Sb(III)) driven by DIRB and Fe(III) oxyhydroxides interactions has been previously reported. However, the oxidative species and mechanisms involved remain unclear. In this study, both biotic phenomenon and abiotic verification experiments were conducted to explore the formed oxidative intermediates and related processes that lead to anaerobic Sb(III) oxidation accompanied during dissimilatory iron reduction. Sb(V) up to 2.59 μmol L-1 combined with total Fe(II) increased to 188.79 μmol L-1 when both Shewanella oneidensis MR-1 and goethite were present. In contrast, no Sb(III) oxidation or Fe(III) reduction occurred in the presence of MR-1 or goethite alone. Negative open circuit potential (OCP) shifts further demonstrated the generation of interfacial electron transfer (ET) between biogenic Fe(II) and goethite. Based on spectrophotometry, electron spin resonance (ESR) test and quenching experiments, the active ET production labile Fe(III) was confirmed to oxidize 94.12% of the Sb(III), while the contribution of other radicals was elucidated. Accordingly, we proposed that labile Fe(III) was the main oxidative species during anaerobic Sb(III) oxidation in the presence of DIRB and that the toxicity of antimony (Sb) in the environment was reduced. Considering the prevalence of DIRB and Fe(III) oxyhydroxides in natural environments, our findings provide a new perspective on the transformation of redox sensitive substances and build an eco-friendly bioremediation strategy for treating toxic metalloid pollution.
Collapse
Affiliation(s)
- Huamin Sheng
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Wenjing Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Yingjun Wang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Li Ye
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Chuanyong Jing
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
9
|
Li J, Yin Z, Xu K, Yan L, Ye L, Du J, Jing C, Shi J. Arsenite S-Adenosylmethionine Methyltransferase Is Responsible for Antimony Biomethylation in Nostoc sp. PCC7120. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1934-1943. [PMID: 38180751 DOI: 10.1021/acs.est.3c07367] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Antimony (Sb) biomethylation is an important but uninformed process in Sb biogeochemical cycling. Methylated Sb species have been widely detected in the environment, but the gene and enzyme for Sb methylation remain unknown. Here, we found that arsenite S-adenosylmethionine methyltransferase (ArsM) is able to catalyze Sb(III) methylation. The stepwise methylation by ArsM forms mono-, di-, and trimethylated Sb species. Sb(III) is readily coordinated with glutathione, forming the preferred ArsM substrate which is anchored on three conserved cysteines. Overexpressing arsM in Escherichia coli AW3110 conferred resistance to Sb(III) by converting intracellular Sb(III) into gaseous methylated species, serving as a detoxification process. Methylated Sb species were detected in paddy soil cultures, and phylogenetic analysis of ArsM showed its great diversity in ecosystems, suggesting a high metabolic potential for Sb(III) methylation in the environment. This study shows an undiscovered microbial process methylating aqueous Sb(III) into the gaseous phase, mobilizing Sb on a regional and even global scale as a re-emerging contaminant.
Collapse
Affiliation(s)
- Jianwei Li
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhipeng Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Kun Xu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Li Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Li Ye
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jingjing Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chuanyong Jing
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
10
|
Wang KL, Min D, Chen GL, Liu DF, Yu HQ. Oxidation of Sb(III) by Shewanella species with the assistance of extracellular organic matter. ENVIRONMENTAL RESEARCH 2023; 236:116834. [PMID: 37544466 DOI: 10.1016/j.envres.2023.116834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Antimony (Sb) is a toxic substance that poses a serious ecological threat when released into the environment. The species and redox state of Sb determine its environmental toxicity and fate. Understanding the redox transformations and biogeochemical cycling of Sb is crucial for analyzing and predicting its environmental behavior. Dissolved organic matter (DOM) in the environment greatly affects the fate of Sb. Microbially produced DOM is a vital component of environmental DOM; however, its specific role in Sb(III) oxidation has not been experimentally confirmed. In this work, the oxidation capacity of several Shewanella strains and their derived DOM to Sb(III) was confirmed. The oxidation rate of Sb(III) shows a positive correlation with DOM concentration, with higher rates observed under neutral and weak alkaline conditions, regardless of the presence of light. Incubation experiments indicated that extracellular enzymes and common reactive oxygen species were not involved in the oxidation of Sb(III). Characteristics of DOM suggests that microbial humic acid-like and fulvic acid-like substances are the potential contributors to Sb(III) oxidation. These findings not only experimentally validate the role of bacterial-derived DOM in Sb(III) oxidation but also reveal the significance of Shewanella and biogenic DOM in the biogeochemical cycling of Sb.
Collapse
Affiliation(s)
- Kai-Li Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Di Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| | - Guan-Lin Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
11
|
Narayanan M, Ali SS, El-Sheekh M. A comprehensive review on the potential of microbial enzymes in multipollutant bioremediation: Mechanisms, challenges, and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117532. [PMID: 36801803 DOI: 10.1016/j.jenvman.2023.117532] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Industrialization and other human activity represent significant environmental hazards. Toxic contaminants can harm a comprehensive platform of living organisms in their particular environments. Bioremediation is an effective remediation process in which harmful pollutants are eliminated from the environment using microorganisms or their enzymes. Microorganisms in the environment often create a variety of enzymes that can eliminate hazardous contaminants by using them as a substrate for development and growth. Through their catalytic reaction mechanism, microbial enzymes may degrade and eliminate harmful environmental pollutants and transform them into non-toxic forms. The principal types of microbial enzymes which can degrade most hazardous environmental contaminants include hydrolases, lipases, oxidoreductases, oxygenases, and laccases. Several immobilizations, genetic engineering strategies, and nanotechnology applications have been developed to improve enzyme performance and reduce pollution removal process costs. Until now, the practically applicable microbial enzymes from various microbial sources and their ability to degrade multipollutant effectively or transformation potential and mechanisms are unknown. Hence, more research and further studies are required. Additionally, there is a gap in the suitable approaches considering toxic multipollutants bioremediation using enzymatic applications. This review focused on the enzymatic elimination of harmful contaminants in the environment, such as dyes, polyaromatic hydrocarbons, plastics, heavy metals, and pesticides. Recent trends and future growth for effectively removing harmful contaminants by enzymatic degradation are also thoroughly discussed.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- Division of Research and Innovations, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 602 105, Tamil Nadu, India
| | - Sameh Samir Ali
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt; Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
12
|
Tan Y, El-Kersh K, Watson SE, Wintergerst KA, Huang J, Cai L. Cardiovascular Effects of Environmental Metal Antimony: Redox Dyshomeostasis as the Key Pathogenic Driver. Antioxid Redox Signal 2023; 38:803-823. [PMID: 36424825 PMCID: PMC10402706 DOI: 10.1089/ars.2022.0185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Significance: Cardiovascular diseases (CVDs) are the leading cause of death worldwide, which may be due to sedentary lifestyles with less physical activity and over nutrition as well as an increase in the aging population; however, the contribution of pollutants, environmental chemicals, and nonessential metals to the increased and persistent CVDs needs more attention and investigation. Among environmental contaminant nonessential metals, antimony has been less addressed. Recent Advances: Among environmental contaminant nonessential metals, several metals such as lead, arsenic, and cadmium have been associated with the increased risk of CVDs. Antimony has been less addressed, but its potential link to CVDs is being gradually recognized. Critical Issues: Several epidemiological studies have revealed the significant deleterious effects of antimony on the cardiovascular system in the absence or presence of other nonessential metals. There has been less focus on whether antimony alone can contribute to the pathogenesis of CVDs and the proposed mechanisms of such possible effects. This review addresses this gap in knowledge by presenting the current available evidence that highlights the potential role of antimony in the pathogenesis of CVDs, most likely via antimony-mediated redox dyshomeostasis. Future Directions: More direct evidence from preclinical and mechanistic studies is urgently needed to evaluate the possible roles of antimony in mitochondrial dysfunction and epigenetic regulation in CVDs. Antioxid. Redox Signal. 38, 803-823.
Collapse
Affiliation(s)
- Yi Tan
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Wendy Novak Diabetes Institute, Norton Children's Hospital, Louisville, Kentucky, USA
| | - Karim El-Kersh
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sara E. Watson
- Wendy Novak Diabetes Institute, Norton Children's Hospital, Louisville, Kentucky, USA
- Division of Endocrinology, Department of Pediatrics, Norton Children's Hospital, University of Louisville, Louisville, Kentucky, USA
| | - Kupper A. Wintergerst
- Wendy Novak Diabetes Institute, Norton Children's Hospital, Louisville, Kentucky, USA
- Division of Endocrinology, Department of Pediatrics, Norton Children's Hospital, University of Louisville, Louisville, Kentucky, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Jiapeng Huang
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Anesthesiology and Perioperative Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Cardiovascular and Thoracic Surgery, Cardiovascular Innovation Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Lu Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Wendy Novak Diabetes Institute, Norton Children's Hospital, Louisville, Kentucky, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Radiation Oncology; University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
13
|
Ye L, Tian H, Jing C. Arsenic mobilization in nZVI residue by Alkaliphilus sp. IMB: Comparison between static and flowing incubation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:121019. [PMID: 36621712 DOI: 10.1016/j.envpol.2023.121019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Arsenate reducing bacteria (AsRB) enhance arsenic (As) release via reducing As(V) to As(III), and As mobility is usually controlled by As(III) re-uptake on in-situ formed secondary iron minerals. The re-uptake of As(III) under groundwater flow conditions significantly impacts the fate and transport of As. Herein, a novel As(V)-reducing bacterium Alkaliphilus IMB was isolated in an As-contaminated soil. Scanning transmission X-ray microscopy showed that dissolved As(V) was mainly bound to the cell walls whereas dissolved As(III) was homogeneously distributed around IMB, indicating that As(V) reduction occurs outside the cell membrane. To explore the effect of IMB on As mobility, IMB was incubated with As-loaded nanoscale zero-valent iron (nZVI) residues under static and flowing conditions. IMB reduced 100% dissolved As(V) to As(III) even in a short contact time (∼1 h) during flowing incubation. The formation of As(III) did not influence As mobility under static condition as evidenced by the comparable concentrations of released As in the presence of IMB (8.5% to total As) and the abiotic control (10% to total As). Biogenic As(III) was re-adsorbed on the solids as shown by the higher ratio of solid-bound As(III) to total As in the presence of IMB (54%) than that in the abiotic control (12%). By contrast, the degree of As(III) re-adsorption was inhibited in the flowing environment, as suggested by the lower As(III) ratio in the solid (31%). This inhibition can be ascribed to the relatively slow adsorption of As(III) compared with the quick reduction of As(V) (∼1 h). Thus, IMB significantly enhanced As release during flowing incubation as shown that 9.8% As was released in the presence of IMB while 2.1% As in the abiotic control. This study found the contrary effect of AsRB on As mobility in static and flowing environments, highlighting the importance of re-adsorption rate of As(III).
Collapse
Affiliation(s)
- Li Ye
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Haixia Tian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Chuanyong Jing
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
14
|
Philippe M, Le Pape P, Resongles E, Landrot G, Freydier R, Bordier L, Baptiste B, Delbes L, Baya C, Casiot C, Ayrault S. Fate of antimony contamination generated by road traffic - A focus on Sb geochemistry and speciation in stormwater ponds. CHEMOSPHERE 2023; 313:137368. [PMID: 36574574 DOI: 10.1016/j.chemosphere.2022.137368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Although antimony (Sb) contamination has been documented in urban areas, knowledge gaps remain concerning the contributions of the different sources to the Sb urban biogeochemical cycle, including non-exhaust road traffic emissions, urban materials leaching/erosion and waste incineration. Additionally, details are lacking about Sb chemical forms involved in urban soils, sediments and water bodies. Here, with the aim to document the fate of metallic contaminants emitted through non-exhaust traffic emissions in urban aquatic systems, we studied trace element contamination, with a particular focus on Sb geochemistry, in three highway stormwater pond systems, standing as models of surface environments receiving road-water runoff. In all systems, differentiated on the basis of lead isotopic signatures, Sb shows the higher enrichment factor with respect to the geochemical background, up to 130, compared to other traffic-related inorganic contaminants (Co, Cr, Ni, Cu, Zn, Cd, Pb). Measurements of Sb isotopic composition (δ123Sb) performed on solid samples, including air-exposed dusts and underwater sediments, show an average signature of 0.07 ± 0.05‰ (n = 25, all sites), close to the δ123Sb value measured previously in certified reference material of road dust (BCR 723, δ123Sb = 0.03 ± 0.05‰). Moreover, a fractionation of Sb isotopes is observed between solid and dissolved phases in one sample, which might result from Sb (bio)reduction and/or adsorption processes. SEM-EDXS investigations show the presence of discrete submicrometric particles concentrating Sb in all the systems, interpreted as friction residues of Sb-containing brake pads. Sb solid speciation determined by linear combination fitting of X-Ray Absorption Near Edge Structure (XANES) spectra at the Sb K-edge shows an important spatial variability in the ponds, with Sb chemical forms likely driven by local redox conditions: "dry" samples exposed to air exhibited contributions from Sb(V)-O (52% to 100%) and Sb(III)-O (<10% to 48%) species whereas only underwater samples, representative of suboxic/anoxic conditions, showed an additional contribution from Sb(III)-S (41% to 80%) species. Altogether, these results confirm the traffic emission as a specific source of Sb emission in surface environments. The spatial variations of Sb speciation observed along the road-to-pond continuum likely reflect a high geochemical reactivity, which could have important implications on Sb transfer properties in (sub)surface hydrosystems.
Collapse
Affiliation(s)
- M Philippe
- Laboratoire des Sciences du Climat et de l'Environnement (LSCE-IPSL), UMR 8212 (CEA/CNRS/UVSQ), Université Paris-Saclay, Gif-sur-Yvette, France; Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR 7590 CNRS - Sorbonne Université - IRD - MNHN, 4 place Jussieu, 75252 Paris, Cedex 5, France
| | - P Le Pape
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR 7590 CNRS - Sorbonne Université - IRD - MNHN, 4 place Jussieu, 75252 Paris, Cedex 5, France.
| | - E Resongles
- HydroSciences Montpellier (HSM), Université de Montpellier - CNRS - IRD, Montpellier, France
| | - G Landrot
- Synchrotron SOLEIL, F-91192 Gif-Sur-Yvette, France
| | - R Freydier
- HydroSciences Montpellier (HSM), Université de Montpellier - CNRS - IRD, Montpellier, France
| | - L Bordier
- Laboratoire des Sciences du Climat et de l'Environnement (LSCE-IPSL), UMR 8212 (CEA/CNRS/UVSQ), Université Paris-Saclay, Gif-sur-Yvette, France
| | - B Baptiste
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR 7590 CNRS - Sorbonne Université - IRD - MNHN, 4 place Jussieu, 75252 Paris, Cedex 5, France
| | - L Delbes
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR 7590 CNRS - Sorbonne Université - IRD - MNHN, 4 place Jussieu, 75252 Paris, Cedex 5, France
| | - C Baya
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR 7590 CNRS - Sorbonne Université - IRD - MNHN, 4 place Jussieu, 75252 Paris, Cedex 5, France
| | - C Casiot
- HydroSciences Montpellier (HSM), Université de Montpellier - CNRS - IRD, Montpellier, France
| | - S Ayrault
- Laboratoire des Sciences du Climat et de l'Environnement (LSCE-IPSL), UMR 8212 (CEA/CNRS/UVSQ), Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
15
|
Zhong W, Yin Z, Wang L, Yan L, Jing C. Structural and mechanistic study of antimonite complexation with organic ligands at the goethite-water interface. CHEMOSPHERE 2022; 301:134682. [PMID: 35472609 DOI: 10.1016/j.chemosphere.2022.134682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Antimony is a re-emerging contaminant, and its complexation with natural organic matter is rising to ever-increasing levels due to global climate change, which has far-reaching impacts on its environmental fate and mobility. A molecular-level understanding of the interactions between Sb(III) and organic ligands at the solid-liquid interface is of paramount importance in deciphering the effect of these organic ligands. Herein, we identified and characterized Sb(III)-organic ligand complexes in solution and at the goethite-water interface using complementary techniques. The FT-ICR MS, XANES, and DFT calculations show that organic ligands bind Sb(III) through nucleophilic functional groups, such as -COO-, -OH and -HS. The formation of surface ternary Sb(III)-bridging complexes retarded the Sb(III) surface precipitation starting from 3.8 mg-Sb/L to a much higher level at 8.3-13.5 mg-Sb/L. The strong bond between Sb(III) and organic ligands is the key factor to inhibit Sb(III) adsorption, surface precipitation and oxidation under sunlight irradiation. Our results showed the chemical basis for the multifaceted functions of organic ligands in stabilizing trace metalloids such as Sb(III) in the environment.
Collapse
Affiliation(s)
- Wen Zhong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhipeng Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liying Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Li Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Chuanyong Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|