1
|
Dodds JN, Ford LC, Ryan JP, Solosky AM, Rusyn I, Baker ES. Evaluating Ion Mobility Data Acquisition, Calibration, and Processing for Small Molecules: A Cross-Platform Assessment of Drift Tube and Traveling Wave Methodologies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025. [PMID: 40177972 DOI: 10.1021/jasms.5c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
As ion mobility spectrometry (IMS) separations continue to be added to analytical workflows due to their power in environmental and biological sample analyses, harmonization and capability understanding between existing and newly released instruments are desperately needed. Developments in IMS platforms often exhibit focus on increasing resolving power (Rp) to better separate molecules of similar structure. While the additional separation capacity is advantageous, ensuring these developments coincide with appropriate data extraction and analysis methods is imperative to ensure routine adoption. Herein, we assess the performance of the MOBILion MOBIE in relation to a commercially available drift tube IMS-MS, the Agilent 6560, and evaluate feature extraction and analysis pipelines. Both instruments were operated using matched conditions when possible, and performance metrics of scan speed, Rp, limits of detection (LOD), and propensity for isomer separation via LC-IMS-MS were evaluated. Similar scan speeds pertaining to IMS-MS frame generation were noted for both platforms, and collision cross section (CCS) values for the MOBIE were generally within ≤ 1% difference from previously reported drift tube values. Both platforms were also able to generate quantitative data (comparable limits of detection) in experiments with perfluoroalkyl substances (PFAS) mixtures in a cell-based model (both medium and cell lysates), as demonstrated in Skyline with adjusted mobility filtering parameters. Higher Rp was, however, noted on the MOBIE in comparison to the 6560 (200-300 vs 45-60 CCS/ΔCCS without data processing), allowing the detection of more PFAS isomers and indicating promise toward future applications in chemical exposomics studies and biomarker discovery when molecules exhibit similar structures.
Collapse
Affiliation(s)
- James N Dodds
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Lucie C Ford
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, United States
| | - Jack P Ryan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Amie M Solosky
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, United States
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| |
Collapse
|
2
|
Schneiders AL, Far J, Belova L, Fry A, Covaci A, Baker ES, De Pauw E, Eppe G. Structural Characterization of Dimeric Perfluoroalkyl Carboxylic Acid Using Experimental and Theoretical Ion Mobility Spectrometry Analyses. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:850-861. [PMID: 40045475 DOI: 10.1021/jasms.5c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are contaminants of increasing concern, with over seven million compounds currently inventoried in the PubChem PFAS Tree. Recently, ion mobility spectrometry has been combined with liquid chromatography and high-resolution mass spectrometry (LC-IMS-HRMS) to assess PFAS. Interestingly, using negative electrospray ionization, perfluoroalkyl carboxylic acids (PFCAs) form homodimers ([2M-H]-), a phenomenon observed with trapped, traveling wave, and drift-tube IMS. In addition to the limited research on their effect on analytical performance, there is little information on the conformations these dimers can adopt. This study aimed to propose most probable conformations for PFCA dimers. Based on qualitative analysis of how collision cross section (CCS) values change with the mass-to-charge ratio (m/z) of PFCA ions, the PFCA dimers were hypothesized to likely adopt a V-shaped structure. To support this assumption, in silico geometry optimizations were performed to generate a set of conformers for each possible dimer. A CCS value was then calculated for each conformer using the trajectory method with Lennard-Jones and ion-quadrupole potentials. Among these conformers, at least one of the ten lowest-energy conformers identified for each dimer exhibited theoretical CCS values within a ±2% error margin compared to the experimental data, qualifying them as plausible structures for the dimers. Our findings revealed that the fluorinated alkyl chains in the dimers are close to each other due to a combination of C-F···O=C and C-F···F-C stabilizing interactions. These findings, together with supplementary investigations involving environmentally relevant cations, may offer valuable insights into the interactions and environmental behavior of PFAS.
Collapse
Affiliation(s)
- Aurore L Schneiders
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry Department, University of Liège, Liège 4000, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry Department, University of Liège, Liège 4000, Belgium
| | - Lidia Belova
- Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium
| | - Allison Fry
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry Department, University of Liège, Liège 4000, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry Department, University of Liège, Liège 4000, Belgium
| |
Collapse
|
3
|
Asakawa D, Lin H, Ruan Y, Taniyasu S, Yeung LWY, Tojo T, Ichihara M, Yamazaki E, Hanari N, Lam PKS, Yamashita N. Characterizing Seasonal Patterns, Gas-Particle Partitioning, and Potential Sources of Airborne Per- and Polyfluoroalkyl Substances in Japan. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5145-5154. [PMID: 40037931 DOI: 10.1021/acs.est.4c14109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The global ubiquity of perfluoroalkyl and polyfluoroalkyl substances (PFAS) highlights the important role of atmospheric transport. This study monitored 47 PFAS, including perfluoroalkyl acids (PFAAs), emerging PFAS, and precursors of PFAAs (pre-PFAAs), in seasonal ambient air in Japan between 2022 and 2023, quantifying 38 of them in collected samples. The profiles were dominated by 6:2 fluorotelomer alcohol, perfluorobutanesulfonic acid, and perfluorobutanoic acid, with median levels of 245, 117, and 78.0 pg m-3, respectively. Pre-PFAS and perfluoroalkyl carboxylic acids (PFCAs) exhibited relatively higher concentrations in the warm seasons, whereas perfluoroalkyl sulfonic acids (PFSAs) were more abundant in the cold seasons. Particle-bound fractions of PFCAs with carbon number (Cn) ≤ 13 and PFSAs with Cn ≤ 8 were found at lower levels than in previous reports. Additionally, an odd-even pattern in the gas-particle distribution ratio was observed for PFCAs, with relatively higher values for odd-numbered compounds than for their even-numbered counterparts. Using positive matrix factorization analysis, aqueous film-forming foam-related activities, waste stream emissions, and fluoropolymer manufacturing were proposed as potential major sources in the studied areas, with their relative contribution quantified. These findings enhance our understanding of the atmospheric behavior of PFAS and facilitate the development of tailored PFAS mitigation strategies.
Collapse
Affiliation(s)
- Daichi Asakawa
- Osaka City Research Center of Environmental Science, 1-3-3 Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| | - Huiju Lin
- State Key Laboratory of Marine Pollution (SKLMP) and Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution (SKLMP) and Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
| | - Sachi Taniyasu
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Leo W Y Yeung
- Man-Technology-Environment Research Centre (MTM), Örebro University, Örebro 70182, Sweden
| | - Toshiki Tojo
- Osaka City Research Center of Environmental Science, 1-3-3 Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| | - Makiko Ichihara
- Osaka City Research Center of Environmental Science, 1-3-3 Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| | - Eriko Yamazaki
- National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (NMIJ/AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan
| | - Nobuyasu Hanari
- National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (NMIJ/AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan
| | - Paul K S Lam
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Hong Kong SAR 999077, China
| | - Nobuyoshi Yamashita
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| |
Collapse
|
4
|
Martin A, Joignant AN, Farrell M, Planchart A, Muddiman DC. Feasibility of IR-MALDESI Mass Spectrometry Imaging of PFAS. JOURNAL OF MASS SPECTROMETRY : JMS 2025; 60:e5112. [PMID: 39807956 DOI: 10.1002/jms.5112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/28/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a class of emerging contaminants that have been in use industrially since the 1940s. Their long-term and extensive commercial use has led to their ubiquitous presence in the environment. The ability to measure the bioconcentration and distribution of PFAS in the tissue of aquatic organisms helps elucidate the persistence of PFAS as well as environmental impacts. Traditional analysis by LC-MS/MS can measure total PFAS concentrations within an organism but cannot provide comprehensive spatial information regarding PFAS concentrations within the organism. In the current study, we used infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) to determine the limit of detection (LOD) of several PFAS utilizing a commercial standard mix spotted on mouse liver tissue. The traditional ice matrix and an alternative matrix, 1,8-bis (tetramethylguanidino)naphthalene (TMGN), were explored when determining the limits of detection for various PFAS by IR-MALDESI. The ice matrix alone resulted in a higher response than the combination of TMGN and ice. The resulting LOD for perfluorooctane sulfonic acid (PFOS) on a per voxel basis was 0.16 fmol/voxel. For comparison, zebrafish that were exposed to perfluorooctanoic acid (PFOA), PFOS, and perfluorohexanesulfonic acid (PFHxS) at different concentrations were homogenized, and PFAS were extracted by solid-liquid extraction, purified by solid phase extraction, and analyzed by LC-MS/MS to determine the level of bioaccumulation in the zebrafish. PFOS resulted in the highest level of bioaccumulation (731.9 μg/kg, or 234.2 fg/voxel). A zebrafish that had been exposed to a PFAS mixture of PFOA (250 ng/L), PFOS (250 ng/L), and PFHxS (125 ng/L) was cryosectioned and analyzed by IR-MALDESI. Images could not be generated as the accumulation of PFAS in the sectioned tissue was below detection limit of the technique.
Collapse
Affiliation(s)
- Allen Martin
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Alena N Joignant
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Matt Farrell
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Antonio Planchart
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - David C Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
5
|
Joseph KM, Boatman AK, Dodds JN, Kirkwood-Donelson KI, Ryan JP, Zhang J, Thiessen PA, Bolton EE, Valdiviezo A, Sapozhnikova Y, Rusyn I, Schymanski EL, Baker ES. Multidimensional library for the improved identification of per- and polyfluoroalkyl substances (PFAS). Sci Data 2025; 12:150. [PMID: 39863618 PMCID: PMC11763048 DOI: 10.1038/s41597-024-04363-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
As the occurrence of human diseases and conditions increase, questions continue to arise about their linkages to chemical exposure, especially for per-and polyfluoroalkyl substances (PFAS). Currently, many chemicals of concern have limited experimental information available for their use in analytical assessments. Here, we aim to increase this knowledge by providing the scientific community with multidimensional characteristics for 175 PFAS and their resulting 281 ion types. Using a platform coupling reversed-phase liquid chromatography (RPLC), electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI), drift tube ion mobility spectrometry (IMS), and mass spectrometry (MS), the retention times, collision cross section (CCS) values, and m/z ratios were determined for all analytes and assembled into an openly available multidimensional dataset. This information will provide the scientific community with essential characteristics to expand analytical assessments of PFAS and augment machine learning training sets for discovering new PFAS.
Collapse
Affiliation(s)
- Kara M Joseph
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anna K Boatman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - James N Dodds
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kaylie I Kirkwood-Donelson
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, NC, 27709, USA
| | - Jack P Ryan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jian Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Paul A Thiessen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Evan E Bolton
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Alan Valdiviezo
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, 77843, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Yelena Sapozhnikova
- Agricultural Research Service, U.S Department of Agriculture, Wyndmoor, PA, 19038, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, 77843, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Emma L Schymanski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367, Belvaux, Luxembourg
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
6
|
Meng P, Sheppard N, Joseph S, Duckworth OW, Higgins CP, Knappe DRU. Residential Garden Produce Harvested Near a Fluorochemical Manufacturer in North Carolina Can Be An Important Fluoroether Exposure Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26874-26883. [PMID: 39564989 PMCID: PMC11622232 DOI: 10.1021/acs.jafc.4c06177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 11/21/2024]
Abstract
Dietary intake can be an important exposure route to per- and polyfluoroalkyl substances (PFASs). Little is known about the bioaccumulation of emerging per- and polyfluoroalkyl ether acids (PFEAs) in garden produce from PFAS-impacted communities and the associated dietary exposure risk. In this study, 53 produce samples were collected from five residential gardens near a fluorochemical manufacturer. Summed PFAS concentrations ranged from 0.0026 to 38 ng/g wet weight of produce, and water-rich produce exhibited the highest PFAS levels. The PFAS signature was dominated by PFEAs, and hexafluoropropylene oxide-dimer acid (commonly known as GenX) was detected in 72% of samples. Based on average measured GenX concentrations, chronic-exposure daily limits were as low as 289 g produce/day for children (3-6 yr). This analysis does not consider other PFEAs that were present at higher concentrations, but for which reference doses were not available. This study revealed that consuming residential garden produce grown in PFAS-impacted communities can be an important exposure pathway.
Collapse
Affiliation(s)
- Pingping Meng
- Department
of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
- Department
of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Center
for Human Health and the Environment, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nadia Sheppard
- Department
of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Sarangi Joseph
- Department
of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Owen W. Duckworth
- Department
of Crop and Soil Sciences, North Carolina
State University, Raleigh, North Carolina 27695, United States
- Center
for Human Health and the Environment, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Christopher P. Higgins
- Department
of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Detlef R. U. Knappe
- Department
of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Center
for Human Health and the Environment, North
Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
7
|
Dodds JN, Kirkwood-Donelson KI, Boatman AK, Knappe DRU, Hall NS, Schnetzer A, Baker ES. Evaluating Solid Phase Adsorption Toxin Tracking (SPATT) for passive monitoring of per- and polyfluoroalkyl substances (PFAS) with Ion Mobility Spectrometry-Mass Spectrometry (IMS-MS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174574. [PMID: 38981548 PMCID: PMC11295640 DOI: 10.1016/j.scitotenv.2024.174574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/14/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
Detection and monitoring of per- and polyfluoroalkyl substances (PFAS) in aquatic environments has become an increasingly higher priority of regulatory agencies as public concern for human intake of these chemicals continues to grow. While many methods utilize active sampling strategies ("grab samples") for precise PFAS quantitation, here we evaluate the efficacy of low-cost passive sampling devices (Solid Phase Adsorption Toxin Tracking, or SPATTs) for spatial and temporal PFAS assessment of aquatic systems. For this study, passive samplers were initially deployed in North Carolina along the Cape Fear River during the summer and fall of 2016 and 2017. These were originally intended for the detection of microcystins and monitoring potentially harmful algal blooms, though this period also coincided with occurrences of PFAS discharge from a local fluorochemical manufacturer into the river. Additional samplers were then deployed in 2022 to evaluate changes in PFAS fingerprint and abundances. Assessment of PFAS showed legacy compounds were observed across almost all sampling sites over all 3 years (PFHxS, PFOS, PFHxA, etc.), while emerging replacement PFAS (e.g., Nafion byproducts) were predominantly localized downstream from the manufacturer. Furthermore, samplers deployed downstream from the manufacturer in 2022 noted sharp decreases in observed signal for replacement PFAS in comparison to samplers deployed in 2016 and 2017, indicating mitigation and remediation efforts in the area were able to reduce localized fluorochemical contamination.
Collapse
Affiliation(s)
- James N Dodds
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, United States of America.
| | - Kaylie I Kirkwood-Donelson
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27607, United States of America; Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27709, United States of America
| | - Anna K Boatman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, United States of America
| | - Detlef R U Knappe
- Department of Civil, Construction, & Environmental Engineering, North Carolina State University, Raleigh, NC 27607, United States of America
| | - Nathan S Hall
- Department of Earth, Marine, and Environmental Sciences, University of North Carolina at Chapel Hill, Morehead City, NC 28557, United States of America
| | - Astrid Schnetzer
- Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27607, United States of America
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, United States of America.
| |
Collapse
|
8
|
Chappel JR, Kirkwood-Donelson KI, Dodds JN, Fleming J, Reif DM, Baker ES. Streamlining Phenotype Classification and Highlighting Feature Candidates: A Screening Method for Non-Targeted Ion Mobility Spectrometry-Mass Spectrometry (IMS-MS) Data. Anal Chem 2024; 96:15970-15979. [PMID: 39292613 PMCID: PMC11480931 DOI: 10.1021/acs.analchem.4c03256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Nontargeted analysis (NTA) is increasingly utilized for its ability to identify key molecular features beyond known targets in complex samples. NTA is particularly advantageous in exploratory studies aimed at identifying phenotype-associated features or molecules able to classify various sample types. However, implementing NTA involves extensive data analyses and labor-intensive annotations. To address these limitations, we developed a rapid data screening capability compatible with NTA data collected on a liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) platform that allows for sample classification while highlighting potential features of interest. Specifically, this method aggregates the thousands of IMS-MS spectra collected across the LC space for each sample and collapses the LC dimension, resulting in a single summed IMS-MS spectrum for screening. The summed IMS-MS spectra are then analyzed with a bootstrapped Lasso technique to identify key regions or coordinates for phenotype classification via support vector machines. Molecular annotations are then performed by examining the features present in the selected coordinates, highlighting potential molecular candidates. To demonstrate this summed IMS-MS screening approach, we applied it to clinical plasma lipidomic NTA data and exposomic NTA data from water sites with varying contaminant levels. Distinguishing coordinates were observed in both studies, enabling the evaluation of phenotypic molecular annotations and resulting in screening models capable of classifying samples with up to a 25% increase in accuracy compared to models using annotated data.
Collapse
Affiliation(s)
- Jessie R Chappel
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Kaylie I Kirkwood-Donelson
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina 27709, United States
| | - James N Dodds
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Jonathon Fleming
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - David M Reif
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, North Carolina 27709, United States
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| |
Collapse
|
9
|
Li S, Zhao Z, Liu J, Zhang B, Han B, Ma Y, Jin L, Zhu N, Gao G, Lin T. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and nutrients from two constructed wetlands in a city of southeastern China. Heliyon 2024; 10:e37551. [PMID: 39309800 PMCID: PMC11415654 DOI: 10.1016/j.heliyon.2024.e37551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/02/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a large class of toxic contaminants. Nutrients are closely related to the ecological health of aquatic systems. Both have received widespread global attention. This study investigated the concentrations, compositions, and spatial distributions of PFAS and nutrients in surface water from two constructed wetlands and the nearby drinking water treatment plants (DWTPs). We explored the natural environmental factors and human activities that affect the composition and distribution of pollutants in wetlands and assessed the ability of the DWTPs to remove contaminants. Concentrations of ∑32PFAS varied from 153 to 405 ng/L. Hexafluoropropylene oxide trimer acid (HFPO-TA) was the predominant substance accounting for 45 % of ∑32PFAS concentrations. It might originate from the emissions of indirect sources of PFAS related manufacturers. The detection rate of 6:2 fluorotelomer carboxylic acid (6:2 FTCA) was 100 % with concentrations ranging from 0.915 to 19.7 ng/L 6:2 FTCA might come from the biotransformation of indirect sources in the air. Concentrations of total nitrogen (TN) and total phosphorus (TP) were from 1.47 to 3.54 mg/L, and non-detect (ND) to 0.323 mg/L, respectively. Constructed wetlands could effectively remove PFAS under nutrient stress, however, the removal of PFAS depends on the characteristics of specific compounds and their sources. The removal rates for PFAS and nutrients could be promoted through artificial dredging. But wetland bioremediation could have two opposing effects. On the one hand, plants can take up pollutants from water via roots, leading to pollutant removal and purification. On the other hand, plants may also absorb precursor intermediates from the air through leaves and release them into the water, leading to increased pollutant concentrations. Thirty-two emerging PFAS were identified by high resolution mass spectrum. The drinking water treatment process removed PFAS and nutrients below the drinking water quality standards of China, however, 9 non-target PFAS compounds were still found in tap water. These results provide case support and a theoretical basis for the pollution control and sustainable development of typical ecological wetlands used as drinking water sources.
Collapse
Affiliation(s)
- Shiyue Li
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhen Zhao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jing Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Boxuan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Baocang Han
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yuntao Ma
- Jiaxing Jiayuan Testing Technology Service Co., Ltd, Jiaxing, 314000, China
| | - Limin Jin
- Jiaxing Key Laboratory of Environmental Risk Source Identification and Control, Jiaxing-Tongji Environmental Research Institute, Jiaxing, 314051, China
| | - Ningzheng Zhu
- Jiaxing Key Laboratory of Environmental Risk Source Identification and Control, Jiaxing-Tongji Environmental Research Institute, Jiaxing, 314051, China
| | - Guoping Gao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Tian Lin
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
10
|
Boatman AK, Chappel JR, Polera ME, Dodds JN, Belcher SM, Baker ES. Assessing Per- and Polyfluoroalkyl Substances in Fish Fillet Using Non-Targeted Analyses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14486-14495. [PMID: 39066709 PMCID: PMC11461023 DOI: 10.1021/acs.est.4c04299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of thousands of man-made chemicals that are persistent and highly stable in the environment. Fish consumption has been identified as a key route of PFAS exposure for humans. However, routine fish monitoring targets only a handful of PFAS, and non-targeted analyses have largely only evaluated fish from heavily PFAS-impacted waters. Here, we evaluated PFAS in fish fillets from recreational and drinking water sources in central North Carolina to assess whether PFAS are present in these fillets that would not be detected by conventional targeted methods. We used liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) to collect full scan feature data, performed suspect screening using an in-house library of 100 PFAS for high confidence feature identification, searched for additional PFAS features using non-targeted data analyses, and quantified perfluorooctanesulfonic acid (PFOS) in the fillet samples. A total of 36 PFAS were detected in the fish fillets, including 19 that would not be detected using common targeted methods, with a minimum of 6 and a maximum of 22 in individual fish. Median fillet PFOS levels were concerningly high at 11.6 to 42.3 ppb, and no significant correlation between PFOS levels and number of PFAS per fish was observed. Future PFAS monitoring in this region should target more of these 36 PFAS, and other regions not considered heavily PFAS contaminated should consider incorporating non-targeted analyses into ongoing fish monitoring studies.
Collapse
Affiliation(s)
- Anna K Boatman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Jessie R Chappel
- Department of Bioinformatics, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Madison E Polera
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - James N Dodds
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Scott M Belcher
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| |
Collapse
|
11
|
Ooka M, Sakamuru S, Zhao J, Qu Y, Fang Y, Tao D, Huang R, Ferguson S, Reif D, Simeonov A, Xia M. Use of Tox21 screening data to profile PFAS bioactivities on nuclear receptors, cellular stress pathways, and cytochrome p450 enzymes. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134642. [PMID: 38776814 PMCID: PMC11181952 DOI: 10.1016/j.jhazmat.2024.134642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are synthetic chemicals widely used in commercial products. PFAS are a global concern due to their persistence in the environment and extensive associations with adverse health outcomes. While legacy PFAS have been extensively studied, many non-legacy PFAS lack sufficient toxicity information. In this study, we first analyzed the bioactivity of PFAS using Tox21 screening data surveying more than 75 assay endpoints (e.g., nuclear receptors, stress response, and metabolism) to understand the toxicity of non-legacy PFAS and investigate potential new targets of PFAS. From the Tox21 screening data analysis, we confirmed several known PFAS targets/pathways and identified several potential novel targets/pathways of PFAS. To confirm the effect of PFAS on these novel targets/pathways, we conducted several cell- and enzyme-based assays in the follow-up studies. We found PFAS inhibited cytochromes P450s (CYPs), especially CYP2C9 with IC50 values of < 1 µM. Considering PFAS affected other targets/pathways at > 10 µM, PFAS have a higher affinity to CYP2C9. This PFAS-CYP2C9 interaction was further investigated using molecular docking analysis. The result suggested that PFAS directly bind to the active sites of CYP2C9. These findings have important implications to understand the mechanism of PFAS action and toxicity.
Collapse
Affiliation(s)
- Masato Ooka
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Srilatha Sakamuru
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Jinghua Zhao
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Yanyan Qu
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Yuhong Fang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Dingyin Tao
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Stephen Ferguson
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - David Reif
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Weed RA, Campbell G, Brown L, May K, Sargent D, Sutton E, Burdette K, Rider W, Baker ES, Enders JR. Non-Targeted PFAS Suspect Screening and Quantification of Drinking Water Samples Collected through Community Engaged Research in North Carolina's Cape Fear River Basin. TOXICS 2024; 12:403. [PMID: 38922083 PMCID: PMC11209479 DOI: 10.3390/toxics12060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024]
Abstract
A community engaged research (CER) approach was used to provide an exposure assessment of poly- and perfluorinated (PFAS) compounds in North Carolina residential drinking water. Working in concert with community partners, who acted as liaisons to local residents, samples were collected by North Carolina residents from three different locations along the Cape Fear River basin: upper, middle, and lower areas of the river. Residents collected either drinking water samples from their homes or recreational water samples from near their residence that were then submitted by the community partners for PFAS analysis. All samples were processed using weak anion exchange (WAX) solid phase extraction and analyzed using a non-targeted suspect screening approach as well as a quantitative approach that included a panel of 45 PFAS analytes, several of which are specific to chemical industries near the collection site locations. The non-targeted approach, which utilized a suspect screening list (obtained from EPA CompTox database) identified several PFAS compounds at a level two confidence rating (Schymanski scale); compounds identified included a fluorinated insecticide, a fluorinated herbicide, a PFAS used in polymer chemistry, and another that is used in battery production. Notably, at several locations, PFOA (39.8 ng/L) and PFOS (205.3 ng/L) were at levels that exceeded the mandatory EPA maximum contaminant level (MCL) of 4 ng/L. Additionally, several sites had detectable levels of PFAS that are unique to a local chemical manufacturer. These findings were communicated back to the community partners who then disseminated this information to the local residents to help empower and aid in making decisions for reducing their PFAS exposure.
Collapse
Affiliation(s)
- Rebecca A. Weed
- Molecular Education, Technology and Research Innovation Center, North Carolina State University, Raleigh, NC 27607, USA
| | - Grace Campbell
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC 27607, USA (L.B.)
| | - Lacey Brown
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC 27607, USA (L.B.)
| | - Katlyn May
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC 27607, USA (L.B.)
| | - Dana Sargent
- Cape Fear River Watch, Wilmington, NC 28401, USA; (D.S.); (K.B.)
| | | | - Kemp Burdette
- Cape Fear River Watch, Wilmington, NC 28401, USA; (D.S.); (K.B.)
| | - Wayne Rider
- Sustainable Sandhills, Fayetteville, NC 28303, USA;
| | - Erin S. Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Jeffrey R. Enders
- Molecular Education, Technology and Research Innovation Center, North Carolina State University, Raleigh, NC 27607, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
13
|
Witt CC, Gadek CR, Cartron JLE, Andersen MJ, Campbell ML, Castro-Farías M, Gyllenhaal EF, Johnson AB, Malaney JL, Montoya KN, Patterson A, Vinciguerra NT, Williamson JL, Cook JA, Dunnum JL. Extraordinary levels of per- and polyfluoroalkyl substances (PFAS) in vertebrate animals at a New Mexico desert oasis: Multiple pathways for wildlife and human exposure. ENVIRONMENTAL RESEARCH 2024; 249:118229. [PMID: 38325785 DOI: 10.1016/j.envres.2024.118229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/23/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) in the environment pose persistent and complex threats to human and wildlife health. Around the world, PFAS point sources such as military bases expose thousands of populations of wildlife and game species, with potentially far-reaching implications for population and ecosystem health. But few studies shed light on the extent to which PFAS permeate food webs, particularly ecologically and taxonomically diverse communities of primary and secondary consumers. Here we conducted >2000 assays to measure tissue-concentrations of 17 PFAS in 23 species of mammals and migratory birds at Holloman Air Force Base (AFB), New Mexico, USA, where wastewater catchment lakes form biodiverse oases. PFAS concentrations were among the highest reported in animal tissues, and high levels have persisted for at least three decades. Twenty of 23 species sampled at Holloman AFB were heavily contaminated, representing middle trophic levels and wetland to desert microhabitats, implicating pathways for PFAS uptake: ingestion of surface water, sediments, and soil; foraging on aquatic invertebrates and plants; and preying upon birds or mammals. The hazardous long carbon-chain form, perfluorooctanosulfonic acid (PFOS), was most abundant, with liver concentrations averaging >10,000 ng/g wet weight (ww) in birds and mammals, respectively, and reaching as high 97,000 ng/g ww in a 1994 specimen. Perfluorohexanesulfonic acid (PFHxS) averaged thousands of ng/g ww in the livers of aquatic birds and littoral-zone house mice, but one order of magnitude lower in the livers of upland desert rodent species. Piscivores and upland desert songbirds were relatively uncontaminated. At control sites, PFAS levels were strikingly lower on average and different in composition. In sum, legacy PFAS at this desert oasis have permeated local aquatic and terrestrial food webs across decades, severely contaminating populations of resident and migrant animals, and exposing people via game meat consumption and outdoor recreation.
Collapse
Affiliation(s)
- Christopher C Witt
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Chauncey R Gadek
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Environmental Stewardship, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Jean-Luc E Cartron
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Daniel B. Stephens & Associates, Inc., 6020 Academy Road NE, Suite 100, Albuquerque, NM, 87109, USA
| | - Michael J Andersen
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Mariel L Campbell
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Marialejandra Castro-Farías
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Ethan F Gyllenhaal
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Andrew B Johnson
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jason L Malaney
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; New Mexico Museum of Natural History and Science, Albuquerque, NM, 87104, USA
| | - Kyana N Montoya
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Andrew Patterson
- Eurofins Environment Testing America, West Sacramento, CA, 95605, USA
| | - Nicholas T Vinciguerra
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jessie L Williamson
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA
| | - Joseph A Cook
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jonathan L Dunnum
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
14
|
Boatman AK, Chappel JR, Polera ME, Dodds JN, Belcher SM, Baker ES. Assessing Per- and Polyfluoroalkyl Substances (PFAS) in Fish Fillet Using Non-Targeted Analyses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.01.555938. [PMID: 37732276 PMCID: PMC10508736 DOI: 10.1101/2023.09.01.555938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of thousands of man-made chemicals that are persistent and highly stable in the environment. Fish consumption has been identified as a key route of PFAS exposure for humans. However, routine fish monitoring targets only a handful of PFAS, and non-targeted analyses have largely only evaluated fish from heavily PFAS-impacted waters. Here, we evaluated PFAS in fish fillets from recreational and drinking water sources in central North Carolina to assess whether PFAS are present in these fillets that would not be detected by conventional targeted methods. We used liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) to collect full scan feature data, performed suspect screening using an in-house library of 100 PFAS for high confidence feature identification, searched for additional PFAS features using non-targeted data analyses, and quantified perfluorooctane sulfonic acid (PFOS) in the fillet samples. A total of 36 PFAS were detected in the fish fillets, including 19 that would not be detected using common targeted methods, with a minimum of 6 and a maximum of 22 in individual fish. Median fillet PFOS levels were concerningly high at 11.6 to 42.3 ppb, and no significant correlation between PFOS levels and number of PFAS per fish was observed. Future PFAS monitoring in this region should target more of these 36 PFAS, and other regions not considered heavily PFAS contaminated should consider incorporating non-targeted analyses into ongoing fish monitoring studies.
Collapse
|
15
|
Starnes HM, Jackson TW, Rock KD, Belcher SM. Quantitative cross-species comparison of serum albumin binding of per- and polyfluoroalkyl substances from five structural classes. Toxicol Sci 2024; 199:132-149. [PMID: 38518100 PMCID: PMC11057469 DOI: 10.1093/toxsci/kfae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of over 8000 chemicals, many of which are persistent, bioaccumulative, and toxic to humans, livestock, and wildlife. Serum protein binding affinity is instrumental in understanding PFAS toxicity, yet experimental binding data is limited to only a few PFAS congeners. Previously, we demonstrated the usefulness of a high-throughput, in vitro differential scanning fluorimetry assay for determination of relative binding affinities of human serum albumin for 24 PFAS congeners from 6 chemical classes. In the current study, we used this assay to comparatively examine differences in human, bovine, porcine, and rat serum albumin binding of 8 structurally informative PFAS congeners from 5 chemical classes. With the exception of the fluorotelomer alcohol 1H, 1H, 2H, 2H-perfluorooctanol (6:2 FTOH), each PFAS congener bound by human serum albumin was also bound by bovine, porcine, and rat serum albumin. The critical role of the charged functional headgroup in albumin binding was supported by the inability of albumin of each species tested to bind 6:2 FTOH. Significant interspecies differences in serum albumin binding affinities were identified for each of the bound PFAS congeners. Relative to human albumin, perfluoroalkyl carboxylic and sulfonic acids were bound with greater affinity by porcine and rat serum albumin, and the perfluoroalkyl ether acid congener bound with lower affinity to porcine and bovine serum albumin. These comparative affinity data for PFAS binding by serum albumin from human, experimental model, and livestock species reduce critical interspecies uncertainty and improve accuracy of predictive bioaccumulation and toxicity assessments for PFAS.
Collapse
Affiliation(s)
- Hannah M Starnes
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27607, USA
| | - Thomas W Jackson
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27607, USA
| | - Kylie D Rock
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27607, USA
| | - Scott M Belcher
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27607, USA
| |
Collapse
|
16
|
Kirkwood-Donelson KI, Chappel J, Tobin E, Dodds JN, Reif DM, DeWitt JC, Baker ES. Investigating mouse hepatic lipidome dysregulation following exposure to emerging per- and polyfluoroalkyl substances (PFAS). CHEMOSPHERE 2024; 354:141654. [PMID: 38462188 PMCID: PMC10995748 DOI: 10.1016/j.chemosphere.2024.141654] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are environmental pollutants that have been associated with adverse health effects including liver damage, decreased vaccine responses, cancer, developmental toxicity, thyroid dysfunction, and elevated cholesterol. The specific molecular mechanisms impacted by PFAS exposure to cause these health effects remain poorly understood, however there is some evidence of lipid dysregulation. Thus, lipidomic studies that go beyond clinical triglyceride and cholesterol tests are greatly needed to investigate these perturbations. Here, we have utilized a platform coupling liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) separations to simultaneously evaluate PFAS bioaccumulation and lipid metabolism disruptions. For the study, liver samples collected from C57BL/6 mice exposed to either of the emerging PFAS hexafluoropropylene oxide dimer acid (HFPO-DA or "GenX") or Nafion byproduct 2 (NBP2) were assessed. Sex-specific differences in PFAS accumulation and liver size were observed for both PFAS, in addition to disturbed hepatic liver lipidomic profiles. Interestingly, GenX resulted in less hepatic bioaccumulation than NBP2 yet gave a higher number of significantly altered lipids when compared to the control group, implying that the accumulation of substances in the liver may not be a reliable measure of the substance's capacity to disrupt the liver's natural metabolic processes. Specifically, phosphatidylglycerols, phosphatidylinositols, and various specific fatty acyls were greatly impacted, indicating alteration of inflammation, oxidative stress, and cellular signaling processes due to emerging PFAS exposure. Overall, these results provide valuable insight into the liver bioaccumulation and molecular mechanisms of GenX- and NBP2-induced hepatotoxicity.
Collapse
Affiliation(s)
- Kaylie I Kirkwood-Donelson
- Department of Chemistry, North Carolina State University, Raleigh, NC 27606, USA; Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Jessie Chappel
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Emma Tobin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - James N Dodds
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - David M Reif
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Jamie C DeWitt
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Erin S Baker
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA.
| |
Collapse
|
17
|
Szabo D, Falconer TM, Fisher CM, Heise T, Phillips AL, Vas G, Williams AJ, Kruve A. Online and Offline Prioritization of Chemicals of Interest in Suspect Screening and Non-targeted Screening with High-Resolution Mass Spectrometry. Anal Chem 2024; 96:3707-3716. [PMID: 38380899 PMCID: PMC10918621 DOI: 10.1021/acs.analchem.3c05705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
Recent advances in high-resolution mass spectrometry (HRMS) have enabled the detection of thousands of chemicals from a single sample, while computational methods have improved the identification and quantification of these chemicals in the absence of reference standards typically required in targeted analysis. However, to determine the presence of chemicals of interest that may pose an overall impact on ecological and human health, prioritization strategies must be used to effectively and efficiently highlight chemicals for further investigation. Prioritization can be based on a chemical's physicochemical properties, structure, exposure, and toxicity, in addition to its regulatory status. This Perspective aims to provide a framework for the strategies used for chemical prioritization that can be implemented to facilitate high-quality research and communication of results. These strategies are categorized as either "online" or "offline" prioritization techniques. Online prioritization techniques trigger the isolation and fragmentation of ions from the low-energy mass spectra in real time, with user-defined parameters. Offline prioritization techniques, in contrast, highlight chemicals of interest after the data has been acquired; detected features can be filtered and ranked based on the relative abundance or the predicted structure, toxicity, and concentration imputed from the tandem mass spectrum (MS2). Here we provide an overview of these prioritization techniques and how they have been successfully implemented and reported in the literature to find chemicals of elevated risk to human and ecological environments. A complete list of software and tools is available from https://nontargetedanalysis.org/.
Collapse
Affiliation(s)
- Drew Szabo
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm 106 91, Sweden
| | - Travis M. Falconer
- Forensic
Chemistry Center, Office of Regulatory Science, Office of Regulatory
Affairs, US Food and Drug Administration, Cincinnati, Ohio 45237, United States
| | - Christine M. Fisher
- Center
for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland 20740, United States
| | - Ted Heise
- MED
Institute Inc, West Lafayette, Indiana 47906, United States
| | - Allison L. Phillips
- Center
for Public Health and Environmental Assessment, US Environmental Protection Agency, Corvallis, Oregon 97333, United States
| | - Gyorgy Vas
- VasAnalytical, Flemington, New Jersey 08822, United States
- Intertek
Pharmaceutical Services, Whitehouse, New Jersey 08888, United States
| | - Antony J. Williams
- Center
for Computational Toxicology and Exposure, Office of Research and
Development, US Environmental Protection
Agency, Durham, North Carolina 27711, United States
| | - Anneli Kruve
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm 106 91, Sweden
- Department
of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
| |
Collapse
|
18
|
Fleming JF, House JS, Chappel JR, Motsinger-Reif AA, Reif DM. Guided optimization of ToxPi model weights using a Semi-Automated approach. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 29:100294. [PMID: 38872937 PMCID: PMC11175362 DOI: 10.1016/j.comtox.2023.100294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The Toxicological Prioritization Index (ToxPi) is a visual analysis and decision support tool for dimension reduction and visualization of high throughput, multi-dimensional feature data. ToxPi was originally developed for assessing the relative toxicity of multiple chemicals or stressors by synthesizing complex toxicological data to provide a single comprehensive view of the potential health effects. It continues to be used for profiling chemicals and has since been applied to other types of "sample" entities, including geospatial (e.g. county-level Covid-19 risk and sites of historical PFAS exposure) and other profiling applications. For any set of features (data collected on a set of sample entities), ToxPi integrates the data into a set of weighted slices that provide a visual profile and a score metric for comparison. This scoring system is highly dependent on user-provided feature weights, yet users often lack knowledge of how to define these feature weights. Common methods for predicting feature weights are generally unusable due to inappropriate statistical assumptions and lack of global distributional expectation. However, users often have an inherent understanding of expected results for a small subset of samples. For example, in chemical toxicity, prior knowledge can often place subsets of chemicals into categories of low, moderate or high toxicity (reference chemicals). Ordinal regression can be used to predict weights based on these response levels that are applicable to the entire feature set, analogous to using positive and negative controls to contextualize an empirical distribution. We propose a semi-supervised method utilizing ordinal regression to predict a set of feature weights that produces the best fit for the known response ("reference") data and subsequently fine-tunes the weights via a customized genetic algorithm. We conduct a simulation study to show when this method can improve the results of ordinal regression, allowing for accurate feature weight prediction and sample ranking in scenarios with minimal response data. To ground-truth the guided weight optimization, we test this method on published data to build a ToxPi model for comparison against expert-knowledge-driven weight assignments.
Collapse
Affiliation(s)
- Jonathon F. Fleming
- North Carolina State University, Bioinformatics Research Center, Raleigh, NC 27695, USA
- National Institute of Environmental Health Sciences, Biostatistics and Computational Biology Branch, Durham, NC 27713, USA
| | - John S. House
- National Institute of Environmental Health Sciences, Biostatistics and Computational Biology Branch, Durham, NC 27713, USA
| | - Jessie R. Chappel
- North Carolina State University, Bioinformatics Research Center, Raleigh, NC 27695, USA
| | - Alison A. Motsinger-Reif
- National Institute of Environmental Health Sciences, Biostatistics and Computational Biology Branch, Durham, NC 27713, USA
| | - David M. Reif
- North Carolina State University, Bioinformatics Research Center, Raleigh, NC 27695, USA
- National Institute of Environmental Health Sciences, Division of Translational Toxicology, Predictive Toxicology Branch, Durham, NC 27713, USA
| |
Collapse
|
19
|
Mu H, Yang Z, Chen L, Gu C, Ren H, Wu B. Suspect and nontarget screening of per- and polyfluoroalkyl substances based on ion mobility mass spectrometry and machine learning techniques. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132669. [PMID: 37797577 DOI: 10.1016/j.jhazmat.2023.132669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
High-resolution mass spectrometry (HRMS)-based suspect and nontarget screening techniques are powerful tools for the comprehensive identification of per- and polyfluoroalkyl substances (PFASs), but the interference of complex matrices (especially for wastewater) pose an analytical challenge. This study explored the potential of combining ion mobility spectrometry (IMS) with HRMS and machine learning techniques to achieve the rapid and accurate suspect and nontarget screening of PFAS in wastewater. There were fewer interfering peaks and a clearer spectrum in the data acquired by IMS-HRMS than conventional HRMS. The introduction of collision cross section (CCS) in PFAS homologous series search could filter out 63% of false positive results. Retention time and CCS prediction models were helpful in improving the confidence for PFAS qualitative identification and the random forest algorithm combined with RDKit descriptor performed best for CCS prediction. With the inclusion of extra dimensional information, this study also proposed a comprehensive and concise confidence assignment criterion to better convey the certainty of the qualitative identification of PFAS. Finally, a total of 56 potential PFASs were identified in the wastewater sample using the newly developed method and 45 of them were identified outside reference standards, emphasizing the importance of suspect and nontarget screening for PFAS.
Collapse
Affiliation(s)
- Hongxin Mu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Zhongchao Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
20
|
Vallejo DD, Corstvet JL, Fernández FM. Triboelectric Nanogenerators: Low-Cost Power Supplies for Improved Electrospray Ionization. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2024; 495:117167. [PMID: 38053979 PMCID: PMC10695355 DOI: 10.1016/j.ijms.2023.117167] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Electrospray ionization (ESI) is one of the most popular methods to generate ions for mass spectrometry (MS). When compared with other ionization techniques, it can generate ions from liquid-phase samples without additives, retaining covalent and non-covalent interactions of the molecules of interest. When hyphenated to liquid chromatography, it greatly expands the versatility of MS analysis of complex mixtures. However, despite the extensive growth in the application of ESI, the technique still suffers from some drawbacks when powered by direct current (DC) power supplies. Triboelectric nanogenerators promise to be a new power source for the generation of ions by ESI, improving on the analytical capabilities of traditional DC ESI. In this review we highlight the fundamentals of ESI driven by DC power supplies, its contrasting qualities to triboelectric nanogenerator power supplies, and its applications to three distinct fields of research: forensics, metabolomics, and protein structure analysis.
Collapse
Affiliation(s)
- Daniel D. Vallejo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joseph L. Corstvet
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
21
|
Kotlarz N, Guillette T, Critchley C, Collier D, Lea CS, McCord J, Strynar M, Cuffney M, Hopkins ZR, Knappe DRU, Hoppin JA. Per- and polyfluoroalkyl ether acids in well water and blood serum from private well users residing by a fluorochemical facility near Fayetteville, North Carolina. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:97-107. [PMID: 38195989 PMCID: PMC10976930 DOI: 10.1038/s41370-023-00626-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND A fluorochemical facility near Fayetteville, North Carolina, emitted per- and polyfluoroalkyl ether acids (PFEAs), a subgroup of per- and polyfluoroalkyl substances (PFAS), to air. OBJECTIVE Analyze PFAS in private wells near the facility and in blood from well users to assess relationships between PFEA levels in water and serum. METHODS In 2019, we recruited private well users into the GenX Exposure Study and collected well water and blood samples. We targeted 26 PFAS (11 PFEAs) in water and 27 PFAS (9 PFEAs) in serum using liquid chromatography-mass spectrometry. We used regression modeling to explore relationships between water and serum PFAS. For the only PFEA detected frequently in water and serum, Nafion byproduct 2, we used generalized estimating equation (GEE) models to assess well water exposure metrics and then adjusted for covariates that may influence Nafion byproduct 2 serum concentrations. RESULTS We enrolled 153 participants ages 6 and older (median = 56 years) using 84 private wells. Most wells (74%) had ≥6 detectable PFEAs; median ∑PFEAs was 842 ng/L (interquartile range = 197-1760 ng/L). Low molecular weight PFEAs (PMPA, HFPO-DA [GenX], PEPA, PFO2HxA) were frequently detected in well water, had the highest median concentrations, but were not detectable in serum. Nafion byproduct 2 was detected in 73% of wells (median = 14 ng/L) and 56% of serum samples (median = 0.2 ng/mL). Cumulative dose (well concentration × duration at address) was positively associated with Nafion byproduct 2 serum levels and explained the most variability (10%). In the adjusted model, cumulative dose was associated with higher Nafion byproduct 2 serum levels while time outside the home was associated with lower levels. IMPACT PFAS are a large class of synthetic, fluorinated chemicals. Fluorochemical facilities are important sources of environmental PFAS contamination globally. The fluorochemical industry is producing derivatives of perfluoroalkyl acids, including per- and polyfluoroalkyl ether acids (PFEAs). PFEAs have been detected in various environmental samples but information on PFEA-exposed populations is limited. While serum biomonitoring is often used for PFAS exposure assessment, serum biomarkers were not good measures of long-term exposure to low molecular weight PFEAs in a private well community. Environmental measurements and other approaches besides serum monitoring will be needed to better characterize PFEA exposure.
Collapse
Affiliation(s)
- Nadine Kotlarz
- Center for Human Health and the Environment, North Carolina State University (NC State), Raleigh, NC, USA.
- Department of Biological Sciences, NC State, Raleigh, NC, USA.
| | - Theresa Guillette
- Oak Ridge Institute for Science and Education Research Participation Program, Oak Ridge, TN, USA
| | | | - David Collier
- Center for Human Health and the Environment, North Carolina State University (NC State), Raleigh, NC, USA
- Department of Pediatrics, Brody School of Medicine, East Carolina University (ECU), Greenville, NC, USA
| | - C Suzanne Lea
- Center for Human Health and the Environment, North Carolina State University (NC State), Raleigh, NC, USA
- Department of Public Health, Brody School of Medicine, ECU, Greenville, NC, USA
| | - James McCord
- Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| | - Mark Strynar
- Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| | - Michael Cuffney
- Department of Biological Sciences, NC State, Raleigh, NC, USA
| | - Zachary R Hopkins
- Department of Civil, Construction, and Environmental Engineering, NC State, Raleigh, NC, USA
| | - Detlef R U Knappe
- Center for Human Health and the Environment, North Carolina State University (NC State), Raleigh, NC, USA
- Department of Civil, Construction, and Environmental Engineering, NC State, Raleigh, NC, USA
| | - Jane A Hoppin
- Center for Human Health and the Environment, North Carolina State University (NC State), Raleigh, NC, USA
- Department of Biological Sciences, NC State, Raleigh, NC, USA
| |
Collapse
|
22
|
Battisti I, Zambonini D, Ebinezer LB, Trentin AR, Meggio F, Petit G, Masi A. Perfluoroalkyl substances exposure alters stomatal opening and xylem hydraulics in willow plants. CHEMOSPHERE 2023; 344:140380. [PMID: 37813249 DOI: 10.1016/j.chemosphere.2023.140380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Climate change and pollution are increasingly important stress factors for life on Earth. Dispersal of poly- and perfluoroalkyl substances (PFAS) are causing worldwide contamination of soils and water tables. PFAS are partially hydrophobic and can easily bioaccumulate in living organisms, causing metabolic alterations. Different plant species can uptake large amounts of PFAS, but little is known about its consequences for the plant water relation and other physiological processes, especially in woody plants. In this study, we investigated the fractionation of PFAS bioaccumulation from roots to leaves and its effects on the conductive elements of willow plants. Additionally, we focused on the stomal opening and the phytohormonal content. For this purpose, willow cuttings were exposed to a mixture of 11 PFAS compounds and the uptake was evaluated by LC-MS/MS. Stomatal conductance was measured and the xylem vulnerability to air embolism was tested and further, the abscisic acid and salicylic acid contents were quantified using LC-MS/MS. PFAS accumulated from roots to leaves based on their chemical structure. PFAS-exposed plants showed reduced stomatal conductance, while no differences were observed in abscisic acid and salicylic acid contents. Interestingly, PFAS exposure caused a higher vulnerability to drought-induced xylem embolism in treated plants. Our study provides novel information about the PFAS effects on the xylem hydraulics, suggesting that the plant water balance may be affected by PFAS exposure. In this perspective, drought events may be more stressful for PFAS-exposed plants, thus reducing their potential for phytoremediation.
Collapse
Affiliation(s)
- Ilaria Battisti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro, PD, Italy.
| | - Dario Zambonini
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Viale dell'Università 16, Legnaro, PD, Italy
| | - Leonard Barnabas Ebinezer
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro, PD, Italy
| | - Anna Rita Trentin
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro, PD, Italy
| | - Franco Meggio
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro, PD, Italy
| | - Giai Petit
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Viale dell'Università 16, Legnaro, PD, Italy
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro, PD, Italy
| |
Collapse
|
23
|
Starnes HM, Jackson TW, Rock KD, Belcher SM. Quantitative Cross-Species Comparison of Serum Albumin Binding of Per- and Polyfluoroalkyl Substances from Five Structural Classes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566613. [PMID: 38014292 PMCID: PMC10680784 DOI: 10.1101/2023.11.10.566613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of over 8,000 chemicals that are persistent, bioaccumulative, and toxic to humans, livestock, and wildlife. Serum protein binding affinity is instrumental in understanding PFAS toxicity, yet experimental binding data is limited to only a few PFAS congeners. Previously, we demonstrated the usefulness of a high-throughput, in vitro differential scanning fluorimetry assay for determination of relative binding affinities of human serum albumin for 24 PFAS congeners from 6 chemical classes. In the current study, we used this differential scanning fluorimetry assay to comparatively examine differences in human, bovine, porcine, and rat serum albumin binding of 8 structurally informative PFAS congeners from 5 chemical classes. With the exception of the fluorotelomer alcohol 1H,1H,2H,2H-perfluorooctanol (6:2 FTOH), each PFAS congener bound by human serum albumin was also bound by bovine, porcine, and rat serum albumin. The critical role of the charged functional headgroup in albumin binding was supported by the inability of serum albumin of each species tested to bind 6:2 FTOH. Significant interspecies differences in serum albumin binding affinities were identified for each of the bound PFAS congeners. Relative to human albumin, perfluoroalkyl carboxylic and sulfonic acids were bound with greater affinity by porcine and rat serum albumin, and perfluoroalkyl ether congeners bound with lower affinity to porcine and bovine serum albumin. These comparative affinity data for PFAS binding by serum albumin from human, experimental model and livestock species reduce critical interspecies uncertainty and improve accuracy of predictive toxicity assessments for PFAS.
Collapse
Affiliation(s)
- Hannah M. Starnes
- Department of Biological Sciences, North Carolina State University, 127 David Clark Labs Campus Box 7617, Raleigh, NC 27607, USA
| | - Thomas W. Jackson
- Department of Biological Sciences, North Carolina State University, 127 David Clark Labs Campus Box 7617, Raleigh, NC 27607, USA
- Current address: Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Kylie D. Rock
- Department of Biological Sciences, North Carolina State University, 127 David Clark Labs Campus Box 7617, Raleigh, NC 27607, USA
- Current address: Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Scott M. Belcher
- Department of Biological Sciences, North Carolina State University, 127 David Clark Labs Campus Box 7617, Raleigh, NC 27607, USA
| |
Collapse
|
24
|
Kirkwood-Donelson KI, Dodds JN, Schnetzer A, Hall N, Baker ES. Uncovering per- and polyfluoroalkyl substances (PFAS) with nontargeted ion mobility spectrometry-mass spectrometry analyses. SCIENCE ADVANCES 2023; 9:eadj7048. [PMID: 37878714 PMCID: PMC10599621 DOI: 10.1126/sciadv.adj7048] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023]
Abstract
Because of environmental and health concerns, legacy per- and polyfluoroalkyl substances (PFAS) have been voluntarily phased out, and thousands of emerging PFAS introduced as replacements. Traditional analytical methods target a limited number of mainly legacy PFAS; therefore, many species are not routinely assessed in the environment. Nontargeted approaches using high-resolution mass spectrometry methods have therefore been used to detect and characterize unknown PFAS. However, their ability to elucidate chemical structures relies on generation of informative fragments, and many low concentration species are not fragmented in typical data-dependent acquisition approaches. Here, a data-independent method leveraging ion mobility spectrometry (IMS) and size-dependent fragmentation was developed and applied to characterize aquatic passive samplers deployed near a North Carolina fluorochemical manufacturer. From the study, 11 PFAS structures for various per- and polyfluorinated ether sulfonic acids and multiheaded perfluorinated ether acids were elucidated in addition to 36 known PFAS. Eight of these species were previously unreported in environmental media, and three suspected species were validated.
Collapse
Affiliation(s)
| | - James N. Dodds
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Astrid Schnetzer
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC,, USA
| | - Nathan Hall
- Department of Marine, Earth, and Atmospheric Sciences, University of North Carolina at Chapel Hill, Morehead City, NC, USA
| | - Erin S. Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
25
|
Strynar M, McCord J, Newton S, Washington J, Barzen-Hanson K, Trier X, Liu Y, Dimzon IK, Bugsel B, Zwiener C, Munoz G. Practical application guide for the discovery of novel PFAS in environmental samples using high resolution mass spectrometry. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:575-588. [PMID: 37516787 PMCID: PMC10561087 DOI: 10.1038/s41370-023-00578-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND The intersection of the topics of high-resolution mass spectrometry (HRMS) and per- and polyfluoroalkyl substances (PFAS) bring together two disparate and complex subjects. Recently non-targeted analysis (NTA) for the discovery of novel PFAS in environmental and biological media has been shown to be valuable in multiple applications. Classical targeted analysis for PFAS using LC-MS/MS, though growing in compound coverage, is still unable to inform a holistic understanding of the PFAS burden in most samples. NTA fills at least a portion of this data gap. OBJECTIVES Entrance into the study of novel PFAS discovery requires identification techniques such as HRMS (e.g., QTOF and Orbitrap) instrumentation. This requires practical knowledge of best approaches depending on the purpose of the analyses. The utility of HRMS applications for PFAS discovery is unquestioned and will likely play a significant role in many future environmental and human exposure studies. METHODS/RESULTS PFAS have some characteristics that make them standout from most other chemicals present in samples. Through a series of tell-tale PFAS characteristics (e.g., characteristic mass defect range, homologous series and characteristic fragmentation patterns), and case studies different approaches and remaining challenges are demonstrated. IMPACT STATEMENT The identification of novel PFAS via non-targeted analysis using high resolution mass spectrometry is an important and difficult endeavor. This synopsis document will hopefully make current and future efforts on this topic easier to perform for novice and experienced alike. The typical time devoted to NTA PFAS investigations (weeks to months or more) may benefit from these practical steps employed.
Collapse
Affiliation(s)
- Mark Strynar
- USEPA Office of Research and Development Center for Environmental Measurement and Modeling, Durham, NC and Athens, GA, USA.
| | - James McCord
- USEPA Office of Research and Development Center for Environmental Measurement and Modeling, Durham, NC and Athens, GA, USA
| | - Seth Newton
- USEPA Office of Research and Development Center for Environmental Measurement and Modeling, Durham, NC and Athens, GA, USA
| | - John Washington
- USEPA Office of Research and Development Center for Environmental Measurement and Modeling, Durham, NC and Athens, GA, USA
| | | | - Xenia Trier
- Section of Environmental Chemistry and Physics, Department of Plant and Environmental Sciences (PLEN), University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg, Denmark
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Ian Ken Dimzon
- Ateneo de Manila University, Loyola Heights, Quezon City, Philippines
| | - Boris Bugsel
- Environmental Analytical Chemistry, Department of Geosciences, University of Tübingen, Schnarrenbergstr. 94-96, 72076, Tübingen, Germany
| | - Christian Zwiener
- Environmental Analytical Chemistry, Department of Geosciences, University of Tübingen, Schnarrenbergstr. 94-96, 72076, Tübingen, Germany
| | - Gabriel Munoz
- Université de Montréal, Montreal, QC, H3C 3J7, Canada
| |
Collapse
|
26
|
Mattila JM, Li EY, Offenberg JH. Tubing material considerably affects measurement delays of gas-phase oxygenated per- and polyfluoroalkyl substances. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2023; 73:335-344. [PMID: 36803440 DOI: 10.1080/10962247.2023.2174612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants associated with negative health impacts. Assessments of tubing-related measurement bias for volatile PFAS are lacking, as gas-wall interactions with tubing can delay quantification of gas-phase analytes. We use online iodide chemical ionization mass spectrometry measurements to characterize tubing delays for three gas-phase oxygenated PFAS - 4:2 fluorotelomer alcohol (4:2 FTOH), perfluorobutanoic acid (PFBA), and hexafluoropropylene oxide dimer acid (HFPO-DA). Perfluoroalkoxy alkane and high-density polyethylene tubing yielded relatively short absorptive measurement delays, with no clear dependence on tubing temperature or sampled humidity. Sampling through stainless steel tubing led to prolonged measurement delays due to reversible adsorption of PFAS to the tubing surface, with strong dependence on tubing temperature and sample humidification. Silcosteel tubing afforded shorter measurement delays than stainless steel due to diminished surface adsorption of PFAS. Characterizing and mitigating these tubing delays is crucial for reliable quantification of airborne PFAS.Implications: Per- and polyfluoroalkyl substances (PFAS) are persistent environmental contaminants. Many PFAS are sufficiently volatile to exist as airborne pollutants. Measurements and quantification of airborne PFAS can be biased from material-dependent gas-wall interactions with sampling inlet tubing. Thus, characterizing these gas-wall interactions are crucial for reliably investigating emissions, environmental transport, and fates of airborne PFAS.
Collapse
Affiliation(s)
- James M Mattila
- Oak Ridge Institute for Science and Education, Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC, USA
| | - Emily Y Li
- Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC, USA
| | - John H Offenberg
- Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC, USA
| |
Collapse
|
27
|
Díaz-Galiano FJ, Murcia-Morales M, Monteau F, Le Bizec B, Dervilly G. Collision cross-section as a universal molecular descriptor in the analysis of PFAS and use of ion mobility spectrum filtering for improved analytical sensitivities. Anal Chim Acta 2023; 1251:341026. [PMID: 36925298 DOI: 10.1016/j.aca.2023.341026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/15/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
The massive usage of per- and polyfluoroalkyl substances (PFAS), as well as their high chemical stability, have led to their ubiquitous presence in environmental matrices and direct human exposure through contaminated food, particularly fish. In the analysis of this large group of substances, the use of ion mobility coupled to mass spectrometry is of particular relevance because it uses an additional descriptor, the collision cross-section (CCS), which results in increased selectivity. In the present work, the TWCCSN2 of 24 priority PFAS were experimentally obtained, and the reproducibility of these measurements was evaluated over seven weeks. The average values were employed to critically assess previously reported data and theoretical calculations. This gain in selectivity made it possible to increase the sensitivity of the detection on complex matrices (biota, food and human serum) by using the drift time associated to each analyte as a filter, thus reducing the interferences and background noise and allowing their detection at trace levels.
Collapse
Affiliation(s)
- Francisco José Díaz-Galiano
- ONIRIS, INRAE, LABERCA, Nantes, 44000, France; University of Almería, Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| | - María Murcia-Morales
- ONIRIS, INRAE, LABERCA, Nantes, 44000, France; University of Almería, Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| | | | | | | |
Collapse
|
28
|
Casey JS, Jackson SR, Ryan J, Newton SR. The use of gas chromatography - high resolution mass spectrometry for suspect screening and non-targeted analysis of per- and polyfluoroalkyl substances. J Chromatogr A 2023; 1693:463884. [PMID: 36863195 PMCID: PMC10284305 DOI: 10.1016/j.chroma.2023.463884] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
This study is a workflow development for the analysis, identification, and categorization of per- and polyfluoroalkyl substances (PFAS) using gas chromatography-high resolution mass spectrometry (GC-HRMS) with non-targeted analysis (NTA) and suspect screening techniques. The behavior of various PFAS in a GC-HRMS was studied with regards to retention indices, ionization susceptibility, fragmentation patterns, etc. A custom PFAS database was constructed from 141 diverse PFAS. The database contains mass spectra from electron ionization (EI) mode, as well as MS and MS/MS spectra from positive and negative chemical ionization (PCI and NCI, respectively) modes. Common fragments of PFAS were identified across a diverse set of 141 PFAS analyzed. A workflow for suspect screening of PFAS and partially fluorinated products of incomplete combustion/destruction (PICs/PIDs) was developed which utilized both the custom PFAS database and external databases. PFAS and other fluorinated compounds were identified in both a challenge sample (designed to test the identification workflow) and incineration samples suspected to contain PFAS and fluorinated PICs/PIDs. The challenge sample resulted in a 100% true positive rate (TPR) for PFAS which were present in the custom PFAS database. Several fluorinated species were tentatively identified in the incineration samples using the developed workflow.
Collapse
Affiliation(s)
- Jonathan S Casey
- ORISE, Office of Research & Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | - Stephen R Jackson
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | - Jeff Ryan
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | - Seth R Newton
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States.
| |
Collapse
|
29
|
Feng X, Yi S, Shan G, Chen X, Yang Y, Yang L, Jia Y, Zhu Y, Zhu L. Occurrence of perfluoroalkyl substances in the environment compartments near a mega fluorochemical industry: Implication of specific behaviors and emission estimation. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130473. [PMID: 36455325 DOI: 10.1016/j.jhazmat.2022.130473] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/12/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
With the stringent restrictions on long-chain per- and polyfluoroalkyl substances (PFASs), ether-PFASs are being widely used as alternatives. We estimated that the mega fluorochemical industrial park (FIP) in Shandong, China, had emitted a maximum of 5040 kg and 1026 kg of hexafluoropropylene oxides (HFPOs), and 7560 kg and 1890 kg of perfluorooctanoic acid (PFOA) to water and air during 2021. In the surface water, groundwater, outdoor dust, soil, tree leaf and bark collected in the vicinity of the FIP, PFOA was predominant, followed by HFPOs. The much higher percentage of HFPO dimer acid (HFPO-DA) in groundwater than in surface water verified that this compound was more mobile in porous media. The strong correlations between the main PFASs in outdoor dust and surface soil suggested that the soil PFASs were mainly derived from air deposition, particularly for HFPO trimer acid (HFPO-TA), which has a stronger binding affinity with particles than PFOA. High percentage of the hydroxylated product of 6:2 polyfluorinated ether sulfonic acid was observed in groundwater, implying reductive dechlorination might occur in groundwater. Strong correlations between PFASs in outdoor dust and those in tree leaf and bark magnified that tree could serve as a sampler to effectively monitor airborne PFASs. This study provides the first line of information about the discharge, transport, and fate of novel ether-PFASs in the multiple environmental media near a point source.
Collapse
Affiliation(s)
- Xuemin Feng
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (MNR) of the People's Republic of China, Tianjin 300192, China
| | - Shujun Yi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Guoqiang Shan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xin Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yi Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Liping Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yibo Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yumin Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
30
|
Balgooyen S, Remucal CK. Impacts of Environmental and Engineered Processes on the PFAS Fingerprint of Fluorotelomer-Based AFFF. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:244-254. [PMID: 36573898 DOI: 10.1021/acs.est.2c06600] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Forensic analysis can potentially be used to determine per- and polyfluoroalkyl substance (PFAS) sources at contaminated sites. However, fluorotelomer aqueous film-forming foam (AFFF) sources are difficult to identify because the polyfluorinated active ingredients do not have authentic standards and because the parent compounds can undergo transformation and differential transport, resulting in alteration of the PFAS distribution or fingerprint. In this study, we investigate changes in the PFAS fingerprint of fluorotelomer-derived AFFF due to environmental and engineered processes, including groundwater transport, surface water flow, and land application of contaminated biosolids. Fingerprint analysis supplemented by quantification of precursors and identification of suspected active ingredients shows a clear correlation between a fluorotelomer AFFF manufacturer and surface water of nearby Lake Michigan, demonstrating contamination (>100 ng/L PFOA) of the lake due to migration of an AFFF-impacted groundwater plume. In contrast, extensive processing during wastewater treatment and environmental transport results in large changes to the AFFF fingerprint near agricultural fields where contaminated biosolids were spread. At biosolids-impacted sites, the presence of active ingredients confirms contamination by fluorotelomer AFFF. While sediments can retain longer-chain PFAS, this study demonstrates that aqueous samples are most relevant for PFAS fingerprinting in complex sites, particularly where shorter-chain compounds have been used.
Collapse
Affiliation(s)
- Sarah Balgooyen
- Department of Civil and Environmental Engineering, University of Wisconsin - Madison, 660 N. Park Street, Madison, Wisconsin 53706, United States
| | - Christina K Remucal
- Department of Civil and Environmental Engineering, University of Wisconsin - Madison, 660 N. Park Street, Madison, Wisconsin 53706, United States
- Environmental Chemistry and Technology Program, University of Wisconsin - Madison, 660 N. Park Street, Madison, Wisconsin 53706, United States
| |
Collapse
|
31
|
Weed RA, Boatman AK, Enders JR. Recovery of per- and polyfluoroalkyl substances after solvent evaporation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2263-2271. [PMID: 36281820 PMCID: PMC9772059 DOI: 10.1039/d2em00269h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent, bioaccumulative chemicals that can be toxic at very low levels. Many of these compounds have unusual chemical properties that can have a large impact on analytical methods intended to quantitate them. When analyzing environmental samples, concentrating extraction eluents can greatly increase the sensitivity of PFAS extraction and analysis workflows. However, data on PFAS stability when evaporated under vacuum drying conditions are lacking. In this study two common sample preparation methods were replicated (methanol or methanolic ammonium hydroxide) to determine if PFAS material would undergo any observable loss during vacuum evaporation. Standards containing 49 different analytes from 7 different PFAS classes were evaporated to dryness under vacuum either with or without heat and reconstituted using one of two methods. It was found that recovery of some classes (e.g. PFSA, PFESA, FTS) was not greatly impacted by evaporation conditions or reconstitution method. Some analytes such as the very long chain PFCAs were not affected by evaporation conditions but saw drastic differences in recovery depending on the reconstitution method. Others analytes, for example PFSAms, experienced significant loss during evaporation that could not be mitigated by the chosen reconstitution method. This difference could be due to the number of fluorines present on the compound which correlated with a compound's hydrophobicity. Due to these findings, it is recommend that researchers consider PFAS class, chain length, and fluorine number when designing concentration and reconstitution protocols for PFAS to ensure conditions are optimal for the specific analytes of interest.
Collapse
Affiliation(s)
- Rebecca A Weed
- North Carolina State University at Raleigh, Molecular Education, Technology and Research Innovation Center (METRIC), Raleigh, NC, USA.
| | - Anna K Boatman
- Department of Chemistry, North Carolina State University at Raleigh, Raleigh, NC, USA
| | - Jeffrey R Enders
- North Carolina State University at Raleigh, Molecular Education, Technology and Research Innovation Center (METRIC), Raleigh, NC, USA.
- Department of Biological Sciences, North Carolina State University at Raleigh, Raleigh, NC, USA
| |
Collapse
|
32
|
Zhou J, Baumann K, Surratt JD, Turpin BJ. Legacy and emerging airborne per- and polyfluoroalkyl substances (PFAS) collected on PM 2.5 filters in close proximity to a fluoropolymer manufacturing facility. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2272-2283. [PMID: 36349377 PMCID: PMC11089768 DOI: 10.1039/d2em00358a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Large fluoropolymer manufacturing facilities are major known sources of per- and polyfluoroalkyl substances (PFAS), many of which accumulate in groundwater, surface water, crops, wildlife, and people. Prior studies have measured high PFAS concentrations in groundwater, drinking water, soil, as well as dry and wet deposition near fluoropolymer facilities; however, much less is known about near-source PFAS air concentrations. We measured airborne PFAS on PM2.5 filters in close proximity to a major fluoropolymer manufacturing facility (Chemours' Fayetteville Works) located near Fayetteville, North Carolina, USA. Weekly PM2.5 filter samples collected over a six-month field campaign using high-volume air samplers at locations 3.7 km apart, north-northeast and south-southwest of the facility were analyzed for thirty-four targeted ionic PFAS species by liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Twelve emerging and ten legacy PFAS compounds were detected. Thirteen PFAS were found at higher concentrations in these nearfield samples than at regional background sites, suggesting a local source for these compounds. Five emerging and five legacy PFAS compounds had maximum concentrations exceeding 1 pg m-3. PFBA, PFHxA, PFHxDA, PFOS, PMPA, NVHOS, PFO5DoA, and Nafion BP1 contributed the most to the total (legacy + emerging) PFAS concentration (86%). Six PFAS, specifically PFBA, PFOS, PFO5DoA, Nafion BP1, Nafion BP2, and Nafion BP4, provide a consistent representative profile of elevated species across the two sites (with detection frequency >50%). To our knowledge, this is the first study to report both legacy and emerging ionic PFAS in air in close proximity to a U.S. fluoropolymer manufacturing facility.
Collapse
Affiliation(s)
- Jiaqi Zhou
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Karsten Baumann
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Picarro Inc., Santa Clara, CA, USA
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Chemistry, College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Barbara J Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
33
|
High-end ion mobility mass spectrometry: A current review of analytical capacity in omics applications and structural investigations. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116761] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Guillette TC, Jackson TW, Guillette M, McCord J, Belcher SM. Blood concentrations of per- and polyfluoroalkyl substances are associated with autoimmune-like effects in American alligators from Wilmington, North Carolina. FRONTIERS IN TOXICOLOGY 2022; 4:1010185. [PMID: 36337916 PMCID: PMC9630345 DOI: 10.3389/ftox.2022.1010185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022] Open
Abstract
Surface and groundwater of the Cape Fear River basin in central and coastal North Carolina is contaminated with high levels of per- and polyfluoroalkyl substances (PFAS). Elevated levels of PFAS have also been found in blood of fish and wildlife from the Cape Fear River, and in the blood of human populations reliant on contaminated well or surface water from the Cape Fear River basin as a source of drinking water. While the public and environmental health impacts of long-term PFAS exposures are poorly understood, elevated blood concentrations of some PFAS are linked with immunotoxicity and increased incidence of some chronic autoimmune diseases in human populations. The goal of this One Environmental Health study was to evaluate PFAS exposure and biomarkers related to immune health in populations of American alligators (Alligator mississippiensis), a protected and predictive sentinel species of adverse effects caused by persistent toxic pollutants. We found that serum PFAS concentrations in alligator populations from the Cape Fear River were increased compared to a reference population of alligators from the adjoining Lumber River basin. The elevated serum PFAS concentrations in the Cape Fear River alligators were associated with increased innate immune activities, and autoimmune-like phenotypes in this population. In addition to evidence of significantly higher double stranded-DNA binding autoantibodies in adult Cape Fear River alligators, our qRT-PCR analysis found remarkably high induction of Interferon-α signature genes implicated in the pathology of human autoimmune disease. We interpret the association of increased PFAS exposure with disrupted immune functions to suggest that PFAS broadly alters immune activities resulting in autoimmune-like pathology in American alligators. This work substantiates and extends evidence from experimental models and human epidemiology studies showing that some PFAS are immune toxicants.
Collapse
Affiliation(s)
- T. C. Guillette
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Thomas W. Jackson
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Matthew Guillette
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - James McCord
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC, United States
| | - Scott M. Belcher
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States,*Correspondence: Scott M. Belcher,
| |
Collapse
|
35
|
Hynds HM, Hines KM. Ion Mobility Shift Reagents for Lipid Double Bonds Based on Paternò-Büchi Photoderivatization with Halogenated Acetophenones. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1982-1989. [PMID: 36126229 DOI: 10.1021/jasms.2c00211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Paternò-Büchi (PB) reaction is a cycloaddition reaction between a carbon-carbon double bond (C═C) and a photochemically excited carbonyl-containing compound. The constrained ring formed between the C═C bond and the PB reagent is more susceptible to fragmentation by collision-induced dissociation, which facilitates identification of the C═C position within the fatty acyl tails of lipids. Although the original PB reaction using acetone had a low yield of derivatized lipids and therefore a low yield of diagnostic ions, a new generation of PB reagents based on halogenated acetophenones has improved the reaction yield substantially. In this study, we investigated the use of halogenated PB reagents and ion mobility to improve the identification of PB-derivatized lipids by shifting them out of the densely populated lipid region of ion mobility-mass spectrometry (IM-MS) space. Several halogenated PB reagents containing fluorine, chlorine and bromine were investigated for their ability to decrease the collision cross-section (CCS) values of derivatized lipids and yield sufficient intensity for both the derivatized lipid and its diagnostic ions. We found that 4'-chloro-2',6'-difluoroacetophenone (CDFAP) displayed the best performance, with an average decrease in CCS of 4.4% and yield of derivatized lipids and diagnostic ions comparable to the trifluorinated acetophenone reagent proposed by the Xia group. The unique isotope pattern resulting from the chlorine substituent aided in identification of the derivatized lipids and their diagnostic ions, as well. We further demonstrate that derivatization with CDFAP preserves the separation of lipids classes in IM-MS space.
Collapse
Affiliation(s)
- Hannah M Hynds
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Kelly M Hines
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|