1
|
Chen Y, Yan Z, Su P, Liu S, Chen X, Jiang R, Lu G, Yuan S. Remediation strategy of biochar with different addition approaches on antibiotic resistance genes in riparian zones under dry wet alternation. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138207. [PMID: 40215939 DOI: 10.1016/j.jhazmat.2025.138207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/15/2025] [Accepted: 04/06/2025] [Indexed: 05/15/2025]
Abstract
The global prevalence of antibiotic resistance genes (ARGs) has aroused increasing concern due to its threat to ecological security and human health. Although biochar has been widely used for pollution remediation including ARGs, little is known its regulation on antibiotics and ARGs propagation under riparian zones, where undergo frequent occurrence of dry and wet alternations (DWA) caused by water-level fluctuation. Therefore, this study investigated the regulative effects of biochar through different addition approaches on ARGs spread in riparian zone sediments. Under DWA, the presence of biochar (2 % w/w) inhibited microbial diversity and function expression, especially for tiled biochar. In addition, compared with DWA, the tiled biochar decreased ARGs abundance by 45.36 %, while the well-mixed increased that by 269.02 %. The ARGs abundance in sediments was positively correlated with mobile genetic element abundance (R2=0.996, p < 0.05), indicative of high horizontal gene transfer potential of ARGs. Metabolomics revealed that both DWA and biochar significantly altered microbial metabolism pathways in sediments, involving sulfur metabolism and histidine metabolism. Furthermore, ARGs propagation in riparian zones may be dominantly driven by MGEs, especially by transposases and integrase. These findings highlight the tiled biochar remediation effects on ARGs in riparian zones under DWA caused by global warming.
Collapse
Affiliation(s)
- Yufang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Pengpeng Su
- College of Environment, Hohai University, Nanjing 210098, China
| | - Shiqi Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xi Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Runren Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Saiyu Yuan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| |
Collapse
|
2
|
Jiang X, Zhao Y, Zhang W, Zheng Q, Li D, Zhang G, Zhou T. Chlorotetracycline-driven modulation of substrate utilization and metabolic traits in sludge anaerobic fermentation for optimized methane production. BIORESOURCE TECHNOLOGY 2025; 428:132449. [PMID: 40154751 DOI: 10.1016/j.biortech.2025.132449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Anaerobic digestion (AD) is a highly efficient and promising method for treating waste activated sludge (WAS). Nevertheless, the presence of chlortetracycline (CTC) in WAS introduced uncertainty into the AD process. This study revealed thatthe cumulative methane yield was increased by 27.5 % with the CTC concentration at 50 mg/kg dry sludge by enhancing hydrolysis, acidification and methanogenesis during which specific microbial communities were enriched and related functional genes were enhanced. Subsequent investigations foundthe accumulation of extracellular polymeric substances (EPS) was improved and methane-producing microorganisms (e.g., Bacteroidetes and Euryarchaeota) were also enriched under CTC exposure. Metagenomic analysis further elucidated thatCTC significantly increased functional genes related to bacterial secretion system and metabolism of organic matter for methane production (e.g., pyruvate metabolism and methane metabolism). This study shed light on the substantial impact of CTC on the AD of WAS and provided a promising strategy for improvements in anaerobic fermentation.
Collapse
Affiliation(s)
- Xiupeng Jiang
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Youcai Zhao
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Tianfu Yongxing Laboratory, Chengdu 610213, China
| | - Wenxiao Zhang
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qiyuan Zheng
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Dong Li
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Guofang Zhang
- Shanghai Urban Development Research Institute Co., Ltd, Shanghai 200030, China
| | - Tao Zhou
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
Rani J, Goyal T, Kaur A, Ganesan S, Sharma AK, Chauhan AS, Kaushal S, Kumar S. Bimetallic nanoparticles as pioneering eco-friendly catalysts for remediation of pharmaceuticals and personal care products (PPCPs). NANOSCALE ADVANCES 2025:d5na00151j. [PMID: 40290209 PMCID: PMC12024480 DOI: 10.1039/d5na00151j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025]
Abstract
The persistent presence of Pharmaceuticals and Personal Care Products (PPCPs) in aquatic environments poses a significant risk to both human health and ecosystems, with conventional water treatment methods often unable to effectively remove these contaminants. Recent research has identified bimetallic nanoparticles as a promising and eco-friendly solution for PPCP remediation, owing to their enhanced catalytic properties and the synergistic effects between the metals. This review critically examines the synthesis, characterization, and application of bimetallic nanoparticles for the degradation of PPCPs in water. Key synthetic approaches, particularly green synthesis methods, are explored, emphasizing their ability to control nanoparticle morphology, size, and composition. We highlight the novel catalytic mechanisms employed by bimetallic nanoparticles, including electron transfer, surface reactions, and adsorption processes, which contribute to efficient PPCP removal. Furthermore, the influence of critical factors such as nanoparticle size, composition, and surface functionalization on catalytic efficiency is analyzed. Key findings include the superior performance of bimetallic nanoparticles over monometallic counterparts, with specific emphasis on their ability to degrade a wide range of PPCPs under mild conditions. However, challenges such as scalability, stability, and environmental impact remain. This review also provides insights into the future directions for bimetallic nanoparticle development, stressing the importance of interdisciplinary research and collaborative efforts to optimize their design for large-scale, sustainable water treatment applications. Overall, this work offers a comprehensive understanding of how bimetallic nanoparticles can be optimized for sustainable water treatment solutions, highlighting their potential to mitigate the adverse effects of PPCPs on both ecosystems and public health.
Collapse
Affiliation(s)
- Jyoti Rani
- Department of Chemistry, Akal University Talwandi Sabo Bathinda-151302 Punjab India
| | - Tamanna Goyal
- Department of Chemistry, Akal University Talwandi Sabo Bathinda-151302 Punjab India
| | - Arshdeep Kaur
- Department of Chemistry, Akal University Talwandi Sabo Bathinda-151302 Punjab India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University) Bangalore Karnataka India
| | - Ashwani Kumar Sharma
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges Jhanjeri Mohali 140307 Punjab India
| | - Ashish Singh Chauhan
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University Dehradun Uttarakhand India
| | - Sandeep Kaushal
- Regional Institute of Education, National Council of Educational Research and Training Ajmer Rajasthan India
| | - Sandeep Kumar
- Department of Chemistry, Akal University Talwandi Sabo Bathinda-151302 Punjab India
| |
Collapse
|
4
|
Li Y, Cai Y, Zhang M, Xu Z, Luo Y, Cai Y, Xun Z, Lv T, Wang Y, Qin T, Liu B, Zhu M. Rational design of a ratiometric indicator-displacement assay for the monitoring of chlortetracycline and intracellular imaging. Talanta 2025; 284:127251. [PMID: 39586210 DOI: 10.1016/j.talanta.2024.127251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
Chlortetracycline (CTC), one of the tetracyclic antibiotics, has been widely employed for the inhibition of bacteria. Due to the potential threat to human health posed by the residual CTC, the development of ratiometric fluorescent probes that can achieve accurate measurement and in-situ imaging is urgently needed but remains challenged. Here, a bovine serum albumin (BSA)-involved host-guest system was designed as the novel ratiometric probe (C3@BSA) for CTC based on the indicator-displacement assay principle. Significantly, the fluorescence difference between the CTC@BSA complex and other tetracyclic@BSA complexes ensured high selectivity of this probe. The indicator (C3) was rationally derived from a simple chalcone dye with weak binding affinity to BSA (1.7 × 104 M-1) compared with CTC (2.2 × 104 M-1). The sensing process can finish in 10 s with sensitive response (detection limit: 0.23 μM) and anti-interference capacities over common ions and amino acids. On this basis, the probe was successfully used to detect CTC in HeLa cells and B16 cells, where the distributions of CTC were displayed under a dual-channel imaging mode for the first time. Our research provided a novel ratiometric probe for CTC and an effective strategy for designing ratiometric fluorescent indicator-displacement assays.
Collapse
Affiliation(s)
- Yixin Li
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China.
| | - Yujian Cai
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China.
| | - Mingyuan Zhang
- College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Zhongyong Xu
- College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Yuting Luo
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China.
| | - Yi Cai
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China.
| | - Zhiqing Xun
- Guangzhou Quality Supervision and Testing Institute, 1-2 Zhujiang Rd, Guangzhou, 511447, China.
| | - Taoyuze Lv
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China.
| | - Yalong Wang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China.
| | - Tianyi Qin
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China.
| | - Bin Liu
- College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Mingqiang Zhu
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China.
| |
Collapse
|
5
|
Sikorski Ł, Bęś A, Karetko-Sikorska E, Truszkowski W, Tomaszewska K. Ion-exchange chromatography in the assessment of environmental pollution with chlortetracycline. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107142. [PMID: 39504861 DOI: 10.1016/j.aquatox.2024.107142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/26/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Chemical substances such as drugs pose a threat to the environment. One of the substances recorded in soil and water is chlortetracycline, an antibiotic used in veterinary medicine. Plants exposed to such xenobiotics show changes in the content of biogenic amines. An analytical technique - ion exchange chromatography is used to assess their content. The occurrence of these active compounds is used to determine the degree of environmental pollution with chemical substances. The study aimed to evaluate the toxicity of chlortetracycline (CTC) at concentrations of 0; 0.05; 0.1; 0.2 0.5;1; 2; 3; and 5 mM towards the test organism Lemna minor, and determine the content of biogenic amines in the plant tissues. The content of biogenic amines was analyzed by ion-exchange chromatography with post-column ninhydrin derivatization and photometric detection. The Lemna test proved that increasing concentrations of CTC had a toxic effect on the plants. It was calculated that the Lowest Observed Effects Concentration (LOEC) of CTC at >0.04 mM and >0.05 mM was phytotoxic to L. minor growth and yield. It was determined that the levels of histamine, tyramine, and cadaverine exhibited an increase, reaching 1.04, 1.90, and 3.10 µg g-1 of tissue at 2.00 mM CTC. Simultaneously, spermine and putrescine increased to 1.21 and 3.89 µg g-1 of tissue at concentrations of 0.10 and 0.50 mM of the drug. Conversely, the study revealed an over 88 % reduction in spermidine in plants at 5 mM of CTC. Using ion-exchange chromatography, analysis of biogenic amines, particularly spermidine and cadaverine, highlighted these intra-tissue compounds as sensitive biomarkers for water contamination with the tested drug. This research confirmed that the Lemna test is effective for assessing CTC toxicity and that ion-exchange chromatography is useful for evaluating environmental pollution by this antibiotic.
Collapse
Affiliation(s)
- Łukasz Sikorski
- Department of Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 4,10-727 Olsztyn, Poland.
| | - Agnieszka Bęś
- Department of Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 4,10-727 Olsztyn, Poland
| | - Elżbieta Karetko-Sikorska
- Experiment and Education Station, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 1,10-724 Olsztyn, Poland
| | - Wojciech Truszkowski
- Department of Agrotechnology and Agribusiness, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, M. Oczapowskiego 8,10-719 Olsztyn, Poland
| | - Katarzyna Tomaszewska
- Department of Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 4,10-727 Olsztyn, Poland
| |
Collapse
|
6
|
Yuan A, Hao H, Sha R, Xiao H, Yang F, Pang B, Li J, Jin M, Xie W, Zhao L, Wang Y, Zhang Y, Li J, Peng H. In Situ Imaging of Cellular Inflammatory Response to Antibiotic Exposure with a DNAzyme Nanorobot. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20619-20629. [PMID: 39449588 DOI: 10.1021/acs.est.4c06956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Antibiotic-induced inflammation involves the release of myeloperoxidase (MPO), an enzyme whose expression in tissues is associated with the inflammatory pathway. However, existing methods for detecting MPO in cells are limited. In this study, a DNAzyme nanorobot was developed using a scaffold of gold nanoparticles (AuNPs) decorated with functional DNAzyme strands and their fluorophore-labeled substrate strands. The DNAzyme remains inactive due to a self-assembled hairpin structure, with a phosphorothioate (PT) modification inserted into the stem domain. When MPO is present, it triggers a halogenation process that generates hypochlorous acid (HClO). HClO specifically catalyzes the cleavage of the PT-site, releasing free DNAzyme strands to cleave their substrates and generating an increasing fluorescent signal. The detection limit for MPO and its primary product, HClO, were determined to be 0.038 μg/mL and 0.013 μM, respectively. The DNAzyme nanorobot can be readily introduced into cells and function autonomously to differentiate increased MPO/HClO levels caused by antibiotics. This approach was applied to image RAW264.7 cells exposed to four prevalent antibiotics found in the environment (phorbol 12-myristate 13-acetate, erythromycin, penicillin, and tetracycline) as well as antibiotic production wastewater. This nanorobot offers novel strategies for monitoring inflammation to evaluate the health impacts of antibiotic exposure.
Collapse
Affiliation(s)
- Aijiao Yuan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huifang Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Rui Sha
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hang Xiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Bo Pang
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Minghua Jin
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Wenjing Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixia Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Li
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Hanyong Peng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Qiu X, Pu M, Zhang H, Xu B, Wang J, Xuan R. Occurrence, distribution, and correlation of antibiotics in the aquatic ecosystem of Poyang Lake Basin, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135656. [PMID: 39213768 DOI: 10.1016/j.jhazmat.2024.135656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/18/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
The widespread existence and persistence of antibiotics in the aquatic environment, and their extensive ecological risks, have attracted considerable attention. The objective of this study was to evaluate the occurrence and distribution of 25 antibiotics in environmental and biological samples from Poyang Lake Basin in China. SPE-HPLC-MS/MS was used to quantify the concentrations in different matrices. The total concentrations ranged from 144 to 933 ng/L in the water and 346 to 1154 ng/g in the sediment. In the spatial distribution analysis of this basin, the concentrations in the Ganjiang River were generally higher than those in Poyang Lake. The seasonal distribution in the wet and dry seasons showed comparatively higher concentrations during the dry season than the wet season. Additionally, antibiotics were found in various hydrophytes and animals, and the bioconcentration factor values followed the order: emergent plants > floating plants > submerged plants and benthic organisms > ducks > fish. Moreover, correlations among different matrices showed that antibiotics in viviparid snails were significantly positively correlated with those in ducks, and negatively correlated with those in carps, indicating the transmission relationship through the food chain. The results showed the trophic transfer of antibiotics in the food web and their potential environmental impacts on Poyang Lake Basin need constant attention.
Collapse
Affiliation(s)
- Xiaojian Qiu
- The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Mengjie Pu
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Haowen Zhang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Bentuo Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Jiazhen Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Rongrong Xuan
- The First Affiliated Hospital of Ningbo University, Ningbo 315020, China.
| |
Collapse
|
8
|
Kuppusamy S, Venkateswarlu K, Megharaj M. Tetracycline and fluoroquinolone antibiotics contamination in agricultural soils fertilized long-term with chicken litter: Trends and ravages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174286. [PMID: 38942301 DOI: 10.1016/j.scitotenv.2024.174286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
We investigated the potential accumulation of tetracyclines (TCs) such as chlortetracycline (CTC), oxytetracycline (OTC) and doxycycline (DC), and fluoroquinolones (FQs) like enrofloxacin (ENR) and ciprofloxacin (CIP) in chicken litter and agricultural soils fertilized over short-term to long-term (<1-30 yrs) with chicken litter in a poultry hub for the first time from Tamil Nadu, India. CTC, OTC, DC, CIP, and ENR were detected in 46-92 % of the selected chicken litter samples, with mean levels ranging from 2.90 to 23.30 μg kg-1. Higher concentrations of TCs and FQs were observed in freshly collected chicken litter from poultry sheds than in those stockpiled in cultivated lands. CTC was the prevalent antibiotic in chicken litter. The overall occurrence, as well as the ecological risks of TCs and FQs, changed over a 30-yr period. The accumulation of veterinary antibiotics (VAs) (in μg kg-1) in short-term (>1 yr) to medium-term (1-3 yrs) chicken litter-fertilized soils reached a maximum of 11.60 for CTC, 6.50 for OTC, 0.80 for DC, 3.70 for CIP, and 3.60 for ENR, but decreased in long-term (10-30 yrs) fertilized soils. Ecological risk assessment revealed a Risk Quotient (RQ) of ≤0.10 for CTC, OTC, and DC in all soils, while an average risk (RQ >0.10-<1.0) was evident with CIP and ENR in short-term and medium-term fertilized soils. Antibiotic resistance genes (ARGs), including tetA, tetB, qnrA, qnrB and qnrS were detected in most of the chicken litter samples and litter-fertilized soils. Thus, it is critical to develop and adopt effective mitigation strategies before applying chicken litter in farmlands to decrease VAs and ARGs, reducing their associated risks to public health and ecosystems in India considering 'One Health' approach. Future investigations on the occurrence of other VAs and ARGs in soils fertilized with poultry litter at regional scale are required for effective risk mitigation of the widely used VAs.
Collapse
Affiliation(s)
- Saranya Kuppusamy
- Centre for Environmental Studies, Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai 600 025, India.
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu 515 003, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (crcCARE), ATC Building, Callaghan, NSW 2308, Australia
| |
Collapse
|
9
|
Zhao R, Bai Y, Yang F. Melatonin in animal husbandry: functions and applications. Front Vet Sci 2024; 11:1444578. [PMID: 39286597 PMCID: PMC11402905 DOI: 10.3389/fvets.2024.1444578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an essential small molecule with diverse biological functions. It plays several key roles, including regulating the secretion of reproductive hormones and the reproductive cycle, enhancing the functionality of reproductive organs, improving the quality of sperm and eggs, and mitigating oxidative stress in the reproductive system. Melatonin effectively inhibits and scavenges excess free radicals while activating the antioxidant enzyme system and reduces the production of inflammatory factors and alleviates tissue damage caused by inflammation by regulating inflammatory pathways. Additionally, melatonin contributes to repairing the intestinal barrier and regulating the gut microbiota, thereby reducing bacterial and toxin permeation. The use of melatonin as an endogenous hormone in animal husbandry has garnered considerable attention because of its positive effects on animal production performance, reproductive outcomes, stress adaptation, disease treatment, and environmental sustainability. This review explores the characteristics and biological functions of melatonin, along with its current applications in animal production. Our findings may serve as a reference for the use of melatonin in animal farming and future developmental directions.
Collapse
Affiliation(s)
- Ruohan Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yicheng Bai
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Fangxiao Yang
- College of Animal Science and Veterinary Medicine, Yunnan Vocational and Technical College of Agriculture, Kunming, Yunnan, China
| |
Collapse
|
10
|
Liu Y, Jia S, Wu Y, Zhou N, Xie Y, Wei R, Huang Z, Chen Y, Hu F, Zheng H. Tetracycline-induced gut community dysbiosis and Israeli Acute Paralysis Virus infection synergistically negatively affect honeybees. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116706. [PMID: 38996647 DOI: 10.1016/j.ecoenv.2024.116706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
Antibiotics are frequently employed to control bacterial diseases in honeybees, but their broad-spectrum action can disrupt the delicate balance of the gut microbiome, leading to dysbiosis. This imbalance in the gut microbiota of honeybees adversely affects their physiological health and weakens their resistance to pathogens, including viruses that significantly threaten honeybee health. In this study, we investigated whether tetracycline-induced gut microbiome dysbiosis promotes the replication of Israeli acute paralysis virus (IAPV), a key virus associated with colony losses and whether IAPV infection exacerbates gut microbiome dysbiosis. Our results demonstrated that tetracycline-induced gut microbiome dysbiosis increases the susceptibility of honeybees to IAPV infection. The viral titer in worker bees with antibiotic-induced gut microbiome dysbiosis prior to IAPV inoculation was significantly higher than in those merely inoculated with IAPV. Furthermore, we observed a synergistic effect between tetracycline and IAPV on the disruption of the honeybee gut microbiome balance. The progression of IAPV replication could, in turn, exacerbate antibiotic-induced gut microbiome dysbiosis in honeybees. Our research provides novel insights into the role of the gut microbiota in host-virus interactions, emphasizing the complex interplay between antibiotic use, gut microbiome health, and viral susceptibility in honeybees. We highlight the crucial role of a balanced gut microbiota in honey bees for their immune response against pathogens and emphasize the importance of careful, safe antibiotic use in beekeeping to protect these beneficial microbes.
Collapse
Affiliation(s)
- Yao Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuo Jia
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuqi Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nihong Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanling Xie
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ruike Wei
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhichu Huang
- Jinhua Academy of Agricultural Sciences, Jinhua 321017, China
| | - Yanping Chen
- Bee Research Laboratory, USDA-ARS, Beltsville, MD, USA
| | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huoqing Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
11
|
Dolkar P, Sharma M, Modeel S, Yadav S, Siwach S, Bharti M, Yadav P, Lata P, Negi T, Negi RK. Challenges and effective tracking down strategies of antibiotic contamination in aquatic ecosystem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55935-55957. [PMID: 39254807 DOI: 10.1007/s11356-024-34806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024]
Abstract
A growing environmental concern revolves around the widespread use of medicines, particularly antibiotics, which adversely impact water quality and various life forms. The unregulated production and utilization of antibiotics not only affect non-targeted organisms but also exert significant evolutionary pressures, leading to the rapid development of antimicrobial resistance (AMR) in bacterial communities. To address this issue, global studies have been conducted to assess the prevalence and quantities of antibiotics in various environmental components including freshwater, ocean, local sewage, and fish. These studies aim to establish effective analytical methods for identifying and measuring antibiotic residues in environmental matrices that might enable authorities to establish norms for the containment and disposal of antibiotics. This article offers a comprehensive overview of methods used to extract antibiotics from environmental matrices exploring purification techniques such as liquid-liquid extraction, solid-phase extraction, green extraction techniques, and concentration methods like lyophilization and rotary evaporation. It further highlights qualitative and quantitative analysis methods, high-performance liquid chromatography, ultra-high-performance liquid chromatography, and liquid chromatography-tandem along with analytical methods such as UV-Vis and tandem mass spectrometry for detecting and measuring antibiotics. Urgency is underscored for proactive strategies to curb antibiotic contamination, safeguarding the integrity of aquatic ecosystems and public health on a global scale.
Collapse
Affiliation(s)
- Padma Dolkar
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Monika Sharma
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
- Present Address: Gargi College, University of Delhi, Delhi, 110049, India
| | - Sonakshi Modeel
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Sheetal Yadav
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Sneha Siwach
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Meghali Bharti
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Pankaj Yadav
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Pushp Lata
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Tarana Negi
- Government College, Dujana, Jhajjar, Haryana, 124102, India
| | - Ram Krishan Negi
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India.
| |
Collapse
|
12
|
Chen H, Zou Y, Kang X, Yang G, Yang X, Yao Y, Magnuson JT, Cao X, Qiu W, Xu EG, Zheng C. Perfluorooctane Sulfonamide Induced Autotoxic Effects on the Zebrafish Immune System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38976350 DOI: 10.1021/acs.est.4c01153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Perfluorooctane sulfonamide (PFOSA) is an immediate perfluorooctanesulfonate (PFOS) precursor (PreFOS). Previous studies have shown PFOSA to induce stronger toxic responses compared to other perfluorinated compounds (PFCs). However, the specific nature of PFOSA-induced toxicity, whether autonomous or mediated by its metabolite PFOS, has not been fully elucidated. This study systematically investigates the immunomodulatory effects of PFOSA and PFOS in zebrafish (Danio rerio). Exposure to PFOSA compromised the zebrafish's ability to defend against pathogenic infections, as evidenced by increased bacterial adhesion to their skin and reduced levels of the biocidal protein lysozyme (LYSO). Moreover, PFOSA exposure was associated with disruptions in inflammatory markers and immune indicators, along with a decrease in immune cell counts. The findings from this study suggest that the immunotoxicity effects of PFOSA are primarily due to its own toxicity rather than its metabolite PFOS. This conclusion was supported by dose-dependent responses, the severity of observed effects, and multivariate analysis. In addition, our experiments using NF-κB-morpholino knock-down techniques further confirmed the role of the Nuclear factor-κappa B pathway in mediating PFOSA-induced immunotoxicity. In conclusion, this study reveals that PFOSA impairs the immune system in zebrafish through an autotoxic mechanism, providing valuable insights for assessing the ecological risks of PFOSA.
Collapse
Affiliation(s)
- Honghong Chen
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo 315200, China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yao Zou
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- Guangdong Society of Environmental Sciences, Guangzhou 510045, China
| | - Xinyuan Kang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ge Yang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yingying Yao
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jason T Magnuson
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, Missouri 65201, United States
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Chunmiao Zheng
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo 315200, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
13
|
Wang J, Li H, Liu Y, Andrzejczyk NE, Qiao K, Ma Y, Zhou S, Gui W, Zhu G, Li S, Schlenk D. Contribution of Immune Responses to the Cardiotoxicity and Hepatotoxicity of Deltamethrin in Early Life Stage Zebrafish ( Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9515-9524. [PMID: 38687472 DOI: 10.1021/acs.est.3c10682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Deltamethrin (DM) is a widely used insecticide that has demonstrated developmental toxicity in the early life stages of fish. To better characterize the underlying mechanisms, embryos from Tg(cmlc2:RFP), Tg(apo14:GFP), and Tg(mpx:GFP) transgenic strains of zebrafish were exposed to nominal DM concentrations of 0.1, 1, 10, 25, and 50 μg/L until 120 h post-fertilization (hpf). Heart size increased 56.7%, and liver size was reduced by 17.1% in zebrafish exposed to 22.7 and 24.2 μg/L DM, respectively. RNA sequencing and bioinformatic analyses predicted that key biological processes affected by DM exposure were related to inflammatory responses. Expression of IL-1 protein was increased by 69.0% in the 24.4 μg/L DM treatment, and aggregation of neutrophils in cardiac and hepatic histologic sections was also observed. Coexposure to resatorvid, an anti-inflammatory agent, mitigated inflammatory responses and cardiac toxicity induced by DM and also restored liver biomass. Our data indicated a complex proinflammatory mechanism underlying DM-induced cardiotoxicity and hepatotoxicity which may be important for key events of adverse outcomes and associated risks of DM to early life stages of fish.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Hanqing Li
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuanyuan Liu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Nicolette E Andrzejczyk
- Department of Environmental Sciences,University of California, Riverside, California 92521, United States
| | - Kun Qiao
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University 10 Frankfurt, Frankfurt Am Main 60438, Germany
| | - Yongfang Ma
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shengli Zhou
- Ecological and Environmental Monitoring Center of Zhejiang Province, Hangzhou 310012, P. R. China
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shuying Li
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, P. R. China
| | - Daniel Schlenk
- Department of Environmental Sciences,University of California, Riverside, California 92521, United States
| |
Collapse
|
14
|
Li J, Li W, Liu N, Du C. Chronic toxic effects of erythromycin and its photodegradation products on microalgae Chlorella pyrenoidosa. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106922. [PMID: 38615581 DOI: 10.1016/j.aquatox.2024.106922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The photodegradation products (PDPs) of antibiotics in the aquatic environment received increasing concern, but their chronic effects on microalgae remain unclear. This study initially focused on examining the acute effects of erythromycin (ERY), then explored the chronic impacts of ERY PDPs on Chlorella pyrenoidosa. ERY of 4.0 - 32 mg/L ERY notably inhibited the cell growth and chlorophyll synthesis. The determined 96 h median effective concentration of ERY to C. pyrenoidosa was 11.78 mg/L. Higher concentrations of ERY induced more serious oxidative damage, antioxidant enzymes alleviated the oxidative stress. 6 PDPs (PDP749, PDP747, PDP719, PDP715, PDP701 and PDP557) were identified in the photodegradation process of ERY. The predicted combined toxicity of PDPs increased in the first 3 h, then decreased. Chronic exposure showed a gradual decreasing inhibition on microalgae growth and chlorophyll content. The acute effect of ERY PDPs manifested as growth stimulation, but the chronic effect manifested as growth inhibition. The malonaldehyde contents decreased with the degradation time of ERY at 7, 14 and 21 d. However, the malonaldehyde contents of ERY PDPs treatments were elevated compared to those in the control group after 21 d. Risk assessment still need to consider the potential toxicity of degradation products under long-term exposure.
Collapse
Affiliation(s)
- Jiping Li
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; Jiangsu Engineering Research Center for Cyanophytes Forecast and Ecological Restoration of Hongze Lake, Huaiyin Normal University, Huaian 223300, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Wei Li
- National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China; College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
| | - Naisen Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; Jiangsu Engineering Research Center for Cyanophytes Forecast and Ecological Restoration of Hongze Lake, Huaiyin Normal University, Huaian 223300, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - Chenggong Du
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; Jiangsu Engineering Research Center for Cyanophytes Forecast and Ecological Restoration of Hongze Lake, Huaiyin Normal University, Huaian 223300, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| |
Collapse
|
15
|
Liu X, Liu F, Liu L, Song Y, Liu H. Carbamazepine transmits immune effect by activation of gut-liver axis and TLR signaling pathway from parental zebrafish to offspring. Toxicol Sci 2024; 199:108-119. [PMID: 38445754 DOI: 10.1093/toxsci/kfae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Carbamazepine (CBZ) has been identified in the aquatic environment as an emerging contaminant. Its immune effect across generations at environmentally relevant concentrations is little known. We aim to elucidate the effects of CBZ on the immune system in zebrafish (Danio rerio), hypothesizing the effects caused by CBZ exposure in the parental generation can be passed on to its offspring, leading to impairment of innate immune function and defense against pathogen weakened. A suite of bioassays (including a test with added lipopolysaccharide) was used to measure the effects of environmentally relevant levels of CBZ (1, 10, and 100 μg/l) on zebrafish at multiple biological levels, and across 2 successive generations (21 days exposure for F0; 5 and 21 days exposure or nonexposure for F1). The results showed that CBZ affected homeostasis in the immune system, caused liver vacuolization, increased the inflammation-related microbiota proportion in gut, and decreased reproduction, by induction of oxidative stress and modulation of Toll-like receptors (TLR) signaling pathway on gut-liver axis. The effects of exposure to CBZ over 21 days in F0 could be passed to the next generation. Intergenerational effects on TLR and antioxidant defense system were also observed in nonexposed F1 at 5 days post-fertilization (5 dpf), but diminished at 21 dpf. The finding provided evidence to unravel immune response by gut-liver axis mediated and oxidative stress under 4 test conditions. The study has raised a potential concern about the multigenerational immune effects of environmental pollutants and calls for a focus on the risk of synergetic pathogen infection.
Collapse
Affiliation(s)
- Xuan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Fan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Li Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - You Song
- Section of Ecotoxicology and Risk Assessment, Norwegian Institute for Water Research (NIVA), Oslo 0579, Norway
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
16
|
de Fátima NG, Barriga A, Cáceres JC, Pinto E, Cabrera R. Oxidation of chlortetracycline and its isomers by Botrytis aclada laccase in the absence of mediators: pH dependence and identification of transformation products by LC-MS. Biodegradation 2024; 35:155-171. [PMID: 37428416 DOI: 10.1007/s10532-023-10046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023]
Abstract
Tetracyclines are antibiotics considered emerging pollutants and currently, wastewater treatment plants are not able to remove them efficiently. Laccases are promising enzymes for bioremediation because they can oxidize a wide variety of substrates. The aim of this study was to evaluate the Botrytis aclada laccase for the oxidation of chlortetracycline and its isomers in the absence of a mediator molecule, at a pH range between 3.0 to 7.0, and to characterize the transformation products by LC-MS. Chlortetracycline and three isomers were detected in both, controls and reaction mixtures at 0 h and in controls after 48 h of incubation but in different proportions depending on pH. An additional isomer was also detected, but only in the presence of BaLac. Based on the transformation products identified in the enzymatic reactions and information from literature, we assembled a network of transformation pathways starting from chlortetracycline and its isomers. The spectrometric analysis of the products indicated the probable occurrence of oxygen insertion, dehydrogenation, demethylation and deamination reactions. Four new products were identified, and we also described a novel transformation product without the chloro group. We observed that increasing pH led to higher diversity of main products. This is the first study using the laccase from fungi Botrytis aclada to oxidate chlortetracycline and its isomers and it can be considered as an ecological alternative to be used in bioremediation processes such as wastewater.
Collapse
Affiliation(s)
- Nadia Gavilán de Fátima
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
- Unidad de Espectrometría de Masas-CEPEDEQ, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile
| | - Andrés Barriga
- Unidad de Espectrometría de Masas-CEPEDEQ, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile
| | - Juan Carlos Cáceres
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Ernani Pinto
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Pádua Dias 11, Piracicaba, SP, Brasil
| | - Ricardo Cabrera
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile.
| |
Collapse
|
17
|
Hu X, Qu Y, Yao L, Zhang Z, Tan G, Bai C. Boosted simultaneous removal of chlortetracycline and Cu (II) by Litchi Leaves Biochar: Influence of pH, ionic strength, and background electrolyte ions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10430-10442. [PMID: 38196041 DOI: 10.1007/s11356-023-31770-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/25/2023] [Indexed: 01/11/2024]
Abstract
The coexistence of heavy metals and antibiotics in the environment always results in greater toxicity compared to the individual precursors. Therefore, efficient and economic technology for the simultaneous removal of antibiotics and heavy metals is essential. Herein, litchi leaves biochar carbonized at 550 °C (L550) demonstrated high efficiency in co-removal of CTC (1838.1 mmol/kg) and Cu (II) (1212.9 mmol/kg) within wide range of pH (pH 4-7). Ionic strength obviously enhanced the Cu (II) removal but showed no significant effect on CTC removal. Although Al3+ and HPO42- decreased the adsorption capacities of CTC and Cu (II) on L550, the coexistence of Na+, K+, Mg2+, Cl-, NO3-, CO32- and SO42- showed a negligible effect on the simultaneous removal of CTC and Cu (II). Moreover, the adsorption capacities of CTC and Cu (II) on L550 were excellent in the river water, tap water, and lake water. In addition to electrostatic interactions, ion exchange governed Cu (II) adsorption, while surface complexation played a key role in CTC adsorption on L550. Our results demonstrated that litchi leaves biochar could be a promising adsorbent for remediating multi-contaminated environments.
Collapse
Affiliation(s)
- Xian Hu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Guangzhou, 510642, China
| | - Yifan Qu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Guangzhou, 510642, China
| | - Lixian Yao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Guangzhou, 510642, China
| | - Zhilin Zhang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, China
| | - Guangcai Tan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Cuihua Bai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Guangzhou, 510642, China.
| |
Collapse
|
18
|
Xu B, Pu M, Jiang K, Qiu W, Xu EG, Wang J, Magnuson JT, Zheng C. Maternal or Paternal Antibiotics? Intergenerational Transmission and Reproductive Toxicity in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1287-1298. [PMID: 38113251 DOI: 10.1021/acs.est.3c06090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Despite the known direct toxicity of various antibiotics to aquatic organisms, the potential chronic impact through intergenerational transmission on reproduction remains elusive. Here, we exposed zebrafish to a mixture of 15 commonly consumed antibiotics at environmentally relevant concentrations (1 and 100 μg L-1) with a cross-mating design. A high accumulation of antibiotics was detected in the ovary (up to 904.58 ng g-1) and testis (up to 1704.49 ng g-1) of F0 fish. The transmission of antibiotics from the F0 generation to the subsequent generation (F1 offspring) was confirmed with a transmission rate (ki) ranging from 0.11 to 2.32. The maternal transfer of antibiotics was significantly higher, relative to paternal transfer, due to a greater role of transmission through ovarian enrichment and oviposition compared to testis enrichment. There were similar impairments in reproductive and developmental indexes on F1 eggs found following both female and male parental exposure. Almost all antibiotics were eliminated in F2 eggs in comparison to F1 eggs. However, there were still reproductive and developmental toxic responses observed in F2 fish, suggesting that antibiotic concentration levels were not the only criterion for evaluating the toxic effects for each generation. These findings unveil the intergenerational transmission mechanism of antibiotics in fish models and underscore their potential and lasting impact in aquatic environments.
Collapse
Affiliation(s)
- Bentuo Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Mengjie Pu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Kaile Jiang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Jiazhen Wang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jason T Magnuson
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Måltidets Hus - Richard Johnsens gate 4, Stavanger 4021, Norway
| | - Chunmiao Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Eastern Institute for Advanced Study, Eastern Institute of Technology, 568 Tongxin Road, Zhenhai District, Ningbo 315200, China
| |
Collapse
|
19
|
Lin J, Chi L, Yuan Q, Li B, Feng M. Photodegradation of typical pharmaceuticals changes toxicity to algae in estuarine water: A metabolomic insight. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168338. [PMID: 37931817 DOI: 10.1016/j.scitotenv.2023.168338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
The ubiquitous existence of various pharmaceuticals in the marine environment has received global attention for their risk assessment. However, rather little is known thus far regarding the natural attenuation (e.g., photolysis)-induced product/mixture toxicity of these pharmaceuticals on marine organisms. In this study, the photodegradation behavior, product formation, and risks of two representative pharmaceuticals (i.e., ciprofloxacin, CIP; diclofenac, DCF) were explored in the simulated estuary water. It was noted that both pharmaceuticals can be completely photolyzed within 1 h, and five products of CIP and three products of DCF were identified by a high-resolution liquid chromatography-mass spectrometer. Accordingly, their photodecomposition pathways were tentatively proposed. The in silico prediction suggested that the formed transformation products maintained the persistence, bioaccumulation potential, and multi-endpoint toxic effects such as genotoxicity, developmental toxicity, and acute/chronic toxicity on different aquatic species. Particularly, the non-targeted metabolomics first elucidated that DCF and its photolytic mixtures can significantly affect the antioxidant status of marine algae (Heterosigma akashiwo), triggering oxidative stress and damage to cellular components. It is very alarming that the complete photolyzed DCF sample induced more serious oxidative stress than DCF itself, which called for more concern about the photolysis-driven ecological risks. Overall, this investigation first uncovered the overlooked but serious toxicity of the transformation products of prevalent pharmaceuticals during natural attenuation on marine species.
Collapse
Affiliation(s)
- Jiang Lin
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| | - Lianbao Chi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qing Yuan
- China United Engineering Corporation Limited, Hangzhou 310052, China
| | - Busu Li
- Laoshan Laboratory, Qingdao 266237, China.
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| |
Collapse
|
20
|
Guo K, Yu C, Gao B, Liu B, Wang Z, Wang Y, Yue Q, Gao Y. Intrinsic mechanism for the removal of antibiotic pollution by a dual coagulation process from the perspective of the interaction between NOM and antibiotic. WATER RESEARCH 2023; 244:120483. [PMID: 37633212 DOI: 10.1016/j.watres.2023.120483] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 08/28/2023]
Abstract
Antibiotics bring potential risks to human health and ecosystem, and their coexistence with natural organic matters (NOMs) could have harmful impacts on the environment. Herein, a polyaluminium chloride (PAC)-polydimethyl diallyl ammonium chloride (PDMDAAC) dual coagulation process was designed to remove the co-pollutants of chlortetracycline (CTC) and humic acid (HA), representing antibiotics and NOMs, respectively. The main research strength was given to understand molecular interactions and their mechanisms associated with the coagulation and flocculation. We found that the co-existing HA and CTC increased the hydrophily and stability of contaminants, and generated HA@CTC complexes with large particles size. The interaction mechanism between CTC and HA was mainly hydrogen bonding, hydrophobic association action, n-π* electron donor-acceptor interaction, and π-π* conjugation. Lewis acid-base interaction was the main force between HA and CTC. The bonding energies of OH…N, OH…O, and hydrophobic association were -12.2 kcal/mol, -13.1 kcal/mol, and -11.4 kcal/mol, respectively, indicating that hydrogen bonding was stronger than hydrophobic association. The interactions between HA and CTC could improve their removal efficiency in the coagulation process. This is due to that the functional groups (COOH and OH) in the HA@CTC could be adsorbed by Al based hydrolysates. Polar interaction dominated the CTC and HA removal, and PAC was more efficient than PDMDAAC to remove HA@CTC complexes due to its higher complexing capacity. Thanks to the low concentration of residual contaminants and the formation of large and loose flocs, the interaction of HA and CTC could alleviate membrane fouling during ultrafiltration process. This study will provide new insight into the efficient removal of combined pollution and membrane fouling control.
Collapse
Affiliation(s)
- Kangying Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Chenghui Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Beibei Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Yan Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China.
| |
Collapse
|
21
|
Huang S, Wang Q, Fan Z, Xu M, Ji R, Jin X, Gu C. Dry-to-wet fluctuation of moisture contents enhanced the mineralization of chloramphenicol antibiotic. WATER RESEARCH 2023; 240:120103. [PMID: 37247437 DOI: 10.1016/j.watres.2023.120103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
Due to livestock wastewater irrigation, soil is becoming one of the major sinks of antibiotics in the environment. Recently, it is getting recognized that a variety of minerals under low moisture conditions can induce strong catalytic hydrolysis to antibiotics. However, the relative importance and implication of soil water content (WC) for natural attenuation of soil residual antibiotics has not been well recognized. In order to explore the optimal moisture levels and the key soil properties dominating for the high catalytic hydrolysis activities of soils, this study collected 16 representative soil samples across China, and assessed their performances to degrade chloramphenicol (CAP) under different moisture levels. The results showed that the soils with low organic matter contents (< 20 g/kg) and high amounts of crystalline Fe/Al were particularly effective in catalyzing CAP hydrolysis when exposed to low WC (< 6%, wt/wt), leading to CAP hydrolysis half-lives of <40 d Higher WC greatly suppressed the catalytic activity of the soil. By utilizing this process, it is possible to integrate abiotic and biotic degradation to enhance the mineralization of CAP, attributing to that the hydrolytic products are more available for soil microorganisms. As expected, the soils experienced periodic dry-to-wet moisture conditions (i.e., the WC shifting from 1 to 5% to 20-35%, wt/wt) exhibited higher degradation and mineralization of 14C-CAP, in comparison with the constant wet treatment. Meanwhile, the bacterial community composition and the specific genera showed that the dry-to-wet fluctuation of soil WC relieved the antimicrobial stress to bacterial community. Our study verifies the critical role of soil WC in mediating the natural attenuation of antibiotics, and guides to remove antibiotics from both wastewater and soil.
Collapse
Affiliation(s)
- Shuhan Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu Province 210023, China
| | - Qilin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu Province 210023, China
| | - Zhenhui Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu Province 210023, China
| | - Min Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu Province 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu Province 210023, China
| | - Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu Province 210023, China; School of Environment, Nanjing Normal University, China.
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu Province 210023, China.
| |
Collapse
|
22
|
Sun X, Qiao Y, Zhang M, Cheng Y, Ning F, Zhang H, Hu P. AIE-based cyclodextrin metal-organic frame material for fluorescence detection of nitrofuran and tetracycline antibiotics in aqueous solution. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
23
|
Liu S, Tu X, Chen X, Mo L, Liu Y, Xu J, Deng M, Wu Y. Effects of single and combined exposure to zinc and two tetracycline antibiotics on zebrafish at the early stage. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109522. [PMID: 36427668 DOI: 10.1016/j.cbpc.2022.109522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/20/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Tetracycline antibiotics (TCs) and heavy metals are commonly used in livestock and poultry farming, leading to their coexistence in the aquatic environment. This coexistence causes combined toxicity to aquatic organisms. Here, zebrafish embryos were exposed to chlortetracycline (CTC), oxytetracycline (OTC), zinc chloride (ZnCl2), and their combinations for 120 h to evaluate their adverse effects on the growth, antioxidant system, immune system, and endocrine system during the early stage of life. OTC/ZnCl2 combined exposure significantly reduced the body weight, whereas the TCs/ZnCl2 combination significantly increased the heart rate of zebrafish larvae, suggesting growth impairment induced by TCs and ZnCl2. Further, combined groups showed more prominent toxicity to the antioxidant system than single groups, as revealed by related levels of enzyme activity and gene expression. In addition, the levels of most pro-inflammatory genes were downregulated, and those of NF-κB-related genes were upregulated in all treatment groups, indicating an immunosuppressive response and the potential role of NF-κB signaling, while the combined treatment was not more toxic than TCs or ZnCl2 alone. Similarly, hormone and endocrine related gene levels were determined. Although both single and combined exposures caused certain endocrine-disrupting effects, the combined exposure did not result in higher toxicity than a single exposure. Our findings showed that a mixture of TCs and ZnCl2 might exert greater toxic effects as compared to a single compound on some systems, providing fundamental data on the toxic effects of single and combined TC and ZnCl2 exposure on aquatic organisms, although studies are needed to explore the underlying mechanisms.
Collapse
Affiliation(s)
- Shuai Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Xun Tu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China; School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xi Chen
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China; College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Limin Mo
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China; College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Yu Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Jiaojiao Xu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Mi Deng
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China.
| | - Yongming Wu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China.
| |
Collapse
|
24
|
Liu Z, Lin H, Zheng Y, Feng Y, Shi C, Zhu R, Shen X, Han Y, Zhang H, Zhong Y. Perfluorooctanoic acid and perfluorooctanesulfonic acid induce immunotoxicity through the NF-κB pathway in black-spotted frog (Rana nigromaculata). CHEMOSPHERE 2023; 313:137622. [PMID: 36565765 DOI: 10.1016/j.chemosphere.2022.137622] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are widely detected in the environment and wild animals, thus posing a threat to wildlife and public health; however, knowledge about their immunotoxicity and the underlying mechanism remains limited. In the present study, male black-spotted frogs (Rana nigromaculata) were exposed to environmentally relevant concentrations (0, 1, and 10 μg/L) of PFOA or PFOS for 21 days; subsequently, biochemical analysis, molecular docking, and gene expression determination were conducted. The results indicated that exposure to 10 μg/L PFOA decreased the serum levels of immunoglobulin A. PFOS exposure significantly increased the hepatic levels of interleukin-1β, interleukin-6, tumor necrosis factor-α, interferon-γ, and nitric oxide; but PFOA significantly increased the levels of only tumor necrosis factor-α. Furthermore, PFOA and PFOS exposure significantly decreased the activity of inducible nitric oxide synthase and total nitric oxide synthase. IBRv2 analysis indicated that PFOA and PFOS had a similar effect on these immune indicators, but PFOS was more toxic than PFOA. Molecular docking revealed that PFOA and PFOS can bind to nuclear factor-κB (NF-κB) by forming stable hydrogen bonds. PFOA and PFOS exposure upregulated the gene expression of NF-κB and its downstream genes. Significant correlations between the expression of genes involved in the NF-κB pathway and immune-related indicators suggests that PFOA- and PFOS-induced immunotoxicity was associated with the activation of NF-κB. Our findings provide novel insights into the potential role of NF-κB in immunotoxicity induced by PFOA and PFOS in frogs.
Collapse
Affiliation(s)
- Zhiquan Liu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China
| | - Huikang Lin
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yueyue Zheng
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yixuan Feng
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chaoli Shi
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Ruoxin Zhu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xingyao Shen
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yu Han
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China
| | - Hangjun Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China
| | - Yuchi Zhong
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China.
| |
Collapse
|
25
|
Ding M, Liu J, Lv H, Zhu Y, Chen Y, Peng H, Fan S, Chen X. Knocking down GALNT6 promotes pyroptosis of pancreatic ductal adenocarcinoma cells through NF-κB/NLRP3/GSDMD and GSDME signaling pathway. Front Oncol 2023; 13:1097772. [PMID: 36925932 PMCID: PMC10013470 DOI: 10.3389/fonc.2023.1097772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC), the most prevalent type of pancreatic cancer, is a highly lethal malignancy with poor prognosis. Polypeptide N-acetylgalactosaminyltransferase-6 (GALNT6) is frequently overexpressed in PDAC. However, the role of GALNT6 in the PDAC remains unclear. Methods The expression of GALNT6 in pancreatic cancer and normal tissues were analyzed by bioinformatic analyses and immunohistochemistry. CCK8 and colony formation were used to detect cell proliferation. Flow cytometry was applied to detect cell cycle.The pyroptosis was detected by scanning electron microscopy. The mRNA expression was detected by qRT-PCR. The protein expression and localization were detected by western blot and immunofluorescence assay. ELISA was used to detect the levels of inflammatory factors. Results The expression of GALNT6 was associated with advanced tumor stage, and had an area under curve (AUC) value of 0.919 in pancreatic cancer based on the cancer genome atlas (TCGA) dataset. Knockdown of GALNT6 inhibited cell proliferation, migration, invasion and cell cycle arrest of PDAC cells. Meanwhile, knockdown of GALNT6 increased the expression levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin-18 (IL-18), the release of inflammasome and an increasing of Gasdermin D (GSDMD), N-terminal of GSDMD (GSDMD-N), Gasdermin E (GSDME) and N-terminal of GSDME (GSDME-N) in PDAC cells. GALNT6 suppressed the expression of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and GSDMD by glycosylation of NF-κB and inhibiting the nucleus localization of NF-κB. Additionally, GALNT6 promotes the degradation of GSDME by O-glycosylation. Conclusion We found that GALNT6 is highly expressed in pancreatic cancer and plays a carcinogenic role. The results suggested that GALNT6 regulates the pyroptosis of PDAC cells through NF-κB/NLRP3/GSDMD and GSDME signaling. Our study might provides novel insights into the roles of GALNT6 in PDAC progression.
Collapse
Affiliation(s)
- Mengyang Ding
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingyu Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Honghui Lv
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yanlin Zhu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yumiao Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hui Peng
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sairong Fan
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaoming Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
26
|
He Y, Gao M, Zhou Y, Zhou Y. Efficient photocatalytic remediation of typical antibiotics in water via Mn 3O 4 decorated carbon nitride nanotube. CHEMOSPHERE 2023; 311:136925. [PMID: 36283432 DOI: 10.1016/j.chemosphere.2022.136925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/20/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic abuse will seriously affect the ecology and environment. Photocatalytic oxidation technology based on carbon nitride (g-C3N4) has been widely adopted to treat wastewater containing antibiotics. Here, a novel composite photocatalyst MCNT was prepared by loading manganese oxide (Mn3O4) on the surface of g-C3N4 nanotubes (CNT). Three typical antibiotics, trimethoprim (TMP), norfloxacin (NOR), and tetracycline (TC) were used as model contaminants to evaluate the oxidative properties of prepared materials. Compared with bulk g-C3N4, the degradation rates of TMP, NOR, and TC catalyzed by MCNT-5 were increased by 2, 3, and 1.4 times, respectively, mainly due to 1) the larger specific surface area of the nanotube structure of CNT, which provides abundant active sites for antibiotic adsorption and catalytic oxidation, and 2) the loading of Mn3O4, which promotes the directional migration of photogenerated charges and improves the separation efficiency of photogenerated electrons and holes. The free radical capture and quenching experiments confirmed that MCNT degraded the target organic pollutants with hydroxyl radical (·OH) and singlet oxygen (1O2) as the main active oxidants. This catalyst maintained 80% photocatalytic oxidation performance after five cyclic experiments. This study provides new insights into developing efficient, stable, and environmentally-friendly photocatalysts and provides a new dimension to mitigate the antibiotic pollution problem.
Collapse
Affiliation(s)
- Yiling He
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes. School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ming Gao
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes. School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanbo Zhou
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes. School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yi Zhou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
27
|
Xuan R, Qiu W, Zhou Y, Magnuson JT, Luo S, Greer JB, Xu B, Liu J, Xu EG, Schlenk D, Zheng C. Parental transfer of an antibiotic mixture induces cardiotoxicity in early life-stage zebrafish: A cross-generational study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157726. [PMID: 35914592 DOI: 10.1016/j.scitotenv.2022.157726] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic residues in the aquatic environment have been shown to induce significant adverse effects on the early-life stage development of aquatic organisms, though the underlying molecular mechanisms of these effects have not been well characterized. In this study, we performed global mRNA-miRNA sequencing, canonical pathway analyses, morphological, physiological, immunohistochemical, and behavioral analyses to comprehensively assess the cross-generational cardiotoxicity and mechanisms of antibiotic mixtures in zebrafish. Following parental treatment to 1 and 100 μg/L antibiotic mixtures (15 of the most commonly detected antibiotics) for 150 days, all 15 assessed antibiotics were detected in the F1 eggs, indicating the cross-generational transfer of antibiotics. Global mRNA-miRNA sequencing functional analysis predicted cardiotoxicity in the F1 generation by using the F1 whole fish. Consistent with canonical pathway analyses, significant cardiotoxicity was observed in F1 larvae, as well as the apoptosis of cardiac cells. Furthermore, let-7a-5p regulated the cardiac hypertrophy signaling pathway, suggesting mechanisms of miRNA of let-7 family mediating cross-generational cardiotoxicity of antibiotics in zebrafish. This study lays some groundwork for developing interventions to prevent parental exposure to environmental pollutants such as antibiotics from adversely affecting offspring development.
Collapse
Affiliation(s)
- Rongrong Xuan
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Wenhui Qiu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yuping Zhou
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Jason T Magnuson
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Shusheng Luo
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Justin B Greer
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Bentuo Xu
- School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jingyu Liu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Chunmiao Zheng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
28
|
Wang S, Jiang X, Sun C, Kong XZ. Full Green Detection of Antibiotic Tetracyclines Using Fluorescent Poly(ethylene glycol) as the Sensor and the Mechanism Study. ACS Biomater Sci Eng 2022; 8:3957-3968. [PMID: 35976991 DOI: 10.1021/acsbiomaterials.2c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tetracyclines are well-known antibiotics and widely used against a variety of bacterial infections. Their monitoring and detection have been an important issue. To this end, a vast number of methods have been developed; fluorescence sensing is one of the most reported. However, most of the reported sensors are made from transition metals with sophisticated multiprocesses; polymers are hardly seen for this purpose, particularly biocompatible ones. Herein, an aqueous solution of poly(ethylene glycol) (PEG), well known for being biocompatible, is shown to emit under excitation of 280 nm, while the solutions of selected tetracyclines, namely, doxycycline (DOX) and tetracycline (TC), are non-emissive under the same conditions. In the binary solutions of PEG-DOX or PEG-TC, PEG emission is sharply quenched with high sensitivity and selectivity. PEG was then used as a sensor for DOX and TC detections in water with high performance compared to reported studies. The same tests were also done by DOX spiking in milk and tap water, demonstrating that DOX was practically fully recovered. The quenching mechanism was ascribed to the interaction between the O atoms of PEG in clusters and specific heteroatom groups on tetracycline molecules through hydrogen bonding, elucidated from FTIR and NMR analyses. Therefore, this work provides a novel, fully green, easy to operate, low cost, and reliable protocol for tetracycline monitoring and detection and opens new potential application for PEG.
Collapse
Affiliation(s)
- Suisui Wang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xubao Jiang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Chunqi Sun
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiang Zheng Kong
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|