1
|
Yang Y, Bi F, Wei J, Han X, Gao B, Qiao R, Xu J, Liu N, Zhang X. Boosting the Photothermal Oxidation of Multicomponent VOCs in Humid Conditions: Synergistic Mechanism of Mn and K in Different Oxygen Activation Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:11341-11352. [PMID: 40439229 DOI: 10.1021/acs.est.5c00953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
The complexity of actual industrial emissions has brought significant challenges for volatile organic compounds (VOCs) purification. Herein, Mn and K atoms were incorporated into Co3O4/TiO2 through theoretical study, and its excellent properties were verified in experiments. The different pathways of oxygen activation by Mn and K were revealed by characterization experiments and theoretical calculations. Mn species effectually reduced the dissociation energy barrier of H2O adsorbed on the surface, and the surface hydroxyl group promoted the dissociation of O2 and the formation of •O2- under light and humid conditions. The introduction of K promoted the formation of more oxygen vacancies, which served as adsorption sites for gaseous O2. Meanwhile, the electron transfer accelerated by K contributed to the activation of H2O and the rapid production of •OH under light. The synergistic effect of Mn and K successfully achieved simultaneous improvements in the activity, stability, and water resistance of Co3O4/TiO2. Furthermore, the catalyst was applied to the degradation of multicomponent VOCs, and the reaction path was analyzed through the test of intermediates, along with an investigation of the interaction among different types of VOCs. This study provided a new idea for the theoretical optimization of polymetallic catalysts and the analysis of degradation paths for multicomponent VOCs.
Collapse
Affiliation(s)
- Yang Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
- Zhejiang Institute of Quality Sciences, Hangzhou 310018, China
| | - Fukun Bi
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiafeng Wei
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiao Han
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, PR China
| | - Bin Gao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Rong Qiao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jingcheng Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ning Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Non-carbon Energy Conversion and Utilization Institute, Shanghai 200240, China
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Non-carbon Energy Conversion and Utilization Institute, Shanghai 200240, China
| |
Collapse
|
2
|
Duan X, Niu B, Wang Y, Yang Z, Ren H, Li G, Wei Z, Cheng J, Zhang Z, Hao Z. Regulating the Electronic Metal-Support Interaction of Single-Atom Ruthenium Catalysts for Boosting Chlorobenzene Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7408-7418. [PMID: 40183972 DOI: 10.1021/acs.est.5c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Developing highly active single-atom catalysts (SACs) with excellent chlorine resistance for efficient oxidation of harmful chlorinated volatile organic compounds (CVOCs) is a great challenge. Tuning the electronic metal-support interaction (EMSI) is viable for promoting catalytic performances of SACs. Herein, an effective strategy of modulating the EMSI in Ru1/CeO2 SACs by thermal treatment control is proposed, which distinctly enhances the activities of the catalyst for chlorobenzene (CB) oxidation and chlorine conversion, accomplishing total CB degradation at nearly 260 °C. Detailed characterization and theoretical calculations reveal that the EMSI induces electron transfer from Ru to CeO2, optimizing the coordination and electronic structure of single-atom Ru and accordingly facilitating the adsorption and activation of CB. Moreover, the surface lattice oxygen (Olatt) at the Ru-O-Ce interface is demonstrated as the critical reactive oxygen species, the mobility and reactivity of which are also prompted by the EMSI, leading to the boosted conversion of reaction intermediates. This work sheds light on the effect of EMSI regulation on CVOC catalytic oxidation and provides guidance on fabricating high-efficiency SACs for environmental catalysis.
Collapse
Affiliation(s)
- Xiaoxiao Duan
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ben Niu
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yiwen Wang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhenwen Yang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hongna Ren
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ganggang Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zheng Wei
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jie Cheng
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhongshen Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhengping Hao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
3
|
Yu Z, Fang Y, Pan C, Ma S, Zeng Y, Yang J, Wan S, Zhong Z. Construction of Electron-Enriched Pt δ+ with Reactive Oxygen Species for Enhanced Propane Catalytic Combustion. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21246-21256. [PMID: 40133807 DOI: 10.1021/acsami.5c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The complete catalytic oxidation of propane (C3H8) at low temperatures remains challenging due to the competitive adsorption between the oxidation of the O2 and C3H8 molecules. In this study, we propose an innovative approach to enhance C3H8 oxidation by strategically designing active Ptδ+ sites with modulated electronic structures on F-doped TiO2-supported Pt catalyst (Pt/F-TiO2), which exhibits 50 and 90% of propane conversion at 200 and 320 °C. Our mechanistic study reveals that the electron coupling between Pt 5d and F 2p alters the d orbital electron property, which leads to generation of abundant efficient electron-enriched Ptδ+ species. These new Ptδ+ sites facilitate the adsorption of C3H8 and promote the activation of chemisorbed O2 into superoxide species, in the form of bridge Pt-(O-O)ad-Ti, which synergistically facilitates the methyl C-H cleavage in C3H8. This study presents the strategy for electronic structure engineering of active sites in Pt-based catalysts, paving the way for the development of high-performance catalysts for propane oxidation.
Collapse
Affiliation(s)
- Zhixin Yu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Yarong Fang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Chuanqi Pan
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shiqi Ma
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Yiqing Zeng
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Ji Yang
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Shipeng Wan
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Zhaoxiang Zhong
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| |
Collapse
|
4
|
Wu J, Zhou C, Zhong M, Du Q, Ji C, Hu Q, Ji L, Li X, Rupprechter G, Li Y. Green Syngas from Photothermal Catalytic Cellulose Steam Reforming on Ni/SiO 2 Nanocatalysts: Synergy of La 3+ Promotion and Ni-O Photoactivation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411977. [PMID: 40028967 DOI: 10.1002/smll.202411977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/20/2025] [Indexed: 03/05/2025]
Abstract
Replacing fossil fuels by renewable biomass enables green syngas production in an effort to achieve carbon neutrality and sustainable circular processes. Here, an inexpensive catalyst of Ni nanoparticles supported on SiO2 modified by La3+ (Ni/La0.10-S) is presented, exhibiting exceptional H2 and CO production rates (4051.4 and 2467.8 mmol gcatalyst -1 h-1, respectively) with 7.7% light-to-fuel efficiency in cellulose steam reforming (SR), merely under focused illumination. Excellent performance is mainly attributed to photothermal catalysis resulting from the strong solar absorption and high photothermal conversion by the Ni nanoparticles. The mitigation of tar and char formation significantly benefits from the H2O involvement in the reaction, which is substantially improved by La3+ addition enhancing H2O sorption. Remarkably, the illumination exerts mere photoactivation during reaction, which is primarily attributed to the pronounced activation of Ni─O bonds at the catalyst surface. Particularly, the photoactivation of the Ni-O-La moieties, in combination with O species replenishment by H2O, makes Ni/La0.10-S superior to Ni/SiO2. The synergy of La3+ promotion and Ni-O photoactivation poses a promising strategy for efficient photothermal catalytic cellulose SR to green syngas.
Collapse
Affiliation(s)
- Jichun Wu
- State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology), 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Chongyang Zhou
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, P. R. China
| | - Mengqi Zhong
- State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology), 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Qing Du
- State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology), 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Cong Ji
- State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology), 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Qianqian Hu
- State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology), 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Lei Ji
- State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology), 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Xia Li
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC, Vienna, A-1060, Austria
| | - Günther Rupprechter
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC, Vienna, A-1060, Austria
| | - Yuanzhi Li
- State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology), 122 Luoshi Road, Wuhan, 430070, P. R. China
| |
Collapse
|
5
|
Zhang J, Lin H, Zhang X, Fu M, Ye D. Tracking of Active Sites as Well as the Compositing Effect over a Cu/Ce-Based Catalyst with Superior Catalytic Activity. JACS AU 2025; 5:975-989. [PMID: 40017749 PMCID: PMC11862941 DOI: 10.1021/jacsau.4c01221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 03/01/2025]
Abstract
The replacement of a noble metal catalyst by base metals presents a great challenge for low-temperature CO and volatile organic compounds oxidation. Cu/Ce-based catalysts are expected to achieve this goal with excellent performance, among which the main active sites still need to be further explored. For this reason, CuCe catalysts were further compounded with typical elements (cobalt, Co) to study the main active sites and compositing effect by in-situ enhanced Raman and in-situ ultralow-temperature DRIFTS technologies. The main active site for both CuCe and CuCoCe catalysts was the same Cu-OV-Ce at the copper-cerium interface, named as asymmetric oxygen vacancy (ASOv). The dispersion of CuO and CeO2 species was promoted, and the formation energy of ASOv was decreased significantly from 1.502 to 0.854 eV after the addition of Co, which leads to an increase in the ASOv concentration. A small cobalt added can form more Co2+ species, improving the activity and stability. The activity of Cu1Co0.5Ce3 catalyst was significantly improved with 100% conversion of CO and toluene at 96 and 227 °C. Here, the ASOv was studied in relative quantification, showing consistency of catalytic activity and ASOv concentration. Meanwhile, the dynamic exchange of ASOv in the reactions was tracked, indicating that the redox equilibrium of ASOv can continuously produce new ASOV in Cu/Ce-based catalysts that cause long-term catalytic stability. In addition, it is almost difficult for CoCe and CoCu samples to form the ASOv, and the interaction between metals and metals was also weaker than that of CuCe and CuCoCe catalysts.
Collapse
Affiliation(s)
- Jin Zhang
- Faculty
of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National
Engineering Laboratory for VOCs Pollution Control Technology and Equipment,
Guangdong Provincial Key Laboratory of Atmospheric Environment and
Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hongyu Lin
- Faculty
of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaoqin Zhang
- Faculty
of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Mingli Fu
- National
Engineering Laboratory for VOCs Pollution Control Technology and Equipment,
Guangdong Provincial Key Laboratory of Atmospheric Environment and
Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Daiqi Ye
- National
Engineering Laboratory for VOCs Pollution Control Technology and Equipment,
Guangdong Provincial Key Laboratory of Atmospheric Environment and
Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
6
|
Rastegarpanah A, Deng J, Liu Y, Jing L, Pei W, Wang J, Dai H. Bamboo-like MnO 2⋅Co 3O 4: High-performance catalysts for the oxidative removal of toluene. J Environ Sci (China) 2025; 147:617-629. [PMID: 39003076 DOI: 10.1016/j.jes.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 07/15/2024]
Abstract
The manganese-cobalt mixed oxide nanorods were fabricated using a hydrothermal method with different metal precursors (KMnO4 and MnSO4·H2O for MnOx and Co(NO3)2⋅6H2O and CoCl2⋅6H2O for Co3O4). Bamboo-like MnO2⋅Co3O4 (B-MnO2⋅Co3O4 (S)) was derived from repeated hydrothermal treatments with Co3O4@MnO2 and MnSO4⋅H2O, whereas Co3O4@MnO2 nanorods were derived from hydrothermal treatment with Co3O4 nanorods and KMnO4. The study shows that manganese oxide was tetragonal, while the cobalt oxide was found to be cubic in the crystalline arrangement. Mn surface ions were present in multiple oxidation states (e.g., Mn4+ and Mn3+) and surface oxygen deficiencies. The content of adsorbed oxygen species and reducibility at low temperature declined in the sequence of B-MnO2⋅Co3O4 (S) > Co3O4@MnO2 > MnO2 > Co3O4, matching the changing trend in activity. Among all the samples, B-MnO2⋅Co3O4 (S) showed the preeminent catalytic performance for the oxidation of toluene (T10% = 187°C, T50% = 276°C, and T90% = 339°C). In addition, the B-MnO2⋅Co3O4 (S) sample also exhibited good H2O-, CO2-, and SO2-resistant performance. The good catalytic performance of B-MnO2⋅Co3O4 (S) is due to the high concentration of adsorbed oxygen species and good reducibility at low temperature. Toluene oxidation over B-MnO2⋅Co3O4 (S) proceeds through the adsorption of O2 and toluene to form O*, OH*, and H2C(C6H5)* species, which then react to produce benzyl alcohol, benzoic acid, and benzaldehyde, ultimately converting to CO2 and H2O. The findings suggest that B-MnO2⋅Co3O4 (S) has promising potential for use as an effective catalyst in practical applications.
Collapse
Affiliation(s)
- Ali Rastegarpanah
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Jiguang Deng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Yuxi Liu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Lin Jing
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Wenbo Pei
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Jia Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
7
|
Sun J, Lian G, Chen Z, Zou Z, Wang L. Merger of Single-Atom Catalysis and Photothermal Catalysis for Future Chemical Production. ACS NANO 2024; 18:34572-34595. [PMID: 39652059 DOI: 10.1021/acsnano.4c13030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Photothermal catalysis is an emerging field with significant potential for sustainable chemical production processes. The merger of single-atom catalysts (SACs) and photothermal catalysis has garnered widespread attention for its ability to achieve precise bond activation and superior catalytic performance. This review provides a comprehensive overview of the recent progress of SACs in photothermal catalysis, focusing on their underlying mechanisms and applications. The dynamic structural evolution of SACs during photothermal processes is highlighted, and the current advancements and future perspectives in the design, screening, and scaling up of SACs for photothermal processes are discussed. This review aims to provide insights into their continued development in this rapidly evolving field.
Collapse
Affiliation(s)
- Junchuan Sun
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Guanwu Lian
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Zhongxin Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Zhigang Zou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Lu Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
8
|
Chu P, Zhang L, Wang Z, Wei L, Liu Y, Dai H, Guo G, Duan E, Zhao Z, Deng J. Regulation Lattice Oxygen Mobility via Dual Single Atoms for Simultaneously Enhancing VOC Oxidation and NO x Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17475-17484. [PMID: 39283811 DOI: 10.1021/acs.est.4c03049] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Synergistic catalytic removal of multipollutants (e.g., volatile organic compound (VOC) oxidation and nitrogen oxide (NOx) reduction) is highly demanded due to the increasingly strict emission standards. The prevention of the key reactive intermediate species nitrite excessive oxidation over the supported noble-metal catalysts, rather than the traditional low-efficiency transition metal oxide catalysts, remains a great challenge. Herein, a sound strategy of Pd single atoms saturated with acidic transition element ligands is proposed. The coexistence of Pd and V dual single atoms strengthens the adsorption of reactants, while synergistic interaction between dual atoms and surface oxygen weakens activation of lattice oxygen, thus significantly reducing the overoxidation of nitrite. Meanwhile, the neutralization of the active Pd and inert V sites results in a rational decrease in the redox property of Pd and an obvious increase in that of V. The Pd1V1/CeO2 dual single-atom catalyst achieves 90% conversion of NOx and toluene at 238 and 230 °C and has a large temperature window (>150 °C) for NOx reduction. This research makes a breakthrough in the development of efficient supported noble-/transition-metal dual single-atom catalysts for VOC and NOx simultaneous purification.
Collapse
Affiliation(s)
- Peiqi Chu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Long Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Zhiwei Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Lu Wei
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yuxi Liu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Guangsheng Guo
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Erhong Duan
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang,Hebei 050018, China
| | - Zhenxia Zhao
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jiguang Deng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
9
|
Wang X, Li Z, Gao R, Yu X, Feng Y, Wang Z, Jing L, Wei Z, Liu Y, Dai H, Zhao Z, Deng J. Photothermal Catalytic Removal of 1,2-DCE with High HCl Selectivity over the Brønsted Acid-Enriched Sulfur-Doped MOFs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39270042 DOI: 10.1021/acs.est.4c07755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Chlorinated volatile organic compounds come from a wide range of sources and are highly toxic, posing a serious threat to biological health and the environment. Herein, a high-efficiency and energy-saving photothermal synergistic catalytic oxidation method was developed for the removal of 1,2-dichloroethane (1,2-DCE). Compared to traditional thermocatalysis, the 1,2-DCE conversion over Ru-U6S in photothermal synergistic catalysis at 340 °C increased by approximately 44% not only reducing energy consumption but also avoiding the instability of MOF structure caused by high reaction temperature. The excellent photothermal catalytic oxidation activity was derived from the synergistic effect of photo- and thermocatalysis. Ru-U6S demonstrated excellent 1,2-DCE adsorption capacity and stronger light utilization and could produce more reactive oxygen species (•OH and •O2-) after light illumination, which participated in the oxidation reaction, promoting the release of the active site of the catalyst. The results of H2O-TPD and NH3-DRIFTS exhibited that the use of S-containing ligands in the synthesis process increased the hydroxyl groups and Brønsted acid sites, significantly improved the selectivity of CO2 and HCl in the oxidation process, and reduced the release of chlorine-containing byproducts. This work provides a high-efficiency and energy-saving strategy for removing chlorinated volatile organic compounds and increasing the selectivity of ideal products directly with MOFs directly.
Collapse
Affiliation(s)
- Xun Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Zeya Li
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Ruyi Gao
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Xiaohui Yu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Ying Feng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Zhiwei Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Lin Jing
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Zhen Wei
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Yuxi Liu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Zhenxia Zhao
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jiguang Deng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
10
|
Wu S, Lv X, Hao X, Chen J, Jia H. Enhancement of Mineralization Ability and Water Resistance of Vanadium-Based Catalysts for Catalytic Oxidation of Chlorobenzene by Platinum Loading. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15836-15845. [PMID: 39169771 DOI: 10.1021/acs.est.4c04533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The design of a catalyst with multifunctional sites is one of the effective methods for low-temperature catalytic oxidation of chlorinated volatile organic compounds (CVOCs). The loss of redox sites and competitive adsorption of H2O prevalent in the treatment of industrial exhaust gases are the main reasons for the weak mineralization ability and poor water vapor resistance of V-based catalysts. In this work, platinum (Pt) is selected to combine with the V/CeO2 catalyst, which provides more redox sites and H2O dissociative activation sites and further enhances its catalytic performance. The results show that PtV/CeO2 achieves 90% of the CO2 yield at 318 °C and maintains excellent catalytic activity rather than continuous deactivation within 15 h after water vapor injection. The formation of Pt-O-V bonds enhances the redox ability and promotes deep oxidation of polychlorinated intermediates, accounting for the significantly improved mineralization ability of PtV/CeO2. The dissociative activation effect of Pt on H2O molecules strengthens the migration and activation of V-adsorbed H2O, precluding V-poisoning and notably improving water resistance. This study lays a solid foundation for the efficient degradation of chlorobenzene under humid conditions.
Collapse
Affiliation(s)
- Shuaining Wu
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuelong Lv
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinhui Hao
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongpeng Jia
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Liu L, Yung KF, Yang H, Liu B. Emerging single-atom catalysts in the detection and purification of contaminated gases. Chem Sci 2024; 15:6285-6313. [PMID: 38699256 PMCID: PMC11062113 DOI: 10.1039/d4sc01030b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Single atom catalysts (SACs) show exceptional molecular adsorption and electron transfer capabilities owing to their remarkable atomic efficiency and tunable electronic structure, thereby providing promising solutions for diverse important processes including photocatalysis, electrocatalysis, thermal catalysis, etc. Consequently, SACs hold great potential in the detection and degradation of pollutants present in contaminated gases. Over the past few years, SACs have made remarkable achievements in the field of contaminated gas detection and purification. In this review, we first provide a concise introduction to the significance and urgency of gas detection and pollutant purification, followed by a comprehensive overview of the structural feature identification methods for SACs. Subsequently, we systematically summarize the three key properties of SACs for detecting contaminated gases and discuss the research progress made in utilizing SACs to purify polluted gases. Finally, we analyze the enhancement mechanism and advantages of SACs in polluted gas detection and purification, and propose strategies to address challenges and expedite the development of SACs in polluted gas detection and purification.
Collapse
Affiliation(s)
- Lingyue Liu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong China
| | - Ka-Fu Yung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong China
| | - Hongbin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology Suzhou 215009 China
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong SAR 999007 China
- Department of Chemistry, Hong Kong Institute of Clean Energy & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong Hong Kong SAR 999077 China
| |
Collapse
|
12
|
Wang H, Zhao Q, Li D, Zhang Z, Liu Y, Guo X, Li X, Liu Z, Wang L, Ma J, He H. Boosting Photothermocatalytic Oxidation of Toluene Over Pt/N-TiO 2: The Gear Effect of Light and Heat. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7662-7671. [PMID: 38578018 DOI: 10.1021/acs.est.3c10459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Photothermal catalysis is extremely promising for the removal of various indoor pollutants owing to its photothermal synergistic effect, while the low light utilization efficiency and unclear catalytic synergistic mechanism hinder its practical applications. Here, nitrogen atoms are introduced, and Pt nanoparticles are loaded on TiO2 to construct Pt/N-TiO2-H2, which exhibits 3.5-fold higher toluene conversion rate than the pure TiO2. Compared to both photocatalytic and thermocatalytic processes, Pt/N-TiO2-H2 exhibited remarkable performance and stability in the photothermocatalytic oxidation of toluene, achieving 98.4% conversion and 98.3% CO2 yield under a light intensity of 260 mW cm-2. Furthermore, Pt/N-TiO2-H2 demonstrated potential practical applicability in the photothermocatalytic elimination of various indoor volatile organic compounds. The synergistic effect occurs as thermocatalysis accelerates the accumulation of carboxylate species and the degradation of aldehyde species, while photocatalysis promotes the generation of aldehyde species and the consumption of carboxylate species. This ultimately enhances the photothermocatalytic process. The photothermal synergistic effect involves the specific conversion of intermediates through the interplay of light and heat, providing novel insights for the design of photothermocatalytic materials and the understanding of photothermal mechanisms.
Collapse
Affiliation(s)
- Huihui Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qian Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Daiqiang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhilin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Criminology, People's Public Security University of China, Beijing 100038, China
| | - Yuan Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueli Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Xiaotong Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhi Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lian Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinzhu Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Wang Z, Zhou X, Wang G, Tong Q, Wan H, Dong L. High-Performance Ir 1/CeO 2 Single-Atom Catalyst for the Oxidation of Toluene. Inorg Chem 2024; 63:7241-7254. [PMID: 38581386 DOI: 10.1021/acs.inorgchem.3c04589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
The elimination of toluene is an obligatory target with increasing VOC emission in recent years. This study successfully prepared a single-atom Ir catalyst (Ir1/CeO2) by a simple incipient wetness impregnation method, confirmed by in situ CO DRIFTS and AC-HAADF-STEM. Compared to the cluster Ir catalyst (Ir/CeO2-C), Ir1/CeO2 exhibited excellent catalytic performance, stability, and water resistance for the oxidation of toluene. By Raman, H2-TPR, O2-TPD, and XPS experiments, abundant oxygen defects and a unique Ir3+-Ov-Ce3+ structure were formed for the Ir1/CeO2 sample because it had a lower oxygen vacancy formation energy. Furthermore, the DFT results revealed that the Ir1/CeO2 sample had a lower ring-opening energy barrier and adsorption energy of the ring-opening products, which was the rate-determining step for the oxidation of toluene. This work provides instructive insights into the construction of Ir/CeO2 catalysts for the highly efficient removal of VOCs.
Collapse
Affiliation(s)
- Zhiqiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Xiaomei Zhou
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gehui Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Qing Tong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Haiqin Wan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| |
Collapse
|
14
|
Li Y, Zhang Q, Chong Y, Huang WH, Chen CL, Jin X, Chen G, Fan Z, Qiu Y, Ye D. Efficient Photothermal Catalytic Oxidation Enabled by Three-Dimensional Nanochannel Substrates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5153-5161. [PMID: 38456428 DOI: 10.1021/acs.est.3c09077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Photothermal catalysis exhibits promising prospects to overcome the shortcomings of high-energy consumption of traditional thermal catalysis and the low efficiency of photocatalysis. However, there is still a challenge to develop catalysts with outstanding light absorption capability and photothermal conversion efficiency for the degradation of atmospheric pollutants. Herein, we introduced the Co3O4 layer and Pt nanoclusters into the three-dimensional (3D) porous membrane through the atomic layer deposition (ALD) technique, leading to a Pt/Co3O4/AAO monolithic catalyst. The 3D ordered nanochannel structure can significantly enhance the solar absorption capacity through the light-trapping effect. Therefore, the embedded Pt/Co3O4 catalyst can be rapidly heated and the O2 adsorbed on the Pt clusters can be activated to generate sufficient O2- species, exhibiting outstanding activity for the diverse VOCs (toluene, acetone, and formaldehyde) degradation. Optical characterization and simulation calculation confirmed that Pt/Co3O4/AAO exhibited state-of-the-art light absorption and a notable localized surface plasmon resonance (LSPR) effect. In situ diffuse reflectance infrared Fourier transform spectrometry (in situ DRIFTS) studies demonstrated that light irradiation can accelerate the conversion of intermediates during toluene and acetone oxidation, thereby inhibiting byproduct accumulation. Our finding extends the application of AAO's optical properties in photothermal catalytic degradation of air pollutants.
Collapse
Affiliation(s)
- Yifei Li
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510000, China
| | - Qianpeng Zhang
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai 200433, China
| | - Yanan Chong
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510000, China
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology (NTUST), Taipei 10607, Taiwan
| | - Chi-Liang Chen
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology (NTUST), Taipei 10607, Taiwan
| | - Xiaojing Jin
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510000, China
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, P. R. China
| | - Guangxu Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510000, China
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Yongcai Qiu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510000, China
| | - Daiqi Ye
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510000, China
| |
Collapse
|
15
|
Dong C, Yang C, Ren Y, Sun H, Wang H, Xiao J, Qu Z. Local Electron Environment Regulation of Spinel CoMn 2O 4 Induced Effective Reactant Adsorption and Transformation of Lattice Oxygen for Toluene Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21888-21897. [PMID: 38081063 DOI: 10.1021/acs.est.3c06782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
In contrast to numerous studies on oxygen species, the interaction of volatile organic compounds (VOCs) with oxides is also critical to the catalytic reaction but has hardly been considered. Herein, we develop a highly efficient Pt atom doped spinel CoMn2O4 (Pt-CoMn) for oxidation of toluene at low temperature, and the toluene conversion rate increased by 18.3 times (129.7 versus 7.1 × 10-11 mol/(m2·s)) at 160 °C compared to that of CoMn2O4. Detailed characterizations and density functional theory calculations reveal that the local electron environment of the Co sites is changed after Pt doping, and the formed electron-deficient Co sites in turn strengthen the interaction with toluene. Adsorbed toluene will react with lattice oxygen in Pt-CoMn and CoMn catalysts and convert into benzoate intermediates, and the consumption rate of benzoate is closely related to the activation of gaseous oxygen. Significantly, the abundant bulk defects of Pt-CoMn help to open the reaction channel in the CoMn spinel, which acts as an oxygen pump to promote the transformation of bulk lattice oxygen into surface lattice oxygen at lower temperatures, thus accelerating the conversion rate of benzoate intermediates into CO2 and enhancing low-temperature combustion of toluene. Pt-CoMn developed here emphasizes the regulation of VOCs adsorption strength and lattice oxygen transformation processes on CoMn2O4 by adjusting the local electron environment, which will provide new guidance for the design of efficient oxide catalysts for catalytic oxidation.
Collapse
Affiliation(s)
- Cui Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Chenyu Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yewei Ren
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Hongchun Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Hui Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Jianping Xiao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenping Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
16
|
Sun X, Yang S, Liu X, Qiao Y, Liu Z, Li X, Pan J, Liu H, Wang L. The enhancement of benzene total oxidation over Ru xCeO 2 catalysts at low temperature: The significance of Ru incorporation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165574. [PMID: 37474046 DOI: 10.1016/j.scitotenv.2023.165574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Catalytic oxidation is considered to be the most efficient technology for eliminating benzene from waste gas. The challenge is the reduction of the catalytic reaction temperature for the deep oxidation of benzene. Here, highly efficient RuxCeO2 catalysts were utilized to turn the number of surface oxygen vacancies and Ce-O-Ru bonds via a one-step hydrothermal method, resulting in a preferable low-temperature reducibility for the total oxidation of benzene. The T50 of the Ru0.2CeO2 catalyst for benzene oxidation was 135 °C, which was better than that of pristine CeO2 (239 °C) and 0.2Ru/CeO2 (190 °C). The superior performance of Ru0.2CeO2 was attributed to its large surface area (approximately 114.23 m2·g-1), abundant surface oxygen vacancies, and Ce-O-Ru bonds. The incorporation of Ru into the CeO2 lattice could effectively facilitate the destruction of the CeO bond and the facile release of lattice oxygen, inducing the generation of surface oxygen vacancies. Meanwhile, the bridging action of Ce-O-Ru bonds accelerated electron transfer and lattice oxygen transportation, which had a synergistic effect with surface oxygen vacancies to reduce the reaction temperature. The Ru0.2CeO2 catalyst also exhibited high catalytic stability, water tolerance, and impact resistance in terms of benzene abatement. Using in situ infrared spectroscopy, it was demonstrated that the Ru0.2CeO2 catalyst can effectively enhance the accumulation of maleate species, which are key intermediates for benzene ring opening, thereby enhancing the deep oxidation of benzene.
Collapse
Affiliation(s)
- Xiaoxia Sun
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shu Yang
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Xin Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yarui Qiao
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zhilou Liu
- School of Metallurgical Engineering, JiangXi University of Science and Technology, Ganzhou 341000, PR China
| | - Xinxin Li
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jingwen Pan
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Hui Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
17
|
Zhang L, Zhong L, Yu P, Li H, Zhou Z, Tong Q, Wan H, Dong L. Size Effect of Platinum Nanoparticles over Platinum-Manganese Oxide on the Low-Temperature Oxidation of Toluene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13620-13629. [PMID: 37702778 DOI: 10.1021/acs.langmuir.3c01734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The effect of size of Pt nanoparticles has an important influence on the performance of supported Pt-based catalysts for the elimination of toluene. Herein, uniform Pt nanoparticles with average sizes of 1.5, 2.0, 2.5, 2.9, and 3.6 nm were obtained and supported on manganese oxide octahedral molecular sieves (OMS-2), and their catalytic performances for toluene oxidation were evaluated. Benefiting from the moderate interfacial interaction between nanoparticles and manganese oxide support, Pt/OMS-2-3 with the Pt particle size of 3.0 nm showed the best catalytic performance owing to the highest content of Pt2+ species. It also facilitates the formation of more abundant Mnδ+ (Mn2+ and Mn3+) and oxygen vacancies than that of the other sizes of the OMS-2-supported Pt nanoparticles, which can be filled by a large amount of adsorbed oxygen and converted into reactive oxygen species. We further showed that the resulting surface synergetic oxygen vacancies (Pt2+-Ov-Mnδ+) play a decisive part in catalyzing the complete oxidation of toluene. The result will provide new insights for designing efficient Pt-based catalysts for deep purification of toluene.
Collapse
Affiliation(s)
- Lixin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Center of Modern Analysis, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P. R. China
| | - Linjun Zhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Center of Modern Analysis, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P. R. China
| | - Pinhua Yu
- Research Institute of Sinopec Nanjing Chemical Industry Co. Ltd., Nanjing 210048, P. R. China
| | - Haitao Li
- Department of Science and Technology Development, Sinopec Nanjing Chemical Industry Co. Ltd., Nanjing 210048, P. R. China
| | - Zhou Zhou
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, P. R. China
| | - Qing Tong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Center of Modern Analysis, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P. R. China
| | - Haiqin Wan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Center of Modern Analysis, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P. R. China
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Center of Modern Analysis, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
18
|
Li R, Huang Y, Shi X, Wang L, Li Z, Zhu D, Liang X, Cao J, Xiong Y. Dopant Site Engineering on 2D Co 3O 4 Enables Enhanced Toluene Oxidation in a Wide Temperature Range. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13236-13246. [PMID: 37615390 DOI: 10.1021/acs.est.3c03617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Development of cost-effective oxide catalysts holds the key to the removal of toluene, one of the most important volatile organic compounds. However, the catalysts follow varied working mechanisms at different reaction temperatures, posing a challenge to achieving efficient toluene removal over a wide temperature range. Here we report an agitation-assisted molten salt method, which achieves the rational doping on a two-dimensional Co3O4 catalyst and forms two different structures of active sites to enhance catalytic oxidation of toluene in specific temperature intervals, enabling a facile tandem design for working in a wide temperature range. Specifically, Co3O4 is doped with Cu at the octahedral site (Cu-Co3O4) and Zn at the tetrahedral site (Zn-Co3O4) to form CuOh-O-CoTe and ZnTe-O-CoOh structures on the surface, respectively. Mechanistic studies reveal the different working mechanisms of these two active sites toward remarkable performance enhancement at specific temperature intervals, and the improved performance derived from accelerated consumption of intermediates adsorbed on the catalyst surface. Taken together, Cu-Co3O4 and Zn-Co3O4 achieve excellent toluene purification performance over a wide temperature range. This work provides insights into the mechanism-oriented design of active sites at the atomic level.
Collapse
Affiliation(s)
- Rong Li
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, P. R. China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Huang
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, P. R. China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
| | - Xianjin Shi
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, P. R. China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Liqin Wang
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, P. R. China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
| | - Zhiyu Li
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, P. R. China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dandan Zhu
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, P. R. China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
| | - Xiaoliang Liang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
19
|
Shi H, Yang P, Huang L, Wu Y, Yu D, Wu H, Zhang Y, Xiao P. Single-atom Pt-CeO2/Co3O4 catalyst with ultra-low Pt loading and high performance for toluene removal. J Colloid Interface Sci 2023; 641:972-980. [PMID: 36989823 DOI: 10.1016/j.jcis.2023.03.086] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/05/2023] [Accepted: 03/12/2023] [Indexed: 03/30/2023]
Abstract
The design and manufacture of high activity and thermal stability catalysts with minimal precious metal loading is essential for deep degradation of volatile organic compounds (VOCs). In this paper, a novel single-atom Pt-CeO2/Co3O4 catalyst with ultra-low Pt loading capacity (0.06 wt%, denoted as 0.06Pt-SA) was fabricated via one-step co-precipitation method. The 0.06Pt-SA exhibited excellent toluene degradation activity of T90 = 169 °C, matched with the nanoparticle Pt-supported CeO2/Co3O4 catalyst with more than six times higher Pt loading (0.41 wt%, denoted as 0.41Pt-NP). Moreover, the ultra-long durability (toluene conversion remains 99% after 120 h stability test) and excellent toluene degradation ability in a wide space speed range of 0.06Pt-SA were superior to that of 0.41Pt-NP catalyst. The excellent performance was derived from the strong metal-support interaction (SMSI) between the single atomic Pt and the carrier, which induced more Pt0 and Ce3+ for oxygen activation and more Co3+ for toluene removal. The in situdiffuse reflectance infrared spectroscopy (DRIFTS) experiments confirmed that the conversion of intermediates was accelerated in the reaction process, thereby promoting the toluene degradation. Our results should inspire the exploitation of noble single-atomic modification strategy for developing the low cost and high performance VOCs catalyst.
Collapse
|
20
|
Lei X, Wang J, Wang T, Wang X, Xie X, Huang H, Li D, Ao Z. Toluene decomposition by non-thermal plasma assisted CoO x - γ-Al 2O 3: The relative contributions of specific energy input of plasma, Co 3+ and oxygen vacancy. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131613. [PMID: 37224710 DOI: 10.1016/j.jhazmat.2023.131613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023]
Abstract
Cobalt oxide (CoOx) is a common catalyst for plasma catalytic elimination of volatile organic compounds (VOCs). However, the catalytic mechanism of CoOx under radiation of plasma is still unclear, such as how the relative importance of the intrinsic structure of the catalyst (e.g., Co3+ and oxygen vacancy) and the specific energy input (SEI) of the plasma for toluene decomposition performance. CoOx - γ-Al2O3 catalysts were prepared and evaluated by toluene decomposition performance. Changing the calcination temperature of the catalyst altered the content of Co3+ and oxygen vacancies in CoOx, resulting in different catalytic performance. The results of the artificial neural network (ANN) models presented that the relative importance of three reaction parameters (SEI, Co3+, and oxygen vacancy) on the mineralization rate and CO2 selectivity were as follows: SEI > oxygen vacancy > Co3+ , and SEI > Co3+ > oxygen vacancy, respectively. Oxygen vacancy is essential for mineralization rate, and CO2 selectivity is more dependent on Co3+ content. Furthermore, a possible reaction mechanism of toluene decomposition was proposed according to the analysis results of in-situ DRIFTS and PTR-TOF-MS. This work provides new ideas for the rational design of CoOx catalysts in plasma catalytic systems.
Collapse
Affiliation(s)
- Xinshui Lei
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jiangen Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Teng Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xinjie Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xiaowen Xie
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Didi Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhimin Ao
- Advanced lnterdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China.
| |
Collapse
|
21
|
Wang Y, Dai J, Wang M, Qi F, Jin X, Zhang L. Enhanced toluene oxidation by photothermal synergetic catalysis on manganese oxide embedded with Pt single-atoms. J Colloid Interface Sci 2023; 636:577-587. [PMID: 36669451 DOI: 10.1016/j.jcis.2023.01.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
The degradation of volatile organic compounds (VOCs) at low temperature remains a big challenge. Photothermal catalysis coupling the advantages of photocatalysis and thermocatalysis is promising to address this issue. However, there is still a long way to construct highly active catalysts and deeply understand the mechanism of photothermal catalysis. Herein, maganese oxide (MnO2)catalysts embedded with Pt single-atoms (0.11 wt% Pt) have achieved greatly enhanced toluene conversion of 95%, far surpassing most supported Pt photothermal catalysts. The excellent catalytic activity has been disclosed to derive from the synergetic effect oflight-driven thermocatalysis and photocatalysis. The light-driven thermocatalysis predominates and the strong electron transfer from Pt single-atoms to MnO2 improves the activity of surface lattice oxygen to boost the generation of benzoic acid and the mineralization of toluene. Meanwhile, in photocatalytic process, Pt single-atoms accelerate the generation of superoxide radicals (O2-), which facilitate the ring-opening and deep oxidation of toluene. This understanding on the photothermal synergetic mechanism will inspire the design of highly efficient catalysts for VOCs oxidation.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| | - Jinyu Dai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, PR China
| | - Min Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| | - Fenggang Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| | - Xixiong Jin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| | - Lingxia Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China.
| |
Collapse
|
22
|
Zhang M, Li G, Li Q, Chen J, Elimian EA, Jia H, He H. In Situ Construction of Manganese Oxide Photothermocatalysts for the Deep Removal of Toluene by Highly Utilizing Sunlight Energy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4286-4297. [PMID: 36857121 DOI: 10.1021/acs.est.2c09136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The alternative use of electric energy by renewable energy to supply power for catalytic oxidation of pollutants is a sustainable technology, requiring a competent catalyst to realize efficient utilization of light and drive the catalytic reaction. Herein, in situ-synthesized manganese oxide heterostructure composites are developed through solvothermal reduction and subsequent calcination of amorphous manganese oxide (AMO). 95% of toluene conversion and 80% of CO2 mineralization were achieved over amorphous manganese oxide calcined at 250 °C (AMO-250) under light irradiation, and catalyst stability was maintained for at least 40 h. Highly utilization of light energy, uniformly dispersed nanoparticles, large specific surface area, improved metal reducibility, and oxygen desorption and migration ability at low temperature contribute to the good catalytic oxidation activity of AMO-250. Light activated more lattice oxygen to participate in the reaction via the Mars-van Krevelen (MvK) mechanism, and traditional e--h+ photocatalytic behavior exists over the AMO-250 heterostructure composite as an auxiliary degradation path. The reaction pathways of photothermocatalysis and thermocatalysis are close, except for the emergence of different copolymers, where light enhances the deep conversion of intermediates. A proof-of-concept study under natural sunlight has confirmed the feasibility of practical application in the photothermocatalytic degradation of pollutants.
Collapse
Affiliation(s)
- Meng Zhang
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanghui Li
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qiang Li
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Chen
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ehiaghe Agbovhimen Elimian
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham, Ningbo, Zhejiang 315100, China
| | - Hongpeng Jia
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
23
|
Chen L, Li K, Yang Y, Xue T, Wang H, Lei B, Sheng J, Dong F, Sun Y. Amorphous SnO 2 decorated ZnSn(OH) 6 promotes interfacial hydroxyl polarization for deep photocatalytic toluene mineralization. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130436. [PMID: 36435041 DOI: 10.1016/j.jhazmat.2022.130436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Surface hydroxyl groups play a decisive role in the generation of hydroxyl radicals with stronger oxidizing ability, which is indispensable in photocatalytic VOCs removal, especially under the condition of low humidity. In this work, non-noble amorphous SnO2 decorated ZnSn(OH)6 (ZSH) was synthesized by an in-situ method. The charge transport, reactant activation and hydroxyl polarization are enhanced through decoration of amorphous SnO2 on ZSH. Combined with the designed experiment, in-situ EPR, DTF calculation and in-situ DRIFTS, the role and mechanism of interfacial hydroxyl polarization are revealed on SnO2 decorated ZnSn(OH)6. Compared with pristine ZSH and noble-metal modified ZSH, the toluene degradation rate of amorphous SnO2 decorated ZSH is increased by 13.0 and 3.8 times, and the toluene mineralization rate is increased by 5.2 and 2.2 times. The ZSH-24 sample maintains a high toluene degradation activity after 6 cyclic utilization without catalyst deactivation. This work emphasizes the role of non-noble metal and the origin of hydroxyl group polarization on ZnSn(OH)6 for photocatalytic VOCs mineralization.
Collapse
Affiliation(s)
- Lvcun Chen
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China; Institute of Fundamental and Frontier Sciences & School of Resouces and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Kanglu Li
- Institute of Fundamental and Frontier Sciences & School of Resouces and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China; College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yan Yang
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China; Synergy Innovation Institute of GDUT, Shantou 515041, Guangdong, China
| | - Ting Xue
- Institute of Fundamental and Frontier Sciences & School of Resouces and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hong Wang
- Institute of Fundamental and Frontier Sciences & School of Resouces and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ben Lei
- Institute of Fundamental and Frontier Sciences & School of Resouces and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jianping Sheng
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China; Institute of Fundamental and Frontier Sciences & School of Resouces and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fan Dong
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China; Institute of Fundamental and Frontier Sciences & School of Resouces and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yanjuan Sun
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China; Institute of Fundamental and Frontier Sciences & School of Resouces and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
24
|
Constructing a high concentration CuO/CeO2 interface for complete oxidation of toluene: The fantastic application of spatial confinement strategy. J RARE EARTH 2023. [DOI: 10.1016/j.jre.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
25
|
Feng Y, Ma P, Wang Z, Shi Y, Wang Z, Peng Y, Jing L, Liu Y, Yu X, Wang X, Zhang X, Deng J, Dai H. Synergistic Effect of Reactive Oxygen Species in Photothermocatalytic Removal of VOCs from Cooking Oil Fumes over Pt/CeO 2/TiO 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17341-17351. [PMID: 36413583 DOI: 10.1021/acs.est.2c07146] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The volatile organic compounds (VOCs) from cooking oil fumes are very complex and do harm to humans and the environment. Herein, we develop the high-efficiency and energy-saving synergistic photothermocatalytic oxidation approach to eliminate the mixture of heptane and hexanal, the representative VOCs with high concentrations in cooking oil fumes. The Pt/CeO2/TiO2 catalyst with nanosized Pt particles was prepared by the simple hydrothermal and impregnation methods, and the physicochemical properties of the catalyst were measured using numerous techniques. The Pt/CeO2/TiO2 catalyst eliminated the VOC mixture at low light intensity (100 mW cm-2) and low temperature (200 °C). In addition, it showed 25 h of catalytic stability and water resistance (water concentration up to 20 vol %) at 140 or 190 °C. It is concluded that O2 picked up the electrons from Pt to generate the •O2- species, which were transformed to the O22- and O- species after the rise in temperature. In the presence of water, the •OH species induced by light irradiation on the catalyst surface and the •OOH species formed via the thermal reaction were both supplementary oxygen species for VOC oxidation. The synergistic interaction of photo- and thermocatalysis was generated by the reactive oxygen species.
Collapse
Affiliation(s)
- Ying Feng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Peijie Ma
- Beijing Key Lab of Microstructure and Properties of Advanced Materials, Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing100124, China
| | - Zhiwei Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Yijie Shi
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Zhihua Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Lin Jing
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Yuxi Liu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Xiaohui Yu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Xun Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Xiaofan Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Jiguang Deng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| |
Collapse
|
26
|
Fu K, Su Y, Zheng Y, Han R, Liu Q. Novel monolithic catalysts for VOCs removal: A review on preparation, carrier and energy supply. CHEMOSPHERE 2022; 308:136256. [PMID: 36113653 DOI: 10.1016/j.chemosphere.2022.136256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Volatile organic compounds (VOCs) are considered the culprit of secondary air pollution such as ozone, secondary organic aerosols, and photochemical smog. Among various technologies, catalytic oxidation is considered a promising method for the post-treatment of VOCs. Researchers are sparing no effort to develop novel catalysts to meet the requirements of the catalytic process. Compared with the powdered or granular catalysts, the monolithic catalysts have the advantages of low pressure drop, high utilization of active phases, and excellent mechanical properties. This review summarized the new design of monolithic catalysts (including new preparation methods, new supports, and new energy supply methods) for the post-treatment of VOCs. It addressed the advantages of the new designs in detail, and the scope of applicability for each new monolithic catalyst was also highlighted. Finally, the highly required future development trends of monolithic catalysts for VOCs catalytic oxidation are recommended. We expect this work can inspire and guide researchers from both academic and industrial communities, and help pave the way for breakthroughs in fundamental research and industrial applications in this field.
Collapse
Affiliation(s)
- Kaixuan Fu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin, 300350, China; State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Yun Su
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin, 300350, China; State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Yanfei Zheng
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin, 300350, China; State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Rui Han
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin, 300350, China; State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China.
| | - Qingling Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin, 300350, China; State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
27
|
Lei D, Xie X, Xiang Y, Huang X, Xiao F, Cao J, Li G, Leung DYC, Huang H. An efficient process for aromatic VOCs degradation: Combination of VUV photolysis and photocatalytic oxidation in a wet scrubber. CHEMOSPHERE 2022; 309:136656. [PMID: 36191768 DOI: 10.1016/j.chemosphere.2022.136656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The elimination of volatile organic compounds (VOCs) via vacuum ultraviolet (VUV) photolysis is greatly limited by low removal efficiency and gaseous byproducts generation, while photocatalytic oxidation of VOCs suffers from catalytic deactivation. Herein, a coupled process of gaseous VUV photolysis with aqueous photocatalytic oxidation with P25 as the catalyst was firstly proposed for efficient aromatic VOCs removal (VUV/P25). The removal efficiency of toluene reached 86.2% in VUV/P25 process, but was only 33.6% and 58.1% in alone gaseous VUV photolysis and aqueous ultraviolet photocatalytic oxidation (UV/P25) process, respectively. Correspondingly, the outlet CO2 concentration in VUV/P25 process reached 132 ppmv. Toluene was firstly destructed by high-energy photons generated from gaseous VUV photolysis, resulting in its incomplete oxidation to form soluble intermediates including acids, aldehydes, esters. These soluble intermediates would be further degraded and mineralized into CO2 in subsequent aqueous UV/P25 process. Notably, the concentrations of intermediates in VUV/P25 were much lower than those in VUV photolysis, indicating the synergy effect of VUV photolysis and UV/P25 process. The stability tests proved that VUV/P25 process maintained an excellent toluene degradation performance and P25 did not suffer from catalytic deactivation. In addition to toluene, the VUV/P25 system also achieved the efficient and sustainable degradation of styrene and chlorobenzene, suggesting its good application prospect in industrial VOCs treatment. This study proposes an efficient and promising strategy for deep oxidation of multiple aromatic VOCs in industries.
Collapse
Affiliation(s)
- Dongxue Lei
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China; Scientific Research Academy of Guangxi Environmental Protection, Guangxi, China
| | - Xiaowen Xie
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Yongjie Xiang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Xiongfei Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Fei Xiao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Jianping Cao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China.
| | - Guangqing Li
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Dennis Y C Leung
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
28
|
Zhang X, Zhao Z, Zhao S, Xiang S, Gao W, Wang L, Xu J, Wang Y. The promoting effect of alkali metal and H2O on Mn-MOF derivatives for toluene oxidation: A combined experimental and theoretical investigation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
29
|
Lashina EA, Slavinskaya EM, Stonkus OA, Stadnichenko AI, Romanenko AV, Boronin AI. The role of ionic and cluster active centers of Pt/CeO2 catalysts in CO oxidation. Experimental study and mathematical modeling. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Wang Y, Wang M. Recent progresses on single-atom catalysts for the removal of air pollutants. Front Chem 2022; 10:1039874. [DOI: 10.3389/fchem.2022.1039874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
The booming industrialization has aggravated emission of air pollutants, inflicting serious harm on environment and human health. Supported noble-metals are one of the most popular catalysts for the oxidation removal of air pollutants. Unfortunately, the high price and large consumption restrict their development and practical application. Single-atom catalysts (SACs) emerge and offer an optimizing approach to address this issue. Due to maximal atom utilization, tunable coordination and electron environment and strong metal-support interaction, SACs have shown remarkable catalytic performance on many reactions. Over the last decade, great potential of SACs has been witnessed in the elimination of air pollutants. In this review, we first briefly summarize the synthesis methods and modulation strategies together with the characterization techniques of SACs. Next, we highlight the application of SACs in the abatement of air pollutants including CO, volatile organic compounds (VOCs) and NOx, unveiling the related catalytic mechanism of SACs. Finally, we propose the remaining challenges and future perspectives of SACs in fundamental research and practical application in the field of air pollutant removal.
Collapse
|
31
|
Single-Atom Catalysts: Preparation and Applications in Environmental Catalysis. Catalysts 2022. [DOI: 10.3390/catal12101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Due to the expensive price and the low reserve of noble metals in nature, much attention has been paid to single-atom catalysts (SACs)—especially single-atom noble metal catalysts—owing to their maximum atomic utilization and dispersion. The emergence of SACs greatly decreases the amount of precious metals, improves the catalytic activity, and makes the catalytic process progressively economic and sustainable. However, the most remarkable challenge is the active sites and their stability against migration and aggregation under practical conditions. This review article summarizes the preparation strategies of SACs and their catalytic applications for the oxidation of methane, carbon monoxide, and volatile organic compounds (VOCs) and the reduction of nitrogen oxides. Furthermore, the perspectives and challenges of SACs in future research and practical applications are proposed. It is envisioned that the results summarized in this review will stimulate the interest of more researchers in developing SACs that are effective in catalyzing the reactions related to the environmental pollution control.
Collapse
|
32
|
Yin X, Li S, Deng J, Wang Y, Li M, Zhao Y, Wang W, Wang J, Chen Y. Superior Pd–Rh Three-Way Catalyst: Modulating the Surface Composition by Introducing Ceria-Zirconia with Partial κ-Ce 2Zr 2O 8 Structure as Support. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xinyi Yin
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, Sichuan China
| | - Shanshan Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, Sichuan China
| | - Jie Deng
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, Sichuan China
| | - Yun Wang
- Sinocat Environmental Technology Co., ltd, Chengdu, 611730, Sichuan China
| | - Mengchen Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, Sichuan China
| | - Yi Zhao
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, Sichuan China
| | - Wei Wang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, Sichuan China
| | - Jianli Wang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, Sichuan China
- Center of Engineering of Vehicular Exhaust Gases Abatement, Chengdu, 610064, Sichuan China
- Center of Engineering of Environmental Catalytic Material, Chengdu, 610064, Sichuan China
| | - Yaoqiang Chen
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, Sichuan China
- Center of Engineering of Vehicular Exhaust Gases Abatement, Chengdu, 610064, Sichuan China
- Center of Engineering of Environmental Catalytic Material, Chengdu, 610064, Sichuan China
| |
Collapse
|
33
|
Yu X, Deng J, Liu Y, Jing L, Gao R, Hou Z, Zhang Z, Dai H. Enhanced Water Resistance and Catalytic Performance of Ru/TiO 2 by Regulating Brønsted Acid and Oxygen Vacancy for the Oxidative Removal of 1,2-Dichloroethane and Toluene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11739-11749. [PMID: 35880312 DOI: 10.1021/acs.est.2c03336] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The compositions of volatile organic compounds (VOCs) under actual industrial conditions are often complex; especially, the interaction of intermediate products easily leads to more toxic emissions that are harmful to the atmospheric environment and human health. Herein, we report a comparative investigation on 1,2-dichloroethane (1,2-DCE) and (1,2-DCE + toluene) oxidation over the Ru/TiO2, phosphotungstic acid (HPW)-modified Ru/TiO2, and oxygen vacancy-rich Ru/TiOx catalysts. The doping of HPW successfully introduced the 1,2-DCE adsorption sites to promote its oxidation and exhibited outstanding water resistance. For the mixed VOCs, Ru/HPW-TiO2 promoted the preferential and superfluous adsorption of toluene and resulted in the inhibition of 1,2-DCE degradation. Therefore, HPW modification is a successful strategy in catalytic 1,2-DCE oxidation, but Brønsted acid sites tend to adsorb toluene in the mixed VOC oxidation. The Ru/TiOx catalyst exhibited excellent activity and stability in the oxidation of mixed VOCs and could inhibit the generation of byproducts and Cl2 compared with the Ru/HPW-TiO2 catalyst. Compared with the Brønsted acid modification, the oxygen vacancy-rich catalysts are significantly suitable for the oxidation of multicomponent VOCs.
Collapse
Affiliation(s)
- Xiaohui Yu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, College of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Jiguang Deng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, College of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yuxi Liu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, College of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Lin Jing
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, College of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Ruyi Gao
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, College of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Zhiquan Hou
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, College of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Zexu Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, College of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, College of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|