1
|
Feng Z, Fu Y, Li J, Lu X, Wang S, Chen Y, Wang W, Sun Z, Ma J. Deep Insight of the Mechanism for Nitrate-Promoted PFASs Defluorination in UV/Sulfite ARP: Activation of the Decarboxylation-Hydroxylation-Elimination-Hydrolysis Degradation Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:10087-10097. [PMID: 40245332 DOI: 10.1021/acs.est.4c14559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The UV/sulfite advanced reduction process (ARP) holds promise for the removal of per- and polyfluoroalkyl substances (PFASs) by a hydrated electron (eaq-)-induced H/F exchange process under anoxic conditions. Traditionally, the presence of coexisting nitrate in water has always been regarded as a major inhibitory factor for PFASs defluorination. However, this study observed an unexpected promotive effect of nitrate on defluorination, challenging the previous phenomenon. Notably, the addition of 100 μM nitrate resulted in a remarkable 54% enhancement in PFOA defluorination. A novel mechanism was discovered that nitrate-derived reactive nitrogen species (RNS) activated the decarboxylation-hydroxylation-elimination-hydrolysis (DHEH) process, an important degradation pathway for PFASs in UV/sulfite ARP. Induced by eaq-, the PFAS molecule first became a perfluorinated radical and then was transformed into unstable perfluorinated alcohol by reacting with water. Due to the high reactivity driven by unpaired electrons of RNS, water molecules were destabilized with the H-O bond stretched from 0.98 to 1.04 Å. This effectively enhanced the spontaneity of the reaction between perfluorinated radical and water molecules and consequently made the whole DHEH process more thermodynamic favorable (ΔG, -23.53 → -376.28 kJ/mol). Such a process breaks through the view that the nitrate directly reacts with eaq- to affect PFASs defluorination in ARP systems. This finding offers an innovative perspective for optimizing PFAS defluorination by strategically regulating nitrate levels in water bodies.
Collapse
Affiliation(s)
- Zhuoran Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Yaoxuan Fu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Jiahui Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Xiangni Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Shuo Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Yidi Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen 518055, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Zhiqiang Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| |
Collapse
|
2
|
Zhao X, Zhang S, Hu Z, Ren Z, Wang T, Zhu B, An L, Wang H, Liu J. Research on the PFAS release and migration behavior of multi-layer outdoor jacket fabrics. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137218. [PMID: 39823880 DOI: 10.1016/j.jhazmat.2025.137218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/19/2024] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
Perfluoroalkyl and poly-fluoroalkyl substances (PFAS) release from textiles is a source of human exposure, but the mechanisms behind this release remain insufficiently studied. This research investigates the release and transport mechanisms of PFAS in outdoor jacket fabrics treated with a short side-chain fluorinated polymers (C6F13-SFPs) for durable water repellency (DWR). PA-based and PET-based fabrics were exposed to outdoor conditions and subjected to accelerated aging, followed by abrasion, washing, and drying experiments to simulate wear and degradation. The fabrics were analyzed for total fluorine (TF) content, PFAS composition, and microplastic fibers (MFs) release. Photocatalytic oxidation was applied to fabric extracts to assess the transformation of PFAS precursors. The results show that aging causes a reduction in TF content and an increase in PFAS migration to inner fabric layers, particularly perfluoroalkyl acid (PFAA) and n:2 fluorotelomer alcohol (FTOH). Extended washing cycles further elevated fluorine release and MF shedding, with significant fluorine detected in the wash effluents and MFs. In summary, PFAS in outdoor jackets after use exceed regulatory limits and are hazardous to the environment. Therefore, setting limits for only a few PFAS is inadequate to assess release hazards. Future efforts should revise regulations based on release pathways, assess toxicity, and develop better prevention technologies.
Collapse
Affiliation(s)
- Xu Zhao
- School of Textile Science and Engineering, Jiangnan University, Wuxi 214021, China
| | - Sen Zhang
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA
| | | | - Zehua Ren
- School of Textile Science and Engineering, Jiangnan University, Wuxi 214021, China
| | - Tingxia Wang
- School of Textile Science and Engineering, Jiangnan University, Wuxi 214021, China
| | - Bo Zhu
- School of Textile Science and Engineering, Jiangnan University, Wuxi 214021, China
| | - Lihui An
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hongbo Wang
- School of Textile Science and Engineering, Jiangnan University, Wuxi 214021, China.
| | - Jianli Liu
- School of Textile Science and Engineering, Jiangnan University, Wuxi 214021, China.
| |
Collapse
|
3
|
Jaus A, Fragnière Rime C, Riou J, Brüschweiler BJ, Bochud M, von Goetz N. Serum biomonitoring of per- and polyfluoroalkyl substances (PFASs) in the adult population of Switzerland: Results from the pilot phase of the Swiss health study. ENVIRONMENT INTERNATIONAL 2025; 198:109382. [PMID: 40147138 DOI: 10.1016/j.envint.2025.109382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/18/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
Monitoring human exposure to per- and polyfluoroalkyl substances (PFASs) is of significant public health relevance, given the documented associations between PFAS exposure and a range of adverse health outcomes. This study aimed to provide a sensitive and reliable analytical approach for the determination of PFASs in human serum and to advance the understanding of PFAS exposure. Serum samples from 630 adult participants from the population-based Swiss Health Study pilot phase were analysed for 30 legacy and emerging PFASs. Quantitative analysis was performed after specific sample preparation using high-performance liquid chromatography coupled to mass spectrometry. The association between PFAS serum concentrations and selected demographic and behavioural parameters of interest was assessed using linear regression. The developed method enabled sensitive high-throughput analysis and resulted in reliable validation parameters and robust quantification performance. The study revealed that, while the prevalence of emerging PFASs was observed to be marginal, legacy PFASs predominated. Perfluorooctane sulfonic acid (PFOS, geometric mean (GM) 6.6 ng/mL), perfluorooctanoic acid (PFOA, GM 1.3 ng/mL) and perfluorohexane sulfonic acid (PFHxS, GM 1.2 ng/mL) were detected in all serum samples and contributed 88 % to the median sum of determined PFASs (10.3 ng/mL). The levels of PFOA and PFOS were found to be associated with age and gender. Furthermore, PFOS levels were associated with consumption of fish, particularly freshwater species, while PFOA levels were negatively associated with the duration of breastfeeding. Regional disparities were also observed. Several results exceeded specific health thresholds for PFAS intake or human biomonitoring, but the observed values were overall comparable to similar studies conducted worldwide. The provision of comprehensive information on a wide range of legacy and emerging PFASs facilitates a more complete identification of possible sources of exposure, not only in the regions concerned, but also beyond, and establishes a robust foundation for the guidance of future investigations.
Collapse
Affiliation(s)
- Alexandra Jaus
- Swiss Federal Institute of Metrology, Bern, Switzerland.
| | | | - Julien Riou
- Center for Primary Care and Public Health (Unisanté), Department of Epidemiology and Health Systems, University of Lausanne, Lausanne, Switzerland
| | - Beat J Brüschweiler
- Federal Food Safety and Veterinary Office, Knowledge Foundations Division, Bern, Switzerland
| | - Murielle Bochud
- Center for Primary Care and Public Health (Unisanté), Department of Epidemiology and Health Systems, University of Lausanne, Lausanne, Switzerland
| | - Natalie von Goetz
- Health Protection Directorate, Federal Office of Public Health, Bern, Switzerland
| |
Collapse
|
4
|
Jones SE, Gutkowski N, Demick S, Curello M, Pavia A, Robuck AR, Li ML. Assessing Bivalves as Biomonitors of Per- and Polyfluoroalkyl Substances in Coastal Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5202-5213. [PMID: 40036337 DOI: 10.1021/acs.est.4c11215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely used chemicals that enter coastal ecosystems through various pathways. Despite the ecological and economic significance of coastal environments, monitoring efforts to identify PFAS in these regions are limited. Bivalves have been used as biomonitors for many pollutants, but their effectiveness in reflecting environmental PFAS contamination and the mechanisms of PFAS bioaccumulation is poorly understood. This study examined the impact of biological, chemical, and ecological variables on PFAS bioaccumulation in two bivalve species (i.e., Eastern oyster and Atlantic ribbed mussel) and developed a statistical model to predict the PFAS content in wild bivalves. Overall, the summed PFAS concentration in the bivalves closely mirrors that in water. We observed higher bioaccumulation factors for some perfluoroalkyl sulfonamides and branched PFAS isomers than for terminal PFAS of equivalent chain length. The isomer distribution and precursor-to-terminal compound ratios provide compelling evidence that the biotransformation of PFAS precursors likely drives these elevated factors. Additionally, the bioaccumulation factors of PFAS decrease with increasing organism size and age, suggesting that smaller and younger bivalves have greater bioaccumulation potential and are more susceptible to PFAS contamination. These findings provide critical information that guides the use of bivalves as biomonitors to evaluate PFAS contamination in aquatic environments.
Collapse
Affiliation(s)
- Shannon E Jones
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| | - Nicole Gutkowski
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| | - Shayna Demick
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| | - Max Curello
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| | - Ashley Pavia
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| | - Anna R Robuck
- Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Office of Research and Development, Narragansett, Rhode Island 02882-1153, United States
| | - Mi-Ling Li
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
5
|
Newton SR, Bowden JA, Charest N, Jackson SR, Koelmel JP, Liberatore HK, Lin AM, Lowe CN, Nieto S, Godri Pollitt KJ, Robuck AR, Rostkowski P, Townsend TG, Wallace MAG, Williams AJ. Filling the Gaps in PFAS Detection: Integrating GC-MS Non-Targeted Analysis for Comprehensive Environmental Monitoring and Exposure Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2025; 12:1-9. [PMID: 40206203 PMCID: PMC11977685 DOI: 10.1021/acs.estlett.4c00930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have garnered increasing attention in recent years and non-targeted analysis (NTA) has become essential for elucidating novel PFAS structures. NTA and PFAS research have been dominated by liquid chromatography - mass spectrometry (LC-MS) with gas chromatography - mass spectrometry (GC-MS) used less often as evidenced by bibliometrics. However, the performance of GC-MS in NTA studies (GC-NTA) rivals that of LC-ESI-MS and GC-MS is shown to cover a complimentary chemical space. An LC-ESI-MS amenability model applied to a list of approximately 12,000 PFAS revealed that less than 10% of known PFAS chemistry is predicted to be amenable to typical LC-MS analysis. Therefore, there is strong potential for applying GC-MS methods to more fully assess the PFAS environmental contamination landscape, uniquely shedding light on both known and novel PFAS, especially within the chemical space realm of volatile and semi-volatile PFAS. Waste streams from fluorochemical manufacturing facilities have been heavily studied using LC-MS and targeted GC-MS; however, GC-NTA is needed to discover novel PFAS that are not amenable to LC-MS emitted from facilities. Studies on the incineration of PFAS-containing materials, such as aqueous film forming foam, have focused on the destruction of parent compounds and little is known about the transformation products formed during such processes. GC-NTA holds the potential to elucidate transformation products formed when PFAS are incinerated. Wastewater treatment plants and landfills are known sources of PFAS to the environment, yet GC-NTA is needed to understand air emissions of PFAS and PFAS transformation products from these sources. Consumer products are known to lead to indoor exposures to PFAS via emissions to air and dust but research in this area has either used LC-MS or targeted GC-MS. Despite the challenges with advancing GC-NTA, we call on NTA researchers, grantors, managers, and other stakeholders to recognize the potential and necessity of GC-NTA in PFAS research so that we may face these challenges together.
Collapse
Affiliation(s)
- Seth R. Newton
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, North Carolina, 27709, USA
| | - John A. Bowden
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, 32608, USA
| | - Nathaniel Charest
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, North Carolina, 27709, USA
| | - Stephen R. Jackson
- Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Research Triangle Park, North Carolina, 27709, USA
| | - Jeremy P. Koelmel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, 06510, USA
| | - Hannah K. Liberatore
- Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Research Triangle Park, North Carolina, 27709, USA
| | - Ashley M. Lin
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, 32608, USA
| | - Charles N. Lowe
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, North Carolina, 27709, USA
| | - Sofia Nieto
- Agilent Technologies, Inc, Santa Clara, California, 95051, USA
| | - Krystal J. Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, 06510, USA
| | - Anna R. Robuck
- Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Narragansett, Rhode Island, 02882, USA
| | | | - Timothy G. Townsend
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, 32608, USA
| | - M. Ariel Geer Wallace
- Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Research Triangle Park, North Carolina, 27709, USA
| | - Antony John Williams
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, North Carolina, 27709, USA
| |
Collapse
|
6
|
Liu S, Dukes DA, Koelmel JP, Stelben P, Finch J, Okeme J, Lowe C, Williams A, Godri D, Rennie EE, Parry E, McDonough CA, Pollitt KJG. Expanding PFAS Identification with Transformation Product Libraries: Nontargeted Analysis Reveals Biotransformation Products in Mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:119-131. [PMID: 39704186 PMCID: PMC12097807 DOI: 10.1021/acs.est.4c07750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely used persistent synthetic chemicals that have been linked to adverse health effects. While the behavior of PFAS has been evaluated in the environment, our understanding of reaction products in mammalian systems is limited. This study identified biological PFAS transformation products and generated mass spectral libraries to facilitate an automated search and identification. The biological transformation products of 27 PFAS, spanning 5 chemical subclasses (alcohols, sulfonamides, carboxylic acids, ethers, and esters), were evaluated following enzymatic reaction with mouse liver S9 fractions. Four major pathways were identified by liquid chromatography-high-resolution mass spectrometry: glucuronidation, sulfation, dealkylation, and oxidation. Class-based fragmentation rules and associated PFAS transformation product libraries were generated and integrated into an automated nontargeted PFAS data analysis software (FluoroMatch). Fragmentation was additionally predicted for the potential transformation products of more than 2,500 PFAS in the EPA CompTox Chemicals Dashboard PFASSTRUCTv4. Generated mass spectral libraries were validated by applying FluoroMatch to a data set of urine from aqueous film-forming foam (AFFF)-dosed mice. Toxicity predictions showed identified PFAS transformation products to be potential developmental and mutagenic toxicants. This research enables more comprehensive PFAS characterization in biological systems, which will improve the assessment of exposures and evaluation of the associated health impacts.
Collapse
Affiliation(s)
- Sheng Liu
- Department of Environmental Health Science, Yale School of Public Health, New Haven, Connecticut 06511, United States
| | - David A. Dukes
- Department of Civil Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jeremy P. Koelmel
- Department of Environmental Health Science, Yale School of Public Health, New Haven, Connecticut 06511, United States
| | - Paul Stelben
- Department of Environmental Health Science, Yale School of Public Health, New Haven, Connecticut 06511, United States
| | - Jasen Finch
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion SY23 3EB, U.K
| | - Joseph Okeme
- Department of Environmental Health Science, Yale School of Public Health, New Haven, Connecticut 06511, United States
| | - Charles Lowe
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Antony Williams
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - David Godri
- Third Floor Solutions, Toronto, ON M5V 3L9, Canada
| | - Emma E. Rennie
- Agilent Technologies, Santa Clara, California 95051, United States
| | - Emily Parry
- Agilent Technologies, Santa Clara, California 95051, United States
| | - Carrie A. McDonough
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krystal J Godri Pollitt
- Department of Environmental Health Science, Yale School of Public Health, New Haven, Connecticut 06511, United States
| |
Collapse
|
7
|
MacMillan DK, Wetmore BA, Dasgupta S, Baldwin WS. Closing the Gaps in Understanding PFAS Toxicology and Metabolism. TOXICS 2024; 13:19. [PMID: 39853019 PMCID: PMC11769177 DOI: 10.3390/toxics13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are nearly ubiquitous and found in rivers, soils, atmosphere, food packaging, clothing, cosmetics, commercial products, homes, drinking water, and humans and other organisms [...].
Collapse
Affiliation(s)
- Denise K. MacMillan
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Durham, NC 27709, USA;
| | - Barbara A. Wetmore
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Durham, NC 27709, USA;
| | - Subham Dasgupta
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA; (S.D.); (W.S.B.)
| | - William S. Baldwin
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA; (S.D.); (W.S.B.)
| |
Collapse
|
8
|
Prada AF, Scott JW, Green L, Hoellein TJ. Microplastics and per- and polyfluoroalkyl substances (PFAS) in landfill-wastewater treatment systems: A field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176751. [PMID: 39378946 DOI: 10.1016/j.scitotenv.2024.176751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/19/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Landfills and wastewater treatment plants (WWTP) are point sources for many emerging contaminants, including microplastics and per- and polyfluoroalkyl substances (PFAS). Previous studies have estimated the abundance and transport of microplastics and PFAS separately in landfills and WWTPs. In addition, previous studies typically report concentrations of microplastics as particle count/L or count/g sediment, which do not provide the information needed to calculate mass balances. We measured microplastics and PFAS in four landfill-WWTP systems in Illinois, USA, and quantified mass of both contaminants in landfill leachate, WWTP influent, effluent, and biosolids. Microplastic concentrations in WWTP influent were similar in magnitude to landfill leachates, in the order of 102 μg plastic/L (parts-per-billion). In contrast, PFAS concentrations were higher in leachates (parts-per-billion range) than WWTP influent (parts-per-trillion range). After treatment, both contaminants had lower concentrations in WWTP effluent, although were abundant in biosolids. We concluded that WWTPs reduce PFAS and microplastics, lowering concentrations in the effluent that is discharged to nearby surface waters. However, partitioning of both contaminants to biosolids may reintroduce them as pollutants when biosolids are landfilled or used as fertilizer.
Collapse
Affiliation(s)
- Andres F Prada
- Illinois Sustainable Technology Center, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - John W Scott
- Illinois Sustainable Technology Center, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA.
| | - Lee Green
- Illinois Sustainable Technology Center, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Timothy J Hoellein
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| |
Collapse
|
9
|
McLellan N, Croll HC, Adelman MJ, Pernitsky D, Jacangelo JG. Applying a novel mechanistic framework for drinking water management to mitigate emerging contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176593. [PMID: 39353494 DOI: 10.1016/j.scitotenv.2024.176593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
A novel framework has been developed which summarizes the efficacy of treatment technologies for emerging contaminants (ECs) based on the general mitigation mechanisms of Removal, Inactivation/Degradation, and Destruction (i.e., RIDD). The RIDD framework allows for a concise critical evaluation of the efficacy of treatment processes for their mitigation potential, and provides an efficient methodology for drinking water system managers to identify knowledge gaps related to the management of ECs in water treatment with respect to current technologies available in practice. Additionally, the RIDD framework provides an understanding of the treatment processes which provide: (1) broad spectrum treatment, (2) effective mitigation for certain categories of contaminants or under certain circumstances, or (3) little or no mitigation of ECs. In the proposed format, this information is intended to assist water managers to make more informed treatment decisions. Four categories of ECs noted in recent literature as presently concerning to drinking water utilities, including both anthropogenic and microbial contaminants, were used in this study to provide examples of RIDD framework application. In many cases, broad-spectrum treatment barriers (e.g., high-pressure membranes) are expected to provide cost-effective management of a suite of ECs, which then can be compared to the costs and practicality of additional treatment barriers for individual ECs (e.g., selective ion exchange resins or tailored biological processes). Additionally, understanding the typical performance of existing treatment processes can help assist with capital planning for alternative treatment processes or upgrades, or for developing novel treatment approaches at the watershed scale such as integrated urban water management and One Water frameworks.
Collapse
Affiliation(s)
- Nicole McLellan
- Institute for Water Technology and Policy, Stantec, Waterloo, ON, Canada
| | - Henry C Croll
- Institute for Water Technology and Policy, Stantec, Des Moines, IA 50315, USA
| | - Michael J Adelman
- Institute for Water Technology and Policy, Stantec, Pasadena, CA 91101, USA
| | - David Pernitsky
- Institute for Water Technology and Policy, Stantec, Pasadena, CA 91101, USA
| | - Joseph G Jacangelo
- Institute for Water Technology and Policy, Stantec, Washington, DC 20005, USA; Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
Wallis DJ, Miller KE, DeLuca NM, Thomas K, Fuller C, McCord J, Cohen Hubal EA, Minucci JM. Understanding prenatal household exposures to per- and polyfluorylalkyl substances using paired Biological and dust measurements with sociodemographic and housing variables. ENVIRONMENT INTERNATIONAL 2024; 194:109157. [PMID: 39642652 DOI: 10.1016/j.envint.2024.109157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/01/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are chemicals of concern-they are ubiquitous, persistent, with known and suspected health impacts. Well studied, primary sources of exposure to PFAS are drinking water and food. The presence of PFAS in human tissue of general populations suggests other important exposure sources/pathways. House dust measurements suggest widespread presence of PFAS in residences. Limited studies report paired analyses of PFAS occurrence in indoor media and PFAS concentrations in serum. While paired samples of house dust and blood serum are currently rare, the National Children's Study (NCS) contains paired samples, as well as sociodemographic information, from pregnant people that participated in the study. These archived NCS data and specimens for 104 participants collected between 2009 and 2014 were leveraged and analyzed for 16 commonly measured PFAS. We evaluated PFAS levels in the home, and the relationships between PFAS in dust and serum, and sociodemographic or housing variables. In addition, mechanistic exposure models, and then steady-state serum level models with simple parameters were used to estimate dust contributions of PFAS to serum. The geometric means for the most commonly found PFAS (full names in table 1) in serum were: 4.1 ng/mL for PFOS, 1.1 ng/mL for PFOA, 0.87 ng/mL for PFHxS, 0.16 ng/mL for PFDA. The geometric means of PFAS in dust were: 17 µg/kg for PFOS, 16 µg/kg for PFOA, 9.6 µg/kg for PFDS, 4.5 µg/kg for PFHpA, 4.4 µg/kg for PFNA, 3.9 µg/kg for PFHxS, 3.5 µg/kg for PFDA, 2.3 µg/kg for PFDoA, 2.1 µg/kg for PFUdA. PFOA was significantly correlated in serum and dust as was the sum of all PFAS detected in > 50 % of serum and dust. PFAS in serum was significantly associated with: Higher income, recent renovations, years lived in the home, and educational attainment. PFAS in dust was significantly associated with: Higher participant age, type of home, amount of carpet, educational attainment, higher income, recent renovation, and membership in the military. For some PFAS, 25 % of the overall exposure, on average, is from dust, but for others, 3-4 % is attributed to dust. We were able to identify important associations in PFAS exposure in the homes of pregnant people based on paired serum and dust samples. This built a clearer picture of which PFAS and at what quantities they exist in these homes, how they relate to each other, and how they are tied to sociodemographic and housing factors. Our results demonstrate that exposure to PFAS via house dust may contribute up to 25% of total exposure for adults, highlighting the importance of understanding what drives residential exposures.
Collapse
Affiliation(s)
- Dylan James Wallis
- Oak Ridge Institute for Science and Education (ORISE) Participant, 109 T.W Alexander Drive Research Triangle Park, NC 27711, USA.
| | - Kelsey E Miller
- U.S Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA
| | - Nicole M DeLuca
- U.S Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA
| | - Kent Thomas
- U.S Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA
| | - Chris Fuller
- U.S Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA
| | - James McCord
- U.S Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA
| | - Elaine A Cohen Hubal
- U.S Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA
| | - Jeffrey M Minucci
- U.S Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA
| |
Collapse
|
11
|
McDonough CA, Joudan S, Quinete NS, Wang X. Transformation of Environmental Contaminants: Uncovering Reaction Mechanisms, Identifying Novel Products, and Understanding Environmental Implications. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2249-2251. [PMID: 39259174 DOI: 10.1002/etc.5994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024]
Affiliation(s)
- Carrie A McDonough
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Shira Joudan
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Natalia Soares Quinete
- Department of Chemistry and Biochemistry, Florida International University, North Miami, Florida, USA
| | | |
Collapse
|
12
|
Dukes DA, McDonough CA. N-glucuronidation and Excretion of Perfluoroalkyl Sulfonamides in Mice Following Ingestion of Aqueous Film-Forming Foam. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2274-2284. [PMID: 38923620 DOI: 10.1002/etc.5939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/21/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Perfluoroalkyl sulfonamides (FASAs) and other FASA-based per- and polyfluoroalkyl substances (PFASs) can transform into recalcitrant perfluoroalkyl sulfonates in vivo. We conducted high-resolution mass spectrometry suspect screening of urine and tissues (kidney and liver) from mice dosed with an electrochemically fluorinated aqueous film-forming foam (AFFF) to better understand the biological fate of AFFF-associated precursors. The B6C3F1 mice were dosed at five levels (0, 0.05, 0.5, 1, and 5 mg kg-1 day-1) based on perfluorooctane sulfonate and perfluorooctanoate content of the AFFF mixture. Dosing continued for 10 days followed by a 6-day depuration. Total oxidizable precursor assay of the AFFF suggested significant contributions from precursors with three to six perfluorinated carbons. We identified C4 to C6 FASAs and N-glucuronidated FASAs (FASA-N-glus) excreted in urine collected throughout dosing and depuration. Based on normalized relative abundance, FASA-N-glus accounted for up to 33% of the total excreted FASAs in mouse urine, highlighting the importance of phase II metabolic conjugation as a route of excretion. High-resolution mass spectrometry screening of liver and kidney tissue revealed accumulation of longer-chain (C7 and C8) FASAs not detected in urine. Chain-length-dependent conjugation of FASAs was also observed by incubating FASAs with mouse liver S9 fractions. Shorter-chain (C4) FASAs conjugated to a much greater extent over a 120-min incubation than longer-chain (C8) FASAs. Overall, this study highlights the significance of N-glucuronidation as an excretion mechanism for short-chain FASAs and suggests that monitoring urine for FASA-N-glus could contribute to a better understanding of PFAS exposure, as FASAs and their conjugates are often overlooked by traditional biomonitoring studies. Environ Toxicol Chem 2024;43:2274-2284. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- David A Dukes
- Department of Civil Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Carrie A McDonough
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Stroski KM, Sapozhnikova Y, Taylor RB, Harron A. Non-targeted analysis of per- and polyfluorinated substances in consumer food packaging. CHEMOSPHERE 2024; 360:142436. [PMID: 38797214 DOI: 10.1016/j.chemosphere.2024.142436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
This study sought to develop a non-targeted workflow using high-resolution mass spectrometry (HRMS) to investigate previously unknown PFAS in consumer food packaging samples. Samples composed of various materials for different food types were subjected to methanolic extraction, controlled migration with food simulants and total oxidizable precursor (TOP) assay. The developed HRMS workflow utilized many signatures unique to PFAS compounds: negative mass defect, diagnostic breakdown structures, as well as retention time prediction. Potential PFAS features were identified in all packaging studied, regardless of food and material types. Five tentatively identified compounds were confirmed with analytical standards: 6:2 fluorotelomer phosphate diester (6:2 diPAP) and one of its intermediate breakdown products 2H-perfluoro-2-octenoic acid (6:2 FTUCA), perfluoropentadecanoic acid (PFPeDA), perfluorohexadecanoic acid (PFHxDA) and perfluorooctadecanoic acid (PFOcDA). Longer perfluorocarboxylic acids including C17 and C19 to C24 were also found present within a foil sample. Concentrations of 6:2 FTUCA ranged from 0.78 to 127 ng g-1 in methanolic extracts and up to 6 ng g-1 in food simulant after 240 h migration test. These results demonstrate the prevalence of both emerging and legacy PFAS in food packaging samples and highlight the usefulness of non-targeted tools to identify PFAS not included in targeted methods.
Collapse
Affiliation(s)
- Kevin M Stroski
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, USA; Baylor University, Waco, TX, USA
| | - Yelena Sapozhnikova
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, USA.
| | - Raegyn B Taylor
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, USA
| | - Andrew Harron
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, USA
| |
Collapse
|
14
|
Khan R, Uygun ZO, Andreescu D, Andreescu S. Sensitive Detection of Perfluoroalkyl Substances Using MXene-AgNP-Based Electrochemical Sensors. ACS Sens 2024; 9:3403-3412. [PMID: 38830812 DOI: 10.1021/acssensors.4c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) pose a significant threat to the environment due to their persistence, ability to bioaccumulate, and harmful effects. Methods to quantify PFAS rapidly and effectively are essential to analyze and track contamination, but measuring PFAS down to the ultralow regulatory levels is extremely challenging. Here, we describe the development of a low-cost sensor that can measure a representative PFAS, perfluorooctanesulfonic acid (PFOS), at the parts per quadrillion (ppq) level within 5 min. The method combines the ability of PFOS to bind to silver nanoparticles (AgNPs) embedded within a fluorine-rich Ti3C2-based multilayered MXene, which provides a large surface area and accessible binding sites for direct impedimetric detection. Fundamentally, we show that MXene-AgNPs are capable of binding PFOS and other long-chain PFAS compounds, though the synergistic action of AgNPs and MXenes via electrostatic and F-F interactions. This binding induced concentration-dependent changes in the charge-transfer resistance, enabling rapid and direct quantification with extremely high sensitivity and no response to interferences. The sensor displayed a linear range from 50 ppq to 1.6 ppt (parts per trillion) with an impressively low limit of detection of 33 ppq and a limit of quantification of 99 ppq, making this sensor a promising candidate for low-cost screening of the PFAS content in water samples, using a simple and inexpensive procedure.
Collapse
Affiliation(s)
- Reem Khan
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| | - Zihni Onur Uygun
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
- Department of Medical Biochemistry, Faculty of Medicine, Kafkas University, Kars 36100, Turkey
| | - Daniel Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| |
Collapse
|
15
|
Minucci JM, DeLuca NM, Durant JT, Goodwin B, Kowalski P, Scruton K, Thomas K, Cohen Hubal EA. Linking exposure to per- and polyfluoroalkyl substances (PFAS) in house dust and biomonitoring data in eight impacted communities. ENVIRONMENT INTERNATIONAL 2024; 188:108756. [PMID: 38795657 PMCID: PMC11323284 DOI: 10.1016/j.envint.2024.108756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/09/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely used in industry and have been linked to various adverse health effects. Communities adjacent to sites where PFAS are manufactured, stored, or used may be at elevated risk. In these impacted communities, significant exposure often occurs through contaminated drinking water, yet less is known about the role of other pathways such as residential exposure through house dust. We analyzed a paired serum and house dust dataset from the Agency for Toxic Substances and Disease Registry's PFAS Exposure Assessments, which sampled eight United States communities with a history of drinking water contamination due to aqueous film forming foam (AFFF) use at nearby military bases. We found that serum PFAS levels of residents were significantly positively associated with the dust PFAS levels in their homes, for three of seven PFAS analyzed, when accounting for site and participant age. We also found that increased dust PFAS levels were associated with a shift in the relative abundance of PFAS in serum towards those chemicals not strongly linked to AFFF contamination, which may suggest household sources. Additionally, we analyzed participant responses to exposure questionnaires to identify factors associated with dust PFAS levels. Dust PFAS levels for some analytes were significantly elevated in households where participants were older and had lived at the home longer, cleaned less frequently, used stain resistant products, and had carpeted living rooms. Our results suggest that residential exposure to PFAS via dust or other indoor pathways may contribute to overall exposure and body burden, even in communities impacted by AFFF contamination of drinking water, and the magnitude of this exposure may also be influenced by demographic, behavioral, and housing factors.
Collapse
Affiliation(s)
- Jeffrey M Minucci
- U.S. EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, United States.
| | - Nicole M DeLuca
- U.S. EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, United States
| | - James T Durant
- Agency for Toxic Substances and Disease Registry, Office of Community Health Hazard Assessment, United States
| | - Bradley Goodwin
- Agency for Toxic Substances and Disease Registry, Office of Community Health Hazard Assessment, United States
| | - Peter Kowalski
- Agency for Toxic Substances and Disease Registry, Office of Community Health Hazard Assessment, United States
| | - Karen Scruton
- Agency for Toxic Substances and Disease Registry, Office of Community Health Hazard Assessment, United States
| | - Kent Thomas
- U.S. EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, United States
| | - Elaine A Cohen Hubal
- U.S. EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, United States
| |
Collapse
|
16
|
Londhe K, Lee CS, Grdanovska S, Smolinski R, Hamdan N, McDonough C, Cooper C, Venkatesan AK. Application of electron beam technology to decompose per- and polyfluoroalkyl substances in water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123770. [PMID: 38493862 DOI: 10.1016/j.envpol.2024.123770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/04/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
The widespread detection of per- and polyfluoroalkyl substances (PFAS) in environmental compartments across the globe has raised several health concerns. Destructive technologies that aim to transform these recalcitrant PFAS into less toxic, more manageable products, are gaining impetus to address this problem. In this study, a 9 MeV electron beam accelerator was utilized to treat a suite of PFAS (perfluoroalkyl carboxylates: PFCAs, perfluoroalkyl sulfonates, and 6:2 fluorotelomer sulfonate: FTS) at environmentally relevant levels in water under different operating and water quality conditions. Although perfluorooctanoic acid and perfluorooctane sulfonic acid showed >90% degradation at <500 kGy dose at optimized conditions, a fluoride mass balance revealed that complete defluorination occurred only at/or near 1000 kGy. Non-target and suspect screening revealed additional degradation pathways differing from previously reported mechanisms. Treatment of PFAS mixtures in deionized water and groundwater matrices showed that FTS was preferentially degraded (∼90%), followed by partial degradation of long-chain PFAS (∼15-60%) and a simultaneous increase of short-chain PFAS (up to 20%) with increasing doses. The increase was much higher (up to 3.5X) in groundwaters compared to deionized water due to the presence of PFAS precursors as confirmed by total oxidizable precursor (TOP) assay. TOP assay of e-beam treated samples did not show any increase in PFCAs, confirming that e-beam was effective in also degrading precursors. This study provides an improved understanding of the mechanism of PFAS degradation and revealed that short-chain PFAS are more resistant to defluorination and their levels and regulation in the environment will determine the operating conditions of e-beam and other PFAS treatment technologies.
Collapse
Affiliation(s)
- Kaushik Londhe
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA; New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Cheng-Shiuan Lee
- Research Center for Environmental Changes, Academia Sinica, Taipei, 115, Taiwan
| | | | - Rachel Smolinski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Noor Hamdan
- Department of Environmental Health and Engineering, Johns Hopkins University, MD, 21205, USA
| | - Carrie McDonough
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Charles Cooper
- Fermi National Accelerator Laboratory, Batavia, IL, 60510, USA
| | - Arjun K Venkatesan
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA; New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
17
|
Tang L, Yu X, Zhao W, Barceló D, Lyu S, Sui Q. Occurrence, behaviors, and fate of per- and polyfluoroalkyl substances (PFASs) in typical municipal solid waste disposal sites. WATER RESEARCH 2024; 252:121215. [PMID: 38309069 DOI: 10.1016/j.watres.2024.121215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have become a crucial environmental concern owing to their exceptional persistence, ability to bioaccumulate within ecosystems, and potential to adversely affect biota. Products and materials containing PFASs are usually discarded into municipal solid waste (MSW) at the end of their life cycle, and the fate of PFASs may differ when different disposal methods of MSWs are employed. To date, limited research has focus on the occurrence, behaviors, and fate of PFASs emitted from various MSW disposal sites. This knowledge gap may lead to an underestimation of the contribution of MSW disposal sites as a source of PFASs in the environment. In this review, we collated publications concerning PFASs from typical MSW disposal sites (i.e., landfills, incineration plants, and composting facilities) and explored the occurrence patterns and behaviors of PFASs across various media (e.g., landfill leachate/ambient air, incineration plant leachate/ash, and compost products) in these typical MSW disposal sites. In particular, this review highlighted ultrashort-chain perfluoroalkyl acids and "unknown"/emerging PFASs. Additionally, it meticulously elucidated the use of non-specific techniques and non-target analysis for screening and identifying these overlooked PFASs. Furthermore, the composition profiles, mass loads, and ecological risks of PFASs were compared across the three typical disposal methods. To the best of our knowledge, this is the first review regarding the occurrence, behaviors, and fate of PFASs in typical MSW disposal sites on a global scale, which can help shed light on the potential environmental impacts of PFASs harbored in MSWs and guide future waste management practices.
Collapse
Affiliation(s)
- Linfeng Tang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xia Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Wentao Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research (IDAEA-CSIC), Barcelona 08034, Spain
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
18
|
Liu Z, Liu S, Xiao F, Sweetman AJ, Cui Q, Guo H, Xu J, Luo Z, Wang M, Zhong L, Gan J, Tan W. Tissue-specific distribution and bioaccumulation of perfluoroalkyl acids, isomers, alternatives, and precursors in citrus trees of contaminated fields: Implication for risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133184. [PMID: 38064944 DOI: 10.1016/j.jhazmat.2023.133184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/25/2023] [Accepted: 12/03/2023] [Indexed: 02/08/2024]
Abstract
The ingestion of fruits containing perfluoroalkyl acids (PFAAs) presents potential hazards to human health. This study aimed to fill knowledge gaps concerning the tissue-specific distribution patterns and bioaccumulation behavior of PFAAs and their isomers, alternatives, and precursors (collectively as per-/polyfluoroalkyl substances, PFASs) within citrus trees growing in contaminated fields. It also assessed the potential contribution of precursor degradation to human exposure risk of PFASs. High concentrations of total target PFASs (∑PFASstarget, 92.45-7496.16 ng/g dw) and precursors measured through the total oxidizable precursor (TOP) assay (130.80-13979.21 ng/g dw) were found in citrus tree tissues, and short-chain PFASs constituted the primary components. The total PFASs concentrations followed the order of leaves > fruits > branches, bark > wood, and peel > pulp > seeds. The average contamination burden of peel (∑PFASstarget: 57.75%; precursors: 71.15%) was highest among fruit tissues. Bioaccumulation factors (BAFs) and translocation potentials of short-chain, branched, or carboxylate-based PFASs exceeded those of their relatively hydrophobic counterparts, while ether-based PFASs showed lower BAFs than similar PFAAs in above-ground tissues of citrus trees. In the risk assessment of residents consuming contaminated citruses, precursor degradation contributed approximately 36.07% to total PFASs exposure, and therefore should not be ignored.
Collapse
Affiliation(s)
- Zhaoyang Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shun Liu
- The Seventh Geological Brigade of Hubei Geological Bureau, Yichang 443100, China
| | - Feng Xiao
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Andrew J Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | | | - Hao Guo
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiayi Xu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziyao Luo
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingxia Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Linlin Zhong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
19
|
Müller V, Andrade Costa LC, Rondan FS, Matic E, Mesko MF, Kindness A, Feldmann J. Per and polyfluoroalkylated substances (PFAS) target and EOF analyses in ski wax, snowmelts, and soil from skiing areas. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1926-1936. [PMID: 37853802 DOI: 10.1039/d3em00375b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Per and polyfluoroalkylated substances (PFAS) are common additives in ski waxes for their water repellent characteristic. Abrasion of ski wax leaves PFAS on the snow surface, however, little is known about the distribution and concentration of PFAS in snow and soil due to skiing. In this study we analysed different ski waxes, snowmelts and soil from family skiing areas from Alpine locations using targeted high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) to understand more about PFAS distribution in the environment. In general, we found a very diverse PFAS pattern in the analysed media. PFAS level was higher in skiing areas compared to the non-skiing ones that were used as control. ∑target PFAS ranged between <1.7 ng L-1 and 143 ng L-1 in snowmelt, <0.62 ng g-1 and 5.35 ng g-1 in soil and <1.89 and 874 ± 240 ng g-1 in ski wax samples. Snowmelt was dominated by short-chained PFAS, while soil and wax contained both short and long-chained PFAS. Extractable organic fluorine (EOF) was several orders of magnitude higher for waxes (0.5-2 mg g-1) than for soils (up to 0.3 μg g-1), while total fluorine (TF) content of the waxes was even higher, up to 31 210 ± 420 μg g-1. We also showed that the ∑ target PFAS accounts for up to 1.5% in EOF content, showing that targeted LC-MS/MS gives a limited measure of the pollution originated from ski waxes and non-targeted analysis and EOF is necessary for a better overview on PFAS distribution.
Collapse
Affiliation(s)
- Viktoria Müller
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
- TESLA-Analytical Chemistry, Institute of Chemistry, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria.
| | - Larissa Cristine Andrade Costa
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-000, Brazil
| | - Filipe Soares Rondan
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-000, Brazil
| | - Eleonora Matic
- TESLA-Analytical Chemistry, Institute of Chemistry, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria.
| | - Marcia Foster Mesko
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-000, Brazil
| | - Andrew Kindness
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
- University of KwaZulu Natal, School of Chemistry & Physics, Private Bag X54001, Westville Campus, ZA-4000 Durban, South Africa
| | - Jörg Feldmann
- TESLA-Analytical Chemistry, Institute of Chemistry, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria.
| |
Collapse
|
20
|
Antle JP, LaRock MA, Falls Z, Ng C, Atilla-Gokcumen GE, Aga DS, Simpson SM. Building Chemical Intuition about Physicochemical Properties of C8-Per-/Polyfluoroalkyl Carboxylic Acids through Computational Means. ACS ES&T ENGINEERING 2023; 4:196-208. [PMID: 38860110 PMCID: PMC11164130 DOI: 10.1021/acsestengg.3c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
We have predicted acid dissociation constants (pK a), octanol-water partition coefficients (K OW), and DMPC lipid membrane-water partition coefficients (K lipid-w) of 150 different eight-carbon-containing poly-/perfluoroalkyl carboxylic acids (C8-PFCAs) utilizing the COnductor-like Screening MOdel for Realistic Solvents (COSMO-RS) theory. Different trends associated with functionalization, degree of fluorination, degree of saturation, degree of chlorination, and branching are discussed on the basis of the predicted values for the partition coefficients. In general, functionalization closest to the carboxylic headgroup had the greatest impact on the value of the predicted physicochemical properties.
Collapse
Affiliation(s)
- Jonathan P Antle
- Department of Chemistry, University at Buffalo, the State University of New York (SUNY), Buffalo, New York 14260, United States
| | - Michael A LaRock
- Department of Chemistry, St. Bonaventure University, St. Bonaventure, New York 14778, United States
| | - Zackary Falls
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, United States
| | - Carla Ng
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, the State University of New York (SUNY), Buffalo, New York 14260, United States
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, the State University of New York (SUNY), Buffalo, New York 14260, United States
| | - Scott M Simpson
- Department of Chemistry, St. Bonaventure University, St. Bonaventure, New York 14778, United States
| |
Collapse
|
21
|
He A, Li J, Li Z, Lu Y, Liang Y, Zhou Z, Man Z, Lv J, Wang Y, Jiang G. Novel Insights into the Adverse Health Effects of per- and Polyfluoroalkyl Substances on the Kidney via Human Urine Metabolomics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16244-16254. [PMID: 37851943 DOI: 10.1021/acs.est.3c06480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) receive significant research attention due to their potential adverse effects on human health. Evidence shows that the kidney is one of the target organs of PFAS. In occupational exposure scenarios, high PFAS concentrations may adversely affect kidney metabolism, but whether this effect is reflected in the small metabolic molecules contained in urine remains unknown. In this study, 72 matched serum and urine samples from occupational workers of a fluorochemical manufactory as well as 153 urine samples from local residents were collected, and 23 PFAS levels were quantified. The concentrations of Σ23PFAS in the serum and urine samples of workers were 5.43 ± 1.02 μg/mL and 201 ± 46.9 ng/mL, respectively, while the Σ23PFAS concentration in the urine of the residents was 6.18 ± 0.76 ng/mL. For workers, high levels of urinary PFAS were strongly correlated with levels in serum (r = 0.57-0.93), indicating that urinary PFAS can be a good indicator for serum PFAS levels. Further, a urine nontargeted metabolomics study was conducted. The results of association models, including Bayesian kernel machine regression, demonstrated positive correlations between urinary PFAS levels and key small kidney molecules. A total of eight potential biomarkers associated with PFAS exposure were identified, and all of them showed significant positive correlations with markers of kidney function. These findings provide the first evidence that urine can serve as a matrix to indicate the adverse health effects of high levels of exposure to PFAS on the kidneys.
Collapse
Affiliation(s)
- Anen He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yao Lu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Zhen Zhou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Zhuo Man
- SCIEX China, Beijing 100015, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
22
|
Wallis DJ, Kotlarz N, Knappe DRU, Collier DN, Lea CS, Reif D, McCord J, Strynar M, DeWitt JC, Hoppin JA. Estimation of the Half-Lives of Recently Detected Per- and Polyfluorinated Alkyl Ethers in an Exposed Community. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15348-15355. [PMID: 37801709 PMCID: PMC10790670 DOI: 10.1021/acs.est.2c08241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
To estimate half-lives for novel fluoroethers, the GenX Exposure Study obtained two serum measurements for per- and polyfluoroalkyl substances (PFAS) for 44 participants of age 12-86 years from North Carolina, collected 5 and 11 months after fluoroether discharges into the drinking water source were controlled. The estimated half-lives for these compounds were 127 days (95% confidence interval (95% CI) = 86, 243 days) for perfluorotetraoxadecanoic acid (PFO4DA), 296 days for Nafion byproduct 2 (95% CI = 176, 924 days), and 379 days (95% CI = 199, 3870 days) for perfluoro-3,5,7,9,11-pentaoxadodecanoic acid (PFO5DoA). Using these estimates and the literature values, a model was built that predicted PFAS half-lives using structural properties. Three chemical properties predicted 55% of the variance of PFAS half-lives based on 15 PFAS. A model with only molecular weight predicted 69% of the variance. Some properties can predict the half-lives of PFAS, but a deeper understanding is needed. These fluoroethers had biological half-lives longer than published half-lives for PFHxA and PFHpA (30-60 days) but shorter than those for PFOA and PFOS (800-1200 days). These are the first and possibly only estimates of human elimination half-lives of these fluoroethers.
Collapse
Affiliation(s)
- Dylan J Wallis
- North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nadine Kotlarz
- North Carolina State University, Raleigh, North Carolina 27695, United States
- Center for Human Health and the Environment, NC State, Raleigh, North Carolina 27695, United States
| | - Detlef R U Knappe
- North Carolina State University, Raleigh, North Carolina 27695, United States
- Center for Human Health and the Environment, NC State, Raleigh, North Carolina 27695, United States
| | - David N Collier
- Center for Human Health and the Environment, NC State, Raleigh, North Carolina 27695, United States
- East Carolina University, Greenville, North Carolina 27858, United States
| | - C Suzanne Lea
- Center for Human Health and the Environment, NC State, Raleigh, North Carolina 27695, United States
- East Carolina University, Greenville, North Carolina 27858, United States
| | - David Reif
- North Carolina State University, Raleigh, North Carolina 27695, United States
- Center for Human Health and the Environment, NC State, Raleigh, North Carolina 27695, United States
| | - James McCord
- U.S. Environmental Protection Agency, Triangle Research Park, North Carolina 27709, United States
| | - Mark Strynar
- U.S. Environmental Protection Agency, Triangle Research Park, North Carolina 27709, United States
| | - Jamie C DeWitt
- Center for Human Health and the Environment, NC State, Raleigh, North Carolina 27695, United States
- East Carolina University, Greenville, North Carolina 27858, United States
| | - Jane A Hoppin
- North Carolina State University, Raleigh, North Carolina 27695, United States
- Center for Human Health and the Environment, NC State, Raleigh, North Carolina 27695, United States
| |
Collapse
|
23
|
Cioni L, Plassmann M, Benskin JP, Coêlho ACM, Nøst TH, Rylander C, Nikiforov V, Sandanger TM, Herzke D. Fluorine Mass Balance, including Total Fluorine, Extractable Organic Fluorine, Oxidizable Precursors, and Target Per- and Polyfluoroalkyl Substances, in Pooled Human Serum from the Tromsø Population in 1986, 2007, and 2015. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14849-14860. [PMID: 37747946 PMCID: PMC10569050 DOI: 10.1021/acs.est.3c03655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
Of the thousands of per- and polyfluoroalkyl substances (PFAS) known to exist, only a small fraction (≤1%) are commonly monitored in humans. This discrepancy has led to concerns that human exposure may be underestimated. Here, we address this problem by applying a comprehensive fluorine mass balance (FMB) approach, including total fluorine (TF), extractable organic fluorine (EOF), total oxidizable precursors (TOP), and selected target PFAS, to human serum samples collected over a period of 28 years (1986, 2007, and 2015) in Tromsø, Norway. While concentrations of TF did not change between sampling years, EOF was significantly higher in 1986 compared to 2007 and 2015. The ∑12PFAS concentrations were highest in 2007 compared to 1986 and 2015, and unidentified EOF (UEOF) decreased from 1986 (46%) to 2007 (10%) and then increased in 2015 (37%). While TF and EOF were not influenced by sex, women had higher UEOF compared to men, opposite to target PFAS. This is the first FMB in human serum to include TOP, and it suggests that precursors with >4 perfluorinated carbon atoms make a minor contribution to EOF (0-4%). Additional tools are therefore needed to identify substances contributing to the UEOF in human serum.
Collapse
Affiliation(s)
- Lara Cioni
- NILU,
Fram Centre, Tromsø NO-9296, Norway
- Department
of Community Medicine, UiT − The
Arctic University of Norway, Tromsø NO-9037, Norway
| | - Merle Plassmann
- Department
of Environmental Science, Stockholm University, Stockholm SE-106 91, Sweden
| | - Jonathan P. Benskin
- Department
of Environmental Science, Stockholm University, Stockholm SE-106 91, Sweden
| | | | - Therese H. Nøst
- Department
of Community Medicine, UiT − The
Arctic University of Norway, Tromsø NO-9037, Norway
| | - Charlotta Rylander
- Department
of Community Medicine, UiT − The
Arctic University of Norway, Tromsø NO-9037, Norway
| | | | - Torkjel M. Sandanger
- NILU,
Fram Centre, Tromsø NO-9296, Norway
- Department
of Community Medicine, UiT − The
Arctic University of Norway, Tromsø NO-9037, Norway
| | - Dorte Herzke
- NILU,
Fram Centre, Tromsø NO-9296, Norway
- Norwegian
Institute for public Health, Oslo NO-0213, Norway
| |
Collapse
|
24
|
Müller V, Kindness A, Feldmann J. Fluorine mass balance analysis of PFAS in communal waters at a wastewater plant from Austria. WATER RESEARCH 2023; 244:120501. [PMID: 37647770 DOI: 10.1016/j.watres.2023.120501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
Wastewater treatment plants are a major source of per and polyfluoroalkyl substances (PFAS) in the environment; moreover, long chain PFAS are known to accumulate in sewage sludge. Although publications on PFAS in wastewater are available from around the globe, little information is available from Central Europe. In this study influent, effluent, and sludge from two wastewater treatment plants from Austria were analysed for target PFAS compounds with HPLC MS/MS and extractable organic fluorine (EOF) content with combustion ion chromatography (CIC). The sum of 31 target PFAS increased from 22 to 47 ng L-1 in influent to 140 - 213 ng L-1 in effluent and around 10 ng g-1 in sludge, while EOF were found to be consistent (2.3 - 3.5 µg F L-1) in influent/effluent and 280 ng F g-1 in sludge. Mass balance analysis showed an increase in the identified PFAS compounds in the effluent compared to the influent (from 0.9% - 1.3% to 3.6% - 6.1%), suggesting biotransformation of non-targeted PFAS precursor compounds. In conclusion, wastewater treatment plants transform some PFAS, and wastewater effluent is a source of PFAS contamination in surface water.
Collapse
Affiliation(s)
- Viktoria Müller
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, United Kingdom; Institute of Chemistry, University of Graz, Universitatsplatz 1, 8010 Graz, Austria
| | - Andrew Kindness
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, United Kingdom
| | - Jörg Feldmann
- Institute of Chemistry, University of Graz, Universitatsplatz 1, 8010 Graz, Austria.
| |
Collapse
|
25
|
M F Coêlho AC, Cioni L, Van Dreunen W, Berg V, Rylander C, Urbarova I, Herzke D, Sandanger TM. Legacy perfluoroalkyl acids and their oxidizable precursors in plasma samples of Norwegian women. ENVIRONMENT INTERNATIONAL 2023; 178:108026. [PMID: 37356307 DOI: 10.1016/j.envint.2023.108026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/27/2023]
Abstract
Humans are exposed to perfluoroalkyl acids (PFAA) mainly through direct pathways, such as diet and drinking water, but indirect exposure also occurs when PFAA precursors break down to form legacy PFAA. Exposure to PFAA precursors raises particular concern, as neither the exposure nor the precursors themselves have been well described. In the present study, we aimed to assess the indirect contribution of oxidizable PFAA precursors to the total per- and polyfluoroalkyl substances (PFAS) burden in human plasma following the voluntary phase-out of production of long-chain PFAS. In addition, multiple logistic regression was used to explore associations between selected lifestyle and dietary factors and the oxidizable PFAA precursors fraction. This study included 302 cancer-free participants of the Norwegian Women and Cancer postgenome cohort. PFAS analyses were performed in plasma samples to determine PFAS concentrations before and after oxidation with the Total Oxidizable Precursor (TOP) assay. In pre-TOP analyses, perfluorooctane sulfonic acid (PFOS) was the dominant compound, followed by perfluorooctanoic acid (PFOA).The vast majority (98%) of the study population had increased post-TOP concentrations for at least one PFAA. The formation of PFAA accounted for 12% of the total PFAS burden, with seven PFAA observed post-TOP in at least 30% of study participants. PFHpA, br- PFOA, and PFDA were only detected in post-TOP analyses and showed the highest increase in concentrations. Of the PFAA with increased concentrations, we noted significant associations for year of birth, parity, BMI, and some dietary factors, although they were not consistent between the different PFAA. These results indicate that while the TOP assay might not provide a complete assessment of total PFAS burden in humans, it offers comprehensive assessment of unknown PFAA precursors that might be present in plasma, and it could therefore be implemented as an auxiliary tool in this regard.
Collapse
Affiliation(s)
- Ana Carolina M F Coêlho
- Department of Community Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Lara Cioni
- Department of Community Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway; Norwegian Institute for Air Research, Fram Centre, Tromsø, Norway
| | - Wendy Van Dreunen
- Department of Community Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Vivian Berg
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway; Department of Laboratory Medicine, Division of Diagnostic Services, University Hospital of North-Norway, Tromsø, Norway
| | - Charlotta Rylander
- Department of Community Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Ilona Urbarova
- Department of Community Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Dorte Herzke
- Norwegian Institute for Air Research, Fram Centre, Tromsø, Norway; Department for Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Torkjel M Sandanger
- Department of Community Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway; Norwegian Institute for Air Research, Fram Centre, Tromsø, Norway
| |
Collapse
|
26
|
Shields EP, Wallace MAG. Low temperature destruction of gas-phase per- and polyfluoroalkyl substances using an alumina-based catalyst. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2023; 73:525-532. [PMID: 37158498 PMCID: PMC10468685 DOI: 10.1080/10962247.2023.2210103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/18/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) pose a major health and environmental problem. Methods are needed to ensure that PFAS are not released into the environment during their use or disposal. Alumina-based catalysts have been used for the abatement of small perfluorocarbons, e.g. tetrafluoromethane and perfluoropropane, emitted during the silicon etching process. Here, an alumina-based catalyst was tested to determine if these catalysts may facilitate the destruction of gas-phase PFAS. The catalyst was challenged with two nonionic surfactants with eight fluorinated carbons, 8:2 fluorotelomer alcohol and N-Ethyl-N-(2-hydroxyethyl)perfluorooctylsulfonamide. The catalyst helped decrease the temperatures needed for the destruction of the parent PFAS relative to a thermal-only treatment. Temperatures of 200°C were sufficient to destroy the parent PFAS using the catalyst, although a significant number of fluorinated products of incomplete destruction (PIDs) were observed. The PIDs were no longer observed by about 500°C with catalyst treatment. Alumina-based catalysts are a promising PFAS pollution control technology that could eliminate both perfluorocarbons and longer chain PFAS from gas streams.Implications: The release of per- and polyfluoroalkyl substances (PFAS) into the atmosphere can cause problems for human health and the environment. It is critical to reduce and eliminate PFAS emissions from potential sources, such as manufacturers, destruction technologies, and fluoropolymer processing and application sites. Here, an alumina-based catalyst was used to eliminate the emissions of two gas-phase PFAS with eight fully fluorinated carbons. No PFAS were observed in the emissions when the catalyst was at 500°C, lowering the energy requirements for PFAS destruction. This shows that alumina-based catalysts are a promising area for research for PFAS pollution controls and the elimination of PFAS emissions into the atmosphere.
Collapse
Affiliation(s)
- Erin P. Shields
- US EPA, Office of Research and Development, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, Research Triangle Park, NC
| | - M. Ariel Geer Wallace
- US EPA, Office of Research and Development, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, Research Triangle Park, NC
| |
Collapse
|
27
|
Sapozhnikova Y, Taylor RB, Bedi M, Ng C. Assessing per- and polyfluoroalkyl substances in globally sourced food packaging. CHEMOSPHERE 2023:139381. [PMID: 37392795 DOI: 10.1016/j.chemosphere.2023.139381] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/03/2023]
Abstract
The purpose of this study was to investigate the presence and levels of per- and polyfluoroalkyl substances (PFAS) in food packaging originating from different geographic locations. Food packaging samples were extracted and analyzed by targeted analysis with liquid chromatography-mass spectrometry (LC-MS/MS) before and after a total oxidizable precursor (TOP) assay. Additionally, full-scan high resolution MS (HRMS) was used to screen for PFAS not included in the targeted list. Of the 88 food packaging samples, 84% had detectable levels of at least one PFAS prior to oxidation with a TOP assay, with 6:2 fluorotelomer phosphate diester (6:2 diPAP) found most frequently and at the highest levels (224 ng/g). Other frequently detected substances (in 15-17% of samples) were PFHxS, PFHpA and PFDA. Shorter chain perfluorinated carboxylic acids PFHpA (C7), PFPeA (C5) and PFHxS (C6) were present at levels up to 51.3, 24.1 and 18.2 ng/g, respectively. Average ∑PFAS levels were 28.3 ng/g and 381.9 ng/g before and after oxidation with the TOP assay. The 25 samples with highest frequency of detection and amounts of measured PFAS were selected for migration experiments with food simulants to better understand potential dietary exposure. PFHxS, PFHpA, PFHxA and 6:2 diPAP were measured in the food simulants of five samples at concentrations ranging from 0.04 to 12.2 ng/g and at increasing concentrations over the 10-day migration period. To estimate potential exposure to PFAS that had migrated from food packaging samples, weekly intake was calculated and ranged from 0.0006 ng/kg body weight/week for PFHxA exposure in tomato packaging to 1.1200 ng/kg body weight/week for PFHxS exposure in cake paper. These values were below the established EFSA maximum tolerable weekly intake (TWI) of 4.4 ng/kg body weight/week for the sum of PFOA, PFNA, PFHxS and PFOS.
Collapse
Affiliation(s)
- Yelena Sapozhnikova
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, USA.
| | - Raegyn B Taylor
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, USA
| | - Megha Bedi
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Carla Ng
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
28
|
Zhao L, Cheng Z, Zhu H, Chen H, Yao Y, Baqar M, Yu H, Qiao B, Sun H. Electronic-waste-associated pollution of per- and polyfluoroalkyl substances: Environmental occurrence and human exposure. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131204. [PMID: 36931218 DOI: 10.1016/j.jhazmat.2023.131204] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/11/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Occupational exposure to per- and polyfluoroalkyl substances (PFASs) is of serious concern because their adverse health effects. Nevertheless, knowledge regarding contamination in e-waste dismantling regions is rather scarce. We therefore analysed seven neutral PFASs (n-PFASs) and forty ionized PFASs (i-PFASs) in dust and hand wipes collected from an e-waste dismantling plant and homes. Both dust (1370 ng/g) and workers' hand wipe (1100 ng/m2) in e-waste dismantling workshops contained significantly higher median levels of ∑PFASs than those from homes (684 ng/g and 444 ng/m2) (p < 0.01). ∑PFAS concentrations in dust and on workers' hand wipes from workshops were significantly higher than those from storage area. 8:2 fluorotelomer alcohol was the dominant n-PFAS in workshop dust (70.7%) and on worker's hand wipes (46.6%). Perfluoroalkyl carboxylic acids (C2 -C3) were the significant components (based on concentration) of i-PFASs in dust (57.9%) and on hand wipes (89.6%). A significant positive correlation (p < 0.001) of ∑PFAS concentrations between workshop dust and workers' hand wipes was observed, indicating that they come from common sources. Compared to dust ingestion, hand-to-mouth contact was highlighted as a vital exposure route, accounting for 68.8% for workers and 72.2% for residential population, respectively, of the sum of two exposure doses.
Collapse
Affiliation(s)
- Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Biting Qiao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
29
|
Carignan CC, Bauer RA, Patterson A, Phomsopha T, Redman E, Stapleton HM, Higgins CP. Self-Collection Blood Test for PFASs: Comparing Volumetric Microsamplers with a Traditional Serum Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7950-7957. [PMID: 37189231 DOI: 10.1021/acs.est.2c09852] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A remote sampling approach was developed at Eurofins for quantifying per- and polyfluoroalkyl substances (PFASs) in whole blood samples collected using volumetric absorptive microsamplers (VAMSs), which allow for self-collection of blood using a finger prick. This study compares PFAS exposure measured by self-collection of blood using VAMSs to the standard venous serum approach. Blood samples were collected from participants (n = 53) in a community with prior PFAS drinking water contamination using a venous blood draw as well as participant self-collection using VAMSs. Whole blood from the venous tubes was also loaded onto VAMSs to compare differences in capillary vs venous whole blood PFAS levels. Samples were quantified for PFASs using liquid chromatography tandem mass spectrometry and online solid-phase extraction. PFAS levels in serum were highly correlated with measurements in capillary VAMSs (r ≥ 0.91 and p < 0.05). Serum PFAS levels were generally twofold higher than whole blood, reflecting expected differences in their composition. Of interest, FOSA was detected in whole blood (both venous and capillary VAMSs) but not in serum. Overall, these findings indicate that VAMSs are useful self-collection tools for assessing elevated human exposure to PFASs.
Collapse
Affiliation(s)
- Courtney C Carignan
- Department Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48864, United States
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48864, United States
| | - Rachel A Bauer
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48864, United States
| | - Andrew Patterson
- Eurofins Environment Testing America, West Sacramento, California 95605, United States
| | - Thep Phomsopha
- Eurofins Environment Testing America, West Sacramento, California 95605, United States
| | - Eric Redman
- Eurofins Environment Testing America, West Sacramento, California 95605, United States
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Christopher P Higgins
- Department of Civil & Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
30
|
Liu S, Liu Z, Tan W, Johnson AC, Sweetman AJ, Sun X, Liu Y, Chen C, Guo H, Liu H, Wan X, Zhang L. Transport and transformation of perfluoroalkyl acids, isomer profiles, novel alternatives and unknown precursors from factories to dinner plates in China: New insights into crop bioaccumulation prediction and risk assessment. ENVIRONMENT INTERNATIONAL 2023; 172:107795. [PMID: 36764184 DOI: 10.1016/j.envint.2023.107795] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are contaminants of global concern, and the inadvertent consumption of PFAA-contaminated crops may pose a threat to public health. Therefore, systematically studying their source tracing, bioaccumulation prediction and risk assessments in crops is an urgent priority. This study investigated the source apportionment and transport of PFAAs and novel fluorinated alternatives (collectively as per- and polyfluoroalkyl substances, PFASs) from factories to agricultural fields in a fluorochemical industrial region of China. Furthermore, bioaccumulation specificities and prediction of these chemicals in different vegetables were explored, followed by a comprehensive risk assessment from agricultural fields to dinner plates which considered precursor degradation. A positive matrix factorization model revealed that approximately 70 % of PFASs in agricultural soils were derived from fluorochemical manufacturing and metal processing. Alarming levels of ∑PFASs ranged 8.28-84.3 ng/g in soils and 163-7176 ng/g in vegetables. PFAS with short carbon chain or carboxylic acid group as well as branched isomers exhibited higher environmental transport potentials and bioaccumulation factors (BAFs) across a range of vegetables. The BAFs of different isomers of perfluorooctanoic acid (PFOA) decreased as the perfluoromethyl group moved further from the acid functional group. Hexafluoropropylene oxide dimer acid (GenX) showed relatively low BAFs, probably related to its ether bond with a high affinity to soil. Vegetables with fewer Casparian strips (e.g., carrot and radish), or more protein, possessed larger BAFs of PFASs. A bioaccumulation equation integrating critical parameters of PFASs, vegetables and soils, was built and corroborated with a good contamination prediction. After a total oxidizable precursors (TOP) assay, incremental perfluoroalkyl carboxylic acids (PFCAs) were massively found (325-5940 ng/g) in edible vegetable parts. Besides, precursor degradation and volatilization loss of PFASs was firstly confirmed during vegetable cooking. A risk assessment based on the TOP assay was developed to assist the protection of vegetable consumers.
Collapse
Affiliation(s)
- Shun Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoyang Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Andrew C Johnson
- UK Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford Wallingford, Oxon, OX 10 8BB, UK
| | - Andrew J Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Xiaoyan Sun
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Yu Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Chang Chen
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Guo
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanyu Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Wan
- Hubei Geological Survey, Wuhan 430034, China
| | - Limei Zhang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
31
|
Balgooyen S, Remucal CK. Impacts of Environmental and Engineered Processes on the PFAS Fingerprint of Fluorotelomer-Based AFFF. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:244-254. [PMID: 36573898 DOI: 10.1021/acs.est.2c06600] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Forensic analysis can potentially be used to determine per- and polyfluoroalkyl substance (PFAS) sources at contaminated sites. However, fluorotelomer aqueous film-forming foam (AFFF) sources are difficult to identify because the polyfluorinated active ingredients do not have authentic standards and because the parent compounds can undergo transformation and differential transport, resulting in alteration of the PFAS distribution or fingerprint. In this study, we investigate changes in the PFAS fingerprint of fluorotelomer-derived AFFF due to environmental and engineered processes, including groundwater transport, surface water flow, and land application of contaminated biosolids. Fingerprint analysis supplemented by quantification of precursors and identification of suspected active ingredients shows a clear correlation between a fluorotelomer AFFF manufacturer and surface water of nearby Lake Michigan, demonstrating contamination (>100 ng/L PFOA) of the lake due to migration of an AFFF-impacted groundwater plume. In contrast, extensive processing during wastewater treatment and environmental transport results in large changes to the AFFF fingerprint near agricultural fields where contaminated biosolids were spread. At biosolids-impacted sites, the presence of active ingredients confirms contamination by fluorotelomer AFFF. While sediments can retain longer-chain PFAS, this study demonstrates that aqueous samples are most relevant for PFAS fingerprinting in complex sites, particularly where shorter-chain compounds have been used.
Collapse
Affiliation(s)
- Sarah Balgooyen
- Department of Civil and Environmental Engineering, University of Wisconsin - Madison, 660 N. Park Street, Madison, Wisconsin 53706, United States
| | - Christina K Remucal
- Department of Civil and Environmental Engineering, University of Wisconsin - Madison, 660 N. Park Street, Madison, Wisconsin 53706, United States
- Environmental Chemistry and Technology Program, University of Wisconsin - Madison, 660 N. Park Street, Madison, Wisconsin 53706, United States
| |
Collapse
|
32
|
Cooperative hydrogen- and halogen-bonding interaction promoted deep eutectic solvent-functionalized magnetic metal-organic framework for perfluoroalkyl iodides detection in edible oils. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
33
|
Conley JM, Lambright CS, Evans N, Medlock-Kakaley E, Dixon A, Hill D, McCord J, Strynar MJ, Ford J, Gray LE. Cumulative maternal and neonatal effects of combined exposure to a mixture of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) during pregnancy in the Sprague-Dawley rat. ENVIRONMENT INTERNATIONAL 2022; 170:107631. [PMID: 36402036 PMCID: PMC9944680 DOI: 10.1016/j.envint.2022.107631] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/29/2022] [Accepted: 11/10/2022] [Indexed: 05/10/2023]
Abstract
Globally, biomonitoring data demonstrate virtually all humans carry residues of multiple per- and polyfluoroalkyl substances (PFAS). Despite pervasive co-exposure, limited mixtures-based in vivo PFAS toxicity research has been conducted. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are commonly detected PFAS in human and environmental samples and both produce adverse effects in laboratory animal studies, including maternal and offspring effects when orally administered during pregnancy and lactation. To evaluate the effects of combined exposure to PFOA and PFOS, we orally exposed pregnant Sprague-Dawley rats from gestation day 8 (GD8) to postnatal day 2 (PND2) to PFOA (10-250 mg/kg/d) or PFOS (0.1-5 mg/kg/d) individually to characterize effects and dose response curve parameters, followed by a variable-ratio mixture experiment with a constant dose of PFOS (2 mg/kg/d) mixed with increasing doses of PFOA (3-80 mg/kg/d). The mixture study design was intended to: 1) shift the PFOA dose response curves for endpoints shared with PFOS, 2) allow comparison of dose addition (DA) and response addition (RA) model predictions, 3) conduct relative potency factor (RPF) analysis for multiple endpoints, and 4) avoid overt maternal toxicity. Maternal serum and liver concentrations of PFOA and PFOS were consistent between the individual chemical and mixture experiments. Combined exposure with PFOS significantly shifted the PFOA dose response curves towards effects at lower doses compared to PFOA-only exposure for multiple endpoints and these effects were well predicted by dose addition. For endpoints amenable to mixture model analyses, DA produced equivalent or better estimates of observed data than RA. All endpoints evaluated were accurately predicted by RPF and DA approaches except for maternal gestational weight gain, which produced less-than-additive results in the mixture. Data support the hypothesis of cumulative effects on shared endpoints from PFOA and PFOS co-exposure and dose additive approaches for predictive estimates of mixture effects.
Collapse
Affiliation(s)
- Justin M Conley
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Christy S Lambright
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Nicola Evans
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Elizabeth Medlock-Kakaley
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Aaron Dixon
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Donna Hill
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - James McCord
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Environmental Measurement and Modeling, Research Triangle Park, NC, USA.
| | - Mark J Strynar
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Environmental Measurement and Modeling, Research Triangle Park, NC, USA.
| | - Jermaine Ford
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA.
| | - L Earl Gray
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| |
Collapse
|
34
|
Theoretical and experimental study of new deep eutectic solvents for extraction of perfluorinated iodoalkanes. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
35
|
Hammer J, Endo S. Volatility and Nonspecific van der Waals Interaction Properties of Per- and Polyfluoroalkyl Substances (PFAS): Evaluation Using Hexadecane/Air Partition Coefficients. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15737-15745. [PMID: 36240042 PMCID: PMC9671037 DOI: 10.1021/acs.est.2c05804] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 05/28/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) form weak van der Waals (vdW) interactions, which render this class of chemicals more volatile than nonfluorinated analogues. Here, the hexadecane/air partition coefficient (KHxd/air) values at 25 °C, as an index of vdW interaction strength and volatility, were determined for 64 neutral PFAS using the variable phase ratio headspace and gas chromatographic retention methods. Log KHxd/air values increased linearly with increasing number of CF2 units, and the increase in log KHxd/air value per CF2 was smaller than that per CH2. Comparison of PFAS sharing the same perfluoroalkyl chain length but with different functional groups demonstrated that KHxd/air was highest for the N-alkyl perfluoroalkanesulfonamidethanols and lowest for the perfluoroalkanes and that the size of the nonfluorinated structure determines the difference in KHxd/air between PFAS groups. Two models, the quantum chemistry-based COSMOtherm model and an iterative fragment selection quantitative structure-property relationship (IFS-QSPR) model, accurately predicted the log KHxd/air values of the PFAS with root-mean-square errors of 0.55 and 0.35, respectively. COSMOtherm showed minor systematic errors for all PFAS, whereas IFS-QSPR exhibited large errors for a few PFAS groups that were outside the model applicability domain. The present data set will be useful as a benchmark of the volatilities of the various PFAS and for predicting other partition coefficient values of PFAS.
Collapse
Affiliation(s)
- Jort Hammer
- Health and Environmental
Risk Division, National Institute for Environmental
Studies (NIES), Onogawa 16-2, 305-8506Tsukuba, Ibaraki, Japan
| | - Satoshi Endo
- Health and Environmental
Risk Division, National Institute for Environmental
Studies (NIES), Onogawa 16-2, 305-8506Tsukuba, Ibaraki, Japan
| |
Collapse
|
36
|
Londhe K, Lee CS, McDonough CA, Venkatesan AK. The Need for Testing Isomer Profiles of Perfluoroalkyl Substances to Evaluate Treatment Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15207-15219. [PMID: 36314557 PMCID: PMC9670843 DOI: 10.1021/acs.est.2c05518] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Many environmentally relevant poly-/perfluoroalkyl substances (PFASs) including perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) exist in different isomeric (branched and linear) forms in the natural environment. The isomeric distribution of PFASs in the environment and source waters is largely controlled by the source of contamination and varying physicochemical properties imparted by their structural differences. For example, branched isomers of PFOS are relatively more reactive and less sorptive compared to the linear analogue. As a result, the removal of branched and linear PFASs during water treatment can vary, and thus the isomeric distribution in source waters can influence the overall efficiency of the treatment process. In this paper, we highlight the need to consider the isomeric distribution of PFASs in contaminated matrices while designing appropriate remediation strategies. We additionally summarize the known occurrence and variation in the physicochemical properties of PFAS isomers influencing their detection, fate, toxicokinetics, and treatment efficiency.
Collapse
Affiliation(s)
- Kaushik Londhe
- Department
of Civil Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- New
York State Center for Clean Water Technology, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Cheng-Shiuan Lee
- New
York State Center for Clean Water Technology, Stony Brook University, Stony
Brook, New York 11794, United States
- Research
Center for Environmental Changes, Academia
Sinica, Taipei 115, Taiwan
| | - Carrie A. McDonough
- Department
of Civil Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Arjun K. Venkatesan
- Department
of Civil Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- New
York State Center for Clean Water Technology, Stony Brook University, Stony
Brook, New York 11794, United States
- School
of Marine and Atmospheric Sciences, Stony
Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
37
|
Zweigle J, Bugsel B, Capitain C, Zwiener C. PhotoTOP: PFAS Precursor Characterization by UV/TiO 2 Photocatalysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15728-15736. [PMID: 36305720 DOI: 10.1021/acs.est.2c05652] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
To unravel the complexity of per- and polyfluoroalkyl substances (PFAS) in products and environmental samples, sum parameters that provide relevant information on chemical characteristics are necessary since not all PFAS can be captured by target analysis in case of missing reference standards or if they are not extractable or amenable to the analytical method. Therefore, we evaluated photocatalysis (UV/TiO2) as a further total oxidizable precursor approach (PhotoTOP) to characterize perfluoroalkyl acid precursors via their conversion to perfluoroalkyl carboxylic acids (PFCAs). Photocatalysis has the advantage that no salts are needed, allowing direct injection with liquid chromatography-mass spectrometry without time-consuming and potentially discriminating sample cleanup. OH radicals were monitored with OH probes to determine the reactivity. For eight different precursors (diPAPs, FTSAs, FTCAs, N-EtFOSAA, PFOSA), mass balance was achieved within 4 h of oxidation, and also, in the presence of matrix, complete conversion was possible. The PhotoTOP was able to predict the precursor chain length of known and here newly identified precursors qualitatively when applied to two PFAS-coated paper samples and technical PFAS mixtures. The length of the perfluorinated carbon chain (n) was mostly conserved in the form of PFCAs (n-1) with only minor fractions of shorter-chain PFCAs. Finally, an unknown fabric sample and a polymer mixture (no PFAS detectable in extracts) were oxidized, and the generated PFCAs indicated the occurrence of side-chain fluorinated polymers.
Collapse
Affiliation(s)
- Jonathan Zweigle
- Environmental Analytical Chemistry, Center for Applied Geoscience, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - Boris Bugsel
- Environmental Analytical Chemistry, Center for Applied Geoscience, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - Catharina Capitain
- Environmental Analytical Chemistry, Center for Applied Geoscience, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - Christian Zwiener
- Environmental Analytical Chemistry, Center for Applied Geoscience, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| |
Collapse
|