1
|
Xia X, Zhang X, Liu P, Zhang Y, Hou T, Zhang R, He J, Fang G, Yang J, Wu X. Effect of straw decomposition on hexavalent chromium removal by straw: Significant roles of surface potential and dissolved organic matter. J Colloid Interface Sci 2025; 678:946-954. [PMID: 39270394 DOI: 10.1016/j.jcis.2024.09.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Mobility and bioavailability of hexavalent chromium (Cr(VI)) in agricultural soils are affected by interactions between Cr(VI) and returned crop straws. However, the effect of straw decomposition on Cr(VI) removal and underlying mechanisms remain unclear. In this study, Cr(VI) removal by pristine and decomposed rice/rape straws was investigated by batch experiments and a series of spectroscopies. The results showed that straw decomposition inhibited Cr(VI) removal, regardless of straw types. However, the potential mechanisms of the inhibition were distinct for the two straws. For the rice straw, a lower zeta potential after decomposition suppressed Cr(VI) sorption and subsequent reduction. In addition, less Cr(VI) was reduced by the decomposed rice straw-derived dissolved organic matter (DOM) than the pristine one. In contrast, for the rape straw, due to the increased zeta potential after decomposition, the decreased Cr(VI) removal was mainly ascribed to less Cr(VI) reduction by the rape straw-derived DOM. These results emphasized the significant roles of straw surface potential and DOM in Cr(VI) removal, depending on straw types and decomposition, which facilitate the fundamental understanding of Cr(VI) removal by straws and are helpful for predicting the environmental risk of Cr and rational straw return in Cr(VI)-contaminated fields.
Collapse
Affiliation(s)
- Xing Xia
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xingbin Zhang
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Peng Liu
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yongyi Zhang
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Tingting Hou
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Ranran Zhang
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Jiehong He
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jianjun Yang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences), Beijing, 100081, China.
| | - Xiangwei Wu
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
Guo D, Sheng Y, Baars O, Duckworth OW, Chen P, Zhu Z, Zhang X, Chukwuma E, Gooden DM, Verbrugge J, Dong H. Contrasting Effects of Catecholate and Hydroxamate Siderophores on Molybdenite Dissolution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:533-544. [PMID: 39680096 DOI: 10.1021/acs.est.4c11212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Molybdenum (Mo) is essential for many enzymes but is often sequestered within minerals, rendering it not readily bioavailable. Metallophores, metabolites secreted by microorganisms and plants, promote mineral dissolution to increase the metal bioavailability. However, interactions between metallophores and Mo-bearing minerals remain unclear. In this study, catecholate protochelin and hydroxamate desferrioxamine B (DFOB) were utilized to examine their effects on dissolution of the common Mo-bearing mineral, molybdenite (MoS2), under both oxic and anoxic conditions. Protochelin promoted molybdenite dissolution under oxic conditions, with the formation of MoO3 on the surface and Mo-siderophore complexes in solution. This was attributed to air-oxidation of both molybdenite and protochelin, as evidenced by lack of dissolution under anoxic conditions but enhanced dissolution by either preoxidized protochelin or preoxidized molybdenite. Liquid chromatography-mass spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry analyses revealed degradation of protochelin and adsorptions of its byproducts on molybdenite surface to promote dissolution. Conversely, DFOB inhibited molybdenite dissolution under both oxic and anoxic conditions, likely attributed to surface adsorption of DFOB and its weak complexation with Mo(VI) at the circumneutral pH. This work highlights the need to consider the balance between promoting and inhibitory effects of different metallophores on Mo-mineral dissolution.
Collapse
Affiliation(s)
- Dongyi Guo
- Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio 45056, United States
| | - Yizhi Sheng
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Oliver Baars
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Owen W Duckworth
- Department of Soil and Environmental Biogeochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ping Chen
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Zihua Zhu
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Xiaowen Zhang
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Emmanuel Chukwuma
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - David M Gooden
- Duke Small Molecule Synthesis Facility, Durham, North Carolina 27708, United States
| | - Jack Verbrugge
- Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio 45056, United States
| | - Hailiang Dong
- Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
3
|
Wang S, Chen Y, Pan Z, Liu J, Ding Y, Wang Y, Liu D, Wu S, Hu D, Li R, Xia Q, Zhang L, Dong H. Effects of EDTA and Bicarbonate on U(VI) Reduction by Reduced Nontronite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:23031-23041. [PMID: 39692578 DOI: 10.1021/acs.est.4c09492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Widespread Fe-bearing clay minerals are potential materials capable of reducing and immobilizing U(VI). However, the kinetics of this process and the impact of environmental factors remain unclear. Herein, we investigated U(VI) reduction by chemically reduced nontronite (rNAu-2) in the presence of EDTA and bicarbonate. U(VI) was completely reduced within 192 h by rNAu-2 alone, and higher Fe(II) in rNAu-2 resulted in a higher U(VI) reduction rate. However, the presence of EDTA and NaHCO3 initially inhibited U(VI) reduction by forming stable U(VI)-EDTA/carbonato complexes and thus preventing U(VI) from adsorbing onto the rNAu-2 surface. However, over time, EDTA facilitated the dissolution of rNAu-2, releasing Fe(II) into solution. Released Fe(II) competed with U(VI) to form Fe(II)-EDTA complexes, thus freeing U(VI) from negatively charged U(VI)-EDTA complexes to form positively charged U(VI)-OH complexes, which ultimately promoted U(VI) adsorption and triggered its reduction. In the NaHCO3 system, U(VI) complexed with carbonate to form U(VI)-carbonato complexes, which partially inhibited adsorption to the rNAu-2 surface and subsequent reduction. The reduced U(IV) largely formed uraninite nanoparticles, with a fraction present in the rNAu-2 interlayer. Our results demonstrate the important impacts of clay minerals, organic matter, and bicarbonate on U(VI) reduction, providing crucial insights into the uranium biogeochemistry in the subsurface environment and remediation strategies for uranium-contaminated environments.
Collapse
Affiliation(s)
- Shuaidi Wang
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Yu Chen
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zezhen Pan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Juan Liu
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuefei Ding
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuheng Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Dong Liu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Songlin Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dafu Hu
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Runjie Li
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Qingyin Xia
- Beijing Research Institute of Chemical Engineering and Metallurgy, CNNC, Beijing 101149, China
| | - Limin Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
4
|
Wu F, Sun J, Meng F, Zhou J, Qi M, Lu X, Liu C. Cysteine-Facilitated Cr(VI) reduction by Fe(II/III)-bearing phyllosilicates: Enhancement from In-Situ Fe(II) generation. WATER RESEARCH 2024; 267:122548. [PMID: 39357156 DOI: 10.1016/j.watres.2024.122548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/17/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Structural Fe in phyllosilicates represents a crucial and potentially renewable reservoir of electron equivalents for contaminants reduction in aquatic and soil systems. However, it remains unclear how in-situ modification of Fe redox states within Fe-bearing phyllosilicates, induced by electron shuttles such as naturally occurring organics, influences the fate of contaminants. Herein, this study investigated the processes and mechanism of Cr(VI) reduction on two typical Fe(II/III)-bearing phyllosilicates, biotite and chlorite, in the presence of cysteine (Cys) at circumneutral pH. The experimental results demonstrated that Cys markedly enhanced the rate and extent of Cr(VI) reduction by biotite/chlorite, likely because of the formation of Cr(V)-organic complexes and consequent electron transfer from Cys to Cr(V). The concomitant production of non-structural Fe(II) (including aqueous Fe(II), surface bound Fe(II), and Cys-Fe(II) complex) cascaded transferring electrons from Cys to surface Fe(III), which further contributed to Cr(VI) reduction. Notably, structural Fe(II) in phyllosilicates also facilitated Cr(VI) reduction by mediating electron transfer from Cys to structural Fe(III) and then to edge-sorbed Cr(VI). 57Fe Mössbauer analysis revealed that cis-coordinated Fe(II) in biotite and chlorite exhibits higher reductivity compared to trans-coordinated Fe(II). The Cr end-products were insoluble Cr(III)-organic complex and sub-nanometer Cr2O3/Cr(OH)3, associated with residual minerals as micro-aggregates. These findings highlight the significance of in-situ produced Fe(II) from Fe(II/III)-bearing phyllosilicates in the cycling of redox-sensitive contaminants in the environment.
Collapse
Affiliation(s)
- Fei Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jing Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Fangyuan Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jimei Zhou
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Meng Qi
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xiaoli Lu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510650, China.
| |
Collapse
|
5
|
Liu M, Li H, Fu Q, Li T, Hou R, Xue P, Yang X, Li M, Liu D. Critical role of soil-applied molybdenum dioxide composite biochar material in enhancing Cr(VI) remediation process: The driver of Fe(III)/Fe(II) redox cycle. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123246. [PMID: 39541815 DOI: 10.1016/j.jenvman.2024.123246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Heavy metal contamination of agricultural land due to sewage irrigation, over-application of fertilizers and pesticides, and industrial activities. Biochar, due to its rich functional groups and excellent electrochemical performance, is used for the remediation of heavy metal-contaminated farmland. However, the remediation mechanism remains uncertain due to the influence of minerals and multi-element composite pollution on soil. Therefore, introducing transition metal oxide MoO2 to prepare biochar composite remediation materials enhances the adsorption and reduction of soil Cr (Ⅵ). This study compared the differences in Cr (Ⅵ) improvement under different pollution systems and pH conditions and explored the potential mechanism of Fe (Ⅲ)/Fe (Ⅱ) redox cycling in Cr (Ⅵ) remediation. The results showed that both biochar MoO2 ball-milling composite (BC + M) and biochar-loaded MoO2 (BC/M) retained the original biochar (BC) remediation method for Cr (Ⅵ). Among them, the remediation of BC/M was the most stable, with the maximum remediation value ranging from approximately 6.52 to 58.58 mg/kg. In different pollution systems, Cd and Pb exhibited competitive adsorption toward Cr (Ⅵ), but they enhanced Cr (Ⅵ) remediation by promoting adsorption and self-complexation. In acidic conditions (pH = 4), BC/M showed the best remediation effect, with a reduction kinetic constant of 34.61 × 10-3 S-1 and a maximum adsorption capacity of 61.64 mg/g. Fe (Ⅲ)/Fe (Ⅱ) redox cycling accelerated the reduction of Cr (Ⅵ) (R2 = 0.81), and MoO2 promoted the Fe (Ⅲ)/Fe (Ⅱ) redox cycle. BC/M enhanced the Fe (Ⅱ) formation efficiency by 66.39% and 71.81% compared to BC + M and BC at pH = 4. The introduction of MoO2 and biochar composite materials enhanced the reduction process of Cr (Ⅵ), with BC/M achieving the optimal remediation level. This study reveals the potential mechanisms of MoO2 and biochar composite materials in soil Cr (Ⅵ) remediation, providing a reference and insight for the preparation of Cr (Ⅵ) remediation materials and the treatment of contaminated farmland.
Collapse
Affiliation(s)
- Mingxuan Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Heng Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Tianxiao Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Ping Xue
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Xuechen Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Mo Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Dong Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| |
Collapse
|
6
|
Wang S, Wu C, Peng W, Huang D, Liao W, Cui HJ. Phytic acid inhibits Cr(VI) reduction on Fe(II)-bearing clay minerals: Changing reduction sites and electron transfer pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124701. [PMID: 39127337 DOI: 10.1016/j.envpol.2024.124701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/24/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
The presence of organic phosphorus may influence the characteristics of Cr(VI) reduction and immobilization on Fe(II)-bearing clay minerals under anoxic conditions, as the organic phosphorus tends to bind strongly to clay minerals in soil. Herein, reduced nontronite (rNAu-2) was used to reduction of Cr(VI) in the presence of phytic acid (IHP) at neutral pH. With IHP concentration from 0 to 500 μM, Cr(VI) reduction decreased obviously (17.8%) within first 5 min, and then preferred to stagnate during 4-12 h (≥50 μM). After that, Cr(VI) was reduced continuously at a slightly faster rate. Density functional theory (DFT) calculations revealed that IHP primarily absorbed at the edge sites of rNAu-2 to form Fe-IHP complexes. X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), and Fourier transform infrared spectroscopy (FTIR) results demonstrated that IHP hindered the ingress of CrO42- into the interlayer space of rNAu-2 and impeded their reduction by trioctahedral Fe(II) and Al-Fe(II) at basal plane sites in the initial stage. Additionally, Fe(II) extraction results showed that IHP promoted the electron from interior transfer to near-edge, but hindered it further transfer to surface, resulting in the inhibition on Cr(VI) reduction at edge sites during the later stage. Consequently, IHP inhibits the reduction and immobilization of Cr(VI) by rNAu-2. Our study offers novel insights into electron transfer pathways during the Cr(VI) reduction by rNAu-2 with coexisting IHP, thereby improve the understanding of the geochemical processes of chromium within the iron cycle in soil.
Collapse
Affiliation(s)
- Shuai Wang
- Yuelushan Laboratory, College of Resources, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Cong Wu
- Yuelushan Laboratory, College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Peng
- Yuelushan Laboratory, College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Daoyou Huang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Wenjuan Liao
- Yuelushan Laboratory, College of Resources, Hunan Agricultural University, Changsha, 410128, China.
| | - Hao-Jie Cui
- Yuelushan Laboratory, College of Resources, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
7
|
Yi S, Hang S, Li F, Zhu L, Li F, Zhong S, Wu C, Ge F, Ji X, Tian J, Wu Y. Hydroxamate Siderophores Intensify the Co-Deposition of Cadmium and Silicon as Phytolith-Like Particulates in Rice Stem Nodes: A Natural Strategy to Mitigate Grain Cadmium Accumulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23747-23757. [PMID: 39377800 DOI: 10.1021/acs.jafc.4c07183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Sequestration of cadmium (Cd) in rice phytolith can effectively restrict its migration to the grains, but how hydroxamate siderophore (HDS) affects phytolith formation within rice plants especially the fate of Cd and silicon (Si) remains poorly understood. Here, we found that the addition of HDS increased the content of dissolved Si and Cd in soil pore water as well as its absorption by the rice roots during the reproductive growth stage. HDS effectively trapped orthosilicic acid and Cd ions at the third stem nodes of rice plants via hydrogen bonds and chelation interactions, which then rapidly deposited on the xylem cell wall through hydrophobic interactions. Ultimately, Cd was immobilized as phytolith-like particulates in the form of CdSiO3. Field experiments verified that Cd accumulation was significantly reduced by 46.4% in rice grains but increased by 41.2% in rice stems after HDS addition. Overall, this study advances our understanding of microbial metabolites enhancing the instinctive physiological barriers within rice plants.
Collapse
Affiliation(s)
- Shengwei Yi
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China
- Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Sicheng Hang
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China
- Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Feng Li
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China
- Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fangbai Li
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Songxiong Zhong
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chen Wu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China
- Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Fei Ge
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China
- Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Xionghui Ji
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiang Tian
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China
- Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Yujun Wu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China
- Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
8
|
Wang W, Chen C, Huang X, Jiang S, Xiong J, Li J, Hong M, Zhang J, Guan Y, Feng X, Tan W, Liu F, Ding LJ, Yin H. Chromium(VI) Adsorption and Reduction in Soils under Anoxic Conditions: The Relative Roles of Iron (oxyhr)oxides, Iron(II), Organic Matters, and Microbes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18391-18403. [PMID: 39360895 DOI: 10.1021/acs.est.4c08677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Chromium (Cr) transformation in soils mediated by iron (Fe) (oxyhr)oxides, Fe(II), organic matter (OM), and microbes is largely unexplored. Here, their coupling processes and mechanisms were investigated during anoxic incubation experiments of four Cr(VI) spiked soil samples with distinct physicochemical properties from the tropical and subtropical regions of China. It demonstrates that easily oxidizable organic carbon (EOC, 55-84%) and microbes (16-48%) drive Cr(VI) reduction in soils enriched with goethite and/or hematite, among which in dryland soils microbial sulfate reduction may also be involved. In contrast, EOC (38 ± 1%), microbes (33 ± 1%), and exchangeable and poorly crystalline Fe (oxyhr)oxide-associated Fe(II) (29 ± 3%) contribute to Cr(VI) reduction in paddy soils enriched with ferrihydrite. Additionally, exogenous Fe(II) and microbes significantly enhance Cr(VI) reduction in ferrihydrite- and goethite-rich soils, and Fe(II) greatly promotes but microbes slightly inhibit Cr passivation. Both Fe(II) and microbes, especially the latter, promote OM mineralization and result in the most substantial OM loss in ferrihydrite-rich paddy soils. During the incubation, part of the ferrihydrite converts to goethite but microbes may hinder the transformation. These results provide deep insights into the geochemical fates of redox-sensitive heavy metals mediated by the complicated effects of Fe, OM, and microbes in natural and engineered environments.
Collapse
Affiliation(s)
- Wentao Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecology and Environment, Wuhan 430070, China
| | - Chunmei Chen
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xiaopeng Huang
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Shuqi Jiang
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430070, China
| | - Juan Xiong
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecology and Environment, Wuhan 430070, China
| | - Jiangshan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Mei Hong
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, China
| | - Yong Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Xionghan Feng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecology and Environment, Wuhan 430070, China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecology and Environment, Wuhan 430070, China
| | - Fan Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecology and Environment, Wuhan 430070, China
| | - Long-Jun Ding
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Hui Yin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecology and Environment, Wuhan 430070, China
| |
Collapse
|
9
|
Li B, Zhang Y. Dual role of pyrogenic carbon in mediating electron transfer from clay minerals to chromium in aqueous and solid media. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134290. [PMID: 38615645 DOI: 10.1016/j.jhazmat.2024.134290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Clay minerals (CMs) and pyrogenic carbons (PCs) often co-exist in the environment and participate in the redox cycling of pollutants. This study unveiled the dual role of PCs in CM-dominated chromium transformation in both aqueous and agar solidification media. The findings showed that CMs and PCs adsorbed minimal Cr(VI), while reduced CMs and PCs displayed a substantial difference by directly reducing Cr(VI) to solid/dissolved Cr(III) through reactive structural Fe(II) and functional groups, respectively. Moreover, dissolved PCs were found to mediate electron transfer from reduced CMs to Cr(VI) in aqueous and solid media. Interestingly, the effect of solid PCs on Cr(VI) reduction by reduced CMs was concentration-dependent. At lower concentrations, solid PCs dispersed reduced CMs, acting as electron mediators and facilitating both direct and indirect Cr(VI) reduction, resulting in solid Cr(III) rather than dissolved Cr(III). Conversely, at higher concentrations, solid PCs served as redox buffers, storing electrons transferred from reduced CMs to Cr(VI). In either case, the transformed chromium was primarily immobilized on the surface of CMs rather than PCs. These findings offer valuable insights into pollutant transformations associated with CMs and PCs, deepening our understanding of their geochemical processes.
Collapse
Affiliation(s)
- Biao Li
- Department of Environmental and Resource Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| |
Collapse
|
10
|
Cui T, Yan S, Ding Y, Lin S, Chen Q, Hou Y, Ding L, Wang H, Xu R. Chromium immobilization from wastewater via iron-modified hydrochar: Different iron fabricants and practicality assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116132. [PMID: 38471342 DOI: 10.1016/j.ecoenv.2024.116132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/06/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024]
Abstract
The recycling of industrial solid by-products such as red mud (RM) has become an urgent priority, due to their large quantities and lack of reutilization methods can lead to resource wastage. In this work, RM was employed to fabricate green hydrochar (HC) to prepare zero-valent iron (ZVI) modified carbonous materials, and conventional iron salts (IS, FeCl3) was applied as comparison, fabricated HC labeled as RM/HC and IS/HC, respectively. The physicochemical properties of these HC were comprehensively characterized. Further, hexavalent chromium (Cr(VI)) removal performance was assessed (375.66 and 337.19 mg/g for RM/HC and IS/HC, respectively). The influence of dosage and initial pH were evaluated, while isotherms, kinetics, and thermodynamics analysis were also conducted, to mimic the surface interactions. The stability and recyclability of adsorbents also verified, while the practical feasibility was assessed by bok choy-planting experiment. This work revealed that RM can be used as a high value and green fabricant for HC the effective removal of chromium contaminants from the wastewater.
Collapse
Affiliation(s)
- Ting Cui
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| | - Song Yan
- Agency on Rural Energy Management of Yunnan Province, Kunming 650500, China
| | - Yu Ding
- Rural Energy Workstation of Baoshan City, Baoshan 678000, China
| | - Shaopeng Lin
- Rural Energy Workstation of Baoshan City, Baoshan 678000, China
| | - Qiuliang Chen
- Rural Energy Workstation of Honghe City, Honghe 661000, China
| | - Ying Hou
- Agricultural Environmental Protection and Rural Energy Workstation of Luoping, Qvjing 655800, China
| | - Lin Ding
- National-Local Joint Engineering Research Center for Heavy Metal Pollutant Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Huabin Wang
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China; Agency on Rural Energy Management of Yunnan Province, Kunming 650500, China.
| | - Rui Xu
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China; Agency on Rural Energy Management of Yunnan Province, Kunming 650500, China.
| |
Collapse
|
11
|
Zhang W, Li X, Zhao Y, Sun Z, Yao M, Zhou X, Li F, Ma F, Gu Q. Structural and mineralogical variation upon reoxidation of reduced Fe-bearing clay minerals during thermal activation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166243. [PMID: 37595928 DOI: 10.1016/j.scitotenv.2023.166243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/03/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
The hydroxyl radicals (OH) produced from Fe(II) oxidation upon reoxidation of reduced Fe-bearing clay minerals (RFC) have received increased attention and thermal activation was used to enhance Fe(II) oxidation to improve OH production. However, changes in mineral morphology and structure during thermally-activated RFC reoxidation are not yet clear. Herein, the Fe(II) oxidation extent was measured by chemical analysis during the reoxidation of model RFC (reduced nontronite (rNAu-2) at elevated temperatures. Mineralogical variation of rNAu-2 particles was observed by scanning electron microscopy (SEM), Mössbauer spectra, and X-ray photoelectron spectroscopy (XPS). The structural Fe(II) oxidation in rNAu-2 was accelerated with increasing temperature, accompanied by the transformation of structural entities and the dissolution of Fe and Si, while the overall structure of rNAu-2 minerals was relatively intact. The surface microstructure of particles showed the dissolved holes, net-shape flocs, and even large pore channels after Fe(II) oxidation by thermal activation. Moreover, the rearrangement of structural Fe(II) entities, the regeneration of edge Fe(II), and the electron transport from the interior to the edge were enhanced during rNAu-2 reoxidation by thermal activation. The increasing electron transfer at elevated temperatures could possibly be owing to the increasing number of reactive sites by increasing the internal disorder of rNAu-2. This work provides novel insights into the structural and mineralogical changes in promoting electron transfer upon RFC reoxidation.
Collapse
Affiliation(s)
- Wenwen Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaodong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yao Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zongquan Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Meichen Yao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Fasheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fujun Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qingbao Gu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
12
|
Calderón Celis F, González-Álvarez I, Fabjanowicz M, Godin S, Ouerdane L, Lauga B, Łobiński R. Unveiling the Pool of Metallophores in Native Environments and Correlation with Their Potential Producers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17302-17311. [PMID: 37921623 DOI: 10.1021/acs.est.3c04582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
For many organisms, metallophores are essential biogenic ligands that ensure metal scavenging and acquisition from their environment. Their identification is challenging in highly organic matter rich environments like peatlands due to low solubilization and metal scarcity and high matrix complexity. In contrast to common approaches based on sample modification by spiking of metal isotope tags, we have developed a two-dimensional (2D) Solid-phase extraction-Liquid chromatography-mass spectrometry (SPE-LC-MS) approach for the highly sensitive (LOD 40 fmol per g of soil), high-resolution direct detection and identification of metallophores in both their noncomplexed (apo) and metal-complexed forms in native environments. The characterization of peat collected in the Bernadouze (France) peatland resulted in the identification of 53 metallophores by a database mass-based search, 36 among which are bacterial. Furthermore, the detection of the characteristic (natural) metal isotope patterns in MS resulted in the detection of both Fe and Cu potential complexes. A taxonomic-based inference method was implemented based on literature and public database (antiSMASH database version 3.0) searches, enabling to associate over 40% of the identified bacterial metallophores with potential producers. In some cases, low completeness with the MIBiG reference BCG might be indicative of alternative producers in the ecosystem. Thus, coupling of metallophore detection and producers' inference could pave a new way to investigate poorly documented environment searching for new metallophores and their producers yet unknown.
Collapse
Affiliation(s)
| | | | - Magdalena Fabjanowicz
- Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Simon Godin
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l'Adour, 64000 Pau, France
| | - Laurent Ouerdane
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l'Adour, 64000 Pau, France
| | - Béatrice Lauga
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l'Adour, 64000 Pau, France
| | - Ryszard Łobiński
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l'Adour, 64000 Pau, France
- Chair of Analytical Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| |
Collapse
|
13
|
Zhang D, Liu X, Ding Y, Liu J, Jiang H, Dong H. Enhanced Oxidation of Cr(III)-Fe(III) Hydroxides by Oxygen in Dark and Alkaline Environments: Roles of Fe/Cr Ratio and Siderophore. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13172-13181. [PMID: 37606363 DOI: 10.1021/acs.est.3c04151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The current understanding of Cr(III)-Fe(III) hydroxide (Cr1-xFex(OH)3) oxidation in the dark is primarily focused on strong oxidants, yet the role of oxygen has generally been overlooked. Meanwhile, the effects of organic ligands on the Cr(III) oxidation are poorly known. Herein, we determined the kinetics of Cr1-xFex(OH)3 oxidation by oxygen in the dark as a function of pH and Fe/Cr ratio with/without the presence of a representative organic ligand-siderophore. Results showed that the Cr(III) oxidation rate increased linearly with increasing pH and Fe/Cr ratio. Thermodynamic calculations suggested that the enhanced Cr1-xFex(OH)3 oxidation with increasing pH was primarily due to the decreased ΔG value (i.e., the Gibbs free energy change) at higher pH. The decreased redox potentials (Eh) of Cr1-xFex(OH)3 suspensions with increasing Fe/Cr ratio accounted for the enhanced Cr(III) oxidation of iron-rich Cr1-xFex(OH)3. The siderophore greatly accelerated the Cr1-xFex(OH)3 oxidation at alkaline pH by promoting the formation of soluble organically complexed Cr(III), which can be oxidized readily by oxygen via mineral-surface catalyzed oxidation. Overall, this study highlights the specific role of oxygen and its synergistic role with the siderophore in the oxidation of solid Cr1-xFex(OH)3, which should be taken into consideration in assessing the long-term stability of Cr(III)-Fe(III) hydroxides.
Collapse
Affiliation(s)
- Donglei Zhang
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, People's Republic of China
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, People's Republic of China
| | - Xiaolei Liu
- School of Ocean Sciences, China University of Geosciences, Beijing 100083, People's Republic of China
| | - Yuefei Ding
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Juan Liu
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Hongchen Jiang
- School of Ocean Sciences, China University of Geosciences, Beijing 100083, People's Republic of China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, People's Republic of China
| |
Collapse
|