1
|
Zu D, Liu J, Wei H, Yang K, Tian H, Ma J, Yang Z. Comparative life cycle assessment of Fenton-like systems: Insights into the environmental benefits of reductant-driven strategies. WATER RESEARCH 2025; 279:123489. [PMID: 40106861 DOI: 10.1016/j.watres.2025.123489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/12/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Reductant-driven Fenton-like advanced oxidation processes (AOPs) offer the potential to reduce transition metal and oxidant consumption, but the environmental implications of introducing reductants remain unclear. This study employs life cycle assessment (LCA) to evaluate the environmental impacts of reductant-driven Fenton-like systems as an alternative to conventional AOP. Five distinct Fenton-like systems were investigated, and their corresponding life cycle inventories compiled following systematic optimization of operating parameters. Results demonstrate that introducing reductant shifts environmental hotspots from oxidants to the added reductants. Commodity chemical reductants (hydroxylamine and ascorbic acid) significantly reduce energy consumption and environmental damage due to economies of scale. Their per unit Cumulative Energy Demand (CED) and environmental damage value are two orders of magnitude lower than those of specialty chemical reductants (10.31 and 8.93 MJ g-1 MXene and MoS2). Thus, novel catalysts, potentially associated with high energy consumption and toxic byproducts, require careful evaluation of their catalytic efficiency and unit environmental impact to determine overall environmental benefits. Scaling up chemical production, adopting regeneration strategy and transitioning to renewable energy sources represent key strategies for further environmental improvement. This study provides a quantitative framework for assessing the environmental performance of alternative Fenton-like systems, informing the design of more environmentally sustainable water purification technologies.
Collapse
Affiliation(s)
- Daoyuan Zu
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jianbo Liu
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Heting Wei
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Kui Yang
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Hailin Tian
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zhifeng Yang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
2
|
Wang R, Zhao Y, Dang X, Sun Y, Kong D, Wang X, Bai S, Arotiba OA, Ma J. Unveiling the environmental sustainability of Ti 4O 7 electrified membrane for perfluorooctanoic acid removal. WATER RESEARCH 2025; 277:123310. [PMID: 39987582 DOI: 10.1016/j.watres.2025.123310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/31/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
Emerging electrified membrane (EM) technology offers an efficient approach for decentralized water purification. However, EM currently faces the challenge of unknown environmental sustainability, which presents a critical knowledge gap impeding its scale-up implementation. In this work, we aim to explore the environmental impacts of EM technology via a "cradle-to-grave" life cycle assessment, benchmarked against sequential ultrafiltration-nanofiltration. Our study found that the current EM technology shows higher greenhouse gas (GHG) emissions (19.70 kgCO2e g-1) than ultrafiltration-nanofiltration (8.60 kgCO2e g-1) for micropollutants removal. Electro-filtration operation dominates the total environmental impacts of EM process, driven primarily by the supporting electrolyte and electricity consumption. Notably, transitioning to greener electrolytes at lower concentrations can reduce GHG emissions by up to 66%, while switching to low-carbon-grid electricity through renewable energy sources will achieve a 33% reduction. Overall, this work enhances understanding of the environmental impacts of EM technology, emphasizing electrolyte optimization and carbon-intensity-reduction of electricity as critical factors for its sustainable development.
Collapse
Affiliation(s)
- Runzhi Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yumeng Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Xuhui Dang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Ye Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Dezhen Kong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xiaoxiong Wang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Shunwen Bai
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Omotayo A Arotiba
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa; Centre for Nanomaterials and Science Research, University of Johannesburg, Johannesburg, South Africa
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
3
|
Man S, Zhang J, Bao H, Ge Y, Bai Y, Liu X, Li Z, Qiu L, Zhao Z, Yan Q. Electrochemical degradation of toluene-2,4-diamine by graphene oxide-modified Ti/Sb-SnO 2/α-PbO 2/β-PbO 2 anode: Performance and mechanism. ENVIRONMENTAL RESEARCH 2025; 279:121903. [PMID: 40398696 DOI: 10.1016/j.envres.2025.121903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/15/2025] [Accepted: 05/18/2025] [Indexed: 05/23/2025]
Abstract
The formidable toluene-2,4-diamine (TDA), a potential human carcinogenic pollutant, environmental challenge necessitates investigating an efficient technology and clarifying its removal mechanism. Accordingly, we prepared a graphene oxide-modified PbO2 anode (Ti/Sb-SnO2/α-PbO2/GO-β-PbO2) to degrade TDA using electrochemical oxidation technology given its high oxidation capacity and green feature. The Ti/Sb-SnO2/α-PbO2/GO-β-PbO2 attained 100 % TDA and 82.7 % COD removal efficiency after 3.0 h electrolysis for its high oxygen evolution overpotential (2.08 V vs.SCE), superior ⋅OH generation capacity, and hydrophobic surface (121.2°). The quenching experiments and EPR tests all confirmed the vital role of both ⋅OH and SO4·-, resulting in the oxidation of the benzene ring and amino group. Moreover, the (Ti/Sb-SnO2/α-PbO2/GO-β-PbO2 also presented an improved stability with the accelerated lifetime prolonged by about 50.8 %. Therefore, this work provides a toolbox for treating TDA wastewater and a good reference for fabricating PbO2 anode via a facile yet effective method.
Collapse
Affiliation(s)
- Shuaishuai Man
- School of Environment and Ecology, Jiangnan University, Wuxi, 214122, PR China; WELLE Environmental Group Co., Ltd., Changzhou, 213000, PR China; Changzhou Cheff Environmental Protection Technology Co.Ltd., Changzhou, 213000, PR China
| | - Jun Zhang
- Great Bay Institute for Advanced Study, Great Bay University, Dongguan, 510080, PR China
| | - Hebin Bao
- Army Logistics Academy of PLA, Chongqing, 401331, PR China.
| | - Yifan Ge
- Army Logistics Academy of PLA, Chongqing, 401331, PR China
| | - Youcun Bai
- School of Materials Science and Engineering, Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Xinyu Liu
- School of Environment and Ecology, Jiangnan University, Wuxi, 214122, PR China
| | - Ziyang Li
- School of Environment and Ecology, Jiangnan University, Wuxi, 214122, PR China
| | - Liwei Qiu
- School of Environment and Ecology, Jiangnan University, Wuxi, 214122, PR China; Changzhou Cheff Environmental Protection Technology Co.Ltd., Changzhou, 213000, PR China
| | - Zhenzhen Zhao
- WELLE Environmental Group Co., Ltd., Changzhou, 213000, PR China
| | - Qun Yan
- School of Environment and Ecology, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
4
|
El‐Naggar K, Yang Y, Tian W, Zhang H, Sun H, Wang S. Metal-Organic Framework-Based Micro-/Nanomotors for Wastewater Remediation. SMALL SCIENCE 2024; 4:2400110. [PMID: 40212073 PMCID: PMC11935036 DOI: 10.1002/smsc.202400110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/21/2024] [Indexed: 04/13/2025] Open
Abstract
Micro-/nanomotors (MNMs) in water remediation have garnered significant attention over the past two decades. More recently, metal-organic framework-based micro-/nanomotors (MOF-MNMs) have been applied for environmental remediation; however, a comprehensive summary of research in this research area is yet to be reported. Herein, a review is presented to cover the recent advances in MOF-MNMs and their various applications in wastewater remediation. The review presents a comprehensive introduction to MNMs, including different propulsion approaches, fabrication, and functionalization strategies, in addition to the unique features of MOF-MNMs. The conception and various synthetic routes of MOF-MNMs are extensively covered and the implementation of MOF-MNMs in water-related applications, including adsorption, degradation, sensing, and disinfection of different pollutants, is in depth discussed. Meanwhile, the propulsion and mechanism of action behind each MOF-MNM are systematically studied. Finally, the review provides insights into the challenges and perspectives to build more effective MOF-MNMs to cover versatile applications for wastewater treatment.
Collapse
Affiliation(s)
- Karim El‐Naggar
- School of Chemical EngineeringThe University of AdelaideNorth TerraceAdelaideSA5005Australia
- Department of ChemistryFaculty of ScienceAin Shams UniversityAbbassiaCairo11566Egypt
| | - Yangyang Yang
- Institute of Green Chemistry and Chemical TechnologySchool of Chemistry & Chemical EngineeringJiangsu UniversityZhenjiang212013China
| | - Wenjie Tian
- School of Chemical EngineeringThe University of AdelaideNorth TerraceAdelaideSA5005Australia
| | - Huayang Zhang
- School of Chemical EngineeringThe University of AdelaideNorth TerraceAdelaideSA5005Australia
| | - Hongqi Sun
- School of Molecular SciencesFaculty of ScienceThe University of Western AustraliaPerthWA6009Australia
| | - Shaobin Wang
- School of Chemical EngineeringThe University of AdelaideNorth TerraceAdelaideSA5005Australia
| |
Collapse
|
5
|
Liu J, Yang F, Cai Y, Lu G, Li Y, Li M, Fan L, Gao L. Unveiling the existence and ecological hazards of trace organic pollutants in wastewater treatment plant effluents across China. ECO-ENVIRONMENT & HEALTH (ONLINE) 2024; 3:21-29. [PMID: 38162869 PMCID: PMC10757255 DOI: 10.1016/j.eehl.2023.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 01/03/2024]
Abstract
The presence of trace organic pollutants in the effluent of wastewater treatment plants (WWTPs) poses considerable risks to aquatic organisms and human health. A large-scale survey of 302 trace organic pollutants in the effluent of 46 Chinese WWTPs was conducted to gain an improved understanding of their occurrence and ecological risks. The survey data showed that 216 compounds in 11 chemical classes had been detected in effluents. The sum concentrations of the trace contaminants in effluent ranged from 1,392 ng/L to 35,453 ng/L, with the maximum concentration of perfluoroalkyl substances (PFASs) recorded as the highest (30,573 ng/L), which was markedly less than the reported 185,000 ng/L for the 38 American WWTPs. The concentration of bisphenol analogs (BPs) was up to 4,422 ng/L, significantly higher than those reported in France, Germany, Japan, Korea, and the U.S. PFASs and BPs were the major pollutants, accounting for 59% of the total pollution. Additionally, a total of 119 contaminants were found to have ecological risks (RQ > 0.01). Among these, 23 contaminants (RQ > 1.0) warrant higher attention and should be prioritized for removal. This study lists valuable information for controlling contaminants with higher priority in WWTP effluent in China.
Collapse
Affiliation(s)
- Jianchao Liu
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yuanfei Cai
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yiping Li
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ming Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Linhua Fan
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Li Gao
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Victoria 8001, Australia
| |
Collapse
|
6
|
Bhatt P, Engel BA, Shivaram KB, Turco RF, Zhou Z, Simsek H. Treatment and optimization of high-strength egg-wash wastewater effluent using electrocoagulation and electrooxidation methods. CHEMOSPHERE 2024; 347:140632. [PMID: 37967677 DOI: 10.1016/j.chemosphere.2023.140632] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/17/2023]
Abstract
Egg-washing wastewater contains a high concentration of nutrition and organic matter since eggs are broken during the washing and cleaning processes. Moreover, the wastewater contains small amounts of detergents or sanitizing agents. These contaminants may pose environmental challenges when they are not properly managed or treated. The study scrutinizes the efficiency of electrocoagulation (EO) and electrooxidation (EO) approaches for egg-wash wastewater treatment. The response surface methodology was employed to optimize the operational parameters. The removal efficiencies of soluble chemical oxygen demand (sCOD 90%), ammonia (NH3-N 91%), nitrate (NO3--N 97%), nitrite (NO2--N 89.3%), total dissolved nitrogen (TDN 91%), and phosphate (90%) were measured under various treatment conditions. The optimum treatment conditions achieved in the combined EC + EO process were pH 6.0, current density 20 mA cm-2, and electrolysis time of 60 min, respectively. Degradation kinetics of the egg-wash pollutants showed a significant reduction in half-life (t1/2) with EO (after EC-Aluminum) at 15 min, 12 min, 17 min, and 15 min for sCOD, NO2--N. NO3--N, and TDN, respectively. Whereas the half-life of NH3-N (18 min) and phosphate (17 min) reduced significantly with the EO (after EC-iron). Al and Fe electrodes coupled with boron-doped diamond were found efficient for pollutant removal. Environmental implication. Egg-wash wastewater has a high protein content and contains nutrients that are essential for living organisms. While these compounds can be valuable for agricultural use by increasing soil phosphate concentration, they can also become an issue if the excess nutrients are not properly managed. The soil has a threshold limit for holding phosphate, and any excess amount may be transported through surface runoff or contaminate groundwater through leachate, potentially affecting aquatic ecosystems and water quality. This study explores the efficiency of electrocoagulation and electrooxidation methods in treating egg-wash wastewater. These methods aim to remove pollutants and reduce their environmental impact.
Collapse
Affiliation(s)
- Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Bernard A Engel
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Karthik B Shivaram
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Ronald F Turco
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Zhi Zhou
- School of Civil Engineering, Purdue University, West Lafayette, IN, USA; Division of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
7
|
Sun Y, Zhao Z, Tong H, Sun B, Liu Y, Ren N, You S. Machine Learning Models for Inverse Design of the Electrochemical Oxidation Process for Water Purification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17990-18000. [PMID: 37189261 DOI: 10.1021/acs.est.2c08771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In this study, a machine learning (ML) framework is developed toward target-oriented inverse design of the electrochemical oxidation (EO) process for water purification. The XGBoost model exhibited the best performances for prediction of reaction rate (k) based on training the data set relevant to pollutant characteristics and reaction conditions, indicated by Rext2 of 0.84 and RMSEext of 0.79. Based on 315 data points collected from the literature, the current density, pollutant concentration, and gap energy (Egap) were identified to be the most impactful parameters available for the inverse design of the EO process. In particular, adding reaction conditions as model input features allowed provision of more available information and an increase in the sample size of the data set to improve the model accuracy. The feature importance analysis was performed for revealing the data pattern and feature interpretation by using Shapley additive explanations (SHAP). The ML-based inverse design for the EO process was generalized to a random case for tailoring the optimum conditions with phenol and 2,4-dichlorophenol (2,4-DCP) serving as model pollutants. The resulting predicted k values were close to the experimental k values by experimental verification, accounting for the relative error lower than 5%. This study provides a paradigm shift from conventional trial-and-error mode to data-driven mode for advancing research and development of the EO process by a time-saving, labor-effective, and environmentally friendly target-oriented strategy, which makes electrochemical water purification more efficient, more economic, and more sustainable in the context of global carbon peaking and carbon neutrality.
Collapse
Affiliation(s)
- Ye Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Zhiyuan Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Hailong Tong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P. R. China
| | - Baiming Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P. R. China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of the Ministry of Ecology and Environment, Donghua University, Shanghai 201620, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| |
Collapse
|